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Motivation

Bayesian approaches are becoming more and more important in
statistics.

Bayesian approaches are also becoming more and more important in
(mathematical) philosophy.

The goal of this talk is to motivate the philosophers’ interest in
Bayesianism and to discuss one specific example in more detail.

The example studies how we should change our beliefs in the light of
evidence of the form “If A, B”.
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I. Bayesianism in Philosophy
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Confirmation Theory

What does it mean that a piece of evidence E confirms (or supports)
a theory or hypothesis H?

To address this question, philosophers developed deductivist and
inductivist accounts.

Deductivist accounts: the hypothetico-dedcutive model, Popper’s
falsificationsim
Inductivist accounts: Bayesianism

The problems of deductivist accounts lad to the present popularity of
Bayesianism.
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Deductivist Accounts I: The Hypothetico-Deductive Model

According to the hypothetico-deductive model, a theory or hypothesis
H is confirmed by a piece of evidence E iff E is predicted by H (i.e. if
E is a deductive consequence of H) and if E is observed.

The model has a number of well-known problems, e.g.
1 The Tacking Problem: If E confirms H, then it also confirms H∧X.

Note that X can be a completely irrelevant proposition. This is
counter-intuitive.

2 Degrees of confirmation: Some evidence confirms a theory or
hypothesis stronger than other evidence. However, according to the
hypothetico-deductive model, we can only make the qualitative
inference that E confirms H (or not).

3 Kinds of Evidence: Theories can only be confirmed in the light of
observed deductive consequences of the theory in question. However,
there may be other kinds of evidence.
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Deductivist Accounts II: Popper’s Falsificationism

According to naive falsificationism, a theory or hypothesis H is
corroborated if an empirically testable prediction of H obtains.
Otherwise it is falsified and should be rejected and replaced by an
alternative theory.

Corroboration is only concerned with the past performance of the
hypothesis in question. It does not tell us anything about the future.
(This is a consequence of Popper’s strong anti-inductivism.)

The three problems of the HD model are also a problems for
falsificationism.

N.B.: More sophisticated versions of falsificationism have the same
problems as naive falsificationism, and so I won’t discuss them here.
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Inductivist Accounts: Bayesian Confirmation Theory

According to Bayesian Confirmation Theory, a theory or hypothesis H
is confirmed by a piece of evidence E iff the observation of E raises
the (subjective) probability of H.

Scientists attach a degree of belief (= a probability) to a theory or
hypothesis and change (“update”) it in the light of new evidence.

What evidence? A deductive or inductive consequence of the
hypothesis, a testimony from a partially reliable source,. . .

How should one update? Conditionalization: The posterior probability
of H (i.e. P ′(H)) follows from the prior probability of H (i.e. P(H)),
the likelihood of the evidence (i.e. P(E|H)) and the expectancy of
the evidence i .e.P(E):

Bayes’ Theorem

P ′(H) := P(H|E) =
P(E|H) · P(H)

P(E)
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Jeffrey Conditionalization

If the evidence is uncertain, then Jeffrey Conditionalization has to be used:

Jeffrey Conditionalization

P ′(H) := P(H|E) P ′(E) + P(H|¬E) P ′(¬E)

Note that this rule follows from the law of total probability

P ′(H) := P ′(H|E) P ′(E) + P ′(H|¬E) P ′(¬E)

under the assumption (“Rigidity”) that P ′(H|Ei) = P ′(H|Ei) for all
elements of the partition of E.

Bayes’ Thorem is a special case of Jeffrey Conditionalization (when
the evidence is certain, i.e. when P ′(E) = 1).
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Justifications Bayes’ Theorem

1 Pragmatic: Dutch Book arguments

2 Epistemic: Minimization of the inaccuracy of beliefs

3 “Distance” minimization: Kullback-Leibler divergence, Hellinger,. . .
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The Kullback-Leibler Divergence

Let S1, . . . ,Sn be the possible values of a random variable S over
which probability distributions P and P ′ are defined.

