Surrogates

MPE Bayes Forum

Garching, December 2012
Christoph Rath

Max-Planck-Institut fur extraterrestrische Physik, Garching, Germany,

0,



Motivation

*To make known to Bayesians some key concepts
of nonlinear data analysis (NLDA)

*To start another attempt to bring together the best from ,the
two worlds’

. The two worlds":

NLDA: Bayes:

,1he model is the data.” "You always put prejudice in it.

(C. Grebogy) That's called the Bayesian
method.”

(Dick Bond to George Efstathiou,
Paris, Planck Meeting, 27.9.12)



. Tools:
Some Higher Order
Statistics



Minkowski Functionals

two-dimensional image data/CMB data => three Minkowski functionals (MF):

Area : M,v)= de of an excursion set R(v)
R(v)
Circumference: M) = [dl M= = .
R # connected regions -
L dl # holes in the regions.
Euler characteristic: M,)= [ —dl
dR(V)

el i\ ) Mecke et al., A & A, 1994
M6+ / Schmalzing & Gorski, MNRAS, 1998



Scaling indices for spherical data

|dea: Assessing local scaling properties:

Consider a point distribution P:

P={pli=1..N

*9 ¥ points ?

ﬁi = {xiayiﬂzi}

Local cumulative weighted density:

N _(ﬂ)"
p(]_ji)=ze ' ’dzj=‘]_5i_l_5j“
j=1

Scaling Indices:

.. _ dlog(p(p,))
s Ot(pl.) = alog(r)

3D representation X-z-projection for
of WMAP data

all points with |y|[<0.1

j=1
See e.g. for a review:
G. Rossmanith et al., Adv. in Astron., 2011




Non-linear prediction error (NLPE)

Predicted vs. true flow in artificial phase space constructed with

delay coordinates: ] 0
. P(t)
q/ 9z ©
S Al_:;system
q

B(t)

Global NLPE :

. — . - . 1 N
AG pred =~ E q;  NLPE(i) = HApsyszem (1) = AG e (Z)H NLPE =— 2 NLPE(i)
=1 i=

M-1-T 1/2

| ] 1 . o\ b
L’(d T, T: *\) - (J[ . T . (d . 1)7_) ( Z [a’.n'i"l - F(J'n)] )

n=(d—1)7

See e.g.: G. Sugihara and R. M. May, Nat., 344, 734(1990)



Phase Maps

Consider the Fourier Transform FT(I(x)) = A(k)e'*k) of a time series I(x):

A phase map is a two-dimensional set of points G = {p(k),p(k+A)} where @(k) is
the phase of the kth mode of the Fourier transform and A a mode delay.

Examples:

p(k+1)
¢(k+3)

Note: If the phases are uniformly distributed and independent

from each other, the phase maps are a random 2d distribution
of points.

See e.g.: L.-Y. Chiang, et al., MNRAS 337, 488 (2002)



Il. Surrogates



Surrogates

Definition:

,Surrogates are data sets which have some properties with a
given data set in common while all other properties are
subject to randomisation®

One of the key concepts of nonlinear data analysis

Background:
Resampling techniques: Jackknife, Bootstrapping, etc.

Most common surrogates:

Preserving linear properties, i.e. power spectrum,
randomising all Higher Order Correlations <=>
Fourier phases are random and correlation-free




Volker Dose's Talk:

alpha distributions, surrogate data
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Scheme:
* A priori definition of a null hypothesis
» Generation of surrogates consistent with null hypothesis

« Computation of discrimination statistics being sensitive to the complement
of the null hypothesis

« Comparison of the outcome of the discrimination statistics for original data
and surrogates

*Accepting or rejecting null hypothesis
Note:
# citations: 1630 (June 2012)
# citations: 1740 (December 2012)
There's more than Bayes method...

We describe a statistical approach for identifying nonlinearity in time series. The method first specifies some linear
process as a null hypothesis, then generates surrogate data sets which are consistent with this null hypothesis, and finally
computes a discriminating statistic for the original and for each of the surrogate data sets. If the value computed for the
original data is significantly different than the ensemble of values computed for the surrogate data, then the null hypothesis
is rejected and nonlinearity is detected. We discuss various null hypotheses and discriminating statistics. The method is
demonstrated for numerical data generated by known chaotic systems, and applied to a number of experimental time series
which arise in the measurement of superfluids, brain waves, and sunspots; we evaluate the statistical significance of the
evidence for nonlinear structure in each case, and illustrate aspects of the data which this approach identifies.



