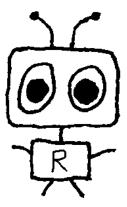
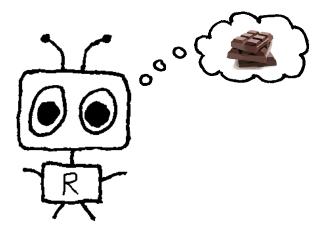
Bayesian Reinforcement Learning

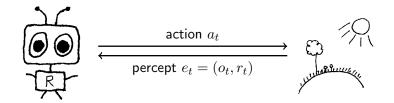
Jan Leike

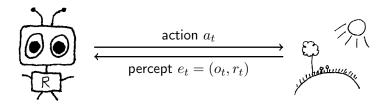
Australian National University

21 December 2015



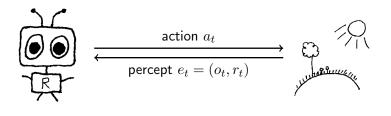






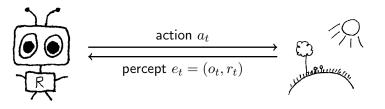
history

 $\boldsymbol{x}_{< t} := a_1 e_1 a_2 e_2 \dots a_{t-1} e_{t-1}$



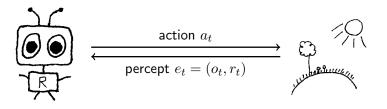
history policy

 $\boldsymbol{x}_{< t} := a_1 e_1 a_2 e_2 \dots a_{t-1} e_{t-1}$ π : Histories \rightsquigarrow Actions



history policy environment

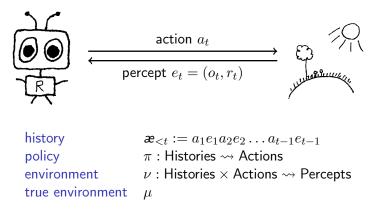
$$\begin{split} & \pmb{x}_{< t} := a_1 e_1 a_2 e_2 \dots a_{t-1} e_{t-1} \\ & \pi : \mathsf{Histories} \rightsquigarrow \mathsf{Actions} \\ & \nu : \mathsf{Histories} \times \mathsf{Actions} \rightsquigarrow \mathsf{Percepts} \end{split}$$



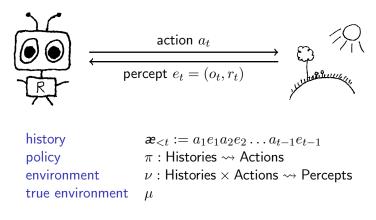
history policy environment true environment

 $\begin{array}{l} \pmb{x}_{< t} := a_1 e_1 a_2 e_2 \dots a_{t-1} e_{t-1} \\ \pi : \text{Histories} \rightsquigarrow \text{Actions} \\ \nu : \text{Histories} \times \text{Actions} \rightsquigarrow \text{Percepts} \\ \mu \end{array}$

Jan Leike



Goal: maximize $\sum_{t=1}^{\infty} \gamma(t) r_t$ where $\gamma : \mathbb{N} \to [0, 1]$ is a discount function with $\sum_{t=1}^{\infty} \gamma(t) < \infty$



Goal: maximize $\sum_{t=1}^{\infty} \gamma(t) r_t$ where $\gamma : \mathbb{N} \to [0, 1]$ is a discount function with $\sum_{t=1}^{\infty} \gamma(t) < \infty$

Assume: $0 \le r_t \le 1$

Value Functions

Jan Leike

Value Functions

Value of policy π in environment ν :

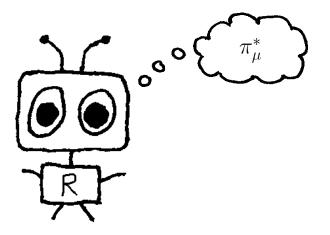
$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}) := \frac{1}{\Gamma_{t}} \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma(k) r_{k} \, \middle| \, \boldsymbol{x}_{< t} \right]$$