The Kullback-Leibler divergence between P ′ and P is then given by

DKL(P ′||P) :=
n∑

i=1

P ′(Si) log
P ′(Si)

P(Si)
.

Note that the KL divergence is not symmetrical. So it is not a
distance.

Note also that if the old distribution P is the uniform distribution,
then minimizing the Kullback-Leibler divergence amounts to
maximizing the entropy Ent(P) := −

∑n
i=1 P(Si) log P(Si).
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Conditionalization

We introduce the binary propositional variables H and E :
H: “The hypothesis holds”, and ¬H: “The hypothesis does not hold”.
E: “The evidence obtains”, and ¬E: “The evidence does not obtain”.

The probabilistic relation between H and E can be represented in a
Bayesian Network:

H E

We set P(H) = h and P(E|H) = p,P(E|¬H) = q.
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Conditionalization

Calculate the prior distribution over H and E . (x := 1− x)

P(H,E) = h p , P(H,¬E) = h p

P(¬H,E) = h q , P(¬H,¬E) = h q .

Next, we learn that E obtains, i.e. P ′(E) = 1.

We assume that the network stays the same as before. Hence

P ′(H,E) = h′ p′ , P ′(H,¬E) = h′ p′

P ′(¬H,E) = h′ q′ , P ′(¬H,¬E) = h′ q′ .

From P ′(E) = h′ p′ + h′ q′ = 1, we conclude that p′ = q′ = 1.

Minimize the KL divergence: P ′(H) = P(H|E)

Note that Jeffrey conditionalization obtains if one learns E with
P ′(E) =: e ′ < 1.
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Other Distances

The Hellinger distance between P ′ and P is then given by

DH(P ′||P) :=
n∑

i=1

(√
P ′(Si)−

√
P(Si)

)2
.

yields the same results (i.e. Bayes’ Theorem and Jeffrey
Condtionalization).
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Different Kinds of Evidence

Sometimes the evidence is not a deductive or inductive consequence
of the hypothesis in question.

Example 1: The No Alternatives Argument

Example 2: Analog Simulation

These cases can be modeled and analyzed in the Bayesian framework.
Hence, there is no need to aim for a new methodology of science, as
George Ellis and Joe Silk suggested in a recent article in Nature.

Y

FH
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II. Learning Conditionals: Four Challenges and a Recipe
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Yet Another Type of Evidence: Conditionals

Sometimes we learn indicative conditionals of the form “if A, B”.

Here we ask: How should we change our beliefs in the light of this
evidence?

I will discuss several examples below that show that learning a
conditional sometimes makes us change our beliefs, and sometimes
not. But how should a rational agent change her beliefs in the light of
this evidence?

There are several proposals discussed in the literature, but in a recent
survey, Igor Douven (2012) concludes that a proper general account
of probabilistic belief updating by learning (probabilistic) conditional
information is still to be formulated.

My goal is to provide such an account (at least for causal
conditionals).
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Conditionalization and the Material Conditional

How should we change our beliefs in the light of this evidence?

If we want to use Bayesian conditionalization, then we have to
formally represent the conditional.

Perhaps naturally, we use the material conditional and identify
A→ B with ¬A ∨ B. Popper and Miller (1983) have shown that then

P∗(A) := P(A|A→ B) < P(A)

if P(A) < 1 and P(B|A) < 1.

This leads to counterintuitive consequences as, e.g., the sundowners
example below demonstrates.

However, if we do not use the material conditional, then we cannot
express the conditional in Boolean terms, and hence we cannot apply
conditionalization.

Question: What can be done?
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Stalnaker’s Thesis

Stalnaker proposed to identify the probability of a conditional with the
conditional probability:

Stalnaker’s Thesis

P(A→ B) = P(B|A)

This thesis, which Stalnaker found trivial, has been criticized, most
famously perhaps by Lewis who came up with various triviality results.

Note, however, that Stalnaker’s thesis (even if it were true) cannot be
applied directly to learning a conditional via Bayes’ Theorem. It
simply does not tell us how to do this.
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My General Recipe

One way to proceed is to use the conditional probability assignment
as a constraint on the new probability distribution P ′. Apart from
satisfying the constraint, P ′ has to be as close as possible to the old
distribution P, i.e. we want to change our beliefs conservatively.

