Concluding remarks

DIP: Diagnostics for Insufficiencies of Posterior calculations - a CMB application

Sebastian Dorn

N. Oppermann, and T. A. Enßlin

2013 - 12 - 13

Max-Planck-Institut für Astrophysik

Concluding remarks

Outline

Desterior Validation: DIP Test

- Validation Concept
- 2 Error Diagnostics
- 3 Example
- Inferring the Non-Gaussianity of CMB Temperature Anisotropies
 - **1** Introduction to CMB non-Gaussianities
 - 2 Posterior Derivation
 - 3 Posterior Validation
- ③ Concluding remarks

DIP ••••••

Validation Concept

CMB Application

Concluding remarks

DIP TEST – Validation Concept –

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Validation Concept

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

WHY is posterior validation needed?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WHY is posterior validation needed?

 \Rightarrow Increasing level of complexity in Bayesian posterior calcuations prone to errors:

• Mistakes in the numerical implementation/ insufficient numerical precision

WHY is posterior validation needed?

 \Rightarrow Increasing level of complexity in Bayesian posterior calcuations prone to errors:

- Mistakes in the numerical implementation/ insufficient numerical precision
- Analytic approximations (denoted by ∼) in the posterior derivation might influence the posterior:

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)} \approx \tilde{P}(s|d)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

CMB Application

Concluding remarks

DIP – procedure:

¹ for proof see S. Dorn *et al.*, Phys.Rev.E.88.053303 (\square) ((\square) (\square) (\square) ((\square) (\square) ((\square) (\square) ((\square) ((($\square)) (((<math>\square)) ((<math>\square)) ((<math>\square)) (((<math>\square)) (((<math>\square)) (((<math>\square)) (((<math>\square)$

Validation Concept

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

DIP - procedure:

1 Sample values of s_{gen} from the prior P(s).

DIP – procedure:

- **1** Sample values of s_{gen} from the prior P(s).
- **2** Generate data d for every s_{gen} according to $P(d|s_{\text{gen}})$.

¹ for proof see S. Dorn *et al.*, Phys.Rev.E.88.053303 (\square) ((\square) (\square) (\square) ((\square) (\square) ((\square) (\square) ((\square) ((($\square)) (((<math>\square)) ((<math>\square)) ((<math>\square)) (((<math>\square)) (((<math>\square)) (((<math>\square)) (((<math>\square)$

DIP – procedure:

- **1** Sample values of s_{gen} from the prior P(s).
- **2** Generate data d for every s_{gen} according to $P(d|s_{\text{gen}})$.
- 3 Calculate a posterior curve for given data by determining $\tilde{P}(s|d)$.

¹ for proof see S. Dorn *et al.*, Phys.Rev.E.88.053303 (\square) ((\square) (\square) (\square) ((\square) (\square) ((\square) (\square) ((\square) ((($\square)) ((<math>\square$) ((($\square)) ((<math>\square)) (((<math>\square)) ((<math>\square)) (((<math>\square)) (((<math>\square)) (((<math>\square))$

Validation Concept

DIP – procedure:

- **1** Sample values of s_{gen} from the prior P(s).
- **2** Generate data d for every s_{gen} according to $P(d|s_{\text{gen}})$.
- 3 Calculate a posterior curve for given data by determining $\tilde{P}(s|d)$.
- **4** Calculate the posterior probability for $s \leq s_{\text{gen}}$ according to

$$x := \int_{-\infty}^{s_{\text{gen}}} \mathrm{d}s \; \tilde{P}(s|d) \; \in [0,1] \,. \tag{1}$$

¹ for proof see S. Dorn *et al.*, Phys.Rev.E.88.053303 ($\square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square$)

Validation Concept

DIP – procedure:

- **1** Sample values of s_{gen} from the prior P(s).
- **2** Generate data d for every s_{gen} according to $P(d|s_{\text{gen}})$.
- 3 Calculate a posterior curve for given data by determining $\tilde{P}(s|d)$.
- **4** Calculate the posterior probability for $s \leq s_{\text{gen}}$ according to

$$x := \int_{-\infty}^{s_{\text{gen}}} \mathrm{d}s \; \tilde{P}(s|d) \; \in [0,1] \,. \tag{1}$$

If the calculation of the posterior was correct, the distribution for x, P(x), should be uniform¹ between 0 and 1.

