Stellar and Galactic Archaeology with Bayesian Methods

Maria Bergemann Max Planck Institute for Astronomy Heidelberg

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Spectroscopy

temperature, surface gravity, chemical abundances: Li, Be, Be,CNO, a-group, Fe-peak, s-r process, U,Th

abundance trends

metallicity gradients

- + rotation velocity
- + activity
- + radial velocity
- + mass, age
- + distances

Galactic archeology and the first stars

Nucleosynthesis and the origin of chemical elements

Chemical evolution of galaxies

chemo-dynamic correlations

age-, mass-metallicity relations

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg Major progress in observations in the past 10 years: VLT's and, soon, ELT's

Ongoing large-scale stellar spectroscopic surveys: SDSS (Apogee, SEGUE), RAVE, Gaia-ESO, GALAH

Future: 4MOST (20 million spectra, optical), MOONS (IR)

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Maria Be

Basic model atmosphere theory: non-LTE (NLTE), 3D hydrodynamics, magnetic fields, winds, sphericity, molecular opacities, binarity, chromospheres, etc

What are the physical conditions of the most likely model?

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

What are the physical conditions of the most likely model?

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

What are the physical conditions of the most likely model?

- all observed stars are point sources
- observed spectra are not perfect -> noise + data reduction problems
- stellar models are not perfect
- stellar spectra are in reality not so different → parameter degeneracies and correlations

The physical challenge

1. What is a <u>good</u> stellar model?

2. What type of physics can we afford computationally?

The statistical challenge

1. What is the <u>best-fit</u>stellar model?

2. Do we have prior knowledge from previous or complementary experiments?

Even the best observed spectra are worth nothing without good model comparison methods

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Max-Likelihood Spectroscopy

'observed' spectrum \rightarrow the goal is to estimate T_{eff} , log(g), and metallicity of a star

What if we rely only on the classical approach: maximum-likelihood L?

$$L \sim exp(-\chi^2/2)$$

$$\chi^2 = \sum_j \left(\frac{D_j^{\text{obs}} - D_j(\text{Teff, logg, } Z)^{\text{theor}}}{\sigma_j}\right)^2$$

where D_j , j = 1... n are observables, i.e., spectrum in a given frequency bin

However, L attains its global maximum only if for each model characterized by [T_{eff}, log(g), [Fe/H]] there is a unique model spectrum

movies under www.mpia.de/~bergemann/outreach

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

movies under www.mpia.de/~bergemann/outreach

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Max-Likelihood stellar parameters

'Orthodox' (standard) methods are suitable:

- selection effects lead to major biases
- *imperfect* data often disregarded
- parameter degeneracies caused by physical limitations of the models
- correlated errors, ...
- often there is just not enough information in the observed spectrum

Ad-hoc 'correction' of stellar parameters using stellar models

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

R ~ 200 000, the spectrum of the Sun

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

R ~ 2000, the SDSS spectrum of a solar-like 'twin'

At low R and S/N most of spectral information is washed out

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

High-resolution observations

The Milky Way disk

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Small errors (high-quality data) \rightarrow well-defined PDF

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

low-quality data \rightarrow blurred or multi-component PDF

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Bayesian model testing

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Complementary experiments

log(g)

large stellar surveys observe millions of stars

spectroscopy: Sloan Digital Sky Survey, Gaia-ESO, Apogee... → stellar spectra: Luminosity, Temperature

photometry: VISTA, 2MASS, PS1, Skymapper ... → magnitudes in different filters:

asteroseismology, stellar evolution: CoRoT, Kepler → mass, age of a star

astrometry: Hipparcos, Gaia (launched 2013) → distances

Bayesian model testing Stellar Spectroscopy

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Bayesian spectroscopy

1) In our context, the 'core' parameter space is defined by: metallicity (expressed by iron abundance), effective temperature, and surface gravity

T_{eff}, log g, [Fe/H]

2) Their plausibility is estimated based on the information contained in:

- observed stellar spectra
- model stellar spectra
- stellar evolution models (not all luminosities, masses, and ages are possible)
- parallaxes, photometry (constraints on log g (π) and L (color))
- WMAP \rightarrow constraints on the max age

a set of parameters $X = X_1, \ldots, X_n$ a set of observations $O = O_1, \ldots, O_m$

The goal is to construct a full posterior PDF in all parameters

$$P(\boldsymbol{X}|\boldsymbol{O}) = \frac{P(\boldsymbol{X})}{P(\boldsymbol{O})}P(\boldsymbol{O}|\boldsymbol{X}),$$

Institute for Astronomy, Heidelberg

L(max) attains its global maximum for **all** three isochrones!

