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I. Introduction to Multiplicity Control
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The need for multiplicity control:
In a recent talk about the drug discovery process, the following numbers

were given in illustration.

• 10,000 relevant compounds were screened for biological activity.

• 500 passed the initial screen and were studied in vitro.

• 25 passed this screening and were studied in Phase I animal trials.

• 1 passed this screening and was studied in a Phase II human trial.

This could be nothing but noise, if screening was done based on ‘significance

at the 0.05 level.’

If no compound had any effect,

• about 10, 000× 0.05 = 500 would initially be significant at the 0.05 level;

• about 500× 0.05 = 25 of those would next be significant at the 0.05 level;

• about 25× 0.05 = 1.25 of those would next be significant at the 0.05 level

• the 1 that went to Phase II would fail with probability 0.95.
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The Two Main Approaches to Multiplicity Control

• Frequentist approach: A collection of techniques for penalizing or

assessing the impact of multiplicity, so as to preserve an overall

frequentist accuracy assessment.

– Perhaps the most basic (and general) frequentist approach is to

repeatedly simulate the multiple testing scenario, under the

assumption of ‘no signal’ (e.g., only simulate from the background)

and estimate the probability of a false discovery.

∗ The problem is that this can be computationally infeasible in

modern problems (e.g., detection of gravitational waves?)

– Another common approach is to ignore the issue, assuming strict

standards (e.g. 5-sigma) will cover up such sins.

• Bayesian approach: If a multiplicity adjustment is necessary, it is

accommodated through prior probabilities associated with the

multiplicities. Typically, the more possible hypotheses there are, the

lower prior probabilities they each receive.
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An example of the danger of assuming that

‘Strict Standards’ will cover up multiplicity sins:
Genome-wide Association Studies (GWAS)

• A typical GWAS study looks at, say, 20 (related) diseases and 100,000

genes (or SNPs), and attempts to determine which genes are associated

with which diseases. (Note: 2,000,000 tests are being done here.)

• GWAS studies from 1997-2007 (about 50,000 published papers) almost

universally failed to replicate (estimates of the replication rate are as low

as 1%), because they were doing multiple testing at ‘strict p-values’ on

the order of 10−3 or 10−4.

• A very influential paper in Nature (2007), by the Wellcome Trust Case

Control Consortium, argued for a cutoff of p < 5× 10−7.

• Later studies in GWAS recommended cutoffs as low as 5× 10−8, and

this will be driven lower as the ability to perform more tests increases.

• Note that 5-sigma is a p-value of 3× 10−6.
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Bayes argument for the 2007 GWAS cutoff:

• Let π0 and π1 = 1− π0 be the prior probabilities at a given location on

the genome of not having or having an association, respectively.

• Let α and (1− β(θ)) be the Type I error and power for testing the null

hypothesis of no association with a given rejection region R.

• The pre-experimental probability of a false positive is then π0α.

• The pre-experimental probability of a true positive is then π1(1− β̄),

where (1− β̄) =
∫

(1− β(θ))π(θ)dθ is average power wrt the prior π(θ).

• Pre-experimental ‘odds of true positive to false positive’ = π1

π0
× (1−β̄)

α .

• For the GWAS study,

– they choose π1

π0
= 1

100,000 ; (1− β̄) = 0.5; and stated that odds of 10 : 1

in favor of a true positive to a false positive were desired.

– Solving the above equation yielded a cutoff of α = 5× 10−7.

– The key, was the Bayesian prior probability assessment (to control for

multiple testing) of odds π1

π0
= 1

100,000 .
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Bayesian Ockham’s Razor is Not Multiplicity Control

• Ockham’s razor is attributed to thirteen-century Franciscan monk

William of Ockham (Occam in latin)

“Pluralitas non est ponenda sine necessitate.”

(Plurality must never be posited without necessity.)

“Frustra fit per plura quod potest fieri per pauciora.”

(It is vain to do with more what can be done with fewer.)

• Preferring the simpler of two hypothesis to the more complex when both

agree with data is an old principle in science.

• Regard H0 as simpler than H1 if it makes sharper predictions about

what data will be observed.

• Models are more complex if they have extra adjustable parameters that

allow them to be tweaked to accommodate a wider variety of data.

– “coin is fair” is a simpler model than “coin has unknown bias θ”

– s = a+ ut+ 1
2 gt

2 is simpler than s = a+ ut+ 1
2 gt

2 + ct3
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Example: Perihelion of Mercury (with Bill Jefferys)

In the 19th century it was known that there was an unexplained residual

motion of Mercury’s perihelion (the point in its orbit where the planet was

closest to the Sun) in the amount of approximately 43 seconds of arc per

century.

Various hypotheses:

• A planet ‘Vulcan’ close to the sun.

• A ring of matter around the sun.

• Oblateness of the sun.

• Law of gravity is not inverse square but inverse (2 + ǫ).

All these hypotheses had a parameter that could be adjusted to deal with

whatever data on the motion of Mercury existed.

Data in 1920: X = 41.6 where X ∼ N(θ | 22), θ being the perihelion

advance of Mercury.
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Prior (before data) for gravity model MG: πG(θ) = N(θ | 0, 502).

• Symmetric about 0 (corresponding to inverse square law).

• Decreasing away from zero; normality is convenient.

• Initially, τ = 50, because a gravity effect which would yield θ > 100

would have had other observed effects.

• We will also consider utilization of classes of priors:

– The class of all N(θ | 0, τ2) priors, τ > 0.

– The class of all symmetric priors that are nonincreasing in |θ|.

General Relativity (1915) model ME: Predicted θE = 42.9, so no prior

is needed. (Thus this is a ‘simpler’ model.)
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Bayes factor (“evidence” ratio in much of the physics literature):

BEG =
fE(41.6)

∫

fG(x | θ)πG(θ) dθ

=

1√
8π

exp
(

− 1
8 (41.6− θE)

2
)

∫

1√
8π

exp
(

− 1
8 (41.6− θ)2

)

1
50

√
2π

exp
(

− 1
2·502 θ2

)

dθ

=

1√
8π

exp
(

− 1
8 (41.6− 42.9)2

)

1√
2·2504π exp

(

− 1
2·2504(41.6− 0)2

) = 28.6

To alleviate worry about the choice of a particular prior, note that the lower

bound on the Bayes factor

• over all N(θ | 0, τ2) priors is 27.76;
• over all symmetric nonincreasing (in |θ|) priors is 15.04.

