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MR in [−24.50,−22.70]

0.10<z<0.17
0.17<z<0.23
0.23<z<0.30
0.30<z<0.37
0.37<z<0.43
0.43<z<0.50

Fig. 13.— Flux weighted superposition of model SEDs (normalized to fg) for objects with

−24.5 ≤ MR ≤ −22.7. The solid gray lines are the normalized SDSS filter curves at z = 0.1,

whereas the dashed gray lines represent the filter curves at z = 0.5.
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z in [0.00,0.10]

−26.27<MR<−24.31
−24.31<MR<−22.36
−22.36<MR<−20.41
−20.41<MR<−18.45
−18.45<MR<−16.50
−16.50<MR<−14.54

Fig. 12.— Flux weighted superposition of model SEDs (normalized to fg) for objects with

0.0 ≤ zspec ≤ 0.1. The solid gray lines are the normalized SDSS filter curves, whereas the

dashed gray lines represent the filter curves at z = 0.1.



Outline

• Introduction

• Empirical methods

• Template (Bayesian) fitting

• Luminous red galaxies

• Conclusions

2



Definitions

3

z =

Redshift z:

z = λobs − λlab
λlab

Color:
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In most observations, the fluxes measured are not monochromatic but are integrated

over a filter bandpass. Typical broad band filters have widths of several tens to 200 nm.

The magnitude for a filter x (Tx(ν) =transmission function) is then defined via:

Several filter systems were designed:

Johnson UBVRIJHKLMN
Kron-Cousins RCIC
Stroemgren uvbyHγ
Gunn ugriz
Sloan Digitial Sky Survey filters: u‘ g‘ r‘ i‘ z‘ , probably the standard of the future

whereby U = near UV, B = blue, V = visual(green), R = red, I = near infrared,
JHKLMN = infrared

For a bright source, a precision of Δm ~  Δfx/fx  ~ 0.02 can be achieved relatively easily. 
Errors are mostly due to atmospheric absorption and calibration relative to reference stars.

50
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Colors or color indices are differences between filter magnitudes in different bands:

U-B   =   mU − mB

B-V   =   mB − mV

...

 The left diagram shows
the distribution of stars in
the U − B vs B − V plane,
stellar types O,B,A,... are
explained below.

 large numerical values of
the index indicate red objects,
small values blue objects.

 the arrow indicates the
effect of reddening by 
interstellar dust
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Transmission curves for the Johnson UBV, Kron Cousins RcIc filter system, as 
reconstructed by Bessel (PASP, 1990). A G5V star (similar to the sun, but 

somewhat cooler) is overplotted for comparison.
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Introduction
• Spectra at moderate/medium/high resolution provide typing (star/galaxy/quasar) 

and distances (redshifts) to astronomical objects with better than permille 
precision

• Spectroscopy is however costly and increasingly difficult at faint magnitudes

4Padova, March 2012                                                       Hot topics on galaxy formation and evolution 1 
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SDSS Data Products 
•  Images of 1/4 of the full sky (10000 square-degrees) in 5 wavelength bands 

•  photometry of 100 million objects 

•  spectra of > 1 million objects 



Introduction
• Broad multi-band photometry can be seen as very low-resolution spectroscopy 

and provides an alternative to spectroscopy, when classifications and distances of 
large numbers of (faintish) objects are needed, and precisions at the percent level 
suffice.

• The photometric SDSS provides ugriz photometry for millions of galaxies down to 
g~22, PanSTARSS1 will provide grizy photometry down to slightly fainter 
magnitudes on twice the sky coverage

• Running (KIDS) or soon starting (DES) ground-based, or approved (EUCLID) 
space-based lensing surveys aim at measuring weak lensing signatures down to 24th 
magnitude, relying on photometric redshifts for distance estimations

5

Basic concept

34



How to measure a redshift
• With spectra: identify known features (emission/absorption lines, breaks)

• With photometry, two approaches:

6

Empirical: search for the mapping of fluxes and colors (and possibly 
additional information like morphology, concentration, etc...) into 
redshift

Need training sets with spectroscopic redshifts that map ‘all’ existing
galaxy types, extrapolations to fainter magnitude limits doubtfull. 
Galaxy properties (absolute magnitudes, spectral types, stellar 
masses...) need to be computed using template fitting techniques.

1.

2. Template fitting methods (Maximum Likelihood, Bayesian)

Need representative template sets incorporating galaxy evolution
Allow extrapolation to fainter magnitudes
Not only ‘best fitting’ redshift, rather full probability distribution and 
galaxy products as a byproduct.



A list of empirical methods

• Artificial neural networks: Collister & Lahav 2004, PASP, 116, 345

• Boosted decision trees: Gerdes et al. 2010, ApJ, 715, 823

• Ensemble lerning: Way & Srivastava, 2006, ApJ, 647, 102

• Gaussian process regression: Bonfield et al. 2010, MNRAS, 405, 987 

• Kernel regression: Wang et al. 2007, MNRAS, 382, 1601

• Polynomial fitting: Hsieh et al. 2005, ApJSS, 158, 161

• Random forest: Carliles et al. 2010, ApJ, 712, 511

• Spectral connectivity: Freeman et al. 2009, MNRAS 398, 2012

• Support vector machines: Wadadekar 2005, PASP, 117, 79
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Polinomial fitting

8

and CDF-S) with roughly 320 arcmin2 total area. For our high-
redshift, faint-magnitude training set, we use publicly available
BVRz 0 photometry and spectroscopic redshifts for the GOODS/
HDF-N field. The photometry comes from the ground-based
Hawai’i HDF-N data set of Capak et al. (2004), which was
obtained with the Subaru 8.3 m telescope and has 5 ! limiting
magnitudes BAB ¼ 26:9, VAB ¼ 26:8, RAB ¼ 26:6, and z 0AB ¼
25:4 measured in 300 diameter apertures, and typical integration
times of 600, 1200, 480, and 180/240 s, respectively. The spec-
troscopic redshift data for the GOODS/HDF-N field are from the
samples of Wirth et al. (2004) and Cowie et al. (2004), obtained
using the Keck 10 m telescope.

After combining andmatching objects in the Hawai’i HDF-N
photometric catalog to the GOODS/HDF-N spectroscopic cata-
log, a training set containing 1794 objects is generated. This
additional training set is not only deeper than the RCS+CNOC2
set, but it also contains many more objects with higher redshifts
(0:5 < z < 1:5). To combine the CNOC2 and GOODS training
sets, we also need to offset the magnitudes of the GOODS data
to match the zero points of the RCS data. We did not use stars to
derive the magnitude offsets because the field is too small to
contain a statistically sufficient number of stars for the purpose.
We first apply Galactic extinction corrections to the GOODS/
HDF-N data ("0.018, "0.028, "0.036, and "0.047 for z 0,
Rc, V, and B) and then compute the difference in the color dis-
tributions for galaxies with Rc < 21:5 between the RCS and
GOODS/HDF-N samples. By assuming Rc is always correctly
calibrated, the magnitude offsets for z 0, V, and B can be deter-
mined. Magnitude offsets "0.1, "0.05, and 0.0 for z 0, V, and
B, respectively, are applied to the GOODS/HDF-N data. The
final training set created by combining the RCS+CNOC2 and
the GOODS/HDF-N data includes 4924 objects. This com-
bined training set will improve the accuracy of photometric
redshifts, especially for objects at fainter magnitudes and higher
redshifts.

4. PHOTOMETRIC REDSHIFT METHOD

Photometric redshift techniques have been developed for
decades (e.g., Koo 1985), but there are two primary approaches
to estimating the photometric redshift. One way is to compare
the photometric data against templates generated from models

or from a real spectral energy distribution database (e.g., Hogg
et al. 1998; Fernández-Soto et al. 1999). The other way is to find
the empirical relation between the photometric data and the
redshift identified from the spectroscopic data, e.g., empirical
polynomial fitting (Connolly et al. 1995). The empirical method
is especially effective (e.g., see Csabai et al. 2003) when there is
a large spectroscopic redshift data set available, as in the case of
our RCS data set.
We use empirical quadratic polynomial fitting to estimate

photometric redshifts for the RCS data. First we need to gen-
erate a subset called a ‘‘Training Set,’’ which includes informa-
tion on object ID, spectral redshift, and photometric data for
each filter (see x 3). We then fit this subset with the following
second-order equation using least-squares fitting:

redshift ¼ constantþ a0B
2 þ a1V

2 þ a2R
2
c þ a3z

02

þ b0Bþ b1V þ b2Rc þ b3z
0 þ c0BV

þ c1BRc þ c2Bz
0 þ c3VRc þ c4Vz

0 þ c5Rcz
0: ð2Þ

Including the constant term, 15 parameters are derived from the
fit. The above formula describes the empirical relation between
the photometric data and the spectroscopic redshift. By apply-
ing this formula to the photometric data of an object, an esti-
mated photometric redshift for that object is readily obtained.
One can use a brute-force single fit for all the data, but fitting

all galaxies with a single quadratic formula is not optimal, since
different types of galaxies may have different fitting parameters
in the quadratic formula. The single-fit method gives a result
with large scatter and systematic deviations (see Fig. 7, left). To
improve the photometric redshift results, different types of gal-
axies should be fitted separately. We describe below two meth-
ods of separating galaxies into different samples.
Color is one of the important signatures for identifying the

galaxy type. However, it is subject to K-corrections for galaxies
at different redshifts. Thus, other parameters have to be used to
break the color-redshift degeneracy. Roughly speaking, more
distant galaxies have fainter magnitudes, and for a reasonable
range of galaxy types, they also have redder observed colors.
Hence, by using some appropriate boundaries to divide galaxies
in the color-magnitude plane, we can mimic very roughly the
effect of separating galaxies of different types at different

Fig. 7.—Photometric redshift vs. spectroscopic redshift for the RCS/CNOC2 and GOODS/HDF-N data in our training set. The panels from left to right use
(1) brute-force single fit for all data, (2) cutting into 10 regions in the color-magnitude plane, and (3) the kd-tree method with 32 cells. The result using the kd-tree
method has the least systematics at both the high-z and low-z ends, as well as the least scatter of the three methods.

HSIEH ET AL.168 Vol. 158

redshifts. Figure 8 presents a color (B! Rc) versus magnitude
(Rc) diagram. The sample data consist of RCS+CNOC2 (dots)
and GOODS (crosses) galaxies with Rc < 24 in our training set
(see x 3 for a detailed description of the training set). There is a
gap around B! Rc ¼ 1:8 2:0 that roughly separates early-type
galaxies (redder) and late-type galaxies (bluer). We divide the
color-magnitude plane into 10 parts. Regions 1–4 are for redder
galaxies, and regions 5–10 are for bluer galaxies. This method
produces a result with smaller scatter and systematic deviations
than the single-fit method (see Fig. 7, middle). However, the
B! Rc color uses filters that are too blue to make a good sep-
aration for galaxies with redshifts larger than 0.6, where the
4000 8 break will be shifted to >6500 8. To solve this prob-
lem, a redder filter (z 0) has to be used in the separation criteria to
produce a better result.

In our second method of separating the training set, we add
one more color (Rc ! z 0) to the original two-dimensional color-
magnitude plane to form a three-dimensional color-color-
magnitude space. The kd-tree algorithm, which uses median
values to divide up the data points in a k-dimensional space
successively (Bentley 1979), is used to separate galaxies in our
three-dimensional space. We use a kd-tree depth of 5, so that
the space is separated into 32 cells. Each cell contains about
150 objects. The photometric redshift fitting procedure is applied
to each cell separately. We tried other numbers of cells, and they
give similar results. In general, using a larger number of cells
gives slightly better fits, but we choose 32 cells as a compromise
so as not to be in danger of overfitting (i.e., having too few
objects per cell for a 15-parameter fit). The three-dimensional
kd-tree method gives a better result than the method of cutting
the color-magnitude plane into 10 regions (see Fig. 7, right).

Figure 7 compares the quality of the photometric redshifts
obtained using the three different cutting methods described
above. The panels from left to right are the photometric redshift
versus spectroscopic redshift diagrams obtained using (1) brute-
force single fit for all data, (2) cutting into 10 regions in the color-
magnitude plane, and (3) the kd-tree method with 32 cells. Both
the high-z and low-z ends are improved with much reduced sys-

tematics as we go from method 1 to method 3. The scatter in the
differences between photometric and spectroscopic redshifts is
reduced as more advanced cutting algorithms are used. Hence,
we choose the three-dimensional kd-tree algorithm with 32 cells
for our final photometric redshift catalog.

5. PHOTOMETRIC REDSHIFT ERROR

By examining the distribution of the differences between spec-
troscopic redshifts and photometric redshifts for the training
set, we can estimate the uncertainty in the redshift fits. How-
ever, this does not provide a measurement of the photometric
redshift error for individual galaxies in the catalog. Knowing
the confidence limits on the photometric redshift measurements
for individual objects is very important for subsequent science
analyses.Without the confidence limits for each object, the anal-
yses based on the photometric redshift may suffer from cata-
strophic errors, which happen when the photometric redshift
estimates are unknowingly very different from the true spectro-
scopic redshifts. By considering the photometric redshift error
for each object and taking it into account in estimating the errors
in a subsequent science analysis, one will obtain more realistic
confidence limits in the analysis results. In the following sub-
sections, we describe the photometric redshift error determined
by comparing the photometric redshifts to the spectroscopic
redshifts in our training set (empirical error), and we also de-
scribe the method we use to estimate the photometric redshift
error for individual objects (computed error).

