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Reinforcement Learning

action at

percept et = (ot, rt)

history æ<t := a1e1a2e2 . . . at−1et−1
policy π : Histories Actions
environment ν : Histories× Actions Percepts
true environment µ

Goal: maximize
∑∞

t=1 γ(t)rt
where γ : N→ [0, 1] is a discount function with

∑∞
t=1 γ(t) <∞

Assume: 0 ≤ rt ≤ 1
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Value Functions

Value of policy π in environment ν:

V π
ν (æ<t) :=

1

Γt
Eπν

[ ∞∑
k=t

γ(k)rk

∣∣∣∣∣æ<t

]

Optimal value: V ∗ν := supπ V
π
ν

ν-optimal policy: π∗ν := arg maxπ V
π
ν
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π∗µ
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AIXI2

I countable set of environmentsM = {ν1, ν2, . . .}
I prior w :M→ [0, 1]

I Bayesian mixture
ξ :=

∑
ν∈M

w(ν)ν

Solomonoff:1 w(ν) := 2−K(ν),
K(ν) := length of the shortest description of ν

AIXI is the Bayes-optimal agent with a Solomonoff prior

π∗ξ := arg max
π

V π
ξ

1Ray Solomonoff. “A Formal Theory of Inductive Inference. Parts 1 and 2”. In: Information and
Control 7.1 (1964), pages.

2Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer, 2005.
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π∗ξ
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Legg-Hutter Intelligence3

Intelligence measures an agent’s ability to achieve goals in
a wide range of environments.

Υξ(π) :=
∑
ν

w(ν)V π
ν = V π

ξ

0 1

image of Υ

Υξ

(maximal
intelligence)

Υξ

(minimal
intelligence)

random AIξ

3Shane Legg and Marcus Hutter. “Universal Intelligence: A Definition of Machine Intelligence”. In:
Minds & Machines 17.4 (2007), pp. 391–444.
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Υ(Roger)?
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Hell

hell reward = 0
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The Dogmatic Prior4

Policy πLazy:

while (true) { do_nothing(); }

Dogmatic prior ξ′:

if not acting according to πLazy,
go to hell with high probability

Theorem
AIξ′ acts according to πLazy as long as V πLazy

ξ (æ<t) > ε > 0
(future expected reward does not get close to 0).

4Jan Leike and Marcus Hutter. “Bad Universal Priors and Notions of Optimality”. In: Conference on
Learning Theory. 2015, pp. 1244–1259.
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Consequences for Intelligence

0 1

image of Υ Υξ

(maximal
intelligence)

Υξ

(minimal
intelligence)

random AIξ

AIξ′

=⇒ Legg-Hutter intelligence is highly subjective
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explore or
exploit?
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Asymptotic Optimality

π is asymptotically optimal iff

V ∗µ (æ<t)− V π
µ (æ<t)→ 0 as t→∞

Theorem
AIXI is not asymptotically optimal.5

5Laurent Orseau. “Asymptotic Non-Learnability of Universal Agents with Computable Horizon
Functions”. In: Theoretical Computer Science 473 (2013), pp. 149–156.
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Knowledge-Seeking

I m ∈ N is the horizon

Information-seeking policy6

π∗I := arg max
π

Eν∼w( ·|æ<t)[KL1:m(νπ, ξπ)]

= arg max
π

Eπξ [Ent(w( · | æ<t))− Ent(w( · | æ1:m))]

Effective horizon:

Ht(ε) := min

{
k

∣∣∣∣ ∑∞i=t+k γ(i)∑∞
i=t γ(i)

≤ ε
}

6Laurent Orseau, Tor Lattimore, and Marcus Hutter. “Universal Knowledge-Seeking Agents for
Stochastic Environments”. In: Algorithmic Learning Theory. Springer, 2013, pp. 158–172.

Jan Leike Bayesian Reinforcement Learning 17 / 20



Knowledge-Seeking

I m ∈ N is the horizon

Information-seeking policy6

π∗I := arg max
π

Eν∼w( ·|æ<t)[KL1:m(νπ, ξπ)]

= arg max
π

Eπξ [Ent(w( · | æ<t))− Ent(w( · | æ1:m))]

Effective horizon:

Ht(ε) := min

{
k

∣∣∣∣ ∑∞i=t+k γ(i)∑∞
i=t γ(i)

≤ ε
}

6Laurent Orseau, Tor Lattimore, and Marcus Hutter. “Universal Knowledge-Seeking Agents for
Stochastic Environments”. In: Algorithmic Learning Theory. Springer, 2013, pp. 158–172.

Jan Leike Bayesian Reinforcement Learning 17 / 20



Knowledge-Seeking

I m ∈ N is the horizon

Information-seeking policy6

π∗I := arg max
π

Eν∼w( ·|æ<t)[KL1:m(νπ, ξπ)]

= arg max
π

Eπξ [Ent(w( · | æ<t))− Ent(w( · | æ1:m))]

Effective horizon:

Ht(ε) := min

{
k

∣∣∣∣ ∑∞i=t+k γ(i)∑∞
i=t γ(i)

≤ ε
}

6Laurent Orseau, Tor Lattimore, and Marcus Hutter. “Universal Knowledge-Seeking Agents for
Stochastic Environments”. In: Algorithmic Learning Theory. Springer, 2013, pp. 158–172.

Jan Leike Bayesian Reinforcement Learning 17 / 20



Knowledge-Seeking

I m ∈ N is the horizon

Information-seeking policy6

π∗I := arg max
π

Eν∼w( ·|æ<t)[KL1:m(νπ, ξπ)]

= arg max
π

Eπξ [Ent(w( · | æ<t))− Ent(w( · | æ1:m))]

Effective horizon:

Ht(ε) := min

{
k

∣∣∣∣ ∑∞i=t+k γ(i)∑∞
i=t γ(i)

≤ ε
}

6Laurent Orseau, Tor Lattimore, and Marcus Hutter. “Universal Knowledge-Seeking Agents for
Stochastic Environments”. In: Algorithmic Learning Theory. Springer, 2013, pp. 158–172.

Jan Leike Bayesian Reinforcement Learning 17 / 20



BayesExp7

BayesExp:

if Eν∼w( ·|æ<t)[KL1:m(νπ, ξπ)] > εt
then execute π∗I for Ht(εt) steps
else execute π∗ξ for 1 step

with εt → 0 as t→∞

Theorem
BayesExp is asymptotically optimal:

1

n

n∑
t=1

(
V ∗µ (æ<t)− V π

µ (æ<t)
)
→ 0 as t→∞ µ-almost surely

7Tor Lattimore. “Theory of General Reinforcement Learning”. PhD thesis. Australian National
University, 2013, Chapter 5.
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BayesExp?
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Summary

I For Bayesian RL the prior matters
I Bad priors are bad
I Good priors are not asymptotically optimal
I Asymptotic optimality needs more exploration
I Do we want asymptotic optimality?
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