Posterior probability of ME under the N(θ | 0, 502) prior and assuming

prior probabilities P (ME) = P (MG) = 1/2, is

P (ME | x = 41.6) =
1

1 + (28.6)−1
= 0.97 .
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This is thus an example of the Bayesian Ockham’s razor:

• Bayesian analysis automatically favors the simpler model if it explains

the data almost as well as the complex model.

• The ‘penalty’ for the more complex model arises through the prior

distribution assigned to its ‘extra’ parameters.

While this is a penalty favoring simpler models, it is not multiplicity control

when dealing with multiple testing (or other multiplicities). That only

happens through choice of the prior probabilities of models or hypotheses.
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Einstein multiplicity correction: Apparently, Einstein had several

theories of general relativity, and used the Mercury perihilion data to reject

at least one of them.

Suppose he had three theories: ME1, ME2, and ME3, and rejected the first

two because of the Mercury data.

Multiplicity correction: Assign each MEi prior probability 1/6 and MG prior

probability 1/2. (In a situation where only one of the models can be correct,

the model probabilities must sum to one.)

Then the posterior probability that ME3 is correct is

P (ME3 | x = 41.6) =
1

1 + 3(28.6)−1
= 0.91 (instead of the previous 0.97) .

Summary: While, the more complex MG was penalized through the prior

on θ, the multiple models of Einstein were penalized by each getting only 1/3

of the prior probability assigned to Einstein.
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Pedagogical example: testing exclusive hypotheses and
the problem of test statistic dependency

Suppose one is testing mutually exclusive hypotheses Hi, i = 1, . . . ,m, so

that exactly one and only one of the Hi is true.

Bayesian analysis: If the hypotheses are viewed as exchangeable, choose

P (Hi) = 1/m and analyze the data x.

• Let mi(x) denote the marginal density of the data under Hi. (The data

density integrated over the prior density for unknown parameters under Hi.)

This is often called the likelihood of Hi (or the evidence for Hi).

• The posterior probability of Hi is

Pr(Hi | x) =
mi(x)

∑m
j=1 mj(x)

.

• Thus the likelihood mi(x) for Hi is ‘penalized’ by a factor of O( 1
m
), resulting

in multiplicity control.

Null control: If there is a good possibility of ‘no effect’ use, e.g.,

• Pr(H0) ≡ Pr(no effect) = 1/2,

• Pr(Hi) = 1/(2m).
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Example: 1000 energy channels are searched for the Higgs boson. In each,

one observes Xi ∼ N(xi | µi, 1), and at most one of Hi : µi > 0 is true.

Suppose x5 = 3, and the other 999 of the Xi are standard normal variates.

• If testing in isolation H0
5 : µ5 = 0 versus H1

5 : µ5 > 0, with prior

probabilities of 1/2 each and a standard unit information Cauchy prior

on µi under H
1
5 , then Pr(H1

5 | x5 = 3) =
m1

5(3)

m1
5(3)+m0

5(3)
= 0.96.

• With multiplicity control, assigning Pr(Hi) = 1/1000, this becomes

(on average over the 999 standard normal variates)

Pr(H1
5 | x) = m5(x)

∑1000
j=1 mj(x)

= 0.019 (and 0.38 for x5 = 4; and 0.94 for x5 = 5)

• With null control in addition to multiplicity control, (Pr(no effect) = 1/2

and Pr(Hi) = 1/(2000)), this becomes Pr(H1
5 | x) = 0.019.

• If null control was employed but pre-experimentally the physicist decided

to use all of the non-null mass on H5, the answer would have legitimately

been Pr(H1
5 | x) = 0.96.
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An aside: This is the Bayesian solution regardless of the structure of the

data; in contrast, frequentist solutions depend on the structure of the data.

Example: For each channel, test H0i : µi = 0 versus H1i : µi > 0.

Data: Xi, i = 1, ...,m, are N(xi | µi, 1, ρ), ρ being the correlation.

If ρ = 0, one can just do individual tests at level α/m (Bonferroni) to obtain

an overall error probability of α.

If ρ > 0, harder work is needed:

• Choose an overall decision rule, e.g., “declare channel i to have the signal if Xi

is the largest value and Xi > K.”

• Compute the corresponding error probability, which can be shown to be

α = Pr(max
i

Xi > K | µ1 = . . . = µm = 0) = EZ

[

1− Φ

(

K −√
ρZ√

1− ρ

)m]

,

where Φ is the standard normal cdf and Z is standard normal.

Note that this gives (essentially) the Bonferroni correction when ρ = 0, and

converges to 1− Φ[K] as ρ → 1 (the one-dimensional solution).
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The advantages here of Bayesian multiplicity control:

• Its implementation depends only on the prior probability assignment,

and not on the structure of the data. Hence it is potentially much more

computationally feasible.

• It is ‘fully powered,’ whereas adhoc frequentist procedures which achieve

multiplicity control need not be. For instance, in the previous example of

correlated data and as ρ → 1,

– the frequentist procedure with error probability 0.95 declares a

discovery if maxi Xi > 1.65, which could be right or wrong;

– the Bayesian procedure has the rather remarkable property that, for

more than two observations, the posterior probability of the true

hypothesis goes to 1.
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Bayesian prior probability assignments do not automatically
provide multiplicity control

• Suppose Xi ∼ N(xi | µi, 1), i = 1, . . . ,m, are observed.

• It is desired to test H0
i : µi = 0 versus H1

i : µi 6= 0 , i = 1, . . . ,m, but any

test could be true or false regardless of the others.

• The simplest probability assignment is Pr(H0
i ) = Pr(H1

i ) = 0.5,

independently, for all i.

• This does not control for multiplicity; indeed, each test is then done

completely independently of the others. Thus H0
1 is accepted or rejected

whether m = 1 or m = 1, 000, 000.

1. The same holds in many other model selection problems such as variable

selection: use of equal probabilities for all models does not induce any

multiplicity control.

2. The above is a proper prior probability assignment. Thus, if these are

one’s real prior probabilities, no multiplicity adjustment is needed.
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Inducing multiplicity control in this simultaneous testing
situation (Scott and Berger, 2006 JSPI; other, more sophisticated full Bayesian

analyses are in Gönen et. al. (03), Do, Müller, and Tang (02), Newton et all. (01), Newton

and Kendziorski (03), Müller et al. (03), Guindani, M., Zhang, S. and Mueller, P.M.