Probing Linearity / Gaussianity

Data Set Calculation of
statistical measures Statistical
l \ Msensitiv to higher | | comparison in
Constrained order correlations terms of e.g.
Randomisation significances,
Confidence
l M derived from e.g.: levels, etc.
*Phase maps
Surrogate data *NLPE
with the same eBispectrum
power spectrum e Minkowski-functionals
«Wavelets

eScaling indices




Ill. Some Algorithms for
Generating Surrogates



FT-algorithm

Original data: Rank ordered
remapping onto
Gaussian distribution

Io(xa)’) " Il(an) il

i, (k, ky)
- Ak, ke

Random

phases: ¢ (k, ,ky)

v

I,..(xy) - Ak ket )

SUrro
FT

Note: Phases are - by construction - random

Theiler et al., Physica D, 58, 77 (1992)



AAF T-algorithm

Rank ordered

Original data: Remapping on to

Gaussian FT iy (k, k)
Io(x,y) . Il(x,y) -~ A/(k,.k))e
Random
Rank ordered phases: ¢ (k,.k,)
Remapping on to il

Original data ~ .
i (k, k)
Iwro(x,y) . A (k, ke

FT-

Isurro(’x’y) )

Note: Power spectrum is whitened by the remapping step.
Effect of remapping on the phases is not considered.

Theiler et al., Physica D, 58, 77 (1992)



|AAF T-algorithm

Original data: Rank ordered

Io(x,y) FT Ao(kx,ky)eicpo(kx,ky) FT! X J(x,y) remapping In(x,y)

A

Replace ¢, by a set of FT-1 FT
random phases ©®,..q4om:

Prama Koks) Ak e B A, (ke

Replacement of
Fourier amplitudes

Note: Randomness of the phases is not controlled during iteration.

Schreiber & Schmitz, PRL, 77, 635 (1996)



V. Assessing FT, AAFT and
IAAFT



Assessing FT, AAFT and IAAFT

Consider the following scalar time series from two - quite distinct - complex system,
namely the X-ray observation of an AGN and a stock market index:
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, AAFT and IAAFT

Assessing FT

Phase maps for one realization of AAFT and IAAFT surrogates for Mrk and DJ
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Assessing FT, AAFT and IAAFT

(Linear) Cross-correlations of phases
for AAFT, FT and IAAFT surrogates for Mrk and DJ:
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Systematic broadening for AAFT and IAAFT !!!

Rath et al., PRL, 2012




Assessing FT, AAFT and IAAFT

Significances based on the NLPE as derived from AAFT, FT and IAAFT surrogates:
Mrk 766 / Rev 999 Dow Jones
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Correlations in the phases propagate into the calculation of NLPE =>
non-detection of nonlinearities with AAFT and |AAFT !

Wy J/ Réth et al., PRL, 2012
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Phase information vs. HOS
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No correlations found for the DJ,
High correlations detected for Mrk 766 (only) for A=1.




Phase information vs. HOS

||||||||||||||||

10 . iﬁﬁ-" (Surrogate) time series can be
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* Wiener-Chintschin-like relation between HOS and phases

information detected
- * Possibility, to ultimately get more insight into the meaning of
~~\ | Fourier phases for nonlinear data sets.



V. Assessing higher order
statistics with
Surrogates



Why SIM and MF ?

T
A4
L
F
\

301 Minkowski Functionals
(best) SMHW-measures
Y (best) SIM-measures
— <0 P
>

(

Simulated G and NG flat field, 0;=0.0, a;=0.3

(Rocha et al., MNRAS, 2005)

Highly significant detection of HOCs in the original image with SIM and MF.

=> Assessing the performance of higher order statistics using surrogates.




Why SIM and MF (2nd example) ?

120 T T T T T T T T T T T T T T T T T T T

Minkowski Functionals
(best) SMHW-measures
(best) SIM-measures

P [%]

HRMRI images of a healthy (left) and osteoporotic (right) bone

T

<00 7 77

(Muller et al., Osteop. Int., 2006, Rath et al., Proc SPIE, 2009)

Minkowski Functionals
(best) SMHW-measures
(best) SIM-measures

Highly significant detection of HOCs in the original image

with MF and SIM.

Only poor performance of wavelets.




VI. Surrogates

and
the CMB



Why (scale-dependent)
non-Gaussianity?

e Non-Gaussianity for Inflation is like..... A

..detection of the Higgs-particle for understanding mass
..direct detection of dark matter

« Single-field inflation: density fluctuations are Gaussian

e Some non-standard inflationary models predict
scale-dependent non-Gaussianities.

» Once one has found a signature using a model-independent test, one wants
to explain its origin.

