Dynamic system classifier

Daniel Pumpe, Maksim Greiner, Ewald Müller, Torsten Enßlin

22.01.2016

Max-Planck-Institut für Astrophysik

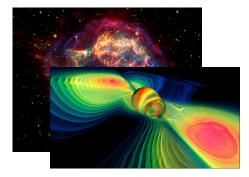
OUTLINE

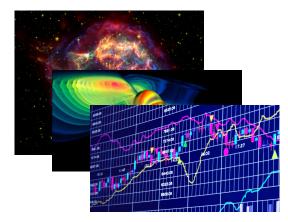
INTRODUCTION

MODEL TRAINING

MODEL SELECTION

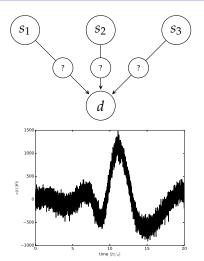
CONCLUSION





The Goal

To classify complex dynamical systems



system classes

data

BAYES THEOREM

"Information is what forces a change in belief" by Caticha

$$\mathcal{P}(s \mid d) = rac{\mathcal{P}(d \mid s)\mathcal{P}(s)}{\mathcal{P}(d)}$$

STOCHASTIC DIFFERENTIAL EQUATION (SDE)

oscillating dynamical systems

$$\frac{d^{2}x(t)}{dt^{2}} + \gamma \frac{dx(t)}{dt} + \omega^{2}x(t) = F(t)$$

STOCHASTIC DIFFERENTIAL EQUATION (SDE)

complex dynamical systems

$$\frac{d^{2}x\left(t\right)}{dt^{2}} + \underline{\gamma\left(t\right)}\frac{dx\left(t\right)}{dt} + \underline{\omega_{0}}e^{\beta\left(t\right)}x\left(t\right) = \underline{\xi\left(t\right)}$$

STOCHASTIC DIFFERENTIAL EQUATION (SDE)

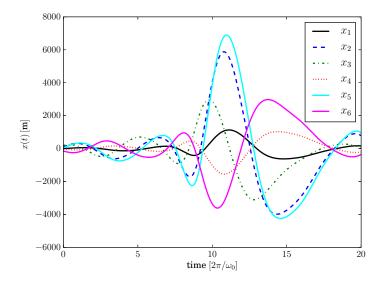
complex dynamical systems

$$\frac{d^{2}x\left(t\right)}{dt^{2}} + \underline{\gamma\left(t\right)}\frac{dx\left(t\right)}{dt} + \underline{\omega_{0}}e^{\beta\left(t\right)}x\left(t\right) = \underline{\xi\left(t\right)}$$

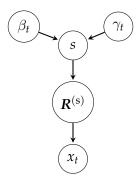
Operator form

$$\begin{aligned} x_t &= R_{tt'}^{(s)} \xi_{t'} \\ \left(\mathbf{R}_{tt'}^{(s)} \right)^{-1} &= \delta^{(2)} \left(t - t' \right) - \gamma_t \delta^{(1)} \left(t - t' \right) + \omega_0 \, e^{\beta_t} \delta \left(t - t' \right) \end{aligned}$$

TRAINING DATA



CONSTRUCTION OF THE LIKELIHOOD

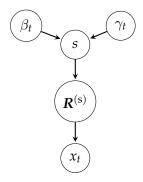


signal field

Response operator

training data

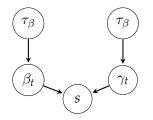
The Likelihood of a SDE



$$\mathcal{P}(x|s) = \mathscr{G}\left(x, {R^{(s)}}^{\dagger} \Xi R^{(s)}\right)$$