(2007), . . .; many empirical Bayes such as Efron and Tibshirani (2002), Storey, J.D., Dai,

J.Y and Leek, J.T. (2007), Efron (2010))

• Suppose xi ∼ N(xi | µi, σ
2), i = 1, . . . ,m, are observed, σ2 known, and

test H0
i : µi = 0 versus H1

i : µi 6= 0.

• If the hypotheses are viewed as exchangeable, let p denote the common

prior probability of H1
i , and assume p is unknown with a uniform prior

distribution. This does provide multiplicity control.

• Complete the prior specification, e.g.

– Assume that the nonzero µi follow a N(0, V ) distribution, with V

unknown.

– Assign V the objective (proper) prior density π(V ) = σ2/(σ2 + V )2.
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✪

• Then the posterior probability that µi 6= 0 is

pi = 1−
∫ 1

0

∫ 1

0
p
∏

j 6=i

(

p+ (1− p)
√
1− w ewxj

2/(2σ2)
)

dpdw
∫ 1

0

∫ 1

0

∏m
j=1

(

p+ (1− p)
√
1− w ewxj

2/(2σ2)
)

dpdw
.

• (p1, p2, . . . , pm) can be computed numerically; for large m, it is most

efficient to use importance sampling, with a common importance sample

for all pi.

Example: Consider the following ten ‘signal’ observations:

-8.48, -5.43, -4.81, -2.64, -2.40, 3.32, 4.07, 4.81, 5.81, 6.24

• Generate n = 10, 50, 500, and 5000 N(0, 1) noise observations.

• Mix them together and try to identify the signals.
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The ten ‘signal’ observations #noise

n -8.5 -5.4 -4.8 -2.6 -2.4 3.3 4.1 4.8 5.8 6.2 pi > .6

10 1 1 1 .94 .89 .99 1 1 1 1 1

50 1 1 1 .71 .59 .94 1 1 1 1 0

500 1 1 1 .26 .17 .67 .96 1 1 1 2

5000 1 1.0 .98 .03 .02 .16 .67 .98 1 1 1

Table 1: The posterior probabilities of being nonzero for the ten ‘signal’ means.

Note 1: The penalty for multiple comparisons is automatic.

Note 2: Theorem: E[#i : pi > .6 | all µj = 0] → 0 as m → ∞, so the

Bayesian procedure exerts very strong control over false positives. (In

comparison, E[#i : Bonferroni rejects | all µj = 0] = α.)
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Figure 1: For four of the observations, 1 − pi = Pr(µi = 0 |y) (the vertical bar),

and the posterior densities for µi 6= 0 .

22



Bayes Forum MPA-Garching, April 4, 2016✬

✫

✩

✪

An Aside: Use for Discoveries

• pi gives the probability that i is a discovery.

• The posterior density for µi 6= 0 gives the magnitude of the effect of the

possible discovery.

• If claiming J discoveries, with probabilities pi; the probability that all

are discoveries can be computed from the posterior. (If approximate

independence,
∏

i pi.)

• If a discovery is claimed if pi > c, the expected false discovery rate

(Bayesian) is
∑

{i:pi>c}(1− pi)

{#i : pi > c} < 1− c .
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Use for Screening (Duncan, 65; Waller and Duncan, 1969)

• Separately specify the cost of a false positive and the cost of missing a

true signal. Scott and Berger (06) use

L(reject null, µi) =







1 if µi = 0

0 if µi 6= 0 ,

L(accept null, µi) =







0 if µi = 0

c|µi| if µi 6= 0 ,

where c reflects the relative costs of each type of error.

• Posterior expected loss is minimized by rejecting H0i when

πi > 1−
c ·

∫∞
−∞ |µi| · π(µi | γi = 1,x) dµi

1 + c ·
∫∞
−∞ |µi| · π(µi | γi = 1,x) dµi

.
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Interim Summary

• Bayesian multiplicity control is distinct from the Ockham’s razor effect

of Bayesian analysis and is implemented through the assignment of prior

probabilities of models. Because it enters through the prior probabilities

there is never a loss in power when dealing with dependent testing

situations, the bane of standard frequentist multiplicity control.

• Bayesian probability assignments can fail to provide multiplicity control.

In particular, assigning all models equal prior probability fails in many

situations (testing of exclusive hypotheses being an exception).

• A key technique for multiplicity control is to think hierarchically by

specifying unknown inclusion probabilities for hypotheses or variables,

and assigning them a prior distribution.

– Assigning probability 1/2 to ‘no signal’ also provides null control,

with little cost in power.

– Any prior specified pre-experimentally is allowed.
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II. Types of Multiplicities
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• Class 1: Multiplicities not affecting the likelihood function

– Consideration of multiple (test) statistics or multiple priors

– Interim or sequential analysis

– Multiple endpoints

• Class 2: Multiplicities affecting the likelihood function

– Choice of transformation/model

– Multiple testing

– Variable selection

– Subgroup analysis

• Class 3: Issues arising from multiple studies of the same situation:

meta-analysis, replication, . . ..
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Class 1: Multiplicities Not Affecting the Likelihood

• Consideration of multiple test statistics

– Example: Doing a test of fit, and trying both a Kolmogorov-Smirnov test

and a Chi-squared test.

– Frequentists should either report all tests, or adjust; e.g., if pi is the p-value

of test i, base testing on the statistic pmin = min pi.

• Consideration of multiple priors: a Bayesian must either

– have principled reasons for settling on a particular prior, or

– implement a hierarchical or robustness analysis over the priors.

• Interim analysis (also called optional stopping and sequential analysis)

– Bayesians do not adjust, as the posterior is unaffected.

– Frequentists should adjust: ‘spending α’ for interim looks at the data with

analysis.
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An example of the effect of Optional Stopping : Suppose one achieves a

p-value of 0.08 in a sample of size 20 in testing whether or not a normal mean

is zero. Consider the following strategy (ubiquitous in psychology research):

• Take another five observations and stop (and publish) if p < .05 for the

25 observations.

• If still p > 0.05, take another 5 observations and check p for the 30

observations, stopping if less than 0.05.

• Repeat up to 2 more times if necessary.

Facts: Even if the normal mean is 0 (no signal),

1. there is a 2/3 chance of ending up with p < 0.05 using this strategy;

2. if one kept repeating, one would be guaranteed of getting p below 0.05;

3. indeed, if one kept repeating, one would be guaranteed of getting a

5-sigma result (at least if the universe lasts long enough).

So a frequentist must account for optional stopping (if used) in computing

error probabilities or p-values.