=> Testing whether existing models can account for the detected anomalies
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Generating Surrogates

Fourier Transform of the femperature map:

00 [
T(m)=Y Ya,Y,(n)  with a,, = [T(n)Y,,dQ,

[=0 m=-1
One can write:

alm = ‘alm

Al with P = arctan(lm(alm))
Re(a,,)

Non-Gaussian Field :

Fourier Phases are correlated and/or not uniformly
distributed

How to test for possible phase correlations?
Destroy (only) them (by scale-dependent

shuffling) and look what happens...




Generating Surrogates

Introducing a two-step shuffling/replacement scheme allows to test for
scale-dependent non-Gaussianities:

m t // D

/ . i

¢lm (plm

> |

All |a,,| ‘s are preserved.

|

First order Surrogate: Shuffle outside (L,

Second order Surrogates: Shuffle inside (l
C. Rith et al., PRL, 2009

max)

|

min?’ max)



Generating Surrogates: Al-intervals

Al =[2,20] Al=[20,60] Al =[60,120]  Al=[120,300]

6000:lllllll| | I N | B | T Ir T T T 7|7| T |

1000 £ ¢ /

-

O:Tnuul | I T T | | 1 ] 1 | 1 1 1 1 1 1

10 100 500 1000
Multipole moment 1



Deviation in rotated hemispheres

Simulations / 1st or 2nd order Surrogates

WMAP data / 1st order surrogate

o-normalised deviation S:

59,9 = X=X

Ox q/

X =<al(r) >0,,,

X (< a(r) >,0,,),

XA(M),i=0,12

MPE




Results for SIM

S(X) in rotated hemispheres for varying Al and r:

Al =[2,1024] Al =[2,20] Al =[20,60] Al =[60,120] Al =[120,300]

ILC 7yr map, X = <d,,>, <d,,>, <d,.,> (from top to bottom)

*Most significant deviations for Al = [2,20] and Al = [120,300]
Signal in Al = [2,1024] to be interpreted as superposition of the signals
in Al = [2,20] and Al = [120,300]

C. Rath et al., MNRAS, 2011



Results:

Checks on systematics (Al=[2,20]):

Uncorrected Difference Asymmetric Simulated Simulated
ILC map ILC map Beam map Coadded ILC-like
(year 7 - year6) VW-band map map

=> No test can so far explain the low-l anomalies!

C. Rath et al., MNRAS, 2011



Results:
Checks on systematics (AI=[120,300]):

@
L )
D@

Uncorrected Difference Asymmetric Simulated Simulated
ILC map ILC map Beam map Coadded ILC-like
(year 7 — year6) VW-band map map

=> A number of ,residuals’ found for the high-I case ‘




Results for MFs and SIM

Non-Gaussianities in the WMAP data 7

area perimeter euler scaling indices
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0.0 _i_ 5.0 0.0 _!_ 6.0
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Figure 1. Deviations S(x?2) of Minkowski Functionals My, M; and M of the rotated hemispheres for the ILC7 (upper row, from left to
right) and NILC7 map (middle row). In the lower row we show the results of the phase replacement method for NILC7. The I-range for
the method of the surrogates is Al = [2,20]. The plots to the very right show the corresponding results S(x?) for the respective maps
gained by the scaling index method.
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H. Modest et al., MNRAS, 2012



Results for MFs and SIM

Full Sky full sky full sky
' ' ' ' 4x107 ' ' ' . 2000 '
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Results for MFs and SIM

Full Sky hemisphere = hemisphere
Smaz Opposite S
x* (51%) (51%) (S1%)
Area 0.62 | 86.4 6.72 | 99.6 3.05 | 98.8
Perimeter 0.93 | 88.6 [7.33 | >99.8 | 4.52|99.4
Euler 1.44 | 92.2 [7.24 | >99.8| 3.62|99.0
SIM 0.41 | 57.0 |8.9| >99.8 6.1 | 99.8
Full Sky hemisphere hemisphere
Smam Opposite S
x> (S|%) (51%) (S|%)
Area 1.03 | 88.2 |9.51 | >99.8 5.98 | 99.8
Perimeter 0.89 | 86.4 |9.97 | >99.8 7.31]99.8
Euler 0.77 | 84.4 |9.50 | >99.8| 7.22| >99.8
SIM 0.29 | 51.4 |7.53 | >99.8| 6.23 | >99.8

Table 2. The same as Table 1, but for the NILC7 surrogate maps

=Highly significant detection
of NGs on large scales and of
signatures anisotropies.

The signal is independent
from:
-The input map
-The chosen higher
order statistics

Thus, what about:
Single field slow roll inflation?
Copernican Principle?

H. Modest et al., MNRAS, 2012




Results: Linear and nonlinear
asymmetries

WMAF

Hemispherical asymmetries of the

Power spectrum
(e.g. Hansen et al., MNRAS, 2004
Hansen et al., ApJ, 2009)

Directionality of the

linear and nonlinear
hemispherical asymmetries
is not so different.