In standard *L(max)* approach, ages suffer from a 'terminal age bias', i.e., short-lived evolution stages get **un-physically** high probability.

Jørgensen & Lindegren 2005

run over the full multi-D grid of spectroscopic models

use adaptive, iteratively refined mesh guided by photometry + prior

Final values of Teff, log(g), [Fe/H]:

$$P(X_j|\boldsymbol{O}) = \int \int P(X_1, \ldots, X_n|\boldsymbol{O}) \, \mathrm{d}x_1 \ldots \, \mathrm{d}x_{j-1} \, \mathrm{d}x_{j+1} \ldots \, \mathrm{d}x_n.$$

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

Results

Ś

Schoenrich & Bergemann 2014, MNRAS, 443 Maria Bergemann

35

Bayesian Teff

Bayesian Teff

Bayesian gravity

Bayesian gravity

Schoenrich & Bergemann 2014

Stars from Sloan Digital Sky Survey

Bayesian

Spectroscopic only

Schoenrich & Bergemann 2014, MNRAS, 443

Bayesian: summary

✓ Pros

- All parameters (stellar parameters, distances, ages) within one single, consistent analysis
- Automatic detection of pathologic (or interesting...) cases
- Ability to quantify systematic shifts/errors

✓ Cons

- The analysis scheme is too rigid: we cannot handle objects with physical properties that are not within the pre-computed model grids
- expanding the basic parameter set is expensive $3D \rightarrow 4D$ (?) .. We need 30
- Inclusion of priors all stellar populations are different (the rate of star formation, IMF?)

Even the best observed spectra and good statistics are worth nothing without good models

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg

models of stellar atmospheres

Basic model atmosphere theory – the models are usually trained on a given class of stars

We do not have a single consistent set of models which describe all types of stars found in nature:

- rotate up to 100 km/s
- pulsate
- lose mass in winds
- magnetic fields (kG)
- exist as binaries or multiple systems (overlapping spectra)
- mass motions (inflows, outflows)
- Circumstellar dust shells

Classical stellar atmosphere models

- Iocal thermodynamic equilibrium
- Hydrostatic equilibrium
- 1-dimensional
- ✓ plane-parallel → semi-infinite
- plus about 30 ad-hoc free parameters

Classical stellar atmosphere models

Hydrostatic equilibrium

Citations/Publication Year

- 1-dimensional
- \checkmark plane-parallel \rightarrow semi-infinite
- plus about 30 ad-hoc free parameters

Publication Year for 1998ApJ...499..914S

the first paper on 3D hydro-dynamical model atmospheres of stars Stein & Nordlund, ApJ, 499, 1998

$$\nabla P_{rad} = -1/c \int_{0}^{2012} (\kappa_{v} + \sigma_{v}) F_{v} dv$$

$$\overset{\text{vblication Year}}{=} \begin{bmatrix} \sim 3400 \text{ citations} \\ \text{the most widely-used} \\ 1D \text{ p-p grid of stellar spectra} \\ \text{in astronomy} \\ \text{Kurucz, ApJS, 40, 1979} \end{bmatrix}$$

Kurucz+

Publication Year

- Iocal thermodynamic equilibrium
- Hydrostatic equilibrium
- 1-dimensional
- ✓ plane-parallel → semi-infinite
- plus about 30 ad-hoc free parameters

Does that work?

The observed image of the Sun Swedish Solar Telescope (1m)

© van der Voort, University of Oslo

State-of-the-Art

- 3D hydrodynamics
- non-LTE (consistent treatment of the radiation field and physical state of the gas —> gas must respond to the radition loss from the surface)
- ab initio
- complete sampling of opacity sampling (up to 100 million spectral lines)
- no for unphysical calibrations
 ('mixing length',
 'microturbulence')

3D Hydrodynamical models

the same scales - both images 20x20 Mm (!)

(c) Asplund

3D NLTE spectroscopy

average spatially (x,y)

Bergemann et al. in prep.

Bergemann et al. in prep.

State-of-the-Art <3D> NLTE: no free parameters

Summary

Stellar model atmospheres

need consistent improvements on models: 1D-3D, (N)LTE, rotation, stellar evolution

Bayesian-type (full – Prob.) schemes

- All parameters within one single, consistent analysis
- Automatic detection of pathologic (or interesting...) cases
- direct ability to quantify systematic shifts/errors, in future: reddening, distances, binary fractions, He

Good algorithms efficiently combining models and Bayesian are needed:

4MOST survey (2021) – 20 million stellar spectra with distances & kinematics (Gaia follow-up)

Stellar Spectroscopy Junior Research Group, Max-Planck Institute for Astronomy, Heidelberg