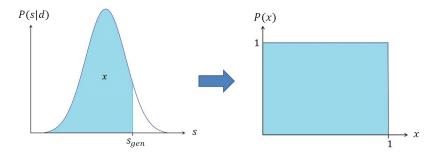
¹ for proof see S. Dorn *et al.*, Phys.Rev.E.88.053303 (\mathbb{P}) ($\mathbb{P})$

Validation Concept

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

<u>DIP test:</u> correct posterior (1D)



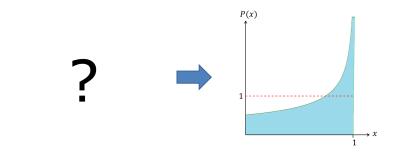
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Validation Concept

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

<u>DIP test:</u> incorrect posterior (1D)



 \Rightarrow What informations are encoded in the dip of the histogram?

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Error Diagnostics

CMB Application

Concluding remarks

DIP TEST – Error diagnostics –

▲ロト ▲園ト ▲ミト ▲ミト 三国 - のへで

<u>Henceforth we consider</u>:

- $s \in \mathbb{R}$
- Gaussian posteriors (similar effects for other pdf's),

$$P(s|d) = \mathcal{G}(s_d, \sigma^2) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{s_d^2}{2\sigma^2}\right),$$

with $s_d = s - \bar{s}_d$ and \bar{s}_d the data dependent maximum of the posterior and

• a wrongly determined value

$$x^{\epsilon} = \int_{-\infty}^{s_{\text{gen}}} \mathrm{d}s \ P^{\epsilon}(s|d),$$

where $P^{\epsilon}(s|d)$ is the distorted Gaussian.

- ロ ト - 4 回 ト - 4 □

Error Diagnostics

CMB Application

Concluding remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Wrong variance

$$P^{\epsilon}(s|d) = \frac{1}{\sqrt{2\pi}\sigma(1+\epsilon)} \exp\left(-\frac{s_d^2}{2\sigma^2(1+\epsilon)^2}\right)$$

with $\epsilon > -1$. For P(x) we obtain²

$$P(x) = (1+\epsilon) \exp\left(-\left[\operatorname{erf}^{-1}(2x-1)\right]^2 \left[(1+\epsilon)^2 - 1\right]\right)$$

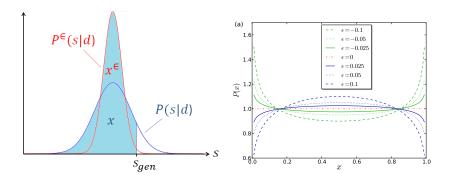
²see S. Dorn *et al.*, Phys.Rev.E.88.053303

Error Diagnostics

CMB Application

Concluding remarks

Wrong variance



▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへぐ

Error Diagnostics

CMB Application

Concluding remarks

Wrong skewness

$$P^{\epsilon}(s|d) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{s_d^2}{2\sigma^2}\right) \left(1 + \operatorname{erf}\left(\frac{\epsilon s_d}{\sqrt{2\sigma}}\right)\right).$$

For P(x) we obtain

$$P(x) = \begin{cases} 1/(2\sqrt{x}) & \text{if } \epsilon = 1\\ 1/(2\sqrt{1-x}) & \text{if } \epsilon = -1 \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

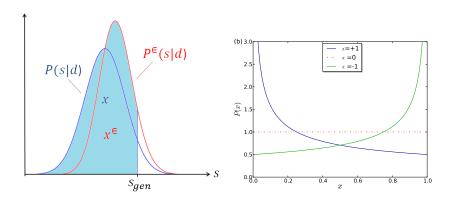
.