H. Modest et al., MNRAS, 2012 ‘ S



Surrogates for an incomplete sky

Possible foreground residuals in the galactic plane
= Masking of the galactic plane
= Basis functions Y|, no longer orthogonal

fx=) a,t, foy=), amv

Here: Cutis + 20°, |

max



Creating an orthonormal basis
on an incomplete sky

How to obtain a;¥, Y

) | Ycut _ A—IY

C=[ Y)Y (5)dQ C=AA"
acut — AT a
Construct the Decompose the Calculate the cut
Coupling Matrix Coupling Matrix sky harmonics and
by integrating with e.g. its coefficients
over the cut sky Cholesky with the matrix A
Decomposition

Sounds straightforward, the implemention is, however, somewhat tedious....

See: Gorski et al. ApJ,1994a,b ,
Mortlock et al., MNRAS, 2002




Results for cut sky analysis

X =o(a)
Excluding the galactic plane doesn‘t change the results significantly.
=)

/MPE/
Rossmanith et al., PRD, 2012 ‘ -




NGs of the local type

Perturbation of the curvature (NGs of the local type):

Y(X) =P (X) + [, W ()= < (X) )

WMAP7 constraints on f: fy =32 + 21 (68% CL)

(Komatsu et al., ApJS, 2011)

Tests involving surrogates and fy, realisations (Elsner & Wandelt, ApJ, 2010)
10 f realisations, 5 fy, values each (-1000, -100, O, 100, 1000) + wmap data
1 1st order surro, 500 2nd order surros

= 50 +1 * 501 maps = 25.551 maps



NGs of the local type

Simulation

-0.40 0.40 -0.40 0.40 —-0.40 0.40

-0.40 0.40 -0.40 0.40

Simulation + WMAP-like beam and noise properties




On the origin of low-l phase correlations

Statistics of S- maps based on scaling indices
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On the origin of low-l phase correlations

Statistics of S- maps based on Minkowski functionals
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On the origin of low-l phase correlations

Another candidate: Bianchi-like template (see Jaffe et al., ApJ, 2006):

— 300. puK

-300. pK

Fi. 4.—Top: WMAP Intenal Linear Combination map. Middle: Best-fit
Bianchi VII, template (enhanced by a factor of 4 to bring out structure). Bottom: Dif-
ference between WILC and best-fit Bianchi template; the “Bianchi<corrected”
ILC map. Overplotted on each as a dotted line is the equator in the reference frame

that maximizes the power asymmetry as described in § 6.3.

0-65—. s 1.35

Fig. 10.—Power ratio between hemispheres in WMAP ILC, corrected (bottom)
and uncorrected (top) for best-fit Bianchi component.

We consider the following two cases:

WMAP

R2]

7]
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©

=]

x

‘1 .0 1 1 1 1 1 1 1
2 4 6 8 10 12 14
Wavelet scale (deg)
Fii. 11.—Kurtosis in wavelet coefficients. The boxes and crosses show the

kurtosis before and after subtracting the Bianchi template, respectively, computed
from the southern (dotted line) and northem (solid line) Galactic hemispheres.

WMAP - BIANCHI-Template



On the origin of low-l phase correlations

WMAP NILC7 WMAP NILC7 - BIANCHI-Template

eluler euler




On the origin of low-l phase correlations

WMAP NILC7

WMAP NILC7 - BIANCHI-Template

=>|nterestingly enough, the anisotropic Bianchi template seems to be a viable model

to (also) account for the low-l phase correlations
(H. Modest et al, in preparation)



A closer look at the low-l phase correlations

What makes the SIM-/MF-Signal appear/disappear ?
Low l-case (l<20)=> Number of basis functions Y, and thus of phases ¢, is limited:

........ bu(WMAP) . $u(WMAP-Bianchi)
R0 ® 20
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....................
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Only the variations in these modes make the difference.
Thus, the origin of the anomalies is considerably narrowed down.
More detailed parameter studies, more sophisticated surrogates
=> Relation between features of HOC in real space and phase information ?!



VI. Conclusions

- Surrogates are a versatile tool for (model-
independent) data analysis, e.g. for detecting weak
non-linearities in time series, non-Gaussianities in
images etc.

- Not all surrogate generating algorithms are as good
as they seemed to be. => Nonlinearities may remain
undetected

However:

- Surrogates can help to shed (more) light on the
meaning of Fourier phases and their relation to HOS
__ - Deeper understanding of the information coded in
the phases may help in the development of
nonlinear models




Thank you for your attention