Value Functions

Value of policy π in environment ν :

$$V_{\nu}^{\pi}(\boldsymbol{x}_{< t}) := \frac{1}{\Gamma_{t}} \mathbb{E}_{\nu}^{\pi} \left[\sum_{k=t}^{\infty} \gamma(k) r_{k} \, \middle| \, \boldsymbol{x}_{< t} \right]$$

Optimal value: $V_{\nu}^* := \sup_{\pi} V_{\nu}^{\pi}$ ν -optimal policy: $\pi_{\nu}^* := \arg \max_{\pi} V_{\nu}^{\pi}$



$AIXI^2$

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

• countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- prior $w: \mathcal{M} \to [0,1]$

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- prior $w: \mathcal{M} \to [0,1]$
- Bayesian mixture

$$\xi := \sum_{\nu \in \mathcal{M}} w(\nu) \nu$$

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- prior $w: \mathcal{M} \to [0, 1]$
- Bayesian mixture

$$\xi := \sum_{\nu \in \mathcal{M}} w(\nu) \nu$$

Solomonoff: $^1 w(\nu):=2^{-K(\nu)}$, $K(\nu):=$ length of the shortest description of ν

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

- countable set of environments $\mathcal{M} = \{\nu_1, \nu_2, \ldots\}$
- prior $w: \mathcal{M} \to [0, 1]$
- Bayesian mixture

$$\xi := \sum_{\nu \in \mathcal{M}} w(\nu) \nu$$

Solomonoff: $^1 w(\nu):=2^{-K(\nu)}$, $K(\nu):=$ length of the shortest description of ν

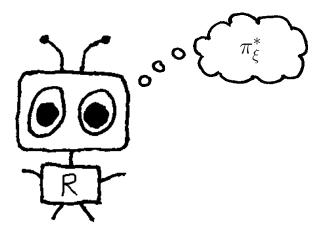
AIXI is the Bayes-optimal agent with a Solomonoff prior

$$\pi_{\xi}^* := \arg\max_{\pi} V_{\xi}^{\pi}$$

²Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, 2005.

Jan Leike

¹Ray Solomonoff. "A Formal Theory of Inductive Inference. Parts 1 and 2". In: Information and Control 7.1 (1964), pages.



Intelligence measures an agent's ability to achieve goals in a wide range of environments.

³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

Intelligence measures an agent's ability to achieve goals in a wide range of environments.

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi}$$

³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

Intelligence measures an agent's ability to achieve goals in a wide range of environments.

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi} = V_{\xi}^{\pi}$$

³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

Intelligence measures an agent's ability to achieve goals in a wide range of environments.

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi} = V_{\xi}^{\pi}$$

³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

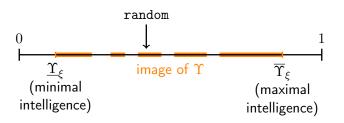
Intelligence measures an agent's ability to achieve goals in a wide range of environments.

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi} = V_{\xi}^{\pi}$$

³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

Intelligence measures an agent's ability to achieve goals in a wide range of environments.

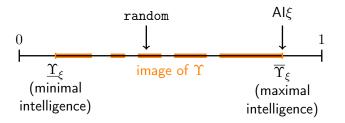
$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi} = V_{\xi}^{\pi}$$



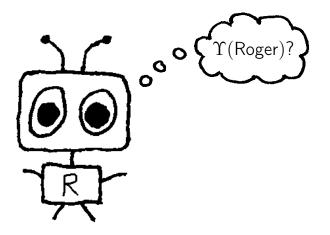
³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.

Intelligence measures an agent's ability to achieve goals in a wide range of environments.

$$\Upsilon_{\xi}(\pi) := \sum_{\nu} w(\nu) V_{\nu}^{\pi} = V_{\xi}^{\pi}$$



³Shane Legg and Marcus Hutter. "Universal Intelligence: A Definition of Machine Intelligence". In: Minds & Machines 17.4 (2007), pp. 391–444.