29



Bayes Forum MPA-Garching, April 4, 2016✬

✫

✩

✪

Cool Fact: Bayesian analysis is not affected by optional stopping; it would be

perfectly fine to use the previous optional stopping strategy but stopping

when, say, the posterior probability that the mean is zero is less than 0.05.

The Reason: For i.i.d data (for simplicity) Xi having density f(xi | θ),
optional stopping alters the data density to be

τN (x1, x2, . . . , xN )
N
∏

i=1

f(xi | θ) ,

where N is the (random) time at which one stops taking data and

τN (x1, x2, . . . , xN ) gives the probability (often 0 or 1) of stopping sampling.

Bayes theorem then yields that the posterior probability of θ is

π(θ | x1, x2, . . . , xN ) =
π(θ)τN (x1, x2, . . . , xN )

∏N
i=1 f(xi | θ)

∫

π(θ)τN (x1, x2, . . . , xN )
∏N

i=1 f(xi | θ)dθ

=
π(θ)

∏N
i=1 f(xi | θ)

∫

π(θ)
∏N

i=1 f(xi | θ)dθ
.
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Class 2: Multiplicities Affecting the Likelihood

• Choice of transformation/model

• Multiple testing

• Variable selection (later section)

• Subgroup analysis (later section)
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Choice of transformation/model

• Frequentist solutions:

– Develop the model on part of the data; perform inference on the

other part (or do a new experiment).

– Formal solutions: confidence set after testing, bootstrap

– This is often ignored, leading to overconfident inference.

• Bayesian solution: model averaging.

– Assign each model/transformation a prior probability.

– Compute model/transformation posterior probabilities.

– Perform inference with weighted averages over the

models/transformations. (An overwhelmingly supported

model/transformation will receive weight near one.)

– This is often ignored, leading to overconfident inference.
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✪

Bayesian Solution: Model Averaging

• Assign probabilities P (Mi) to models; the more models (multiplicities

being considered), the less prior probability each model receives.

• Compute the posterior model probabilities P (Mi | data)

• If, say, inference concerning ξ is desired, it would be based on

π(ξ | data) =
q

∑

i=1

P (Mi | data) π(ξ | data,Mi).

Note: ξ must have the same meaning across models, as in prediction.
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Example: From i.i.d. vehicle emission data X = (X1, . . . , Xn), one desires

to determine the probability that the vehicle type will meet regulatory

standards.

Traditional models for this type of data are Weibull and lognormal

distributions given, respectively, by

M1 : fW (x; β, γ) =
γ

β

(

x

β

)γ−1

exp

[

−
(

x

β

)γ]

M2 : fL(x;µ, σ
2) =

1

x
√
2πσ2

exp

[−(log x− µ)2

2σ2

]

.

Note that both distributions are in the location-scale family (the Weibull

being so after a log transformation).
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✫

✩

✪

Model Averaging Analysis:

• Assign each model prior probability 1/2.

• Because of the common location-scale invariance structures, assign the

right-Haar prior densities πW (β, γ) = 1/(βγ) and πL(µ, σ) = 1/(σ),

respectively (Berger, Pericchi and Varshavsky, 1998 Sankhyā).

• The posterior probabilities (and conditional frequentist error

probabilities) of the two models are then

P (M1 | x) = 1− P (M2 | x) = B(x)

1 + B(x)
,

where zi = log xi,z̄ = 1
n

∑n
i=1 zi, s

2
z = 1

n

∑n
i=1(zi − z̄)2, and

B(x) =
Γ(n)nnπ(n−1)/2

Γ(n− 1/2)

∫ ∞

0

[

y

n

n
∑

i=1

exp

(

zi − z̄

szy

)

]−n

dy .

• For the studied data set, P (M1 | x) = .712. Hence,

P (meeting standard) = .712 P (meeting standard | M1)

+.288 P (meeting standard | M2) .
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✫

✩

✪

Multiple testing

• Multiple hypothesis testing (earlier Bayesian analysis)

• Multiple multiple testing

– e.g., plasma samples are sent to separate genomic, protein, and

metabolic labs for ‘discovery’.

• Serial studies

– the first three HIV vaccine trials failed

– all 16 large Phase III Alzheimer’s trials have failed
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✫

✩

✪

Multiple multiple testing:

Example: Plasma samples are sent to the following labs in a

pharmaceutical company:

• a metabolic lab, where an association is sought with any of 200

metabolites;

• a proteomic lab, where an association is sought with any of 2000 proteins;

• a genomics lab, where an association is sought with any of 2,000,000

genes.

The company should do a joint multiplicity analysis.

A Bayesian analysis could give each lab 1/3 of the prior probability of a

discovery, with each third to be divided within the lab.
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✫

✩

✪

Serial testing: In the vaccine example, there were two previous failed trials.

Should the third vaccine trial have a multiplicity adjustment? The

(exchangeable) Bayesian solution:

• assign each trial common unknown probability p of success, with p

having a uniform distribution, and compute the posterior probability

that the current trial exhibits no efficacy

Pr(H0 | x1, x2, x3) =

(

1 +
B01(x1)B01(x2) + B01(x1) +B01(x2) + 3

3B01(x1)B01(x2) +B01(x1) +B01(x2) + 1
× 1

B01(x3)

)−1

where B01(xi) is the Bayes factor of “no effect” to “effect” for trial i.

This changes the previous Pr(H0 | x3) = 0.20 to Pr(H0 | x1, x2, x3) = 0.29.

Example: There have been 16 large Phase III Alzheimer’s trials - all failing.

(The probability of that is only 0.44.). One cannot do the Bayesian serial

testing adjustment should the 17th trial succeed, without knowing the Bayes

factors in each of the failed trials. But it could be as severe as

Badj
01 = 16×B01(x17) .
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✫

✩

✪

III. Variable Selection

Example: a retrospective study of a data-base investigates the relationship

between 200 foods and 25 health conditions. It is reported that eating

broccoli reduces lung cancer (p-value=0.02).
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✫

✩

✪
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✫

✩

✪

• Not adjusting for multiplicity (5000 tests) in this type of situation is a

leading cause of ‘junk science.’

• There are other contributing problems here, such as the use of p-values.

Frequentist solutions:

• Bonferonni could be used: to achieve an overall level of 0.05 with 5000

tests, one would need to use a per-test rejection level of

α = 0.05/5000 = 0.00001.

– This is likely much too conservative because of the probably high

dependence in the 5000 tests.