Error Diagnostics

CMB Application

Concluding remarks

Wrong skewness



▲ロト ▲課 ト ▲ 語 ト ▲ 語 ト ○ 語 - - - の へ ()・

Error Diagnostics

CMB Application

Concluding remarks

Wrong maximum position

$$P^{\epsilon}(s|d) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(s_d - \epsilon)^2}{2\sigma^2}\right)$$

For P(x) we obtain

$$P(x) = \exp\left(-\frac{1}{2}\left(\frac{\epsilon}{\sigma}\right)^2 - \sqrt{2}\left(\frac{\epsilon}{\sigma}\right) \operatorname{erf}^{-1}(2x-1)\right)$$

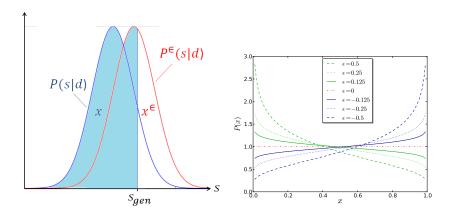
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Error Diagnostics

CMB Application

Concluding remarks

Wrong maximum position



<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Error Diagnostics

CMB Application

Concluding remarks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Wrong normalization

$$P^{\epsilon}(s|d) = \frac{1}{\sqrt{2\pi}\sigma(1+\epsilon)} \exp\left(-\frac{s_d^2}{2\sigma^2}\right)$$

For P(x) we obtain

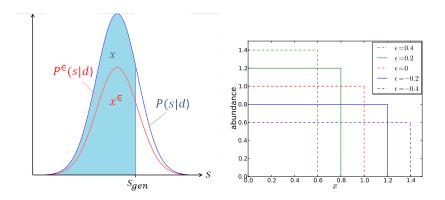
$$P(x) = 1 + \epsilon \qquad \text{for } x \in [0, 1 - \epsilon].$$

Error Diagnostics

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

Wrong normalization



 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What have we gained?

 \Rightarrow Connection between graphical effects & error-types of posteriors distortions

Graphical effect	Error-type
Flat distribution	_
"∪-(∩-)shape"	variance under-(over-)estimated
x = 0 ($x = 1$) enhanced,	
purely left curved	too neg. (pos.) skewed
x = 0 ($x = 1$) enhanced,	
left & right curved	too large (low) max. postition
<i>x</i> -interval smaller	
(greater) than one	too large (low) normalization

 $\Rightarrow \text{ Quantitative errors on posterior pdf become estimateable} \\ \rightarrow \text{ fitting formulae } P(x).$

Example

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

DIP TEST – Example in 2D –

▲ロト ▲園ト ▲ミト ▲ミト 三国 - のへで

Example

CMB Application

Concluding remarks

Remark: DIP test in higher dimensionen

- Considering $P(t|d), t \in \mathbb{R}^m, m \in \mathbb{N}$
- Histogram generation requires 1D posterior \Rightarrow map P(t|d) onto 1D, by

$$P(s|d) = \int \mathcal{D}t \ P(s|t,d)P(t,d).$$

• Infinitely many ways to perform this mapping \Rightarrow a suite of tests are needed to probe P(t|d).

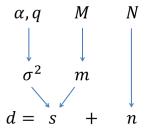
CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Hierarchical model in 2D: Data model



• white noise: $n \leftrightarrow \mathcal{G}(n|N)$; mean: $m \leftrightarrow \mathcal{G}(m|M)$

• variance:

$$\mathcal{I}\left(\sigma^{2}, \alpha, q\right) := \frac{q^{\alpha}}{\Gamma(\alpha)} \sigma^{2-\alpha-1} \exp\left(-\frac{q}{\sigma^{2}}\right)$$

CMB Application

Concluding remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Hierarchical model in 2D: Inference

1 The posterior calculation for m, σ^2 yields

$$P(m,\sigma^{2}|d) = \frac{\mathcal{G}(m,M) \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d-m,\sigma^{2}+N)}{\int_{0}^{\infty} \mathrm{d}\sigma^{2} \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d,\sigma^{2}+M+N)}.$$

CMB Application

Concluding remarks

Example

Hierarchical model in 2D: Inference

0 The posterior calculation for m,σ^2 yields

$$P\left(m,\sigma^{2}|d\right) = \frac{\mathcal{G}(m,M) \mathcal{I}\left(\sigma^{2},\alpha,q\right) \mathcal{G}\left(d-m,\sigma^{2}+N\right)}{\int_{0}^{\infty} \mathrm{d}\sigma^{2} \mathcal{I}\left(\sigma^{2},\alpha,q\right) \mathcal{G}\left(d,\sigma^{2}+M+N\right)}.$$