5.1. Empirical Error

Figure 9 presents the accuracy of the photometric redshifts by
comparing the photometric redshift and the spectroscopic red-
shift for the objects in the training set. The !(!z) is the 68th
percentile difference between the photometric redshift and the
spectroscopic redshift in bins of 100 objects each along the
spectroscopic redshift axis. This provides a general estimate of
how statistically accurate our photometric redshift measure-
ments are. For objects at 0:20 < z < 0:65, the rms scatter !(!z)
is less than 0.05. The overall rms scatter is 0.068. However,
most objects at z > 0:7 in the training set are from the GOODS/
HDF-N sample, which have a much deeper limiting magnitude.
The photometric redshift error for an object in the RCS at high z
is thus underestimated by the !(!z) of the training set. By
adding additional Gaussian noise to the GOODS/HDF-N data,
we simulate the photometric redshift error as if the GOODS/
HDF-N data have the same depth and seeing conditions as the
RCS data. The results are shown in Figure 10. For objects at
0:2 < z < 0:5, the rms scatter remains roughly the same, but it
becomes#0:2 for an object at z # 0:8. The extremely large rms
for objects at z > 1:1 is caused by the large systematic deviation
of the photometric redshifts from the spectroscopic redshifts.
The overall average rms scatter is 0.11. This result shows the
real error levels in the photometric redshift catalog. We also
calculate the catastrophic error rate for different redshift ranges
in bins of 100 objects each and show the result in Figure 11. We
define the catastrophic error rate as the ratio of the number of
objects with j!zj> 0:5 to the total number of objects for each
redshift bin. The result is calculated using the RCS/CNOC2 and
noise added GOODS/HDF-N data. Note that the histogram has
variable redshift bin widths because we choose widths that al-
ways include exactly 100 objects per bin. The catastrophic er-
ror rate is below 0.03 for z < 0:7. It becomes around 0.05 for
0:7 < z < 1:2 owing to larger !(!z). For redshifts higher than
1.2, the catastrophic error rate is 0.25, which is primarily due to
the larger photometric redshift systematic error.

Fig. 8.—Color (B! Rc) vs. magnitude (Rc) diagram showing the layout of
the regions used for the data separation. The dots indicate the RCS+CNOC2
data and the crosses indicate the GOODS/HDF-N data in our training set. The
galaxies are roughly in two loci on the color-magnitude plane with a gap around
B! Rc ¼ 1:8 2:0. The early-type galaxies dominate the redder (upper) locus,
while the late-type galaxies dominate the bluer (lower) locus. We separate the
upper locus into four regions (1, 2, 3, and 4) and the lower locus into six regions
(5, 6, 7, 8, 9, and 10) for the photometric redshift fits. Note that this cutting
method is not used for the final catalog.

PHOTO-z CATALOG FROM THE RCS 169No. 2, 2005

Fig. 9.—!z vs. spectroscopic redshift diagram (left), and median (!z) or !(!z) vs. spectroscopic redshift diagram (right) before noise is added. The fitting uses
the kd-tree 32-cell cutting of the training set. The dots indicate the RCS/CNOC2 data, the crosses indicate the GOODS/HDF-N data, and the solid curve in the left
panel is the median value of !z. The same solid curve is also shown in the right panel for clearer presentation. The dashed curve in the right panel is the !(!z),
which indicates the 68th percentile difference between the photometric redshift and the spectroscopic redshift, in bins of 100 objects each along the spectroscopic
redshift axis. The !(!z) for objects at our median redshift is less than 0.05. The error becomes larger (!0.09) for objects at z ! 0:9. The extremely large error for
objects at z > 1:1 is due to the large systematic deviations at those high redshifts.

Fig. 10.—This figure is the same as Fig. 9 but noise has been added to the GOODS/HDF-N sample (see text). The !(!z) for objects at our median redshift is
similar compared to that in Fig. 9, but the error increases to around 0.2 for objects at z > 0:8, which is much larger than the value from Fig. 9.

Hsieh et al. 2005, ApJSS 158, 161kd-tree to divide training set into cells



Kernel regression

9

Wang et al. 2007, MNRAS, 382, 1601

Photometric redshifts from Sloan broad-band photometry 1603

for query point xq is obtained by

yq =

∑N

i=1
K

(
D(xi ,xq)

h

)
yi

∑N

i=1
K

(
D(xi ,xq)

h

) , (1)

where D(.) is the distance function between two instances; K(.) is a

kernel function; h is a bandwidth value; (xi, yi) are training samples;

xi and xq are vectors; and N is the number of data points used in

the model. In this paper, we use Euclidian distances and Gaussian

kernel functions. xi is the feature for each training sample, yi is the

spectroscopic redshift for each training-set sample, and yq is the

redshift of each query sample.

3.2 Bandwidth determination

One important design decision when using kernel regression is the

choice of the bandwidth h. Larger values of h result in flatter weight-

function curves, which indicates that many points of the training set

contribute fairly evenly to the regression. As h tends to infinity, the

predictions approach the global average of all points in the data

base. If h is very small, only closely neighbouring data points make

a significant contribution. If the data are noisy, we expect to ob-

tain smaller prediction errors with larger values of h. If the data

are noise-free, a small h will avoid smearing away fine details in

the function. There are algorithms available for choosing the band-

width for kernel regression that minimize a statistical measure of

the difference between the true underlying distribution and the esti-

mated distribution. Bandwidth selection in regression is usually by

cross-validation (CV) or by the penalized residual sum of squares.

Cross-validation is the statistical method of dividing a sample of

data into subsets such that the analysis is initially performed on a

single subset, while the other subset(s) are retained for subsequent

use in confirming and validating the initial analysis. M-fold cross-

validation is one important cross-validation method. The data are

divided into M subsets of (approximately) equal size. Each time, one

of the M subsets is used as the test set and the other M−1 subsets

are put together to form a training set. Cross-validation is designed

to choose the bandwidth by minimizing the cross-validation score

CV(h) defined by

CV(h) =
1

M

[
1

k1

k1∑

i=0

(y1i − ŷ1i )
2 +

1

k2

k2∑

i=0

(y2i − ŷ2i )
2

+ . . . +
1

kM

kM∑

i=0

(yMi − ŷMi )
2

]

, (2)

where yji is the spectroscopic redshift for each test-set sample, ŷ j i

is the predicted photometric redshift of each test sample, kj is the

number of objects in each subset (j = 1, 2, . . . , M), and M is the

number of subsets for cross-validation. In general, the kj values are

identical. Here we adopt 10-fold cross-validation for the bandwidth

choice, i.e. M = 10. We first divide the sample of 399 929 galaxies

into 10 subsets, and take 9 of the 10 subsets as the training set. The

remaining subset is used as a testing set 10 times.

We adopt the sample described in Section 2, applying four colour

indices (u − g, g − r, r − i and i − z) and spectroscopic redshifts

as input parameters. We then implement kernel regression on this

sample and compute the 10-fold cross-validated score for the various

bandwidths in Table 1. As shown in Table 1, the cross-validated score

CV(h) reaches a minimum of 5.559 × 10−4 when h is equal to 0.02.

Therefore, 0.02 has been assigned to the optimal fixed bandwidth

for the sample in this case.

Table 1. Bandwidth determination using the

cross-validation (CV) method.

h CV(h)(× 10−4)

0.010 5.668

0.015 5.574

0.020 5.559

0.025 5.620

0.030 5.725

0.035 5.831

0.040 5.973

0.045 6.112

0.050 6.264

0.055 6.426

0.060 6.601

0.065 6.794

0.070 6.990

0.075 7.195

0.080 7.410

0.085 7.638

0.090 7.877

3.3 Input pattern selection

In this work we choose the input parameters using the Akaike in-

formation criterion (AIC). AIC (Akaike 1974) is a measure of the

goodness of fit of an estimated statistical model. The AIC method-

ology attempts to find the model that best explains the data with a

minimum of free parameters. In the general case, the AIC is

AIC = −2 ln Lmax + 2k, (3)

where Lmax is the maximum likelihood function, and k is the number

of free parameters in the model.

The purpose of model selection is to identify the model that best

fits the available data set. One model is better than another if it has

a smaller AIC value. When the AIC value approaches a minimum,

the model is regarded as the best model. Several recent works in

astrophysics have used the AIC for model selection (e.g. Liddle

2004, 2007). In Section 4.1, the AIC will be used to select the

optimal input pattern.

4 R E S U LT S A N D D I S C U S S I O N

4.1 Results

One advantage of the empirical training-set approach to photometric

redshift estimation is that additional parameters can be easily incor-

porated: the additional parameters (e.g. r50, r90, fracDeV etc.) can

be taken as inputs. In order to study which parameters influence

the accuracy of predicted photometric redshifts, we examine the

effect of different input patterns on the estimation of photometric

redshifts. According to the bandwidth choice criterion described

in Section 3.2, we compute the 10-fold cross-validation scores and

obtain the optimal bandwidth values corresponding to various situa-

tions, as shown in Table 2. In order to determine which input pattern

is best, we use the AIC.

When implementing kernel regression to predict photometric red-

shifts, a random selection of 260 000 galaxies is regarded as the

training set and the rest make up the test set. The rms deviations,

optimal bandwidth and AIC for various input patterns are listed in

Table 2. Table 2 shows that the rms error is different for each in-

put pattern and that the corresponding optimal bandwidth and AIC

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 1601–1606

D:distance (euclidian)
K: kernel function (gaussian)
h:bandwidth (from 10-fold cross-validation)

xi :data vector of training set (colors, etc.)
xq :data vector of object q
yi :spectroscopic redshift vector of training set
yq :photometric redshift of object q

Photometric redshifts from Sloan broad-band photometry 1603
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yq =
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h
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D(xi ,xq)
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) , (1)

where D(.) is the distance function between two instances; K(.) is a

kernel function; h is a bandwidth value; (xi, yi) are training samples;

xi and xq are vectors; and N is the number of data points used in

the model. In this paper, we use Euclidian distances and Gaussian

kernel functions. xi is the feature for each training sample, yi is the

spectroscopic redshift for each training-set sample, and yq is the

redshift of each query sample.
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choice of the bandwidth h. Larger values of h result in flatter weight-

function curves, which indicates that many points of the training set

contribute fairly evenly to the regression. As h tends to infinity, the

predictions approach the global average of all points in the data

base. If h is very small, only closely neighbouring data points make

a significant contribution. If the data are noisy, we expect to ob-

tain smaller prediction errors with larger values of h. If the data

are noise-free, a small h will avoid smearing away fine details in

the function. There are algorithms available for choosing the band-

width for kernel regression that minimize a statistical measure of

the difference between the true underlying distribution and the esti-

mated distribution. Bandwidth selection in regression is usually by

cross-validation (CV) or by the penalized residual sum of squares.

Cross-validation is the statistical method of dividing a sample of

data into subsets such that the analysis is initially performed on a

single subset, while the other subset(s) are retained for subsequent

use in confirming and validating the initial analysis. M-fold cross-

validation is one important cross-validation method. The data are

divided into M subsets of (approximately) equal size. Each time, one

of the M subsets is used as the test set and the other M−1 subsets

are put together to form a training set. Cross-validation is designed

to choose the bandwidth by minimizing the cross-validation score

CV(h) defined by

CV(h) =
1

M
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where yji is the spectroscopic redshift for each test-set sample, ŷ j i

is the predicted photometric redshift of each test sample, kj is the

number of objects in each subset (j = 1, 2, . . . , M), and M is the

number of subsets for cross-validation. In general, the kj values are

identical. Here we adopt 10-fold cross-validation for the bandwidth

choice, i.e. M = 10. We first divide the sample of 399 929 galaxies

into 10 subsets, and take 9 of the 10 subsets as the training set. The

remaining subset is used as a testing set 10 times.

We adopt the sample described in Section 2, applying four colour

indices (u − g, g − r, r − i and i − z) and spectroscopic redshifts

as input parameters. We then implement kernel regression on this

sample and compute the 10-fold cross-validated score for the various

bandwidths in Table 1. As shown in Table 1, the cross-validated score

CV(h) reaches a minimum of 5.559 × 10−4 when h is equal to 0.02.

Therefore, 0.02 has been assigned to the optimal fixed bandwidth

for the sample in this case.

Table 1. Bandwidth determination using the

cross-validation (CV) method.

h CV(h)(× 10−4)

0.010 5.668

0.015 5.574

0.020 5.559

0.025 5.620

0.030 5.725

0.035 5.831

0.040 5.973

0.045 6.112

0.050 6.264

0.055 6.426

0.060 6.601

0.065 6.794

0.070 6.990

0.075 7.195

0.080 7.410

0.085 7.638

0.090 7.877

3.3 Input pattern selection

In this work we choose the input parameters using the Akaike in-

formation criterion (AIC). AIC (Akaike 1974) is a measure of the

goodness of fit of an estimated statistical model. The AIC method-

ology attempts to find the model that best explains the data with a

minimum of free parameters. In the general case, the AIC is

AIC = −2 ln Lmax + 2k, (3)

where Lmax is the maximum likelihood function, and k is the number

of free parameters in the model.

The purpose of model selection is to identify the model that best

fits the available data set. One model is better than another if it has

a smaller AIC value. When the AIC value approaches a minimum,

the model is regarded as the best model. Several recent works in

astrophysics have used the AIC for model selection (e.g. Liddle

2004, 2007). In Section 4.1, the AIC will be used to select the

optimal input pattern.

4 R E S U LT S A N D D I S C U S S I O N

4.1 Results

One advantage of the empirical training-set approach to photometric

redshift estimation is that additional parameters can be easily incor-

porated: the additional parameters (e.g. r50, r90, fracDeV etc.) can

be taken as inputs. In order to study which parameters influence

the accuracy of predicted photometric redshifts, we examine the

effect of different input patterns on the estimation of photometric

redshifts. According to the bandwidth choice criterion described

in Section 3.2, we compute the 10-fold cross-validation scores and

obtain the optimal bandwidth values corresponding to various situa-

tions, as shown in Table 2. In order to determine which input pattern

is best, we use the AIC.

When implementing kernel regression to predict photometric red-

shifts, a random selection of 260 000 galaxies is regarded as the

training set and the rest make up the test set. The rms deviations,

optimal bandwidth and AIC for various input patterns are listed in

Table 2. Table 2 shows that the rms error is different for each in-

put pattern and that the corresponding optimal bandwidth and AIC
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Table 2. rms errors, optimal bandwidths and AIC for various input

parameters.