• Some type of bootstrap could be used, but this is difficult when

faced, as here, with 25000 models.

Bayesian solution:

• Assign prior variable inclusion probabilities.

• Implement Bayesian model averaging or variable selection.
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✫

✩

✪

• Options in choosing prior variable inclusion probabilities:

– Objective Bayesian choices:

∗ Option 1: each variable has unknown common probability pi of having

no effect on health condition i.

∗ Option 2: variable j has common probability pj of having no effect on

each health condition.

∗ Option 3: some combination.

– Main effects may have a common unknown prior inclusion probability

p1; second order interactions prior inclusion probability p2; etc.

– An oversight committee for a prospective study might judge

that at most one effect might be found, and so could prescribe

that a protocol be submitted in which

∗ prior probability 1/2 be assigned to ‘no effect;’

∗ the remaining probability of 1/2 could be divided among possible

effects as desired pre-experimentally. (Bonferonni adjustments can also

be unequally divided pre-experimentally.)
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✫

✩

✪

Formal Bayesian Approach to Multiplicity Control in
Variable Selection

Problem: Data X arises from a normal linear regression model, with m

possible regressors having associated unknown regression coefficients

βi, i = 1, . . .m, and unknown variance σ2.

Models: Consider selection from among the submodels Mi , i = 1, . . . , 2m,

having only ki regressors with coefficients βi (a subset of (β1, . . . , βm)) and

resulting density fi(x | βi, σ
2).

Prior density under Mi: Zellner-Siow priors πi(βi, σ
2).

Marginal likelihood of Mi: mi(x) =
∫

fi(x | βi, σ
2)πi(βi, σ

2) dβidσ
2

Prior probability of Mi: P (Mi)

Posterior probability of Mi:

P (Mi | x) =
P (Mi)mi(x)

∑

j P (Mj)mj(x)
.
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✫

✩

✪

Common Choices of the P (Mi)

Equal prior probabilities: P (Mi) = 2−m does not control for multiplicity.

Bayes exchangeable variable inclusion does control for multiplicity:

• Each variable, βi, is independently in the model with unknown

probability p (called the prior inclusion probability).

• p has a Beta(p | a, b) distribution. (We use a = b = 1, the uniform

distribution, as did Jeffreys 1961.)

• Then, since ki is the number of variables in model Mi,

P (Mi) =

∫ 1

0

pki(1− p)m−kiBeta(p | a, b)dp =
Beta(a+ ki, b+m− ki)

Beta(a, b)
.

Note that this can be pre-computed; no uncertainty analysis (e.g.

MCMC) in p is needed! (See Scott and Berger, 2008, for discussion.)

Empirical Bayes variable inclusion does control for multiplicities: Find the

MLE p̂ by maximizing the marginal likelihood of p,
∑

j p
kj (1− p)m−kjmj(x),

and use P (Mi) = p̂ki(1− p̂)m−ki as the prior model probabilities.
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✫

✩

✪

Equal model probabilities Bayes variable inclusion

Number of noise variables Number of noise variables

Signal 1 10 40 90 1 10 40 90

β1 : −1.08 .999 .999 .999 .999 .999 .999 .999 .999

β2 : −0.84 .999 .999 .999 .999 .999 .999 .999 .988

β3 : −0.74 .999 .999 .999 .999 .999 .999 .999 .998

β4 : −0.51 .977 .977 .999 .999 .991 .948 .710 .345

β5 : −0.30 .292 .289 .288 .127 .552 .248 .041 .008

β6 : +0.07 .259 .286 .055 .008 .519 .251 .039 .011

β7 : +0.18 .219 .248 .244 .275 .455 .216 .033 .009

β8 : +0.35 .773 .771 .994 .999 .896 .686 .307 .057

β9 : +0.41 .927 .912 .999 .999 .969 .861 .567 .222

β10 : +0.63 .995 .995 .999 .999 .996 .990 .921 .734

False Positives 0 2 5 10 0 1 0 0

Table 2: Posterior inclusion probabilities for 10 real variables in a simulated data set.
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✫

✩

✪

Comparison of Bayes and Empirical Bayes Approaches

Theorem 1 In the variable-selection problem, if the null model (or full model) has

the largest marginal likelihood, m(x), among all models, then the MLE of p is p̂ = 0

(or p̂ = 1.) (The naive EB approach, which assigns P (Mi) = p̂ki(1− p̂)m−ki ,

concludes that the null (full) model has probability 1.)

A simulation with 10,000 repetitions to gauge the severity of the problem:

• m = 14 covariates, orthogonal design matrix

• p drawn from U(0, 1); regression coefficients are 0 with probability p and

drawn from a Zellner-Siow prior with probability (1− p).

• n = 16, 60, and 120 observations drawn from the given regression model.

Case p̂ = 0 p̂ = 1

n = 16 820 781

n = 60 783 766

n = 120 723 747
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✫

✩

✪

Covariate Fully Bayes Emp. Bayes

East Asian Dummy 0.983 0.983

Fraction of Tropical Area 0.727 0.653

Life Expectancy in 1960 0.624 0.499

Population Density Coastal in 1960s 0.518 0.379

GDP in 1960 (log) 0.497 0.313

Outward Orientation 0.417 0.318

Fraction GDP in Mining 0.389 0.235

Land Area 0.317 0.121

Higher Education 1960 0.297 0.148

Investment Price 0.226 0.130

Fraction Confucian 0.216 0.145

Latin American Dummy 0.189 0.108

Ethnolinguistic Fractionalization 0.188 0.117

Political Rights 0.188 0.081

Primary Schooling in 1960 0.167 0.093

Hydrocarbon Deposits in 1993 0.165 0.093

Fraction Spent in War 1960–90 0.164 0.095

Defense Spending Share 0.156 0.085

Civil Liberties 0.154 0.075

Average Inflation 1960–90 0.150 0.064

Real Exchange Rate Distortions 0.146 0.071

Interior Density 0.139 0.067

Table 3: Exact variable inclusion probabilities for 22 variables in a linear model

for GDP growth among a group of 30 countries.
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✫

✩

✪
Figure 2: Empirical distribution of difference in inclusion probabilities between

EB and FB, 10000 fake data sets with 14 possible covariates in each one,

everything drawn from the prior.
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✫

✩

✪

Is empirical Bayes at least accurate asymptotically as m → ∞?