Technically, this is done by minimizing the Kullback-Leibler
divergence between the posterior and the prior distribution.

While this might sound like a reasonable (and practicable) proposal,
van Fraassen and others have confronted it with counterexamples,
most famously the Judy Benjamin example.

In this talk I want to show that the proposed procedure works if one
additionally makes sure that the causal structure of the problem at
hand is properly taken into account.
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Challenge 1: The Ski Trip Example

Harry sees his friend Sue buying a skiing outfit. This surprises him a bit,
because he did not know of any plans of hers to go on a skiing trip. He
knows that she recently had an important exam and thinks it unlikely that
she passed. Then he meets Tom, his best friend and also a friend of Sue,
who is just on his way to Sue to hear whether she passed the exam, and
who tells him,

If Sue passed the exam, then her father will take her on a skiing vacation.

Recalling his earlier observation, Harry now comes to find it more likely
that Sue passed the exam.

Ref.: Douven and Dietz (2011)
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Challenge 2: The Driving Test Example

Betty knows that Kevin, the son of her neighbors, was to take his driving
test yesterday. She has no idea whether or not Kevin is a good driver; she
deems it about as likely as not that Kevin passed the test. Betty notices
that her neighbors have started to spade their garden. Then her mother,
who is friends with Kevin’s parents, calls her and tells her the following:

If Kevin passed the driving test, then his parents will throw a garden party.

Betty figures that, given the spading that has just begun, it is doubtful
(even if not wholly excluded) that a party can be held in the garden of
Kevin’s parents in the near future. As a result, Betty lowers her degree of
belief for Kevin having passed the driving test.

Ref.: Douven (2011)
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Challenge 3: The Sundowners Example

Sarah and her sister Marian have arranged to go for sundowners at the
Westcliff hotel tomorrow. Sarah feels there is some chance that it will rain,
but thinks they can always enjoy the view from inside. To make sure,
Marian consults the staff at the Westcliff hotel and finds out that the
inside area will be occupied by a wedding party. So she tells Sarah:

If it rains tomorrow, then we cannot have sundowners at the Westcliff.

Upon learning this conditional, Sarah sets her probability for sundowners
and rain to 0, but she does not adapt her probability for rain.

Ref.: Douven and Romeijn (2011)
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Challenge 4: Judy Benjamin Problem

A soldier is dropped with her platoon in a territory that is divided in two
parts, the Red Territory (R) and the Blue Territory (¬R) where each
territory is also divided in two parts, Second Company (S) and
Headquarters Company (¬S), forming four sections of almost equal size.
The platoon is dropped somewhere in the middle so she finds it equally
likely to be in one section as in any of the others, i.e.
P(R, S) = P(R,¬S) = P(¬R, S) = P(¬R,¬S) = 1/4. Then they receive a
radio message:

I can not be sure where you are. If you are in Red Territory the odds are
3:1 that you are in the Secondary Company.

How should Judy Benjamin update her belief function based on this
communication?

Ref.: van Fraassen (1981)
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Judy Benjamin Problem

We introduce two binary propositional variables. The variable R has
the values R: “Judy lands in Red Territory”, and ¬R: “Judy lands in
Blue Territory”. The variable S has the values S: “Judy lands in
Second Company”, and ¬S: “Judy lands in Headquarters”.

The probabilistic relation between the variables:

R S

Learning: P ′(S|R) = k 6= 1/2

Assume that the network does not change. Then minimizing the
Kullback-Leibler divergence yields P ′(R) < P(R), which is not
intuitive.
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III. The Challenges Met
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The Ski Trip Example

We define three variables:

E: Sue has passed the exam.

S: Sue is invited to a ski vacation.

B: Sue buys a ski outfit.

The causal structure is given as follows:

E S B

Additionally, we set P(E) = e and

P(S|E) = p1 , P(S|¬E) = q1

P(B|S) = p2 , P(B|¬S) = q2.