Input parameters∗ σ rms h AIC

ugriz 0.0215 0.025 64.259

ugriz + r50 + r90 0.0247 0.070 84.282

ugriz+fracDeV-r 0.0223 0.035 69.242

ugriz+eclass 0.0198 0.025 54.548

colour 0.0220 0.020 67.558

colour+ r 0.0206 0.030 58.933

colour+ r + c 0.0206 0.035 58.656

colour+ r + r50 + r90 0.0226 0.050 70.206

colour+fracDeV-r 0.0220 0.025 67.149

colour+ugriz 0.0210 0.040 60.961

colour+eclass 0.0189 0.025 49.503

Note: r50 is the Petrosian 50 per cent radius in the r band, r90 is the Petrosian

90 per cent radius in the r band, fracDeV-r is fracDeV in the r band, colour

is the colour indices, i.e. u − g, g − r, r − i, i − z, and c = r90/r50.

are different, too. The AIC value has, however, the same trend as

the rms error; that is, AIC increases with increasing rms error and

decreases with decreasing rms error. When AIC approaches its min-

imum value, the input pattern is considered as the best input pattern,

and vice versa. The best input pattern is thus four colours (u − g,

g − r, r − i, i − z) and eClass, when the rms error amounts to

0.0189. The next best input pattern is five magnitudes and eClass,

when the rms error is 0.0198, and the third best input pattern is

four colours and the r magnitude, when the rms scatter is 0.0206.

The result with only five magnitudes is better than that with only

four colours, but worse than that with four colours and the r mag-

nitude. For five magnitudes as inputs, the performance of kernel

regression decreases when adding r50 and r90 or fracDeV-r (but

withoug eClass). Similarly, for four colours or four colours and the

r magnitude as inputs, the performance becomes worse when also

considering r50 and r90 or fracDeV-r . The performance obtained

by adding the Petrosian concentration index c is not improved over

that with only four colours and the r magnitude as inputs. The re-

sult with four colours and five magnitudes is superior to that with

only colours or with only magnitudes; however, it is worse than

that with four colours and the r magnitude. When applying kernel

regression to predict photometric redshifts, we therefore find that

parameters other than magnitudes and colour indices, such as r50,

r90, fracDeV-r and c, contribute little information; however, eClass

is important and effective.

Fig. 1 shows a comparison of the known spectroscopic redshift

with the calculated photometric redshift from the test data using ker-

nel regression with the input pattern of colour +eClass. Considering

colour +r as the inputs, the ratio of predicted photometric redshifts

exceeding ±3σ accounts for 2.01 per cent, and exceeding ±4σ

accounts for 1.03 per cent, loss of estimation. When color+eClass

are the inputs, the data points exceeding 3 and 4σ adding the

data points of loss estimation, accounts for 2.11 per cent and 1.28

per cent, respectively. The loss of estimation refers to the points

whose photometric redshifts cannot be measured because their dis-

tance to neighbours is beyond the optimal window width of kernel

regression.

Although eClass is not strictly photometric, it can be used to es-

timate photometric redshifts when galaxies have spectra with low

signal-to-noise ratios, or have weak absorbtion or emission lines.

Moreover, it is helpful for the statistical study of a large galaxy

sample without detailed spectral information. In addition, eClass

can be estimated with colour indics or magnitudes, as shown be-

Figure 1. Comparison between spectroscopic and photometric redshifts.

260 000 galaxies are regarded as the training set, and 139 929 galaxies make

up the test set (plotted). The input parameters are u − g, g − r, r − i, i − z

and eClass.

Figure 2. Spectroscopic eClass versus calculated photometric eClass for

139,929 galaxies from the SDSS DR5 with kernel regression. The input

parameters are u − g, g − r, r − i, i − z and r.

low. The parameter eClass is a continuous parameter ranging from

approximately −0.5 (early-type galaxies) to 1 (late-type galax-

ies), indicating the spectral type in the SDSS spectroscopic cata-

logue. We now use the sample detailed above to estimate eClass

rather than redshifts with kernel regression. Based on the results in

Table 2, we choose the best input pattern (not including patterns

with eClass) which is colour +r. The rms scatter is σ rms = 0.0337,

as shown in Fig. 2. Other researchers have carried out similar stud-

ies: for example, Wadadekar (2005) utilized SVMs to predict the

photometric eClass using 10 000 objects from SDSS Data Release

2 and the rms scatter of eClass estimation σ rms = 0.057; Collister
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Fig. 1.—Schematic diagram of a multilayer perceptron, as implemented by
ANNz, with input nodes taking, for example, magnitudes m p !2.5 log fi 10 i

in various filters, a single hidden layer, and a single output node giving, for
example, redshift z. The architecture is in the notation used in thisn : p : 1
paper. Each connecting line carries a weight . The bias node allows for anwij

additive constant in the network function defined at each node. More complex
networks can have additional hidden layers and/or outputs.

effect of nullifying any systematics in the photometry). How-
ever, the training set could also be derived from a set of template
spectra or from simulated catalogs (e.g., Vanzella et al. 2004).
The photometry for the training set must be for the same filter
set and should have the same noise characteristics as that for
the target sample. The trained method can usually only be
reliably applied to target galaxies within the ranges of redshift
and spectral type adequately sampled by the training set.
In this paper we introduce ANNz, a software package for

photometric redshift estimation using artificial neural networks
(ANNs) to parametrize the redshift-photometry relation. It can
be shown (e.g., Jones 1990; Blum & Li 1991) that a sufficiently
complex ANN is capable of approximating to arbitrary accu-
racy any continuous functional mapping. ANNs have previ-
ously found a number of applications in astronomy, including
morphological classification of galaxies (e.g., Lahav et al. 1996;
Ball et al. 2003) star/galaxy separation (Bertin & Arnouts
1996), and object detection (e.g., Andreon et al. 2000). Firth,
Lahav, & Somerville (2003) previously demonstrated the feas-
ibility of using ANNs for photometric redshift estimation, and
more recently, Vanzella et al. (2004) have applied the method
to the Hubble Deep Fields.
The layout of this paper is as follows. In § 2 artificial neural

networks are introduced, and the particular methods used by
ANNz are explained. In § 3 ANNz is applied to the SDSS. The
results are compared with rival photometric redshift estimators
and various extensions to the basic technique are explained and
illustrated. Finally, less ideal conditions are simulated to assess
the impact on the accuracy of photometric redshift estimation.
In § 4 the results are summarized, and prospects for the ap-
plication of ANNz discussed.

2. ARTIFICIAL NEURAL NETWORKS

ANNz uses a particular species of ANN known formally
as a “multilayer perceptron” (MLP). A MLP consists of a
number of layers of nodes (Fig. 1; see, e.g., Bishop 1995 and
references therein for background). The first layer contains
the inputs, which in our application to photometric redshift
estimation are the magnitudes, , of a galaxy in a numbermi

of filters (for ease of notation we arrange these in a vector
). The final layer contains the outputs;m { [m , m , … , m ]1 2 n

we will usually use just one output, the photometric redshift
, but see § 3.2.2 for an example with multiple outputs.zphot

Intervening layers are described as “hidden,” and there is com-
plete freedom over the number and size of hidden layers used.
The nodes in a given layer are connected to all the nodes in
adjacent layers. A particular network architecture can be de-
noted by , where is the number ofN : N : N : … : N Nin 1 2 out in

input nodes, is the number of nodes in the first hidden layer,N1
and so on. For example, takes nine inputs, has six9 : 6 : 1
nodes in a single hidden layer, and gives a single output.
Each connection carries a weight, ; these comprise thewij

vector of coefficients, , that are to be optimized. An activationw
function, , is defined at each node, taking as its argumentg (u )j j

u p w g (u ), (1)!j ij i i
i

where the sum is over all nodes i sending connections to node
j. The activation functions are typically taken (in analogy to
biological neurons) to be sigmoid functions such as g (u ) pj j

, and we follow this approach here. An extra1/[1" exp (!u )]j
input node—the bias node—is automatically included to allow
for additive constants in these functions.
For a particular input vector, the output vector of the network

is determined by progressing sequentially through the network
layers, from inputs to outputs, calculating the activation of each
node (hence, this type of neural network is often referred to
as a “feed forward” network).

2.1. Network Training
Given a suitable training set of galaxies for which we have

both photometry, , and a spectroscopic redshift, , them z spec
ANN is trained by minimizing the cost function

2E p [z (w, m )! z ] (2)! phot k spec, k
k

with respect to the weights, , where is the networkw z (w, m )phot k

output for the given input and weight vectors, and the sum is
over the galaxies in the training set. To ensure that the weights
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reliably applied to target galaxies within the ranges of redshift
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connection weights Activation function:

gj (uj ) =
1

1+ exp(−uj )
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are regularized (i.e., that they do not become too large), an
extra quadratic cost term

2E p b w , (3)!w ij
i, j

is added to equation (2).
ANNz uses an iterative quasi-Newtonian method to perform

this minimization. Details of the minimization algorithm and
regularization can be found in Bishop (1995) and Lahav et al.
(1996; appendices).
After each training iteration, the cost function is also eval-

uated on a separate validation set. After a chosen number of
training iterations, training terminates and the final weights
chosen for the ANN are those from the iteration at which the
cost function is minimal on the validation set. This is useful
to avoid overfitting to the training set if the training set is small.
The trained network can then be presented with previously
unseen input vectors, and the outputs computed.

2.2. Photometric Noise
In real situations the inputs to the network (e.g., in this case,

the magnitudes of photometric redshift estimation) will usually
have a measurement noise associated with them. We can assess
the variance these errors effect in the output using the usual
chain-rule approach:

2

!z2 2j p j , (4)!z mi( )!mi i

where the sum is over the network inputs.
Given a trained network, the output is an analytic function

of the network weights and the input vector, . Pro-z p z(w, m)
vided the activation functions, , are differentiable, theg (u )i i

derivatives can be obtained through a simple and effi-!z/!mi

cient algorithm (Bishop 1995, pp. 148–150). This method is
used by ANNz to estimate the variance in its photometric red-
shifts due to the photometric noise.

2.3. Network Variance
Prior to training, ANNz randomizes the initial values of the

weights. Depending on the particular initialization state used,
the training process will usually converge to different local
minima of the cost function. A simple possibility is to train a
number of networks and select one based on the best perfor-
mance on the validation set. However, this is a wasteful use
of training effort; in fact, the suboptimal networks can be used
to improve overall accuracy: the mean of the individual outputs
of a group of networks (known as a “committee”) will usually
be a more accurate estimate for the true redshift than the outputs
of any one committee member in isolation.
Using a committee also allows the uncertainty in the output

due to the variance in the network weights to be estimated.
For a particular target galaxy, the photometric redshift predic-
tion should ideally be robust to different initializations of the
weight vector. However, it may be the case that the available
photometry or training set does not constrain the redshift very
well (even for high signal-to-noise photometry, so the error
estimated by the method of § 2.2 could be relatively small).
These cases are more likely to show a large variance in the
output for different initializations of the weight vector; hence,
using a committee may assist in their identification. ANNz
allows arbitrarily large committees to be used and estimates
the contribution of the network variance to the error in the
photometric redshift for each target galaxy.

2.4. Using the ANNz Package

We have made ANNz available on the World Wide Web.3
Full instructions are provided with the package, but we provide
an outline of the procedure here. ANNz comprises two main
programs: annz_train and annz_test.

1. When applying ANNz to any data set for the first time,
it is strongly recommended that a portion of the available train-
ing data be set aside as an evaluation set. This is used as a
mock target sample to assess and tune ANNz’s performance
on the data. The evaluation set should therefore be chosen to
match the real target sample as closely as possible in terms of
its magnitude and color distributions.
2. The remaining training data should be separated into train-

ing and validation sets that are supplied to the annz_train pro-
gram along with a description of the required network archi-
tecture. This program performs the network training as
described in § 2.1. The trained network weights are saved to
file.
3. Step 2 may be repeated several times using different net-

work initializations to obtain a committee of trained networks.
4. The annz_test program can now be used to apply the

trained networks to the target data.

Before applying ANNz to the actual photometric target sample,
the whole procedure should be run several times using the
evaluation set as the target data and varying the parameters of
the training (e.g., weight decay, training and validation set sizes,
number of networks in the committee) so as to optimize the
performance.

3 ANNz is available at the following address: http://www.ast.cam.ac.uk/∼aac.
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TABLE 1
Errors on Photometric Redshifts Obtained by
Csabai et al. (2003) for the SDSS Early Data

Release—Result Obtained Using ANNz
Appended for Comparison

Estimation Method jrms

CWW . . . . . . . . . . . . . . . . . . . . 0.0666
Bruzual-Charlot . . . . . . . . . . 0.0552
Interpolated . . . . . . . . . . . . . . 0.0451
Polynomial . . . . . . . . . . . . . . . 0.0318
Kd-tree . . . . . . . . . . . . . . . . . . . 0.0254
ANNz . . . . . . . . . . . . . . . . . . . . 0.0229

Fig. 2.—Spectroscopic vs. photometric redshifts for ANNz applied to 10,000
galaxies randomly selected from the SDSS EDR.