Posterior model probabilities, given p:

P (Mi | x, p) =
pki(1− p)m−kimi(x)

∑

j p
kj (1− p)m−kjmj(x)

Posterior distribution of p: π(p | x) = K
∑

j p
kj (1− p)m−kjmj(x)

This does concentrate about the true p as m → ∞, so one might expect that

P (Mi | x) =
∫ 1

0
P (Mi | x, p)π(p | x)dp ≈ P (Mi | x, p̂) ∝ mi(x) p̂

ki(1− p̂)m−ki .

This is not necessarily true; indeed
∫ 1

0

P (Mi | x, p)π(p | x)dp =

∫ 1

0

pki(1− p)m−kimi(x)

π(p | x)/K × π(p | x) dp

∝ mi(x)

∫ 1

0

pki(1− p)m−kidp ∝ mi(x)P (Mi) .

Caveat: Some EB techniques have been justified; see Efron and Tibshirani (2001),

Johnstone and Silverman (2004), Cui and George (2006), and Bogdan et. al. (2008).
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✫

✩

✪

Theorem 2 Suppose the true model size kT satisfies kT /m → pT as

m → ∞, where 0 < pT < 1. Consider all models Mi such that

kT − ki = O(
√
m), and consider the optimal situation for EB in which

p̂ = pT +O(
1√
m
) as m → ∞ .

Then the ratio of the prior probabilities assigned to such models by the Bayes

approach and the empirical Bayes approach satisfies

PB(Mi)

PEB(Mi)
=

∫ 1

0
pki(1− p)m−kiπ(p)dp

(p̂)ki(1− p̂)m−ki
= O

(

1√
m

)

,

providing π(·) is continuous and nonzero.
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✫

✩

✪

IV. Subgroup Analysis
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✫

✩

✪

Subgroup Analysis (work in progress)

Our guiding principles:

• Null control and multiplicity control need to be present.

• To maximize power to detect real effects,

– the subgroups and allowed population partitions need to be restricted

to those that are scientifically plausible;

– allowance for ‘scientifically favored’ subgroups should be made.

• Full Bayesian analysis is sought. In particular, any inferences should

have an interpretation in terms of the actual population.
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✫

✩

✪

Allowable subgroups: Subgroups are specified by criteria, denoted by letters.

For example, age is A, gender is B, and smoking status is C.

• Young is A1 and old is A2. Male is B1 and female is B2. Smoking is C1

and non-smoking is C2. A• is any variant of the A factor.

• A subgroup is a concatenation of letters with numbered subscripts;

A1B1C• is young males, reflecting the fact that no split has been made

according to smoking status. Young male smokers are A1B1C1.

Key Fact: Allowing only subgroups of this form is a very strong restriction.

For instance, {{male smokers} ∪ {female nonsmokers}} is not an allowed

subgroup.

• For F factors, there are 3F allowable subgroups (81 for F=4).

• For F factors, there are (22
F − 1) possible subgroups (65,535 for F=4).
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✫

✩

✪

Allowed statistical models consist of partitions of the population into

allowable subgroups arising from terminal nodes of trees based on factor

splits, with possible zero effects, as follows:

• A factor ordering is selected (probabilistically), e.g. ABC, ACB.

• At each level of the tree, one zero-effect node is possibly assigned by

– randomly determining if there is to be a zero-effect node at that level; if so,

it will be denoted by a ‘0’ in front of the label.

– then randomly choosing one of the nodes at that level to become the

zero-effect node; it then becomes a terminal node.

• The non zero-effect nodes at a given level are possibly split by the factor

corresponding to that level.

– randomly deciding if the node is to be split; if not it becomes a terminal

node;

– if split, creating two new nodes at the next level of the tree.

• The statistical model (population partition) is the collection of terminal

nodes (i.e., the last nodes in the branches of the tree).
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✫

✩

✪

Construction Steps

A•B•C•

0A2B•C•A1B•C•

A1B2C•

0A1B2C2A1B2C1

A1B1C•

no 0; split on A

0 assigned, terminal; split on B

no 0; no split, terminal; split on C

0 assigned

Thus the ensuing statistical model M (population partition) consists of the

four yellow nodes, two of which have zero treatment effect and two of which

have non-zero and differing treatment effects.
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✫

✩

✪

Motivation for the choice of models (population partitions):

Why declare a node to be terminal after a failure to split? Suppose one

split on A and then split on B for one branch and C for the other branch,

declaring the resulting nodes to be terminal. The resulting partition is

{young male, young female, old smoker, old non-smoker},
which does not seem to be a reasonable scientific model (i.e., that the

population divides up into these four distinct subgroups, each having differing

effects).

Why allow only one terminal node at each level to be a zero-effect node?

Consider, for instance, the model {B1C1A•, 0B1C2A•, 0B2C1A•, B2C2A•},
which has two zero effect subgroups at level 2 of the tree. This model would be

saying that non-smoking men and smoking women have zero effect, while the

others have non-zero effect, which does not seem scientifically plausible.

There can be multiple zero-effect nodes at a given level that are plausible.

Yes, but then they will have occurred also at a higher level of the tree.
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✫

✩

✪

The Elicited Prior contains user specified features, such as

• k, the number of factor splits allowed;

• the prior probability of each factor having an effect;

• the prior probability of ‘zero effect’ for an individual (or this can be left

unknown).

The Operational Prior consists of

• probabilities on the factor ordering;

• the tree splitting probabilities;

• the probabilities of assigning ‘zero effect’ to terminal nodes.

Challenges:

• Choosing the operational prior so that the resulting model probabilities

match those from the elicited.

• Determining what is proper societal control for multiplicity and null

control.
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✫

✩

✪

Full Bayesian inference:

• Perform a standard Bayesian model uncertainty analysis:

– Pre-compute the prior model probabilities, including integrating out

any unknown multiplicity parameters.

– Utilize standard objective model parameter priors (e.g., Zellner-Siow).

– Utilize appropriate stochastic search or other computational

strategies if the model space is huge.

• Of primary interest is the posterior probability of an effect for an

individual with characteristics X :

– found by summing the posterior probabilities of all models in which

individuals with those characteristics were in a subgroup that

exhibited an effect;

– equivalent to the posterior probability of an effect for a last level

subgroup.

– It is hard to make sense of the posterior probability of an effect for a

higher level subgroup.
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✫

✩

✪

Illustration: Analysis of data from the Step trial of
MRKAd5 vaccine

Overall Population: data provided little evidence of any effect, beneficial

or harmful

Uncircumcised men:

6 HIV cases reported in the 394 individuals receiving placebos

22 HIV cases reported in the 394 individuals receiving the treatment

Two-sided p-value: 0.0021.