2 Artificial inclusion of an error by setting $\alpha \to \alpha(1 + \epsilon)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

CMB Application

Concluding remarks

Example

Hierarchical model in 2D: Inference

1 The posterior calculation for m, σ^2 yields

$$P(m,\sigma^{2}|d) = \frac{\mathcal{G}(m,M) \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d-m,\sigma^{2}+N)}{\int_{0}^{\infty} \mathrm{d}\sigma^{2} \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d,\sigma^{2}+M+N)}.$$

2 Artificial inclusion of an error by setting α → α(1 + ε)
3 Mappings onto 1D:

$$P(\sigma^{2}|d) = \int \mathcal{D}m \ P(m, \sigma^{2}|d)$$
$$P(m|d) = \int_{0}^{\infty} d\sigma^{2} \ P(m, \sigma^{2}|d)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CMB Application

Concluding remarks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Hierarchical model in 2D: Inference

0 The posterior calculation for m,σ^2 yields

$$P(m,\sigma^{2}|d) = \frac{\mathcal{G}(m,M) \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d-m,\sigma^{2}+N)}{\int_{0}^{\infty} \mathrm{d}\sigma^{2} \mathcal{I}(\sigma^{2},\alpha,q) \mathcal{G}(d,\sigma^{2}+M+N)}.$$

2 Artificial inclusion of an error by setting \$\alpha \rightarrow \alpha(1+\epsilon)\$
3 Mappings onto 1D:

$$P(\sigma^{2}|d) = \int \mathcal{D}m \ P(m, \sigma^{2}|d)$$
$$P(m|d) = \int_{0}^{\infty} d\sigma^{2} \ P(m, \sigma^{2}|d)$$

④ Perform DIP test for the mapped posteriors.

DIP 000000000000000000000000000 CMB Application

Concluding remarks

Example

<u>Hierarchical model in 2D: Results</u> $\alpha = 2, q = 1, M = 1, N = 0.1$ and $\epsilon = 0.3$

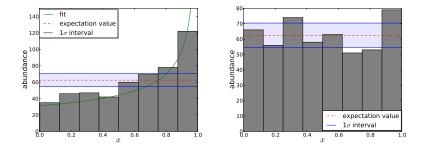


Figure: Left (right) histogram shows the unnormalized distribution of 500 x-values within eight bins as calculated from the m- (σ^2 -) marginalized posterior. Fit: Skewness fitting formula with $\epsilon = 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

Introduction to CMB non-Gaussianities

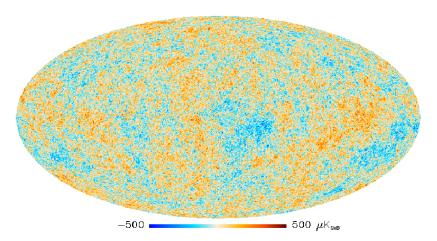
CMB APPLICATION – Introduction to CMB non-Gaussianities –

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Concluding remarks

Introduction to CMB non-Gaussianities

Planck (SMICA) CMB map



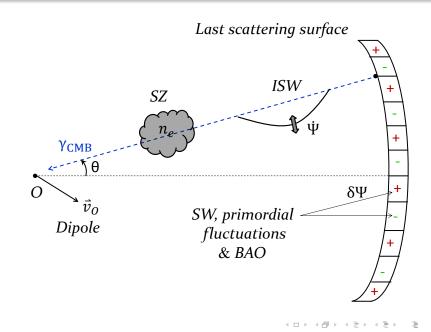
source: Planck 2013 results. I.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concluding remarks

500

Introduction to CMB non-Gaussianities



 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Introduction to CMB non-Gaussianities

CMB TEMPERATURE ANISOTROPIES – Statistics of the temperature anisotropies –

Concluding remarks 000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction to CMB non-Gaussianities

Characterization:

• Primordial gravitational potential $\phi \to \Delta T/T$ is well described by a Gaussian distribution, i.e.