3. APPLICATION TO SDSS DATA
The SDSS4 (York et al. 2000) combines a large, five-band

(ugriz) imaging survey with a smaller spectroscopic follow-up
survey. This is an ideal situation for the application of ANNz,
since the spectroscopic survey represents an excellent training
set for the imaging survey.
The selection algorithm for the SDSS spectroscopic survey

results in two subsets of the data: a main galaxy catalog and
a luminous red galaxy catalog (LRG; Eisenstein et al. 2001).
The main galaxy catalog is a flux-limited sample ( )r ! 17.77
with a median redshift (Strauss et al. 2002), whilez p 0.104
the LRG catalog is flux- and color-selected to be a very uniform
and approximately volume limited sample (it is volume limited
to but probes out to at lower completion).z ≈ 0.4 z ≈ 0.6

3.1. Comparison of ANNz with Other Techniques
The SDSS consortium have themselves applied a range of

photometric redshift techniques to their commissioning data
(Csabai et al. 2003). Table 1 lists the estimation errors they
obtained. This commissioning data was made public in the
Early Data Release (EDR; Stoughton et al. 2002). In order
to allow a direct comparison of the accuracy of ANNz with
the methods used by Csabai et al. (2003), we selected the
main galaxy and LRG samples from the EDR. From these
∼30,000 galaxies, we randomly selected training, validation,
and evaluation sets with the respective sizes 15,000, 5000,
and 10,000. The network inputs were the dereddened model
magnitudes in each of the five filters, and the overall archi-

4 Funding for the creation and distribution of the SDSS Archive has been
provided by the Alfred P. Sloan Foundation, the Participating Institutions, the
National Aeronautics and Space Administration, the National Science Foun-
dation, the US Department of Energy, the Japanese Monbukagakusho, and the
Max Planck Society. The SDSS Web site is http://www.sdss.org. The SDSS
is managed by the Astrophysical Research Consortium (ARC) for the Partic-
ipating Institutions. The Participating Institutions are The University of Chi-
cago, Fermilab, the Institute for Advanced Study, the Japan Participation
Group, The Johns Hopkins University, Los Alamos National Laboratory, the
Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for
Astrophysics (MPA), New Mexico State University, University of Pittsburgh,
Princeton University, the United States Naval Observatory, and the University
of Washington.

tecture was . A committee of five such networks5 : 10 : 10 : 1
was trained on the training and validation sets, then applied
to the evaluation set. Figure 2 shows the ANNz photometric
redshift against the spectroscopic value for each galaxy in the
evaluation set. The rms deviation between these is j prms

, which compares well with the re-2 1/2A(z ! z ) S p 0.0229phot spec

sults in Table 1. For clarity, the estimated errors on the pho-
tometric redshifts are not shown in Figure 2. The results for a
randomly selected subset of 200 galaxies are shown with error
bars in Figure 3. Because of the high quality of the training
data in this case, network variance makes only a small con-
tribution, and the errors are therefore dominated by the pho-
tometric noise.
HYPERZ (Bolzonella, Miralles, & Pelló 2000) is a widely used

template-based photometric redshift package. In order to more
directly compare ANNz with the template-matching method, HY-
PERZ was applied to the same evaluation set using the CWW
template SEDs. It is clear from the results in Figure 4 that not
only is the rms dispersion in the photometric redshift consid-
erably greater than that for ANNz, but there are also systematic
deviations in the HYPERZ results. The SDSS consortium ob-
tained similar accuracies to HYPERZ in their implementation
of the basic template-fitting technique (the results labeled
“CWW” and “Bruzual-Charlot” in Table 1 are for the respective
template sets). With more sophisticated template-based meth-
ods, they were able to improve on these errors: the result labeled
“Interpolated” was obtained by first tuning the templates using
the spectroscopic sample as a training set, then producing a
continuous range of templates by interpolating between the

Artificial neural networks



A list of template fitting codes

• EAZY: Brammer et al. 2008, ApJ, 686, 1503

• GOODZ:Dahlen et al., 2010, ApJ, 724, 425

• Hyperz: Bolzonella et al. 2000, A&A, 363, 476

• ZEBRA: Feldmann et al. 2006, MNRAS, 372, 565

• Le Phare: Ilbert et al. 2006, A&A, 457, 841

• BPZ: Benitez 2000, ApJ, 536, 571
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Fig. 3. Comparison between spectroscopic and photometric redshifts
determined with the standard χ2 method (without adding the spectro-
scopic information) for a bright selected sample 17.5 ≤ i′AB ≤ 22.5. The
dotted lines are for zp = zs ± 0.15(1 + zs).

Fig. 4. Example of best-fitted templates on multi-colour data for a
galaxy at zs = 0.334. The solid black points correspond to the ap-
parent magnitudes in the u∗, B, g′,V, r′,R, i′, I, z′ filters from the left to
right respectively. The solid line corresponds to a template redshifted at
zp = 2.85 and the dotted line at zp = 0.24. The enclosed panel is the
associated Probability Distribution Function (PDFz).

errors are caused by mis-identification of Lyman and Balmer
break features. An illustration of this degeneracy is presented in
Fig. 4, which demonstrates the importance of near-infrared data
to break this degeneracy. An alternative solution is to include a
relevant information in the redshift probability distribution func-
tion (PDFz) using the Bayesian approach (e.g. Benítez 2000,
Mobasher et al. 2004) in order to favour one of the two solu-
tions, as discussed in Sect. 4.3.

Table 1. Systematic differences s f (converted in magnitude) between
observed and predicted flux. These values are given for the set of CWW
templates and for different cuts in apparent magnitudes. We show also
the values obtained with the synthetic library PEGASE. Throughout the
paper, we use the values quoted for CWW i′AB < 22.5.

CWW CWW CWW PEGASE
filter i′AB < 21.5 i′AB < 22.5 i′AB < 23.5 i′AB < 22.5

B +0.068 +0.071 +0.067 +0.078
V –0.037 –0.043 –0.046 –0.038
R +0.089 +0.090 +0.093 +0.102
I –0.002 +0.001 +0.004 –0.008

u∗ +0.020 +0.019 +0.008 +0.076
g′ –0.071 –0.079 –0.080 –0.080
r′ +0.002 –0.002 –0.005 +0.000
i′ +0.000 +0.000 +0.000 +0.000
z′ –0.006 –0.008 –0.006 –0.027

This basic comparison shows that blindly trusting the accu-
racy of photometric redshifts is perilous. In the following, we
will improve the photometric redshift quality using a spectro-
scopic training set.

4. An improved method to compute robust
photometric redshifts

In this section, we describe the steps we have followed to cal-
ibrate the χ2 photometric redshift estimate, in particular taking
advantage of the availability of a large set of reliable spectro-
scopic redshifts.

4.1. Systematic offsets

We first select a control sample of 872 bright galaxies (i′AB ≤
22.5) which have spectroscopic redshifts. Using a χ2 minimisa-
tion (Eq. (1)) at fixed redshift, we determine for each galaxy the
corresponding best-fitting CWW template. We note in each case
F f

obs the observed flux in the filter f . A × F f
pred is the predicted

flux derived from the best-fit template and rescaled using the
normalisation factor A of Eq. (1). For each filter f , we minimize
the sum

ψ2 =

Ngal∑

i′≤21.5

((
A × F f

pred − F f
obs + s f

)
/σ f

obs

)2

leaving s f as a free parameter. For random, normally distributed
uncertainties in the flux measurement, the average deviation s f

should be zero. Instead, we observe some systematic differences
which are listed in Table 1 (converted in magnitude). Such dif-
ferences have already been noted by Brodwin et al. (2006) in
the Canada-France Deep Fields Survey. In our data, these dif-
ferences never exceed 0.1 mag and have an average amplitude
of 0.035 mag. They depend very weakly on the magnitude cut
adopted to select the bright sub-sample (Table 1) and are also al-
most independent from the used set of templates (see Table 1
with the values obtained using templates based on the syn-
thetic library PEGASE Fioc & Rocca-Volmerange 1997). The
size of these systematic differences are compatible with the ex-
pected uncertainties in the absolute zero-point calibration (about
0.05 mag.).

We then proceed to correct the predicted apparent magni-
tudes for these systematic differences. s f is the estimated correc-
tion that we apply to the apparent magnitudes in a given filter f .

Ilbert et al. 2006, A&A, 457, 841

zspec = 0.34

zphot ,1 = 0.24

zphot ,2 = 2.85
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FIG. 2.ÈExample of the main probability distributions involved in BPZ for a galaxy at z \ 0.28 with an Irr spectral type and I B 26, to which random
photometric noise is added. From top to bottom: (a) : Likelihood functions p(C o z, T ) for the di†erent templates used in ° 4. Based on ML, the redshift chosen
for this galaxy would be and its spectral type would correspond to a spiral. (b) : Prior probabilities, p(z, for each of the spectral typeszML \ 2.685, T o m0),
(see text). Note that the probability of Ðnding a spiral spectral type with z [ 2.5 and a magnitude I \ 26 is almost negligible. (c) Probability distributions,
p(z, T o C, that is, the likelihoods in the top plot multiplied by the priors. The high-redshift peak due to the spiral has disappeared,m0) P p(z, T o m0)p(C o z, T ),
although there is still a small chance of the galaxy being at high redshift if it has a Irr spectrum, but the main concentration of probability is now at low
redshift. (d) Final Bayesian probability, p(z o C, which has its maximum at The shaded area corresponds to the value ofm0) \ £

T
p(z, T o C, m0), z

b
\ 0.305.

which estimates the reliability of and yields a value of B0.91.p*z
, z

b

solve such conundrums. For instance, it may be known
from previous experience that one of the possible redshift/
type combinations is much more likely than any other,
given the galaxy magnitude, angular size, shape, etc. In that
case, and since the likelihoods are not informative enough,
Bayesian probability states that the best option would be
the one more likely a priori. This is plain common sense,
but it is not easy to implement using ML; at best, one can
modify the redshift of the problematic objects by hand or
devise ad hoc solutions for each case. In contrast, Bayesian
probability theory allows one to include this additional
information in a rigorous and consistent way, e†ectively
dealing with this kind of error (see ° 3).

Although in some cases the spectrum of a galaxy has no
close equivalents in the template library, it will be assigned
by ML the redshift corresponding to the nearest template in
the color/redshift space, no matter how distant it is from the
observed color (and from the real redshift) in absolute
terms. The solution to this problem seems obvious : to
include more templates in the library until all the possible
galaxy types are considered. However, since all the tem-
plates have equal status in ML, doing this increases the

number of color/redshift degeneracies. Bayesian inference is
much less a†ected by this problem, since it weights each
template by its prior probability, and therefore templates
corresponding to relatively uncommon types, such as, e.g.,
AGNs, etc., can be included without unduly disturbing the
redshift estimation for normal galaxies.

As explained above, the SED-Ðtting techniques perform
their own ““ automatic ÏÏ interpolation and extrapolation, so
once the main spectral types are included in the template
library, the results are not greatly a†ected if one Ðnely inter-
polates among the main spectra. The e†ects of using a
correct but incomplete set of spectra are shown in ° 4.

Both sources of errors described above are exacerbated
for high-redshift galaxies, which are usually faint, and there-
fore have large photometric errors. Moreover, the color/
redshift space has a very extended range in z, and thus
degeneracies are more likely to appear ; in addition, the
template incompleteness is worse, since there are few or no
empirical spectra with which to compare the template
library.

The e†ectiveness of any photometric redshift method is
established by contrasting its output with a sample of gal-
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axies with spectroscopic redshifts. It should be kept in mind,
however, that the results of this comparison may be mis-
leading, since the available spectroscopic samples are
almost by deÐnition especially well suited to photometric
redshift estimation, being relatively bright (and thus with
small photometric errors) and often Ðlling a privileged niche
in the color-redshift space, far from degeneracies (e.g.,
Lyman-break galaxies). Thus, it is risky to extrapolate the
accuracy reached by current methods as estimated from
spectroscopic samples (this also applies to BPZ) to fainter
magnitudes. This is especially true for the training-set
methods, which deliberately minimize the di†erence
between the spectroscopic and photometric redshifts.

3. BAYESIAN PHOTOMETRIC REDSHIFTS (BPZ)
Within the framework of Bayesian probability, the

problem of photometric redshift estimation can be posed as
Ðnding the probability p(z o D, I), i.e., the probability of a
galaxy having redshift z given the data and theD \ MC, m0N,
prior information I, which includes any knowledge relevant
to the hypothesis under consideration not already con-
tained in the data D. Although some authors recommend
that the term o I should not be dropped from the expres-
sions of probability, here the rule of simplifying the mathe-
matical notation whenever there is no danger of confusion
will be followed, and from now on p(z) will stand for p(z o I),
p(D o z) for p(D o z, I), etc.

As a trivial example, let us consider just one template in
our library. Applying BayesÏ theorem,

p(z o C, m0) \ p(z o m0)p(C o z)
p(C)

P p(z o m0)p(C o z) . (1)

Here the expression p(C o z) 4 L(z) is simply the redshift
likelihood : the probability of observing the colors C if the
galaxy has redshift z. The probability p(C) is a normal-
ization constant, and usually there is no need to calculate it.

The Ðrst factor, the prior probability, is the red-p(z o m0),
shift distribution for galaxies with magnitude This func-m0.
tion allows us to include information such as the existence
of upper or lower limits on the galaxy redshifts, the presence
of a cluster in the Ðeld, etc. The e†ect of the prior onp(z o m0)
the estimation depends on how informative it is. It is
obvious that for a constant prior (all redshifts equally likely
a priori), the estimate obtained from equation (1) will
exactly coincide with the ML result. This is also roughly
true if the prior is ““ smooth ÏÏ enough and does not present
signiÐcant structure. However, in other cases, values of the
redshifts that are considered very improbable from the prior
information would be ““ discriminated ; ÏÏ i.e., they must Ðt
the data much better than any other redshift in order to be
selected.

Note that rigorously, one should write the prior in equa-
tion (1) as

p(z o m0) P
P

dmü 0 p(mü 0)p(m0 o mü 0)p(z o mü 0) , (2)

where is the ““ true ÏÏ value of the observed magnitudemü 0 m0,
is proportional to the number counts as a function ofp(mü 0)

the magnitude andm0, p(m0 o mü 0) P exp [(m0 [ mü 0)2/2p
m0
2 ],

i.e., the probability of observing if the true magnitude ism0The above convolution accounts for the uncertainty inmü 0.
the value of the magnitude which has the e†ect of slight-m0,
ly ““ blurring ÏÏ and biasing the redshift distribution p(z o m0).

To simplify our exposition, this e†ect will not be consider
hereafter ; just and its equivalents will be used.p(z o m0)

3.1. Bayesian Marginalization
It may seem from equation (1) (and it is unfortunately

quite a common misconception) that the only di†erence
between Bayesian and ML estimates is the introduction of a
prior ; in this case, However, there is more top(z o m0).
Bayesian probability than priors.