This was so small that there seemed to be conclusive evidence of harm from

the vaccine, and all testing with this vaccine and other variants was stopped.
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✫

✩

✪

Bayesian Analysis: Objective Prior

Let θ = [P(HIV under placebo) - P(HIV under vaccine)] in the subgroup.

Null and alternative hypotheses:

H0 : θ = 0 versus H1 : θ 6= 0 ,

Objective prior (to the scientists):

• Choose Pr(θ = 0) = 0.5, or deal with it by a sensitivity study.

• Give equal weight, to say, the vaccine doubling or halving the infection

rate.

• Do this up to an upper (lower) limit of a five-fold increase or five-fold

decrease in the infection rate.

Bayesian answer: Pr(θ = 0 | data) = 0.04 and Pr(θ < 0 | data) = 0.96.

Although this is much larger than the p-value of 0.0021, it still seems to be

strong evidence that the vaccine was harmful to this subgroup.
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✫

✩

✪

Multiple Testing Adjustment for Subgroups:

Suppose we had initially considered five subgroups:

• all men

• circumcised men

• uncircumcised men

• men with negative Cd5 count

• men with positive Cd5 count

The Bayesian multiple testing adjustment would convert the earlier

Pr(θ = 0 | data) from 0.041 to 0.27.

In reality, there were 18 subgroups considered apriori – just among the males

– so the adjustment for multiple testing should be even larger.

Note that the Bayesian adjustment can be done posthoc, with information

concerning the subgroups considered through the design.
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✩

✪

V. Multiplicities in High-Energy Physics
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✫

✩

✪

A Bayesian Formulation of the Basic HEP Problem

The statistical model (following Richard Lockhart’s Banff II writeup):

• N is the observed Poisson number of events.

• The events are independent and each has characteristics (‘marks’ in the

Poisson process world) Xi, i = 1, . . . , N .

• Under H0: background only,

– the mean of N is b,

– the density of the Xi is fb(x) > 0.

• There may be a signal Poisson process with mean s and density fs(x).

• Under H1: background + signal,

– the mean of N is b+ s,

– the density of the Xi is (γfb(x) + (1− γ)fs(x)), where γ = b
(b+s) .

• Consider the case where fb(x) and fs(x) are known but b and s are

unknown.
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✫

✩

✪

Bayes factor of H1 to H0 for priors π0(b) and π1(b, s) = π0(b)π1(s | b):

B10 =

∫∞
0

∫∞
0

(b+ s)Ne−(b+s)
∏N

i=1[γfb(xi) + (1− γ)fs(xi)]π1(b, s) dsdb
∫∞
0

bNe−b
∏N

i=1[fb(xi)]π0(b)db

=

∫∞
0

∫∞
0

bNe−(b+s)
∏N

i=1

[

1 + sfs(xi)
bfb(xi)

]

π0(b)π1(s | b) dsdb
∫∞
0

bNe−b π0(b)db
.

Note that, if b is known, this becomes

B10 =

∫ ∞

0

e−s
N
∏

i=1

[

1 +
sfs(xi)

bfb(xi)

]

π1(s | b) ds .

Priors: Intrinsic priors are πI
0(b) = b−1/2 (note that it is improper) and

πI
1(s | b) = b(s+ b)−2 (note that it is proper).

Note: Ignoring the densities fs and fb and basing the answer solely on N is

equivalent to assuming that fs ≡ fb.
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✫

✩

✪

Multiplicity (look-elsewhere) concerns are automatically handled:

Suppose Nj of the Xi are in bin Bj , j = 1, . . . ,M , and that we assume we

have only densities fs(Bj) and fb(Bj). Then

B10 =

∫∞
0

∫∞
0

bNe−(b+s)
∏M

j=1

[

1 +
sfs(Bj)
bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb
∫∞
0

bNe−b π0(b)db
.

Suppose fs(Bj) gives probability one to some unknown bin B (the signal

could occur in only one bin), with each bin being equally likely. Then

B10 =

EB

[

∫∞
0

∫∞
0

bNe−(b+s)
∏M

j=1

[

1 + sfs(B)
bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb
]

∫∞
0

bNe−b π0(b)db

=
1

M

M
∑

j=1

∫∞
0

∫∞
0

bNe−(b+s)
[

1 + s
bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb
∫∞
0

bNe−b π0(b)db
,

so that the results from each Hj :signal in Bj are downweighted by 1/M .
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✩

✪

VI. Comparison of Bayesian and Frequentist
Approaches to Multiplicity
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✫

✩

✪

Frequentist Approaches: Per-Comparison, Family-wise and FDR
error-rates

For M tests, H0i : µi = 0 versus H1i : µi 6= 0,:

accept H0 Reject H0

H0 true U V M0

H0 false T S M1

(observed →) W R M

R = total number of rejections (discoveries)

V = # false discoveries

(There is little concern about T in the non-Bayesian literature, a questionable

omission when viewed decision-theoretically.)
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✫

✩

✪

d0 d1

H0 U V M0

H1 T S M1

W R M

Per-Comparison (PCER). Controls the proportion of false discoveries
E[V ]

M
at

level α by testing each H0i at level α

‘Ignores the multiplicity problem’ (too liberal)

Family-wise (FWER). Classical Bonferroni: Controls Pr(V ≥ 1) at level ≤ α

by testing each H0i at level
α

M
.

Results in very conservative tests.

... something in between ...
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False Discovery rate (FDR)

d0 d1

H0 U V M0

H1 T S M1

W R M

• focus on
V

R
instead ❀ % of false discoveries (erroneous rejections)

among the rejected hypotheses

• Not defined for R = 0 (all M nulls accepted), so (Benjamini and Hochberg,

95) propose to control:

FDR = E

[

V

max{R, 1}

]

= E

[

V

R
| R > 0

]

Pr(R > 0) .

with Simes (86) α-level multiple comparisons test

• Closely related: Positive FDR: pFDR = E

[

V

R
| R > 0

]
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Properties and Comments:

accept H0 reject H0

H0 true U V M0

H1 true T S M1

W R M

• Simes(86) shows control of FWER under null.

• B&H(95) show control of FDR always

• asymptotically FDR ≈ pFDR ≈ PFP = E[V ]
E[R]

• Part of the attractiveness of FDR seems to be that, instead of using

α = 0.05, people use (e.g.)FDR = 0.15.