- temporarily structured covariance
- characterizes a non-stationary processes

The Prior

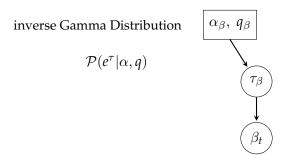


 $\mathcal{P}(\beta_t | \mathbf{\Omega}) = \mathscr{G}(\beta_t, \mathbf{\Omega})$

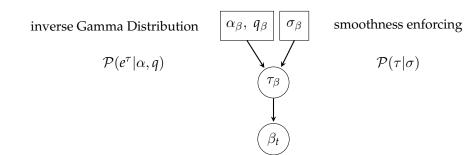
assuming statistical stationarity:

$$\mathbf{\Omega} = \sum_k e^{ au_k} \mathbf{\Omega}_k$$

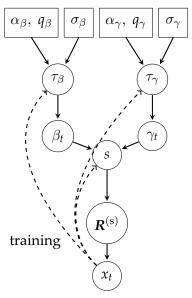
A HIERARCHICAL PRIOR MODEL



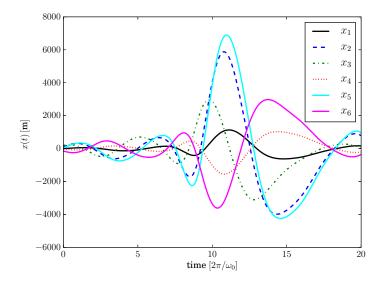
A HIERARCHICAL PRIOR MODEL



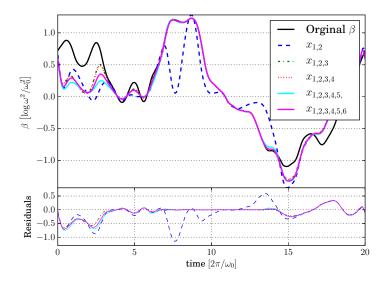
THE MODEL TRAINING



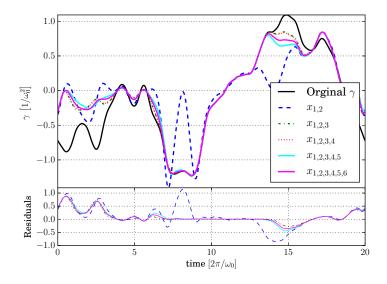
TRAINING DATA



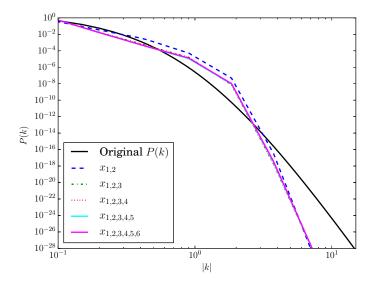
Reconstructed β_{rec}



Reconstructed $\gamma_{\rm rec}$

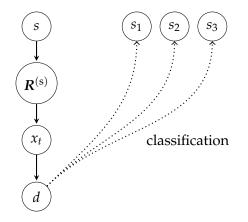


RECONSTRUCTED P(k)

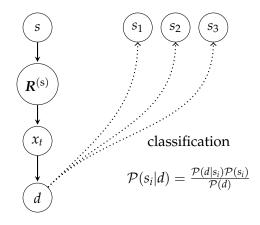


$$\boldsymbol{d} = \boldsymbol{R}_{\text{OBS}}\boldsymbol{x} + \boldsymbol{n} = \boldsymbol{R}_{\text{OBS}}\,\boldsymbol{R}^{(\text{s})}\,\boldsymbol{\xi} + \boldsymbol{n}$$

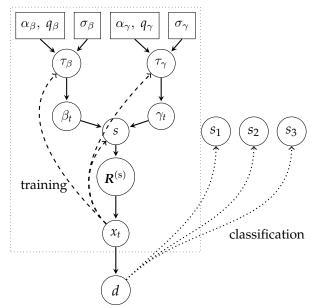
$$\boldsymbol{d} = \boldsymbol{R}_{\text{OBS}}\boldsymbol{x} + \boldsymbol{n} = \boldsymbol{R}_{\text{OBS}}\,\boldsymbol{R}^{(\text{s})}\,\boldsymbol{\xi} + \boldsymbol{n}$$



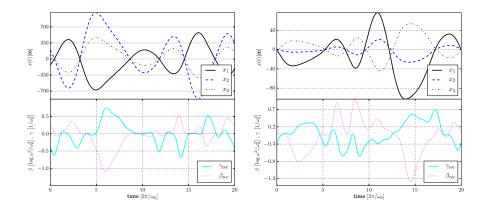
$$\boldsymbol{d} = \boldsymbol{R}_{\text{OBS}}\boldsymbol{x} + \boldsymbol{n} = \boldsymbol{R}_{\text{OBS}}\,\boldsymbol{R}^{(\text{s})}\,\boldsymbol{\xi} + \boldsymbol{n}$$