Hell

Hell

hell) reward = 0

⁴Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Policy π_{Lazy} :

while (true) { do_nothing(); }

Jan Leike

⁴Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

Policy π_{Lazy} :

```
while (true) { do_nothing(); }
```

Dogmatic prior ξ' :

if not acting according to π_{Lazy} , go to hell with high probability

⁴Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

```
Policy \pi_{Lazy}:
```

```
while (true) { do_nothing(); }
```

```
Dogmatic prior \xi':
```

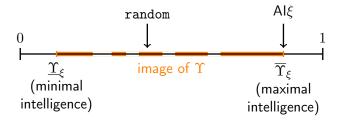
if not acting according to π_{Lazy} , go to hell with high probability

Theorem

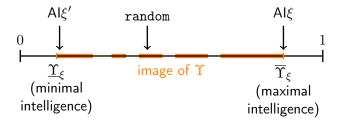
Alξ' acts according to π_{Lazy} as long as $V_{\xi}^{\pi_{Lazy}}(\boldsymbol{x}_{< t}) > \varepsilon > 0$ (future expected reward does not get close to 0).

⁴Jan Leike and Marcus Hutter. "Bad Universal Priors and Notions of Optimality". In: *Conference on Learning Theory*. 2015, pp. 1244–1259.

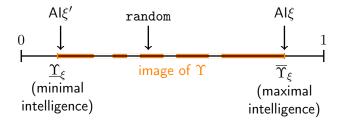
Consequences for Intelligence



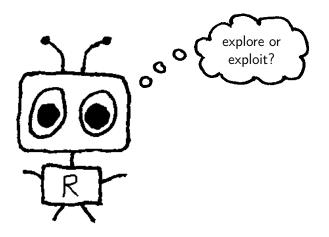
Consequences for Intelligence



Consequences for Intelligence



 \implies Legg-Hutter intelligence is highly subjective



Asymptotic Optimality

 π is asymptotically optimal iff

$$V^*_\mu(oldsymbol{x}_{< t}) - V^\pi_\mu(oldsymbol{x}_{< t}) o 0$$
 as $t o \infty$

Jan Leike

⁵Laurent Orseau. "Asymptotic Non-Learnability of Universal Agents with Computable Horizon Functions". In: *Theoretical Computer Science* 473 (2013), pp. 149–156.

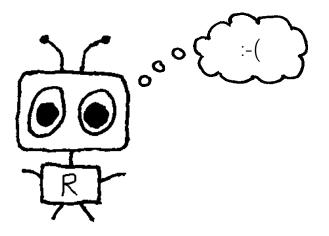
Asymptotic Optimality

 π is asymptotically optimal iff

$$V^*_\mu(oldsymbol{x}_{< t}) - V^\pi_\mu(oldsymbol{x}_{< t}) o 0$$
 as $t o \infty$

Theorem AIXI is not asymptotically optimal.⁵

⁵Laurent Orseau. "Asymptotic Non-Learnability of Universal Agents with Computable Horizon Functions". In: *Theoretical Computer Science* 473 (2013), pp. 149–156.



• $m \in \mathbb{N}$ is the horizon

⁶Laurent Orseau, Tor Lattimore, and Marcus Hutter. "Universal Knowledge-Seeking Agents for Stochastic Environments". In: *Algorithmic Learning Theory*. Springer, 2013, pp. 158–172.

Jan Leike

 $\blacktriangleright \ m \in \mathbb{N} \text{ is the horizon}$

Information-seeking policy⁶

$$\pi_I^* \coloneqq \operatorname*{arg\,max}_{\pi} \mathbb{E}_{\nu \sim w(\cdot | \boldsymbol{x}_{< t})} [\mathrm{KL}_{1:m}(\nu^{\pi}, \xi^{\pi})]$$

⁶Laurent Orseau, Tor Lattimore, and Marcus Hutter. "Universal Knowledge-Seeking Agents for Stochastic Environments". In: *Algorithmic Learning Theory*. Springer, 2013, pp. 158–172.