$$\phi \hookrightarrow \mathcal{G}(\phi, \Phi) := \frac{1}{\sqrt{|2\pi\Phi|}} \exp\left(-\frac{1}{2}\phi^{\dagger}\Phi^{-1}\phi\right).$$

 Φ : 2-point function (covariance operator)

Introduction to CMB non-Gaussianities

Characterization:

• Primordial gravittional potential $\phi \to \Delta T/T$ is well described by a Gaussian distribution, i.e.

$$\phi \hookrightarrow \mathcal{G}(\phi, \Phi) := \frac{1}{\sqrt{|2\pi\Phi|}} \exp\left(-\frac{1}{2}\phi^{\dagger}\Phi^{-1}\phi\right).$$

 Φ : 2-point function (covariance operator)

 $\bullet\,$ If ϕ purely Gaussian, statistics are determined by the two-point function.

Introduction to CMB non-Gaussianities

Characterization:

• Primordial gravittional potential $\phi \to \Delta T/T$ is well described by a Gaussian distribution, i.e.

$$\phi \hookrightarrow \mathcal{G}(\phi, \Phi) := \frac{1}{\sqrt{|2\pi\Phi|}} \exp\left(-\frac{1}{2}\phi^{\dagger}\Phi^{-1}\phi\right).$$

 Φ : 2-point function (covariance operator)

 $\bullet~$ If ϕ purely Gaussian, statistics are determined by the two-point function.

However, there are deviations from Gaussianity!

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

Introduction to CMB non-Gaussianities

Origins of non-Gaussianity:

primordial sources

• Gaussian quantum fluctuations $\delta \phi$ \downarrow non-linear inflation dynamics & non-linear GR \downarrow non-linear gravitational potential (curvature perturbation) $\varphi(\delta \phi, \ \delta \phi^2, \dots) \rightarrow \Delta T/T$

Concluding remarks

Introduction to CMB non-Gaussianities

Origins of non-Gaussianity:

primordial sources

• Gaussian quantum fluctuations $\delta \phi$ \downarrow non-linear inflation dynamics & non-linear GR \downarrow non-linear gravitational potential (curvature perturbation) $\varphi(\delta \phi, \ \delta \phi^2, \dots) \rightarrow \Delta T/T$

- 2 non-primordial sources:
 - instrumental effects
 - residual foregrounds and point sources
 - 2nd order gravity effects
 - secondary CMB anisotropies, e.g. ISW, SZ, grav. lensing

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Introduction to CMB non-Gaussianities

Characterization of non-Gaussianity:

 \rightarrow need higher moments to describe deviations from Gaussianity

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction to CMB non-Gaussianities

Characterization of non-Gaussianity:

- \rightarrow need higher moments to describe deviations from Gaussianity
- \rightarrow lowest order: three-point function / bispectrum:

$$\langle \varphi(k_1)\varphi(k_2)\varphi(k_3)\rangle_{(\varphi|C_l)} = (2\pi)^3 \underbrace{\delta^{(3)}(k_1+k_2+k_3)}_{\text{triangle configuration}} \times \underbrace{f_{\text{NL}}}_{\text{strength}} \times \underbrace{F_{\varphi}(|k_1|,|k_2|,|k_3|)}_{\text{shape of triangle}}$$

 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

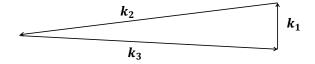
《日》 《圖》 《王》 《王》

= 900

Introduction to CMB non-Gaussianities

Local non-Gaussianity:

• The squeezed (local) shape of the bispectrum is defined as: $k_1 \ll k_2 \approx k_3$



 $\begin{array}{c} \mathbf{Concluding \ remarks} \\ \mathbf{000} \end{array}$

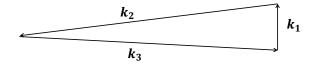
3

500

Introduction to CMB non-Gaussianities

Local non-Gaussianity:

• The squeezed (local) shape of the bispectrum is defined as: $k_1 \ll k_2 \approx k_3$



• For this local shape:

$$\frac{\Delta T}{T} \leftarrow \varphi = \phi + f_{\rm NL} \left(\phi^2 - \left\langle \phi^2 \right\rangle_{(\phi|\Phi)} \right)$$