Note that the story suggests that p1 > q1 and p2 > q2.
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The Ski Trip Example

Learning: P ′(B) = 1 and P ′(S|E) = 1.

Again, the causal structure does not change.

Theorem: Consider the Bayesian Network above with the prior
probability distribution. Let

k0 :=
p1 p2

q1 p2 + q1 q2
.

We furthermore assume that (i) the posterior probability distribution
P ′ is defined over the same Bayesian Network, (ii) the learned
information is modeled as constraints on P ′, and (iii) P ′ minimizes
the Kullback-Leibler divergence to P. Then P ′(E) > P(E), iff k0 > 1.

The same result obtains for the material conditional.
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The Ski Trip Example: Assessing k0

1 Harry thought that it is unlikely that Sue passed the exam, hence e is
small.

2 Harry is surprised that Sue bought a skiing outfit, hence

P(B) = e (p1 p2 + p1 q2) + e (q1 p2 + q1 q2)

is small.

3 As e is small, we conclude that q1 p2 + q1 q2 := ε is small.

4 p2 is fairly large (≈ 1), because Harry did not know of Sue’s plans to
go skiing, perhaps he even did not know that she is a skier. And so it
is very likely that she has to buy a skiing outfit to go on the skiing
trip.

5 At the same time, q2 will be very small as there is no reason for Harry
to expect Sue to buy such an outfit in this case.

6 p1 may not be very large, but the previous considerations suggest that
p1 � ε.
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The Ski Trip Example: Assessing k0

We conclude that

k0 : =
p1 p2

q1 p2 + q1 q2

=
p1

ε
· p2

will typically be greater than 1. Hence, P ′(E) > P(E).
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Using the Material Conditional

E S B

It turns out that the Theorem also obtains if one keeps the causal
structure fixed and uses the material conditional (E → S ≡ ¬E ∨ S),
i.e. if one calculates P∗(E) = P(E|¬E ∨ S,B).
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No Causal Structure

What if no causal structure is imposed?

We computed this case, i.e. we considered only the three variables
B,E and S and modeled the learning of P ′(B) = 1 and P ′(S|E) = 1
in the usual way.

Minimizing the KL divergence then leads to P ′(E) < P(E), i.e. to the
wrong result.

N.B. The driving test example has the same causal structure as the ski trip
example and the calculation proceeds accordingly. We do not consider it
here.
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The Sundowners Example

We define three propositional variables.

R: It is going to rain.

W: The inside area is occupied by a wedding party.

S: Sara and Marian enjoy the sundowners.

The causal structure can be represented as follows:

R

S

W
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The Sundowners Example

Next, we define a probability distribution over this network and let

P(R) = r , P(P) = p

P(S|R,W) = e1 , P(S|R,¬W) = e2

P(S|¬R,W) = e3 , P(S|¬R,¬W) = e4

We assume that e1 = 0.

With this, we calculate the prior distribution P over the variables
R, S , and W .
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The Sundowners Example

Next we learn R → ¬S.

If we use the material conditional and update ob ¬R ∨ S, then we
obtain

P∗(R) = P(R|¬R ∨ ¬S) =
P(R ∧ (¬R ∨ ¬S))

P(¬R ∨ ¬S)

=
P(R ∧ ¬S)

P(¬R ∨ ¬S)

=
P(R)− P(R, S)

1− P(R,S)
.

This is counter-intuitive as the probability of R should not change
also if P(R, S) > 0.
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The Sundowners Example

Next we learn R → ¬S, i.e. P ′(¬S|R) = 1 or P ′(S|R) = 0 = P′(R,S).

This is a constraint on the posterior distribution P ′.

Then the following theorem holds.

Theorem: Consider the Bayesian Network depicted above with the
prior probability distribution P. We furthermore assume that (i) the
posterior probability distribution P ′ is defined over the same Bayesian
Network, (ii) the learned conditional is modeled as a constraint on P ′,
and (iii) P ′ minimizes the Kullback-Leibler divergence to P. Then
P ′(R) = P(R).