Jan Leike

 $\blacktriangleright \ m \in \mathbb{N} \text{ is the horizon}$

Information-seeking policy⁶

$$\pi_I^* := \arg \max_{\pi} \mathbb{E}_{\nu \sim w(\cdot \mid \boldsymbol{x}_{< t})} [\mathrm{KL}_{1:m}(\nu^{\pi}, \xi^{\pi})]$$

=
$$\arg \max_{\pi} \mathbb{E}_{\xi}^{\pi} [\mathrm{Ent}(w(\cdot \mid \boldsymbol{x}_{< t})) - \mathrm{Ent}(w(\cdot \mid \boldsymbol{x}_{1:m}))]$$

⁶Laurent Orseau, Tor Lattimore, and Marcus Hutter. "Universal Knowledge-Seeking Agents for Stochastic Environments". In: *Algorithmic Learning Theory*. Springer, 2013, pp. 158–172.

• $m \in \mathbb{N}$ is the horizon

Information-seeking policy⁶

$$\pi_I^* \coloneqq \underset{\pi}{\arg \max} \mathbb{E}_{\nu \sim w(\cdot \mid \boldsymbol{x}_{
$$= \underset{\pi}{\arg \max} \mathbb{E}_{\xi}^{\pi} [\mathrm{Ent}(w(\cdot \mid \boldsymbol{x}_{$$$$

Effective horizon:

$$H_t(\varepsilon) := \min\left\{k \left| \frac{\sum_{i=t+k}^{\infty} \gamma(i)}{\sum_{i=t}^{\infty} \gamma(i)} \le \varepsilon\right.\right\}$$

⁶Laurent Orseau, Tor Lattimore, and Marcus Hutter. "Universal Knowledge-Seeking Agents for Stochastic Environments". In: *Algorithmic Learning Theory*. Springer, 2013, pp. 158–172.

Jan Leike

BayesExp⁷

 $\begin{array}{l} \mathsf{BayesExp:}\\ \textit{if } \mathbb{E}_{\nu \sim w(\,\cdot \mid \boldsymbol{\varkappa}_{< t})}[\mathrm{KL}_{1:m}(\nu^{\pi}, \xi^{\pi})] > \varepsilon_t\\ \textit{then execute } \pi^*_I \textit{ for } H_t(\varepsilon_t) \textit{ steps}\\ \textit{else execute } \pi^*_{\xi} \textit{ for } 1 \textit{ step} \end{array}$

with $\varepsilon_t \to 0$ as $t \to \infty$

⁷Tor Lattimore. "Theory of General Reinforcement Learning". PhD thesis. Australian National University, 2013, Chapter 5.

BayesExp⁷

BayesExp:
$$\begin{split} & \textit{if } \mathbb{E}_{\nu \sim w(\,\cdot \mid \boldsymbol{x}_{< t})}[\mathrm{KL}_{1:m}(\nu^{\pi}, \xi^{\pi})] > \varepsilon_t \\ & \textit{then execute } \pi_I^* \textit{ for } H_t(\varepsilon_t) \textit{ steps} \\ & \textit{else execute } \pi_{\xi}^* \textit{ for } 1 \textit{ step} \end{split}$$

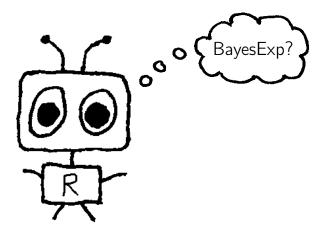
```
with \varepsilon_t \to 0 as t \to \infty
```

Theorem

BayesExp is asymptotically optimal:

$$\frac{1}{n}\sum_{t=1}^{n}\left(V_{\mu}^{*}(\boldsymbol{x}_{< t}) - V_{\mu}^{\pi}(\boldsymbol{x}_{< t})\right) \to 0 \text{ as } t \to \infty \text{ } \mu\text{-almost surely}$$

⁷Tor Lattimore. "Theory of General Reinforcement Learning". PhD thesis. Australian National University, 2013, Chapter 5.



▶ For Bayesian RL the prior matters

- For Bayesian RL the prior matters
- Bad priors are bad

- For Bayesian RL the prior matters
- Bad priors are bad
- Good priors are not asymptotically optimal

- For Bayesian RL the prior matters
- Bad priors are bad
- Good priors are not asymptotically optimal
- Asymptotic optimality needs more exploration

- For Bayesian RL the prior matters
- Bad priors are bad
- Good priors are not asymptotically optimal
- Asymptotic optimality needs more exploration
- Do we want asymptotic optimality?