THE BAYESIAN NETWORK OF DSC

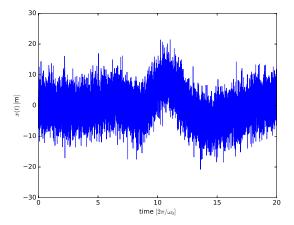


MODEL SELECTION- THE SYSTEM CLASSES



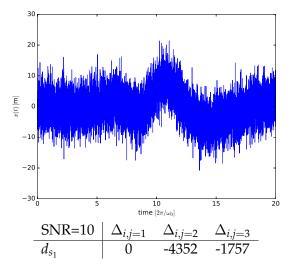
Test case- SNR = 10

$$\Delta_{i,j} = \log \mathcal{P}(d|s_i) - \log \mathcal{P}(d|s_j)$$

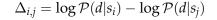


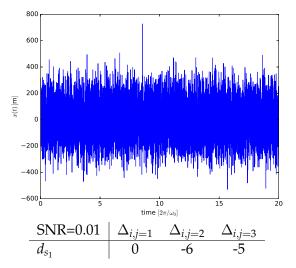
Test case- SNR=10

$$\Delta_{i,j} = \log \mathcal{P}(d|s_i) - \log \mathcal{P}(d|s_j)$$



TEST CASE- SNR = 0.01





Performance of DSC

$$\Delta_{i,j} = \log \mathcal{P}(d|s_i) - \log \mathcal{P}(d|s_j)$$

SNR=0.01	$\Delta_{i,j=1}$	$\Delta_{i,j=2}$	$\Delta_{i,j=3}$
d_{s_1}	0	-6	-5
d_{s_2}	-8	0	-10
d_{s_3}	0	0	0
SNR=0.1			
d_{s_1}	0	-144	-55
d_{s_2}	-151	0	-139
d_{s_3}	-1	-12	-0
SNR=10			
d_{s_1}	0	-4352	-1757
d_{s_2}	-6355	0	-5724
d_{s_3}	-60	-136	0

CONCLUSION

- DSC algorithm is established:
 - 1. Analyzes training data from system classes to construct abstract classifying information
 - 2. Confronts data with the system classes, to state the probability which system class explains observations best
- The classification ability of the DSC-algorithm has successfully been demonstrated in realistic numerical tests
- The DSC-algorithm should be applicable to a wide range of model selection problems

Thanks for your attention!

CLASSIFICATION- THE LIKELIHOOD

$$\boldsymbol{d} = \boldsymbol{R}_{\text{OBS}}\boldsymbol{x} + \boldsymbol{n} = \boldsymbol{R}_{\text{OBS}}\,\boldsymbol{R}^{(\text{s})}\,\boldsymbol{\xi} + \boldsymbol{n}\,.$$

$$\mathcal{P}(d|s_i) = \int \mathcal{D}x \, \mathcal{P}(d|x) \mathcal{P}(x|s_i)$$
$$= \int \mathcal{D}x \, \mathscr{G}(d - \mathbf{R}_{\text{OBS}}x, N)$$
$$\times \mathcal{G}(x, \mathbf{R}^{(s)^{\dagger}} \equiv \mathbf{R}^{(s)})$$
$$\propto \frac{1}{\sqrt{|D|}} \exp\left(\frac{1}{2}j^{\dagger}Dj\right)$$

with

$$j = \mathbf{R}^{(\mathrm{s})^{\dagger}} \mathbf{R}_{\mathrm{OBS}}^{\dagger} N^{-1} d$$

and

$$D^{-1} = \mathbf{R}^{(\mathrm{s})^{\dagger}} \mathbf{R}_{\mathrm{OBS}}^{\dagger} N^{-1} \mathbf{R}_{\mathrm{OBS}} \mathbf{R}^{(\mathrm{s})} + \mathbf{\Xi}^{-1}.$$