The galaxy under study may belong to di†erent morpho-
logical types, represented by a set of templates. This set isn

Tconsidered to be exhaustive, i.e., including all possible types,
and exclusive : the galaxy cannot belong to two types at the
same time. In that case, using Bayesian marginalization, the
probability p(z o D) can be ““ expanded ÏÏ into a basis formed
by the hypothesis p(z, T o D) (the probability of the galaxy
redshift being z and the galaxy type being T ). The sum over
all these ““ atomic ÏÏ hypothesis will give the total probability,
p(z o D). That is,

p(z o C, m0) \ ;
T

p(z, T o C, m0) P ;
T

p(z, T o m0)p(C o z, T ) ,

(3)

where we have applied BayesÏ theorem in the second step.
Here p(C o z, T ) is the probability of the data C given z and
T (where it is assumed that it does not depend on the mag-
nitude The prior p(z, can be developed using them0). T o m0)
product rule,

p(z, T o m0) \ p(T o m0)p(z o T , m0) , (4)

where is the galaxy type fraction as a function ofp(T o m0)
magnitude, and p(z o T , is the redshift distribution form0)
galaxies of a given spectral type and magnitude.

Equation (3) and Figure 2 clearly illustrate the main dif-
ferences between the Bayesian and ML methods. ML would
just pick the highest maximum over all the likelihoods
p(C o z, T ) as the best redshift estimate, without looking at
the plausibility of the corresponding values of z or T . On
the contrary, Bayesian probability averages over all the
likelihoods after weighting them by their prior probabilities,
p(z, In this way, the estimation is not a†ected byT o m0).
spurious likelihood peaks caused by noise (Fig. 2 ; see also
the results of ° 4). Of course, in an ideal situation with
noiseless observationsÈand a nondegenerate color/redshift
spaceÈthe results obtained with ML and Bayesian infer-
ence would be the same.

It is straightforward to extend equation (3) to a spectral
library that depends on a set of continuous parameters, e.g.,
synthetic templates that depend on the metallicity Z, the
dust content, the star formation history, etc., or a set of a
few empirical spectra that are expanded using the principal
component analysis (PCA) technique & Cuevas(Sodre"
1997). In general, if the spectra are characterized by pos-n

Ssible parameters (which may be physical char-S \ Ms1. . .s
nS

N
acteristics of the models or just PCA coefficients), the
probability of z given C and can be expressed asm0

p(z o C, m0) \P
dSp(z, S o C, m0)

P
P

dSp(z, S o m0)p(C o z, S) . (5)

One situation in which the use of redshift priors most
clearly reveals its advantages is the study of galaxy cluster
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axies with spectroscopic redshifts. It should be kept in mind,
however, that the results of this comparison may be mis-
leading, since the available spectroscopic samples are
almost by deÐnition especially well suited to photometric
redshift estimation, being relatively bright (and thus with
small photometric errors) and often Ðlling a privileged niche
in the color-redshift space, far from degeneracies (e.g.,
Lyman-break galaxies). Thus, it is risky to extrapolate the
accuracy reached by current methods as estimated from
spectroscopic samples (this also applies to BPZ) to fainter
magnitudes. This is especially true for the training-set
methods, which deliberately minimize the di†erence
between the spectroscopic and photometric redshifts.

3. BAYESIAN PHOTOMETRIC REDSHIFTS (BPZ)
Within the framework of Bayesian probability, the

problem of photometric redshift estimation can be posed as
Ðnding the probability p(z o D, I), i.e., the probability of a
galaxy having redshift z given the data and theD \ MC, m0N,
prior information I, which includes any knowledge relevant
to the hypothesis under consideration not already con-
tained in the data D. Although some authors recommend
that the term o I should not be dropped from the expres-
sions of probability, here the rule of simplifying the mathe-
matical notation whenever there is no danger of confusion
will be followed, and from now on p(z) will stand for p(z o I),
p(D o z) for p(D o z, I), etc.

As a trivial example, let us consider just one template in
our library. Applying BayesÏ theorem,

p(z o C, m0) \ p(z o m0)p(C o z)
p(C)

P p(z o m0)p(C o z) . (1)

Here the expression p(C o z) 4 L(z) is simply the redshift
likelihood : the probability of observing the colors C if the
galaxy has redshift z. The probability p(C) is a normal-
ization constant, and usually there is no need to calculate it.

The Ðrst factor, the prior probability, is the red-p(z o m0),
shift distribution for galaxies with magnitude This func-m0.
tion allows us to include information such as the existence
of upper or lower limits on the galaxy redshifts, the presence
of a cluster in the Ðeld, etc. The e†ect of the prior onp(z o m0)
the estimation depends on how informative it is. It is
obvious that for a constant prior (all redshifts equally likely
a priori), the estimate obtained from equation (1) will
exactly coincide with the ML result. This is also roughly
true if the prior is ““ smooth ÏÏ enough and does not present
signiÐcant structure. However, in other cases, values of the
redshifts that are considered very improbable from the prior
information would be ““ discriminated ; ÏÏ i.e., they must Ðt
the data much better than any other redshift in order to be
selected.

Note that rigorously, one should write the prior in equa-
tion (1) as

p(z o m0) P
P

dmü 0 p(mü 0)p(m0 o mü 0)p(z o mü 0) , (2)

where is the ““ true ÏÏ value of the observed magnitudemü 0 m0,
is proportional to the number counts as a function ofp(mü 0)

the magnitude andm0, p(m0 o mü 0) P exp [(m0 [ mü 0)2/2p
m0
2 ],

i.e., the probability of observing if the true magnitude ism0The above convolution accounts for the uncertainty inmü 0.
the value of the magnitude which has the e†ect of slight-m0,
ly ““ blurring ÏÏ and biasing the redshift distribution p(z o m0).

To simplify our exposition, this e†ect will not be consider
hereafter ; just and its equivalents will be used.p(z o m0)

3.1. Bayesian Marginalization
It may seem from equation (1) (and it is unfortunately

quite a common misconception) that the only di†erence
between Bayesian and ML estimates is the introduction of a
prior ; in this case, However, there is more top(z o m0).
Bayesian probability than priors.

The galaxy under study may belong to di†erent morpho-
logical types, represented by a set of templates. This set isn

Tconsidered to be exhaustive, i.e., including all possible types,
and exclusive : the galaxy cannot belong to two types at the
same time. In that case, using Bayesian marginalization, the
probability p(z o D) can be ““ expanded ÏÏ into a basis formed
by the hypothesis p(z, T o D) (the probability of the galaxy
redshift being z and the galaxy type being T ). The sum over
all these ““ atomic ÏÏ hypothesis will give the total probability,
p(z o D). That is,

p(z o C, m0) \ ;
T

p(z, T o C, m0) P ;
T

p(z, T o m0)p(C o z, T ) ,

(3)

where we have applied BayesÏ theorem in the second step.
Here p(C o z, T ) is the probability of the data C given z and
T (where it is assumed that it does not depend on the mag-
nitude The prior p(z, can be developed using them0). T o m0)
product rule,

p(z, T o m0) \ p(T o m0)p(z o T , m0) , (4)

where is the galaxy type fraction as a function ofp(T o m0)
magnitude, and p(z o T , is the redshift distribution form0)
galaxies of a given spectral type and magnitude.

Equation (3) and Figure 2 clearly illustrate the main dif-
ferences between the Bayesian and ML methods. ML would
just pick the highest maximum over all the likelihoods
p(C o z, T ) as the best redshift estimate, without looking at
the plausibility of the corresponding values of z or T . On
the contrary, Bayesian probability averages over all the
likelihoods after weighting them by their prior probabilities,
p(z, In this way, the estimation is not a†ected byT o m0).
spurious likelihood peaks caused by noise (Fig. 2 ; see also
the results of ° 4). Of course, in an ideal situation with
noiseless observationsÈand a nondegenerate color/redshift
spaceÈthe results obtained with ML and Bayesian infer-
ence would be the same.

It is straightforward to extend equation (3) to a spectral
library that depends on a set of continuous parameters, e.g.,
synthetic templates that depend on the metallicity Z, the
dust content, the star formation history, etc., or a set of a
few empirical spectra that are expanded using the principal
component analysis (PCA) technique & Cuevas(Sodre"
1997). In general, if the spectra are characterized by pos-n

Ssible parameters (which may be physical char-S \ Ms1. . .s
nS

N
acteristics of the models or just PCA coefficients), the
probability of z given C and can be expressed asm0

p(z o C, m0) \P
dSp(z, S o C, m0)

P
P

dSp(z, S o m0)p(C o z, S) . (5)

One situation in which the use of redshift priors most
clearly reveals its advantages is the study of galaxy cluster

No. 2, 2000 BAYESIAN PHOTOMETRIC REDSHIFT ESTIMATION 575

axies with spectroscopic redshifts. It should be kept in mind,
however, that the results of this comparison may be mis-
leading, since the available spectroscopic samples are
almost by deÐnition especially well suited to photometric
redshift estimation, being relatively bright (and thus with
small photometric errors) and often Ðlling a privileged niche
in the color-redshift space, far from degeneracies (e.g.,
Lyman-break galaxies). Thus, it is risky to extrapolate the
accuracy reached by current methods as estimated from
spectroscopic samples (this also applies to BPZ) to fainter
magnitudes. This is especially true for the training-set
methods, which deliberately minimize the di†erence
between the spectroscopic and photometric redshifts.

3. BAYESIAN PHOTOMETRIC REDSHIFTS (BPZ)
Within the framework of Bayesian probability, the

problem of photometric redshift estimation can be posed as
Ðnding the probability p(z o D, I), i.e., the probability of a
galaxy having redshift z given the data and theD \ MC, m0N,
prior information I, which includes any knowledge relevant
to the hypothesis under consideration not already con-
tained in the data D. Although some authors recommend
that the term o I should not be dropped from the expres-
sions of probability, here the rule of simplifying the mathe-
matical notation whenever there is no danger of confusion
will be followed, and from now on p(z) will stand for p(z o I),
p(D o z) for p(D o z, I), etc.

As a trivial example, let us consider just one template in
our library. Applying BayesÏ theorem,

p(z o C, m0) \ p(z o m0)p(C o z)
p(C)

P p(z o m0)p(C o z) . (1)

Here the expression p(C o z) 4 L(z) is simply the redshift
likelihood : the probability of observing the colors C if the
galaxy has redshift z. The probability p(C) is a normal-
ization constant, and usually there is no need to calculate it.

The Ðrst factor, the prior probability, is the red-p(z o m0),
shift distribution for galaxies with magnitude This func-m0.
tion allows us to include information such as the existence
of upper or lower limits on the galaxy redshifts, the presence
of a cluster in the Ðeld, etc. The e†ect of the prior onp(z o m0)
the estimation depends on how informative it is. It is
obvious that for a constant prior (all redshifts equally likely
a priori), the estimate obtained from equation (1) will
exactly coincide with the ML result. This is also roughly
true if the prior is ““ smooth ÏÏ enough and does not present
signiÐcant structure. However, in other cases, values of the
redshifts that are considered very improbable from the prior
information would be ““ discriminated ; ÏÏ i.e., they must Ðt
the data much better than any other redshift in order to be
selected.

Note that rigorously, one should write the prior in equa-
tion (1) as

p(z o m0) P
P

dmü 0 p(mü 0)p(m0 o mü 0)p(z o mü 0) , (2)

where is the ““ true ÏÏ value of the observed magnitudemü 0 m0,
is proportional to the number counts as a function ofp(mü 0)

the magnitude andm0, p(m0 o mü 0) P exp [(m0 [ mü 0)2/2p
m0
2 ],

i.e., the probability of observing if the true magnitude ism0The above convolution accounts for the uncertainty inmü 0.
the value of the magnitude which has the e†ect of slight-m0,
ly ““ blurring ÏÏ and biasing the redshift distribution p(z o m0).

To simplify our exposition, this e†ect will not be consider
hereafter ; just and its equivalents will be used.p(z o m0)

3.1. Bayesian Marginalization
It may seem from equation (1) (and it is unfortunately

quite a common misconception) that the only di†erence
between Bayesian and ML estimates is the introduction of a
prior ; in this case, However, there is more top(z o m0).
Bayesian probability than priors.

The galaxy under study may belong to di†erent morpho-
logical types, represented by a set of templates. This set isn

Tconsidered to be exhaustive, i.e., including all possible types,
and exclusive : the galaxy cannot belong to two types at the
same time. In that case, using Bayesian marginalization, the
probability p(z o D) can be ““ expanded ÏÏ into a basis formed
by the hypothesis p(z, T o D) (the probability of the galaxy
redshift being z and the galaxy type being T ). The sum over
all these ““ atomic ÏÏ hypothesis will give the total probability,
p(z o D). That is,

p(z o C, m0) \ ;
T

p(z, T o C, m0) P ;
T

p(z, T o m0)p(C o z, T ) ,

(3)

where we have applied BayesÏ theorem in the second step.
Here p(C o z, T ) is the probability of the data C given z and
T (where it is assumed that it does not depend on the mag-
nitude The prior p(z, can be developed using them0). T o m0)
product rule,

p(z, T o m0) \ p(T o m0)p(z o T , m0) , (4)

where is the galaxy type fraction as a function ofp(T o m0)
magnitude, and p(z o T , is the redshift distribution form0)
galaxies of a given spectral type and magnitude.

Equation (3) and Figure 2 clearly illustrate the main dif-
ferences between the Bayesian and ML methods. ML would
just pick the highest maximum over all the likelihoods
p(C o z, T ) as the best redshift estimate, without looking at
the plausibility of the corresponding values of z or T . On
the contrary, Bayesian probability averages over all the
likelihoods after weighting them by their prior probabilities,
p(z, In this way, the estimation is not a†ected byT o m0).
spurious likelihood peaks caused by noise (Fig. 2 ; see also
the results of ° 4). Of course, in an ideal situation with
noiseless observationsÈand a nondegenerate color/redshift
spaceÈthe results obtained with ML and Bayesian infer-
ence would be the same.