 $f_{\rm NL}$: non-Gaussianity parameter

Concluding remarks

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

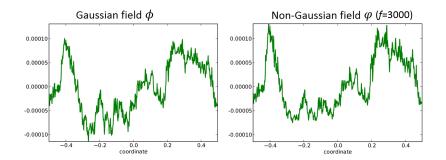
Introduction to CMB non-Gaussianities

CMB APPLICATION – Posterior derivation –

Concluding remarks

Posterior derivation

$$d = \frac{\Delta T_{\rm obs}}{T_{\rm CMB}} = R\varphi + n \stackrel{\rm local type}{=} R\left(\phi + f_{\rm NL}\left(\phi^2 - \left\langle\phi^2\right\rangle_{(\phi|\Phi)}\right)\right) + n$$



▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Posterior derivation

CMB Application

Concluding remarks

How can we reconstruct $f_{\rm NL}$ from given data d?

How likely is the resulting $f_{\rm NL}$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Posterior derivation

How can we reconstruct $f_{\rm NL}$ from given data d? How likely is the resulting $f_{\rm NL}$? \rightarrow requested quantity: posterior $P(f_{\rm NL}|d)$

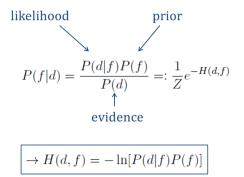
 \rightarrow used framework: information field theory

CMB Application

Concluding remarks 000

ション ふゆ ア キョン キョン しょうく

Information field theory:



Z: partition function

CMB Application

Concluding remarks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Posterior derivation

• $f_{\rm NL}$ -posterior:

$$P(f|d) \propto P(d|f)P(f)$$

$$\propto \int \mathcal{D}\phi \ P(d,\phi|f) = \int \mathcal{D}\phi \ \exp(-\underbrace{H(d,\phi|f)}_{\text{contains terms } \propto \phi^4})$$

 $(f = f_{\rm NL})$

Concluding remarks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Posterior derivation

• $f_{\rm NL}$ -posterior:

$$P(f|d) \propto P(d|f)P(f)$$

$$\propto \int \mathcal{D}\phi \ P(d,\phi|f) = \int \mathcal{D}\phi \ \exp(-\underbrace{H(d,\phi|f)}_{\text{contains terms } \propto \phi^4})$$

 $(f = f_{\rm NL})$

 \rightarrow Impossible to perform path integration analytically!

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Posterior derivation

Solution:

Taylor expansion of H in ϕ because:

- $\phi \propto \mathcal{O}(10^{-5})$ and $P(\phi \approx 1) \approx 0$!
 - around $m = \arg\min(H(d, \phi|f))$
 - $\bullet\,$ up to 2nd order in $\phi\,$

Concluding remarks

Posterior derivation

$$P(f|d) \approx \int \mathcal{D}\phi \, \exp\left(-\left(H(d,m|f) + \frac{1}{2}(\phi-m)^{\dagger}D_{d,f}^{-1}(\phi-m)\right)\right)$$

 $D_{d,f}$: inverse Hessian of $H(d, \phi|f)|_{\phi=m}$

Concluding remarks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Posterior derivation

$$P(f|d) \approx \int \mathcal{D}\phi \, \exp\left(-\left(H(d,m|f) + \frac{1}{2}(\phi-m)^{\dagger}D_{d,f}^{-1}(\phi-m)\right)\right)$$

 $D_{d,f}$: inverse Hessian of $H(d, \phi|f)|_{\phi=m}$

\downarrow

Final $f_{\rm NL}$ -posterior:

$$P(f|d) \propto |2\pi D_{d,f}|^{\frac{1}{2}} \exp(-H(d,m|f))$$

 \rightarrow No numerically expensive sampling techniques necessary!