• Genovese and Wasserman(02, 03) observe that FDR is an expected

value, and the realized proportion of discoveries, V/R can vary greatly

from this expected value; arguing that this variability should be taken

into account.
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✩
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• B&H algorithm controls FDR at level pα (Finner and Roters, 04) ❀ use and

estimate of p to increase power (keeping control at level α); (Benjamini and

Hochberg, 2000; Black 04, Storey, Storey et. al., Genovese, Langaas et al. (2005),

Cayon, Rice)

• Finner and Roters(01) observe that control of FDR allows ‘cheating’ “by

adding additional hypotheses of no interest which are known to have

p-values near 0” (the FDR critical value for ranked p-values p[i] is

i α/m); for instance, to maximize the chance of rejecting 8 hypotheses of

interest while controlling FDR at α one can add 100 ‘uninteresting’

hypothesis with p-values ≈ 0, so that the 8 ‘interesting’ p-values will

have threshold ≥ 101α/108
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Connections between FDR and Bayes
(Storey, Efron, Tibshirani, Genovese, Wasserman, Rice . . . )

• Frequentists need to estimate p to obtain good power for FDR; this is

also key for Bayesians. This hints that there should be some type of

exchangeability of hypotheses to apply FDR; this would also address the

Finner-Roters objection.

• Genovese and Wasserman (02) have a more Bayesian definition of

“Bayesian FDR” ❀ focus on realized FDR, namely V/R, and its

posterior distribution, so that uncertainty in V/R can be studied. (They

still study frequentist properties.)
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✩

✪

• Frequentist analyses that estimate (instead of control) errors, as pFDR,

often have same models as Bayesians

f(xi) = pf0(xi) + (1− p)f1(xi)

– f1 unknown (and often also f0) ❀ often frequentist nonparametric

estimates (EB needs only estimate the ratio) (Efron&al 01, Efron&Tibshirani

02, Genovese&Wasserman)

– often p is not estimated, but a lower bound used instead

f = pf0 + (1− p)f1 ≥ pf0 ❀ p̂ = minx
f̂(x)

f̂0(x)
.

– Also full nonparametric Bayes analysis. (Do, Müller, Tang)
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✫

✩

✪

• Storey suggests that

– pFDR has a dual interpretation as a Bayesian and as a frequentist

measure because

pFDR(C) = Pr(H0i true | Xi ∈ C) = E[V ]
E[R] .

But this is the posterior probability given the data is in ‘critical region’

C, not given the data itself;

– proposes the q-value, defined as

q-value(Xi) = inf
α

Pr(H0i true | Xi ∈ Cα)

and calls it a “posterior Bayesian p-value,” but, again, it depends on a

tail region of data, not the data itself.
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✪

Bayesian FDR

Genovese and Waserman (02); Newton et al. (04); Broët et al. (04)

• Recall that pFDR = Pr(H0 true | reject H0)

• For a ‘Bayesian version’ of pFDR, compute

1− pi = Pr(H0 true | xi)
and average over the rejection region

• to ‘control Bayesian pFDR’ at level α, reject the i-th null if pi > c∗ where

c∗ gives the largest rejection region for which the above average ≤ α

• But FDR is taken as a priori being the quantity of interest. Is this

reasonable from a Bayesian viewpoint?
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✫

✩

✪

Decision-theoretic Evaluations of FDR

• FDR seems most useful for screening but, in depending only on p-values,

it seems like it would not reflect typical decision-theoretic screening

losses, which depend in part on the magnitude of the effects.

• FDR does not seem good for ‘discovery’ which corresponds to “0-1” loss;

indeed, one cannot derive FDR from this loss. (E[V ] and E[T ] arise, but

not versions of the ratio V/R.)

• One could argue that it is a ‘global loss’ but there are difficulties in

interpretation.

• Müller, et. al. (2002) study a variety of losses that include FDR (or

variants) as primitives, but find problems with doing so.
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✩

✪

Difficulties in interpreting FDR as a loss function

• It could be argued that the Loss for taking decisions d when the truth is

H could be directly defined as a linear function of V/R; the risk would

then be a function of the (expected) FDR.

• Let di = 0 if i-th null is acepted, and Hi = 0 if i-th null is true. The

problem: such a loss function does not depend on
∑

i Hi, only on
∑

i(1− di)Hi (and on
∑

i di)

• This is difficult to justify intuitively (at least for ’scientific’ purposes)
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✪

• Assume we have S = 18 ‘true’ signals detected and that FDR = 2/20 or

1%. We have identical loss if:

– We only had M0 = 2 noise (all noise is declared to be signal)

– We have M0 = 20000 and hence the procedure is superb in sorting out

noise

• In the same situation as before (R = 20, V = 2) we have the same loss if

– In reality there are M1 = 18 signals, so they are all discovered

– The truth is that there are M1 = 1800 signals so we only ‘discover’

1/10000.

• Efforts have been made to define Loss Functions that also take into

account the FNR, but this has also problems
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✩

✪

Also bad behaviour:
d = 0 d = 1

H0 U V M0

H1 T S M1

W R M

Müller, et. al. (2005) consider minimization of four global (posterior)

expected losses

‘Univariate’ (expected) loss functions

• LN (d ) = cE∗[V ] + E∗[T ]

Bayes rule with c = k1/k0

• LR(d ) = cE∗[FDR] + E∗[FNR]

’Bayes rule’ for loss function depending on the data

(suggested by Storey(03) and G&W(02))
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d = 0 d = 1

H0 U V M0

H1 T S M1

W R M

‘Bivariate controlling’ (expected) loss functions

• L2N ‘controls’ (E∗[T ], E∗[V ])

minimize E∗[T ] subject to E∗[V ] ≤ αM .

• L2R ‘controls’ (E∗[FNR], E∗[FDR])

minimize E∗[FNR] subject to E∗[FDR]≤ α.

(This is G&W’s proposal; it is maybe the most popular)
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✪

Their findings:

• All optimal rules are thresholding rules for pi, all of them

data-dependent except for the Bayesian LN

• Pathological behavior of L2R: Since E∗[FDR] is ’controlled’ as M grows,

to achieve the desired (fixed) E∗[FDR], “we have to knowingly flag some

genes as differentially expressed even when pi ≈ 0”.

• L2N has a similar pathological behaviour (but slower)

• For LN , E∗[FDR] vanishes as M → ∞

• The loss LR induces counterintuitive jumps in E∗[FDR] and is not

recommended either
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