It is straightforward to extend equation (3) to a spectral
library that depends on a set of continuous parameters, e.g.,
synthetic templates that depend on the metallicity Z, the
dust content, the star formation history, etc., or a set of a
few empirical spectra that are expanded using the principal
component analysis (PCA) technique & Cuevas(Sodre"
1997). In general, if the spectra are characterized by pos-n

Ssible parameters (which may be physical char-S \ Ms1. . .s
nS

N
acteristics of the models or just PCA coefficients), the
probability of z given C and can be expressed asm0

p(z o C, m0) \P
dSp(z, S o C, m0)

P
P

dSp(z, S o m0)p(C o z, S) . (5)

One situation in which the use of redshift priors most
clearly reveals its advantages is the study of galaxy cluster

With one template T, color vector C
and object magnitude m0 :  

With a set of templates:

Priors (for example, VVDS redshift distribution):
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Ðelds, especially when near-IR photometry is not available.
Since the 4000 break in the spectra of intermediate-Ó
redshift cluster members is difficult to distinguish from the
Lyman break of higher redshift galaxies, for many objects
the redshift likelihood will present two or more peaks,
making ML photometric redshift estimation unfeasible for
a major fraction of the sample. Using a redshift prior
modeled as a smooth background component with a
““ spike ÏÏ at the cluster redshift strongly reduces the number
of objects with undetermined redshifts even with limited
color information (N. & T. Broadhurst, inBen•# tez
preparation).

3.2. T he Redshift L ikelihood
The redshift likelihood was written above as p(C o z, T ),

assuming that it only depends on z and T . However, the
redshift likelihood usually employed by ML photometric
redshift techniques also depends on a, the template normal-
ization factor :

[log (L) ] const P s2(z, T , a) \ ;
a

( fa [ af
Ta)2

p
fa
2 , (6)

where with are the observed galaxy Ñuxes,M faN, a \ 0, n
c
,

and are the Ñuxes of the set of templates. Thef
Ta(z) n

Texpression for s2 in the previous equation can be rewritten
as

s2(z, T , a) \ F
OO

[ F
OT
2

F
TT

] (a [ a
m
)2F

TT
, (7)

where

a
m

\ F
OT

F
TT

(8)

is the value of a that minimizes equations (6) and (7), and

F
OO

\ ;
a

f a2
p
fa
2 , F

TT
\ ;

a

f
Ta2

p
fa
2 , F

OT
\ ;

a

fa f
Ta

p
fa
2 . (9)

In Bayesian Probability, the nuisance parameter a should
be introduced from the beginning in the full expression for
the redshift probability :

p(z o C, m0) \P
da ;

T
p(z, T , a o C, m0)

P ;
T

p(z, T o m0)
P

da p(a o m0)

] p(C o z, T , a) , (10)

where we have assumed that z and T do not depend on a
once is known. It is obvious by comparison with equa-m0tion (3) that under these assumptions,

p(z o C, T ) P
P

da p(a o m0)p(C o z, T , a) . (11)

In the absence of information about the shape of ap(a o m0),
safe approach in this particular case is to assume a Ñat
prior, Integrating over a, the likelihoodp(a o m0) \ const.
deÐned using equations (6) and (7), we Ðnd

p(C o z, T ) P F
TT

(z)~1@2 exp
C[s2(z, T , a

m
)

2
D

, (12)

i.e., the same expression that would be reached using ML,
except for the normalization factor F

TT
~1@2(z).

Instead of Ñuxes, it may be more convenient to work with
colors, normalizing the total Ñuxes in each band by the Ñux
in a ““ base ÏÏ Ðlter, e.g., the one corresponding to the band in
which the galaxy sample was selected and is considered to
be complete. Here the colors, are deÐned asC \ Mc

i
N,

(i \ 1, where is the base Ñux. The exact wayc
i
\ f

i
/f0 n

c
), f0in which the colors are deÐned is not relevant ; other com-

binations of Ðlters are equally valid. Introducing the follow-
ing deÐnitions,

C
OO

\ ;
i

c
i
2

p
ci
2 , C

OT
\ ;

i

c
i
c
Ti

p
ci
2 , C

TT
\ ;

i

c
Ti
2

p
ci
2 , (13)

where and one hasp
ci

\ p
fi

/f0 c
Ti

\ f
Ti

/f
T0,

s2(z, T , a
m
) \ p0~2 ] C

OO
] (p0~2 ] C

OT
)2

p0~2 ] C
TT

, (14)

F
TT

\ a02(p0~2 ] C
TT

) , (15)

where and Equations (3) and (12)Èp0 \ p
f0

/f0 a0 \ f
TO

/f0.
(15) will be used below in all tests and practical applications.

3.3. Prior Calibration
In those cases where the a priori information is vague and

does not allow us to choose a deÐnite expression for the
prior probability, Bayesian inference allows us to
““ calibrate ÏÏ the prior, if necessary using the very sample
under consideration.

Let us suppose that the distribution p(z, T , is para-m0)
metrized using continuous parameters j. These may benjthe coefficients of a polynomial Ðt, a wavelet expansion, etc.
In that case, including j in equation (3), the probability can
be written as

p(z o C, m0) \P
dj ;

T
p(z, T , j o C, m0)

P
P

dj p(j) ;
T

p(z, T , o m0, j)

] p(C o z, T ) , (16)

where p(j) is the prior probability of j, and p(z, isT o m0, j)
the prior probability of z, T and as a function of them0parameters j. The latter has not been included in the likeli-
hood expression, since C is completely determined once the
values of z and T are known.

Now let us suppose that the galaxy belongs to a sample
containing galaxies. Each jth galaxy has a base magni-n

gtude and colors The sets andm0j
C

j
. C 4 MC

j
N m0 4

contain the colors and magnitudes, respec-Mm0j
N, ( j \ 1, n

g
)

tively, of all the galaxies in the sample. Then the probability
of the ith galaxy having redshift given the full samplez

i
,

data C and can be written asm0,

p(z
i
o C, m0) \P

dj ;
T

p(z
i
, T , j o C

i
, m0i

, C@, m0@ ) . (17)

The sets and are iden-C@ 4 MC
j
N m0@ 4 Mm0j

N, j \ 1, n
g
, j D i

tical to C and except for the exclusion of the datam0, C
iand Applying BayesÏ theorem, the product rule, andm0i

.
simplifying,

p(z
i
o C, m0) P

P
dj p(j o C@, m0@ )

] ;
T

p(z
i
, T o m0i

, j)p(C o z
i
, T ) , (18)
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Lyman break of higher redshift galaxies, for many objects
the redshift likelihood will present two or more peaks,
making ML photometric redshift estimation unfeasible for
a major fraction of the sample. Using a redshift prior
modeled as a smooth background component with a
““ spike ÏÏ at the cluster redshift strongly reduces the number
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ization factor :

[log (L) ] const P s2(z, T , a) \ ;
a

( fa [ af
Ta)2

p
fa
2 , (6)

where with are the observed galaxy Ñuxes,M faN, a \ 0, n
c
,

and are the Ñuxes of the set of templates. Thef
Ta(z) n

Texpression for s2 in the previous equation can be rewritten
as

s2(z, T , a) \ F
OO

[ F
OT
2

F
TT

] (a [ a
m
)2F

TT
, (7)

where

a
m

\ F
OT

F
TT

(8)

is the value of a that minimizes equations (6) and (7), and

F
OO

\ ;
a

f a2
p
fa
2 , F

TT
\ ;

a

f
Ta2

p
fa
2 , F

OT
\ ;

a

fa f
Ta

p
fa
2 . (9)

In Bayesian Probability, the nuisance parameter a should
be introduced from the beginning in the full expression for
the redshift probability :

p(z o C, m0) \P
da ;

T
p(z, T , a o C, m0)

P ;
T

p(z, T o m0)
P

da p(a o m0)

] p(C o z, T , a) , (10)

where we have assumed that z and T do not depend on a
once is known. It is obvious by comparison with equa-m0tion (3) that under these assumptions,

p(z o C, T ) P
P

da p(a o m0)p(C o z, T , a) . (11)

In the absence of information about the shape of ap(a o m0),
safe approach in this particular case is to assume a Ñat
prior, Integrating over a, the likelihoodp(a o m0) \ const.
deÐned using equations (6) and (7), we Ðnd

p(C o z, T ) P F
TT

(z)~1@2 exp
C[s2(z, T , a

m
)

2
D

, (12)

i.e., the same expression that would be reached using ML,
except for the normalization factor F

TT
~1@2(z).

Instead of Ñuxes, it may be more convenient to work with
colors, normalizing the total Ñuxes in each band by the Ñux
in a ““ base ÏÏ Ðlter, e.g., the one corresponding to the band in
which the galaxy sample was selected and is considered to
be complete. Here the colors, are deÐned asC \ Mc

i
N,

(i \ 1, where is the base Ñux. The exact wayc
i
\ f

i
/f0 n

c
), f0in which the colors are deÐned is not relevant ; other com-

binations of Ðlters are equally valid. Introducing the follow-
ing deÐnitions,

C
OO

\ ;
i

c
i
2

p
ci
2 , C

OT
\ ;

i

c
i
c
Ti

p
ci
2 , C

TT
\ ;

i

c
Ti
2

p
ci
2 , (13)

where and one hasp
ci

\ p
fi

/f0 c
Ti

\ f
Ti

/f
T0,

s2(z, T , a
m
) \ p0~2 ] C

OO
] (p0~2 ] C

OT
)2

p0~2 ] C
TT

, (14)

F
TT

\ a02(p0~2 ] C
TT

) , (15)

where and Equations (3) and (12)Èp0 \ p
f0

/f0 a0 \ f
TO

/f0.
(15) will be used below in all tests and practical applications.

3.3. Prior Calibration
In those cases where the a priori information is vague and

does not allow us to choose a deÐnite expression for the
prior probability, Bayesian inference allows us to
““ calibrate ÏÏ the prior, if necessary using the very sample
under consideration.

Let us suppose that the distribution p(z, T , is para-m0)
metrized using continuous parameters j. These may benjthe coefficients of a polynomial Ðt, a wavelet expansion, etc.
In that case, including j in equation (3), the probability can
be written as

p(z o C, m0) \P
dj ;

T
p(z, T , j o C, m0)

P
P

dj p(j) ;
T

p(z, T , o m0, j)

] p(C o z, T ) , (16)

where p(j) is the prior probability of j, and p(z, isT o m0, j)
the prior probability of z, T and as a function of them0parameters j. The latter has not been included in the likeli-
hood expression, since C is completely determined once the
values of z and T are known.

Now let us suppose that the galaxy belongs to a sample
containing galaxies. Each jth galaxy has a base magni-n

gtude and colors The sets andm0j
C

j
. C 4 MC

j
N m0 4

contain the colors and magnitudes, respec-Mm0j
N, ( j \ 1, n

g
)

tively, of all the galaxies in the sample. Then the probability
of the ith galaxy having redshift given the full samplez

i
,

data C and can be written asm0,

p(z
i
o C, m0) \P

dj ;
T

p(z
i
, T , j o C

i
, m0i

, C@, m0@ ) . (17)

The sets and are iden-C@ 4 MC
j
N m0@ 4 Mm0j

N, j \ 1, n
g
, j D i

tical to C and except for the exclusion of the datam0, C
iand Applying BayesÏ theorem, the product rule, andm0i

.
simplifying,

p(z
i
o C, m0) P

P
dj p(j o C@, m0@ )

] ;
T

p(z
i
, T o m0i

, j)p(C o z
i
, T ) , (18)



Template fitting with PDF

16

Basic concept

34

Le PHARE, Arnoux & Ilbert



Some more references
• PHAT: Hildebrandt et al. 2010, A&A, 523, A31

• Bayesian studies: 
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Wolf, 2009, MNRAS, 397, 520 on QSO
Edmondson et al. 2006, MNRAS, 371, 1693, lensing
Budavari, 2009, ApJ, 695, 747, general framework
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‘Local’ implementation of Bayesian photometric redshift fitting. Semi-
empirical SEDs derived from broad-band fluxes of galaxies with 
spectroscopic z by fitting them with SEDs of Bruzual&Charlot, Maraston 
and spectra from FDF, Kinney&Calzetti, Mannucci. Stellar and QSO 
SEDs also fitted to check if the objects are really galaxies. 

Proc. of the ESO/ECF/STScI Workshop “Deep Fields”, S. Cristiani, A. Renzini, E. Williams Eds., Springer, p. 96Bender et al. 2001
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44 CHAPTER 2. PHOTOMETRIC REDSHIFT ESTIMATION

Figure 2.13: Example of a PZPlot output. Blue lines and values indicate the best fitting model, whereas
red refer to the second-best. The results for the fit with known spectroscopic redshift are displayed in green,
whereas gray is used for stellar models. The lower panel displays the SEDs for these models, and the upper
panel shows the probability distributions of the first few best fitting models, and the cumulative distribution. (A
more detailed description of this plot is given in the text.)



Fors Deep Field
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180 galaxies used 
to derive semi- 
empirical SEDs

180 galaxies in  
the control sample

Only ~ 1% 
catastrophic failures 
on normal galaxies! 
(mostly very blue, 
faint dwarf objects 
with almost power-
law SEDs)

Gabasch et al. 2004, A&A, 421, 41 



CFHT Legacy Survey
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Brimioulle, Seitz et al., in prep.
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1.1. PROPERTIES OF ELLIPTICAL GALAXIES 15

Figure 1.10: Image of
the E0-1 galaxy NGC
5846. It is obtained as
mosaics of images in the
three optical bands (gri)
of the SDSS.

and highly ionized, that it emits X-rays, which are not observable in the optical range of the spectrum.

An important spectral feature of elliptical galaxies is the 4000 Å-break, which is a decrease in flux
around 4000Å, see figure 1.11. This is due to the blanket absorption of high energy radiation from
metals in stellar atmospheres, and to the deficiency of hot blue stars. The 4000 Å-break is sometimes
called Ca II break or HK break. The latter names refer to the part of the step in the spectrum produced
by the two strong lines of Ca II absorption, which were designated H and K by Fraunhofer.
The break’s strength D4000 is defined by Bruzual [12] as:

D4000 ⌘
h f+i
h f�i ⌘

�
l�

2 �l�
1
�R l+

2
l+

1
fn dl

�
l+

2 �l+
1
�R l�

2
l�

1
fn dl

, (1.7)

where

h f i ⌘
R l2

l1
fn dl

R l2
l1

dl
.