Note that using the material conditional yields P∗(R) < P(R).
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The Judy Benjamin Example

We define:

R: The platoon is dropped in the Red Territory.

S: The platoon is dropped in the Secondary Company.

X: Wind comes from a certain direction (or any other cause that
comes to mind).

X

SR
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The Judy Benjamin Example

Learning: P ′(S|R) = k 6= 1/2

Then the following theorem holds:

Theorem: Consider the Bayesian Network above with a suitable prior
probability distribution P. We furthermore assume that (i) P ′ is defined
over the same Bayesian Network, (ii) the learned information is modeled as
a constraint on P ′, and (iii) P ′ minimizes the Kullback-Leibler divergence
to P. Then P ′(R) = P(R).
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No Causal Structure

Perhaps it is enough to only take the existence of a third variable X
into account, without imposing a causal structure. Let us compute
this case!

We find that imposing P ′(S|R) = k 6= 1/2 as a constraint on the
posterior distribution and minimizing the KL divergence leads to
P ′(R) < P(R), i.e. to the wrong result.
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Problem

Intuitively, one would expect that the following posterior distribution:

P ′(R, S) = k/2 , P ′(¬R,S) = 1/4

P ′(R,¬S) = k/2 , P ′(¬R,¬S) = 1/4

However, one obtains

P ′(R, S) = k/2 , P ′(¬R,S) = k/2

P ′(R,¬S) = k/2 , P ′(¬R,¬S) = k/2.

Note that the learned conditional is not along the causal chain. So
our proposal only applies to causal conditionals and another recipe
has to be found for non-causal conditionals.

X

SR
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IV. Disabling Conditions
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The Ski Trip Example Revisited

A disabling condition D could obtain.

Then the modified network looks as follows.

E

S

D

B
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The Ski Trip Example Revisited

Learning: P ′(S|E,¬D) = 1 and, as before, P ′(B) = 1.

Then the following theorem holds:

Theorem: Consider the Bayesian Network in Figure 7 with a prior
probability distribution. Let

kd :=
p1 p2

q1 p2 + (q1 − d) q2
.

We furthermore assume that (i) the posterior probability distribution P ′ is
defined over the same Bayesian Network, (ii) the learned information is
modeled as constraints on P ′, and (iii) P ′ minimizes the Kullback-Leibler
divergence to P. Then P ′(E) > P(E), iff kd > 1. Moreover, if kd > 1 and
p2 > q2, then P ′(D) < P(D).
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V. Conclusions
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Summary

1 We have proposed a unified account for the learning of indicative
causal conditionals in a Bayesian framework.

2 Intuitively correct results obtain if we

(i) represent the causal relations between all relevant variables in a
Bayesian Network,

(ii) consider the learned conditional as a conditional probability constraint
on the posterior distribution, and

(iii) determine the posterior distribution by minimizing the KL divergence
between the posterior and the prior distribution.
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Summary

3 The proposed account goes beyond standard Bayesianism where
learning is modeled as conditionalization (or Jeffrey
conditionalization). This turned out to be necessary as the standard
account fails in the considered cases.

4 Moreover, conditionalization follows from our proposed procedure if a
piece of evidence E is learned (P ′(E) = 1 or < 1 for Jeffrey
conditionalization).
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Why Accepting the Proposed Account

Worry: Our account misses a top-down (axiomatic, Dutch book etc.)
justification. However:

1 It is non-trivial that our account provides the right answers in all
considered cases.

2 In some cases it also forced us to reconsider our intuitions.

3 There is no other account that achieves this.

4 Not fixing the correct causal structure leads to wrong results.

Upshot: Taken together, these points provide a strong justification for the
proposed account.
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Open Questions

1 Using other “distances” (e.g. the Helling distance). Which distance is
right will to some extent be an empirical question.

2 Formulating an account that also works for non-causal conditionals
(as in the Judy Benjamin example).

3 Formulating an account that also works for nested conditionals such
as A → (B → C)

4 . . .
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Thanks for your attention!

The talk is based on joint work with
Soroush Rafiee Rad (ILLC Amsterdam).
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