Posterior validation

CMB Application

 $\begin{array}{c} \mathbf{Concluding \ remarks}\\ \mathbf{000} \end{array}$

CMB APPLICATION – Posterior validation –

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

CMB Application

Concluding remarks

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example: Sachs-Wolfe-limit

From now on we consider

$$N_{xy} = \sigma_n^2 \,\delta_{xy}$$
$$R(x,y) = -1/3 \,\delta(x-y)$$

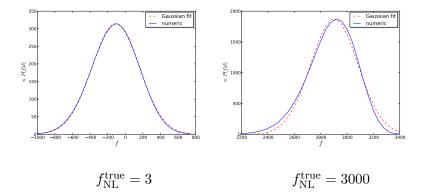
and study 1D-, 2D- flat sky and all sky toy-cases.

$$\Phi_{(l,m)(l',m')} = (C_l)_{\rm CMB} \,\delta_{ll'} \delta_{mm'}.$$

CMB Application

Concluding remarks

Shape of the posterior (1D toy case)



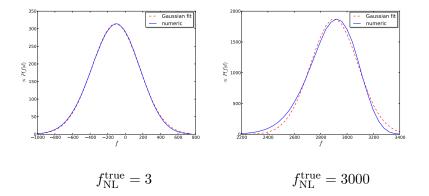
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Posterior validation

CMB Application

Concluding remarks

Shape of the posterior (1D toy case)



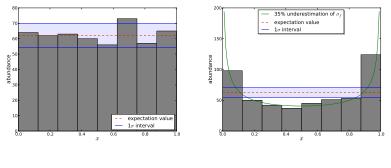
How accurate is our posterior?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CMB Application

Concluding remarks

Sachs-Wolfe limit – 500 data realizations



2D flat sky

spherical harmonics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

CMB Application

Concluding remarks $\bullet \circ \circ$

CONCLUDING REMARKS

シック・ 川 ・山・ ・山・ ・ ・ ・ ・ ・

Summary of the DIP test:

- DIP is a powerful posterior validation method
- Error diagnosis is possible
- Fitting formulae to estimate influence on posterior distribution
- Inspection by eye

Summary of the $f_{\rm NL}$ parameter:

- We derived a PDF for the $f_{\rm NL}$ parameter
- Precision of the posterior was validated (DIP-test) in the large-scale limit (1D, 2D)
- $\, \bullet \,$ Gaussian shape of the PDF for small values of $f_{\rm NL}$
- Monte Carlo sampling isn't necessary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank you for paying attention!

- DIP-test:
 S. Dorn *et al.*, Phys.Rev.E.88.053303 (2013)
- f_{NL}-posterior:
 S. Dorn *et al.*, Phys.Rev.D.88.103516 (2013)

Concluding remarks

Proof. We show here analytically that P(x) = 1 if $\tilde{P}(s|d) = P(s|d):$ $P(x) = \int^{\infty} ds \int \mathcal{D}d \ P(x, d, s)$ $= \int^{\infty} ds \int \mathcal{D}d P(x|d,s)P(d,s)$ $= \int^{\infty} ds \int \mathcal{D}d P(d,s) \,\delta\left(x - \int^{s} ds' P(s'|d)\right)$ $= \int^{\infty} ds \int \mathcal{D}d P(d)P(s|d) \,\delta(x - x_d(s)),$ $P(x) = \partial_x \int^x dx' P(x')$ $= \partial_x \int \mathcal{D}d \ P(d) \int_{-\infty}^{\infty} ds \ P(s|d) \underbrace{\int_0^x dx' \ \delta(x' - x_d(s))}_{0}$ $\Theta(x - x_d(s))$ $=\partial_x\int \mathcal{D}d\ P(d)\int_{-\infty}^{s_d(x)}ds\ P(s|d)$ $= \partial_x \int \mathcal{D}d \ P(d) \underbrace{x_d(s_d(x))}_{d} = \partial_x x \int \mathcal{D}d \ P(d)$ $= \partial_r x = 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

$$P(x) = \int_{-\infty}^{\infty} \mathrm{d}s \int \mathcal{D}d \ P(d) \ \mathcal{G}\left(s - \bar{s}_d, \sigma^2\right)$$
$$\times \delta\left(x - \int_{-\infty}^{s} \mathrm{d}\tilde{s} \ \mathcal{G}^{\epsilon}\left(\tilde{s} - \bar{s}_d, \sigma^2\right)\right)$$