Equation 1.7 can be simplified by setting l ⇤
i such, that their differences have the same size, and the

values in brackets vanish. In most publications, such as Bruzual [12], Gorgas et al. [31] and Kimble
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Figure 1.11: Optical Spectrum of the giant elliptical E0-1 galaxy NGC 5846, corresponding to figure 1.10.
The wavelength range of the spectrum is l = 3800Å to 9200Å as obtained from SDSS with a 3 arcsec di-
ameter fiber. The galaxy’s position is right ascension a = 15h06m29.3s and declination d = +01d36m20s in
J2000 coordinates (visible on the top of the panel). On the bottom of the plot is the galaxy’s redshift and its
corresponding error, z = 0.0057± 0.0002. Several emission and absorption lines are marked. The spectrum
displays red colors that are indicative of old stellar populations. It has a sharp decline in flux around 4000Å
and prominent absorption lines.

et al. [35], the wavelength ranges are set to:

l�
1 ⌘ 3750Å, l�

2 ⌘ 3950Å, l+
1 ⌘ 4050Å, l+

2 ⌘ 4250Å.

D4000 can then be calculated via:

D4000 =

R 4250Å
4050Å fn dl
R 3950Å

3750Å fn dl
.

The 4000 Å-break tells us at a glance something about the underlying stellar population. It changes a
lot with age, metallicity and star formation history. We will witness this in chapter 3.1.2 and appendix
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Figure 1.8: Absolute magnitude
versus g-r color of galaxies from
the SDSS. Two different regions
are populated by different types
of galaxies. Taken from Bender
[5] (originally from Hogg et al.,
2003 ApJ,585L,5H).

Figure 1.9: Mg2 line-strength
versus B-V color. The line
drawn represents the relation
1.12Mg2 + 0.615. Typical er-
ror bars are shown in the upper
left. From Bender et al. [7].

Bender et al. [7] showed, that the B-V colors of ellipticals and S0 galaxies are tightly correlated
with their Mg2 line strengths (which are at l = 518nm). This result is not trivial, because the two
variables relate to different volumes of a galaxy. The Mg2 line index depends only on the spectrum of
light from the innermost few arcseconds of the image, whereas the measured B-V color is dominated
by light from R ' Re. Hence, this effect is not merely the tight correlation between line-strength and
broad-band color, but it requires a degree of consistency in galactic color and line-strength gradients.
In addition to B-V, the central velocity dispersion is also tightly correlated not only with the galaxy’s
colors, but also with the Mg2 index, [9].

2.2. THE SLOAN DIGITAL SKY (IMAGING) SURVEY 33

Figure 2.4: u-g vs. g-r for dif-
ferent types of galaxies and red-
shifts. z = 0 is near the labels and
each dot represents an increase in
z of 0.1 up to maximum of z = 0.6.
Taken from [27].

Figure 2.5: g-r vs. r-i for different
types of galaxies and redshifts. z=
0 is near the labels and each dot
represents an increase in z of 0.1
up to maximum of z = 0.6. Taken
from [27].

z=0

z=0.6
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Figure 2.4: u-g vs. g-r for dif-
ferent types of galaxies and red-
shifts. z = 0 is near the labels and
each dot represents an increase in
z of 0.1 up to maximum of z = 0.6.
Taken from [27].

Figure 2.5: g-r vs. r-i for different
types of galaxies and redshifts. z=
0 is near the labels and each dot
represents an increase in z of 0.1
up to maximum of z = 0.6. Taken
from [27].

Eisenstein et al. 2001: 
up to z~0.4

‘BOSS’ sample:
up to z~0.7
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PhotoZ for LRZ

Greisel, Seitz, Bender et al., in prep.
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sample. Figure 10 compares the performance of the photo-
metric redshift estimators utilizing the two original and
repaired template SEDs. The repair procedure decreases the
overall scatter in the redshift relation from !z = 0.031 to
!z = 0.029. The main improvement is, however, that the
systematic underestimation of the redshift at redshifts
z > 0.2 is reduced. There remains a feature in the redshift
relation at z ! 0.4, an increase by a factor of 2 in the disper-
sion. This arises as a result of a degeneracy in the u0"g0 ver-
sus g0"r0 colors in red galaxies at a redshift of z # 0.4 (the
color-color tracks loop on top of each other). The degener-
acy is a result of the Balmer break shifting between the g0

and r0 filters, making it difficult to estimate the exact redshift
(Budavári et al. 2001b). This problem cannot be removed by
using better template spectra.

4.2. The Distribution of Galaxy Types:
TheMain Galaxy Sample

The entire sample of the SDSS galaxies (including the
LRGs) poses a more difficult question because of the spec-
tral composition of the data. Spectral variations cannot be
neglected, and, in fact, one would like to get a continuous
parameterization of the spectral manifold. To accomplish
this, we adopt a variant of the ASQ algorithm (Budavári et

al. 2001a). First we reconstruct a small number of discrete
SEDs, using the techniques described previously, and then
we use an interpolation scheme to provide a continuous
distribution of spectral types that evenly sample between
the discrete spectra.

The training set consists of all galaxies with spectroscopic
redshifts and the five-band SDSS photometry. The large
number of galaxies is very promising, but the spectral reso-
lution of the reconstructed templates also depends on the
redshift baseline of the input galaxy training set. This red-
shift range is significantly smaller than, for example, those
derived from the Hubble Deep Field (Hogg et al. 1998;
Budavári et al. 2000). Ideally, one would like to have a train-
ing set that uniformly samples the color space to ensure that
no extra weight is assigned to any particular type of galaxy.
The limited color range of the galaxies with spectroscopic
redshifts will, therefore, ultimately limit the accuracy of our
final redshift relations.

The iterative ASQ method was applied to the initial set of
four CWW spectra. The spectral templates are found to
converge rapidly, in a few iterations. After 10 iterations the
repaired templates yield the photometric redshifts shown in
the top panels of Figure 11. The left panel shows all galaxies
assigned to the reddest template, and the galaxies assigned

Fig. 9.—Four SDSS colors of #6000 red galaxies vs. the redshift. The color trace of the repaired spectral template (thick line) follows the data better than
the trace of the original CWWE0 template (thin line).

586 CSABAI ET AL. Vol. 125

magnitude priors in a Bayesian framework (Benı́tez 2000).
The redshift distribution of the main EDR sample is well fit-
ted by the relationship p(z) / z2 exp [!(z/zm)1.5] for i d 18,
and a continuous prior can be constructed by measuring zm
in five different magnitude bins and interpolating. Since the
EDR spectroscopic sample redshift distribution is ‘‘ conta-
minated ’’ by LRGs at faint magnitudes and turns bimodal,
we have assumed a flat redshift/magnitude prior for i e 18.
Using this magnitude prior we run Bayesian estimation with
two further refinements: (1) setting the minimal photometric
error in each band to 0.03, which mimics the intrinsic fluctu-
ations in the colors of galaxies described by a same template
and produces more realistic redshift likelihoods, and (2)
using linear interpolation between the main CWW types to
improve the color resolution. Using this setup, the disper-
sion for the CWW templates without using any prior
decreases from 0.06 to 0.05, with an offset of 0.0156; intro-
ducing the prior described above further decreases the dis-
persion to !z = 0.0415 (see Fig. 7) for the whole sample, but
an offset of 0.0144 still remains.

It is clear from these tests that, while the template-fitting
methods should be directly applicable to the SDSS EDR
data, there remain significant systematics in either the tem-
plates or the photometric calibrations (or both) that will
add artifacts into any photometric redshift relation. We
must therefore recalibrate the template spectra to minimize
these systematic effects.

4. HYBRID PHOTOMETRIC REDSHIFT TECHNIQUES

Recently, new hybrid techniques have been developed to
calibrate template SEDs (Csabai et al. 2000; Budavári et al.
1999; Budavári et al. 2000; Budavári et al. 2001a), using a
training set of photometric data with spectroscopic red-
shifts. These combine the advantages of the empirical meth-
ods and SED fitting by iteratively improving the agreement
between the photometric measurements and the spectral
templates. The basic approach is to divide a set of galaxies

into a small number of spectral classes (using the standard
template based photometric redshifts) and then adjust the
template SEDs to match the mean colors of the galaxies in
these spectral classes. By repeating this classification and
repair procedure, the template spectra converge toward the
observed colors. In this paper we will not review the details
of these techniques, but direct the reader to Csabai et al.
(2000) and Budavári et al. (1999; 2000, 2001a) for a full
description of the algorithms. As we shall show in the fol-
lowing sections, the application of these techniques yields
more reliable photometric redshifts for the SDSS EDR cata-
log than the standard template fitting.

4.1. A Single Template: The Luminous Red Galaxy Sample

In addition to providing a training set for redshift estima-
tion in the SDSS data, the LRG sample is extremely useful
in identifying systematic uncertainties in the SDSS photo-
metric system. The LRG galaxies have a strong continuum
feature, namely, the break at around 4000 Å. As a result of
the depth of this feature, photometric redshifts are easily
estimated for these galaxies. In addition, because of the high
luminosity of these galaxies, they can be observed spectro-
scopically over a larger redshift range than the main galaxy
sample. Systematics in the photometric data can therefore
be identified as this spectral feature passes through the filters
as a function of redshift. In fact, we can simply use a single
SED for the LRG sample to test how we must optimize the
template spectra to accurately represent the observed
colors.

For the 6698 LRG galaxies we start with an initial tem-
plate spectrum selected from the CWW elliptical spectrum
and apply the training techniques of Budavári et al. (2000).
In Figure 8 we show the original CWW elliptical spectrum,
together with our reconstructed template. From these spec-
tra we can see that, in order to represent the colors of the
LRGs, we need a template spectrum that is redder than the
standard CWW elliptical. To demonstrate how well these
respective spectral templates cover the photometric obser-
vations, in Figure 9 we have plotted the colors of the EDR
LRG galaxies together with the traces of the original and
repaired spectral templates. The color-redshift relation for
the repaired spectrum clearly traces the locus of the LRG
galaxy sample more accurately than the original CWW
SED. The most obvious improvement in the comparative
colors is found in the u0!g0 and i0!z0 colors.

Although the repair procedure does not optimize directly
for photometric redshifts, the improvement in the match
between the observed and predicted colors should lead to
an improved photometric redshift relation for the LRG

Fig. 7.—Photometric redshift estimation, using the Bayesian method.
The rms dispersion about this relations is 0.042 in redshift.

Fig. 8.—Repaired (thick line) spectral template is redder than the
original elliptical galaxy template (thin line).
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SEDs constructed using the code of 
Drory et al. (2004, ApJ, 608, 742) so 
to sample the color space of LRG as 
a function of z SEDs are a 
composition of model SED (Bruzual 
& Charlot 2003, MNRAS, 344, 
1000)  and burst spectrum: 
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Fig. 21.— Color versus color plots for SDSS data (blue) and their individual best-fitting

SEDfit-SEDs (red) for 0.08 ≤ z ≤ 0.12. Objects with u band errors lower than the median

are indicated in light blue, whereas those with greater errors are dark blue. The black

lines show the grid (upper panel) and the boundary (lower panel) within which the models

are selected. The dark green dots are the preselected models, whereas the light green points

represent the models that are left over after the removal of redundant SEDs. The yellow dots

are models that shall account for objects outside the selected boundaries. Yellow triangles

are models, selected from z ≈ 0.2, that account for the lower regions within the UV red

sequence in FUV − r versus FUV −NUV (see appendix C).
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z prior:

Luminosity prior:
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Fig. 11.— Density plot of spectroscopic z versus absolute R band magnitude. MR is obtained
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SEDs that match each object in a given z-MR bin best are shown in Figs. 12 to 13.
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2.3.3 Priors

For each model SED seven different priors can be defined: three for the luminosity and four for the
redshift. They determine the probabilities of the model-redshift combinations, PL and Pz. In figures
2.11 and 2.12 different prior combinations are shown to demonstrate their influence on the latter. M?

and ẑ define the most likely absolute magnitude and the most likely redshift for a model. s? and a act
on the width of the associated P-curve (the higher their values, the wider the peak). And finally, the
exponents p and b affect its steepness. The greater they are, the steeper the graph gets at z = ẑ±a or
M = M?±s? respectively. As seen in the last section, the redshift has an additional prior n. It has
been introduced to avoid a high population at zphot = 0. Large scale structure observation dictates an
increase with approximately n ⇡ 2. The influence of n = 2 compared to n = 0 is displayed in figure
2.11.

Figure 2.11: PhotoZ redshift
priors. Different values were as-
signed to ẑ, a, b and n to show
their influence on the redshift
probability function Pz.

Using these priors, one can make individual constraints on the various templates. We will make use
of them in particular, when we use different models for varying redshift slices in chapter 5. It remains
to be mentioned, that the luminosity priors can be turned off, if wanted.

2.3.4 The Output

After the fitting process is terminated, a number of different output files and parameters are created.
We will give a short description of those to give the reader an overview.

bestmodel.dat The most important output file. It contains the output values for the best-fitting
model spectrum: the photometric redshift and its corresponding error, the mean redshift of all

42 CHAPTER 2. PHOTOMETRIC REDSHIFT ESTIMATION

Figure 2.12: PhotoZ luminos-
ity priors. Different values
were assigned to M?, s? and p
to show their influence on the
luminosity probability function
PL.

models, the value of c2
r (the reduced c2), the factor with which the spectrum has been scaled,

the logarithmic quotient of the probabilities of the best and second-best models, and the fluxes
of the best model spectrum in the different filter bands.

bestmodel2.dat Contains the same values for the second-best fitting model as for the best.

specz fit.dat Contains the same values as bestmodel.dat for the model, best fitting to the
spectroscopic redshifts additionally to the absolute magnitudes calculated with the use of spec-
troscopic redshifts. This output is optional, of course.

mag.dat Actual apparent magnitudes and corresponding errors of the data used for the fitting.

flux.dat Actual fluxes and corresponding errors of the data used for the fitting.

beststar.dat This file includes the extinction values (AV ), the factors, with which the models
were multiplied to fit the data, c2

r and the fluxes of the best-fitting stellar spectrum.

absmag.dat Absolute magnitudes of the data, obtained with the use of the photometric redshifts.

prob.fits Contains the probability distributions for an (earlier specified) number of best fitting
models.

cprob.fits Contains the cumulative probability distribution of all templates.
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undefined photometric redshifts. σ∆z, σNMAD, and η are explained in Sec. 5.
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Figure 1. Components of the PCS, see Section 5.2 for a description.

determine the photometric redshifts of QSOs. We couple the
available SED to a strong prior in luminosity that dampens its
probability as soon as the predicted B-band absolute magnitude
is fainter than −24.

The code is in C++. A Fortran version is available as
implemented under Astro-WISE (Valentijn et al. 2006; Saglia
et al. 2012).

5.2. The Components of PCS

Figure 1 describes schematically the components and data
flow of PCS. Each component, or module, is a separate unit of
the package with a well-defined operational goal. Following the
usual convention, it is indicated by a box with bars (for interfaces
and/or processes, from A to F, plus PanZ and PanDiSC) or a
cylinder (for a database) in Figure 1. There are four databases:
two reside in Hawaii (PSPS, where the primary Pan-STARRS1
catalogs are stored and a subset of the output produced by PCS
is copied, and MYDB, where the whole of the PCS output goes).
The other two are in Garching: the Master, where configuration
files and templates are stored, and the local PS1 DATA, where
PCS input and output are stored. Light-blue boxes indicate
interfaces to the users and the yellow box to the upper left
indicates the IPP system. The arrows in the figure represent
links between the components. Their colors code the type of link
(red for input, blue for output/results, gray for configuration

data, cyan for a trigger). For clarity, the lines joining to the
C′, D′, and PanDiSC components are dotted. The paper-like
symbols indicate generated data files. The two yellow boxes,
“Photometric catalog” and “Photometric Classification Data,”
refer to the manual mode of operations (see below).

In the normal batch mode of activities, the
interfaces/processes A to F permanently run in the background
and react to changes in the PSPS database (A) or the Master
database in stand-alone mode. However, parallel manual ses-
sions can be activated where the user is free to use parts or all of
the pipeline, adding further photometric or spectroscopic data
sets to the local database, changing setups, testing new SEDs and
recipes, or defining and using new training sets. Below we first
describe the automatic mode of operations and then summarize
the manual options.

The starting point is the PSPS database in Hawaii, which
is filled with catalog data produced by IPP. The module A
periodically checks when new sets of data with all five band
fluxes measured are available in PSPS. It copies tables of input
data according to selectable input parameters to Garching. The
module B detects the output of process A, ingests these data in
the local database, and computes for each object the galactic
absorption corrections according to the Schlegel et al. (1998)
maps. They are applied to the photometry only when computing
photometric redshifts. The bare photometry is considered when
classifying the objects (in PanDiSC) or when testing the stellar

5
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Fig. 1 Flowchart of the basic functionality of PhotoZ. Top part: SEDs, the stellar library and
the filter curves are retrieved from the data server, the SEDs multiplied with the filter curves to
compute the relative fluxes in each band. The results are then again stored on the data servers.
Lower part: to create a PhotRedCatalog object, the system retrieves the necessary files, creates
an AssociateList of the input SourceLists (i.e. matches the lists in RA and DEC), computes
the photometric redshifts, using the information from the PhotRedConfig and finally links the
resulting PhotoZ SourceList with the AssociateList

probability distribution of selected objects. A schematic description of the
structure of the PhotoZ code is given in Fig. 1.

3.2 Examples and performances

PhotoZ runs under Astro-WISE as implemented at the Munich node on the
PanSTARRS cluster, a 175 nodes (each with 2.6GHz 4 CPUs and 6 GB mem-
ory, for a total of 700 CPUs) Beowulf machine with 180 TB disk space, attached
to a PB robotic storing device, mounted at the Max-Planck Rechenzentrum
in Garching. Two servers run the Oracle database. The Munich Astro-WISE
node is federated with the central node of Groningen.

As an example how the system works, we describe the derivation of the pho-
tometric redshifts of galaxies detected in the Medium Deep Field 4 (MDF04)
of PanSTARRS1 (see also Section 3.3 and [10]) in an Astro-WISE session. In
this context below we indicate with “awe>” the Python Astro-WISE prompt.
For a detailed description how to run the commands discussed below we refer
to the Astro-WISE manual.5

We first ingest the PanSTARRS1 filter curves:

awe> photredfilter = PhotRedFilter( pathname=‘PS_g.filter’)
awe> photredfilter.filter=(Filter.mag_id==‘PS_g g’)
awe> ...
awe> photredfilter.make()

5http://www.astro-wise.org/portal/aw_howtos.shtml

PanZ & PanDiSC for PS1

PhotoZ in AstroWise
for KIDS
(J. Snigula)

Database-supported
automatic production

of photometric redshifts
(R. Senger)
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Figure 6. Comparison between spectroscopic and photometric redshifts for the
SDSS galaxy sample not classified as LRGs. The magenta points show the
five of the six objects for which the QSO SEDs would give the best fit (but a
catastrophically poor photometric redshift; two of these cases are visible in red).

QSOs (i.e., are best fit by the QSO SED) in 22% and as galaxies
in 50% of the cases. As expected, the photometric redshifts
are very poor (Figure 8, right). The QSO SED in the sample
is selected as giving the best fit in 22% of the cases, giving
the right redshift in 20% of the cases. For an additional 28%
where catastrophically wrong redshifts are derived, the QSO
SED gives the second best fit and a reasonable redshift. Still,
if we allow only the QSO SED to be used, we get a good
redshift (≈5% in σz) for only 61% of the objects. We are
in the process of adding some more QSO SEDs to model
better the redshift dependence of QSO evolution. First tests
show that only modest improvements can be achieved since
we are hitting the intrinsic limitations of the Pan-STARRS1
filter photometry, combined with the well-known difficulties of

Table 7
PanZ as a Star/QSO/Galaxy Photometric Classifier: The Confusion

Matrix in Fractions Normalized to 1 with True Classes in Rows

True Classes Star Galaxy Quasar

Star 0.730 0.241 0.029
Galaxy 0.017 0.981 0.002
QSO 0.285 0.497 0.218

Table 8
PanZ as a Star/QSO/Galaxy Photometric Classifier Using the

SDSS Petrosian ugriz Photometry: The Confusion Matrix in Fractions
Normalized to 1 with True Classes in Rows

True Classes Star Galaxy Quasar

Star 0.797 0.166 0.036
Galaxy 0.131 0.849 0.020
QSO 0.037 0.522 0.441

deriving photometric redshifts for the power-law-like, feature-
weak shape of QSO SEDs (Budavari et al. 2001; Salvato et al.
2011). The addition of the u band certainly improves the results
a lot. When we derive photometric redshifts using the SDSS
ugriz Petrosian magnitudes, we get a best fit with the QSO SED
in 51% of the cases (with a photometric redshift good to 5%
in 43% of the cases), and for an additional 19% the QSO SED
gives the second best solution with the correct redshift. If we
allow only the QSO SED to be used, we get a good redshift
(≈5% in σz) for 70% of the objects.

Table 7 shows the confusion matrix for PanZ as a
star/QSO/galaxy photometric classifier. PanZ performs as well
as PanDiSC when classifying galaxies, but is poorer when it
comes to stars and QSOs, probably due to a lack of appropriate
SED templates. As a consequence, the false positive contami-
nation is higher for stars (53%) and galaxies (8%) classes, but
lower (4%) for QSOs, compared to PanDiSC. Finally, it is in-
teresting to note that PanZ biases the classification in a different
way than PanDiSC: there are 29 stars and 3 QSOs recognized
as such by PanZ but not by PanDiSC.

Finally, Table 8 shows the confusion matrix for PanZ as a
star/QSO/galaxy photometric classifier when the SDSS Pet-
rosian ugriz photometry is used. The percentage of correctly

Figure 7. Efficiency of the PanZ star recognition. Left: for 73% of spectroscopically confirmed SDSS stars PanZ finds a stellar SED as the best fit to the Pan-STARRS1
photometry (i.e., χ2

star < χ2
galaxy, note that for plotting convenience χ2 ratios are shown). Of the remaining 123 stars, 13 are best fit by the QSO SED. Right: PanZ finds

χ2
galaxy < χ2

star for 98% of spectroscopically confirmed SDSS galaxies. For eight of these the QSO SED fits best. For one galaxy, the best extragalactic fit is obtained

by the QSO SED and is poorer than the one obtained using stellar templates (i.e., χ2
galaxy > χ2

star).
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Figure 4. Comparison between spectroscopic and photometric redshifts for the SDSS sample of LRGs. The difference (zphot − zspec)/(1 + zspec) is shown as a function
of zspec. The magenta points show the three objects for which the QSO SEDs would give the best fit (but a catastrophically poor photometric redshift).

Figure 5. Comparison between spectroscopic and photometric redshifts for the SDSS sample of LRGs. Left: the histogram of zphot − zspec/(1 + zspec). Right: zspec vs.
zphot. The magenta points show the three objects for which the QSO SEDs would give the best fit (but a catastrophically poor photometric redshift).

biased in a systematic way and more than 1% catastrophic
outliers are present. Nevertheless, the robust estimate of the
scatter remains below 5%.

If we now use for the same galaxies the Petrosian ugriz SDSS
photometry, we find the following. The photometric redshifts for
LRGs are similarly good (2.6%), but with a higher percentage of
outliers. In contrast, the precision (3.7%) and percentage of out-
liers (1%) are better for blue galaxies, where the presence of the
u band helps.

As described in Section 5.1, PanZ also computes the goodness
of fits for a number of stellar templates. Therefore, the difference
χ2

star − χ2
galaxy between the χ2 of the best-fitting stellar SED

χ2
star and the best-fitting galaxy SED χ2

galaxy provides a crude

galaxy/star classification: if χ2
star − χ2

galaxy < 0, the stellar
template is providing a better fit than the galaxy ones and
we classify the object as a star. In Figure 7, left (where
just for plotting convenience we give χ2

star/χ
2
galaxy), we show

that requiring χ2
star − χ2

galaxy < 0 (i.e., χ2
star/χ

2
galaxy < 1

in the plot) allows us to correctly classify spectroscopically
confirmed SDSS stars in 73% of the cases. The percentage
of successful classifications grows to 89% if only late-type
SDSS stars are considered. The percentage of success is 98%
if spectroscopically confirmed SDSS galaxies are considered
(Figure 7, right).

Finally, we consider the class of QSOs. Figure 8, left, shows
that spectroscopically confirmed SDSS QSOs are classified as
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Figure 8. PanZ performances for QSO. Left: for 29% of spectroscopically confirmed SDSS QSOs PanZ finds a stellar SED as the best to the Pan-STARRS1 photometry
(i.e., χ2

galaxy > χ2
star, note that for plotting convenience χ2 ratios are shown). Right: PanZ redshifts for QSOs. The red dots show the cases where the QSO SED gives

the best fit. The yellow dots show the second best fit, given by the QSO SED, in cases of catastrophic failures (purple points), where a good redshift is obtained.

classified QSOs doubles (but is still not competitive with the
results of PanDiSC) to reach 44%, the star classification is
slightly improved to 80%, and the success in the galaxy classi-
fication is slightly worse (85%). Therefore, the presence of the
u band helps in the classification of (blue) stars and quasars, but
does not compensate for the absence of the y-band data and of
good z-band data for galaxies.

As discussed in Section 6.1, the final assessment of the relative
performances of PanDiSC and PanZ as morphological classifiers
will be made when larger Pan-STARRS1 catalogs will allow the
derivation of optimal probability thresholds.

7. CONCLUSIONS

We presented the PCS of Pan-STARRS1, a database-
supported, fully automatized package to classify Pan-STARRS1
objects into stars, galaxies, and quasars based on their Pan-
STARRS1 colors and compute the photometric redshifts of ex-
tragalactic objects. Using the high signal-to-noise photometric
catalogs derived for the Pan-STARRS1 Medium-Deep Fields,
we provide preliminary star/QSO/galaxy classifications and
demonstrate that excellent photometric redshifts can be derived
for the sample of LRGs. Further tuning of our probabilistic
classifier with the large Pan-STARRS1 catalogs available in the
future will optimize its already nice performances in terms of
completeness and purity. Applied to the photometry that the 3π
survey is going to deliver, possibly combined with u-band or
near-infrared photometry coming from other surveys, this will
allow us to build up an unprecedented large sample of LRGs
with accurate distances. In a future development of PCS, we
will include size and/or morphological information to improve
further the object classification, implement the PanSTeP (Pan-
STARRS1 Stellar Parametrizer) software to constrain stellar
parameters, and enlarge the SED sample to follow LRGs to
higher redshifts and possibly improve results for blue galaxies
and QSOs. Alternative photometric redshift codes could also be
considered. Moreover, the independent classification informa-
tion coming from PanZ and PanDiSC will be merged and used
to iterate on the photometric redshifts by narrowing down the
choice of SEDs or deciding which photometry (PSF photom-
etry for point objects versus extended sources photometry for
galaxies) is more appropriate for each object.

Facility: PS1 (GPC1)
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Garilli, B., Le Févre, O., Guzzo, L., et al. 2008, A&A, 486, 683
Heasley, J. N. 2008, in AIP Conf. Proc. 1082, Classification and Discovery in

Large Astronomical Surveys, ed. C. A. L. Bailer-Jones (Melville, NY: AIP),
352

11

Excellent LRGs

Reasonable 
blue galaxies

Bad QSOs...
(see Salvato et al.
2011, ApJ 742, 61)

Saglia et al. 2012, 
ApJ,746, 128



Conclusions
• Photometric redshifts  from broad-medium band photometry deliver 

precisions better than 2% (for LRGs) with low fractions of catastrophic 
failures

• Currently running (PanSTARRS1, KIDS) or soon starting (DES) photometric 
surveys will deliver catalogues with hundred thousands of galaxies

• Several science cases can be served: search for galaxy clusters, confirmation 
of eRosita extended sources, BAOs, weak lensing tomography, etc.

• EUCLID science case relies on exquisitely accurate photometric redshifts 
(OU-PHZ)

• Even if empirical methods (i.e. ANNz) are probably superior if extensive 
spectroscopic training sets are available, template fitting bayesian methods 
are  required to study galaxy properties and their evolution. A combination 
of both methods will provide the best solution.
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