On Model Selection in Cosmology

Martin Kerscher

Fakultat fiir Physik
Ludwig—Maximilians—Universitat Miinchen

Bayes Forum — May 3, 2019

M.Kerscher, J.Weller: https://arxiv.org/abs/1901.07726


https://arxiv.org/abs/1901.07726

Numqguam ponenda est pluralitas sine necessitate.

4.0 A

3.5

3.0 1

251

2.0 1

1.5

1.0 1

0.0 0.2 0.4 0.6 0.8 1.0
f(x,0) =0+ 01x
g(x,®) = ¢o + ¢1x + ¢ox
h(x, 1) = tho + 1h1x + ax® + 3x> + ax* + sx°



Lupwic-
MAXIMILIANS-

LMU UNIVERSITAT
MUNCHEN

Parameter estimation (briefly)

Model selection
Goodness of fit
Likelihood ratio test
Bayesian model comparison
Information theoretic approach: classical and Bayesian

The expansion history of the Universe

Discussion



Parameter estimation

e Measurements d = (x,-,y,-),N:1

e Model f(x, ) with parameters 8 € A C RX.
e Objective: determine 6* such that f(x,0*) is the best approximation
to the data d, such that f(x;,0*) is approximation y;.

All methods start with the likelihood — here a Gaussian likelihood:

1 N
pr(d[0) = ((2m)" det(¥)) * exp (—i > (v~ Oy - f))

y=01,...,yn)", F=(f(x1,0),...,f(xn,0))T, covariance matrix L.



Maximum likelihood and least square

¢ Maximum likelihood: Find 6* maximising pr(d | 6*).
In choosing the parameter 8*, the data points become the most
probable data points given the model f.

e Least square: simplified maximum likelihood with Gaussian
likelihood and diagonal X.

Searching for maximum of the log-likelihood

N (v — 2
log pr(d | 6) = const. — %Z f( va 6))
i=1

is equivalent to searching for the minimum of

N —fx,, 2
3w >

i=1



Bayesian parameter estimation

Prior distribution pf(0) of the parameters for model f(x, 8).

Posterior distribution ps(0 | d) from Bayes theorem

pr(d|6) pr(0)

Evidence (or marginal likelihood):

pr(d) = / pr(d | 8) pr(6)d6.

*

e Maximum posterior estimate (MAP): 6* maximising pr(6* | d).



L

:

LMU
:

Model selection

e Consider two models

f(x,0) with parameters 8 € A C R¥,
g(x, @) with parameters ¢ € B ¢ RE.

e Determine 8* and ¢* (with your favourite method).

e Which one is better, f(x,0*) or g(x, ¢*) ?



Goodness of fit

o With the best fit parameters 6* calculate

N

yi — f( x,,0*
Z ))?

e Reduced—y?
- X2 ,.q ~ 1 a good fit,

2
Xf - X%red > 1 a bad fit, and

2
Xf red =
nqyf

- Xt%,red < 1 an overfit.
typically nge = N — K.



Hypothesis test and p—value

N data points independent and with Gaussian error, then X,2r follows
x2—distribution with N — 1 degrees of freedom.

e p—value: p=1— Gy_1 (X%)
indicates how incompatible the
data are with our model (the
null hypothesis)
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e Level of significance «, often

a = 0.05.
] P
i e If p < a our model, the
o 1 o » w0 s null-hypothesis gets rejected.

X

Given the model (the null-hypothesis), a small p-value allows us to reject
the model but we do not learn anything about the false negative rate.



Error of the first and of the second kind
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_—Ho e Our model Hy and the alternative
model H;
= _H ® Hy is not rejected (“accepted”)

at the significance level o = 0.05.
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e Assume Hj is true, then the false
negative rate is § = 0.32.
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Likelihood ratio test

¢ Nested models: f is a special case of g (i.e. AC B and f|a = gla).

Null hypothesis: “f is the true model with 8* € A”
Alternative hypothesis: “g is the true model with ¢* € B”

- large samples: —2log L is y>-distributed

¢ Likelihood ratio with d.f. v = dim B — dim A.
[ — pr(d|67) -p=1-Gy(—2logl),
 pg(d|o*) discard null-hypothesis if p < a

with significance level o

e Neyman-Pearson Lemma: the test based on the likelihood ratio is
minimising the false negative rate.



Bayesian model comparison

e Probability of model f and data d:  p(f andd) = ps(d) ¢
similarly for model g: p(gandd) = pg(d) mg

7¢ and g prior probabilities of our models.

* Bayes factor e Evidence (marginal Likelihood)
p(fandd) _ pe(d) _ o
p(gandd) ~ pg(d) ~ % pr(d) = /Pf(dla) pr(6)d6
(assuming T = TFg)- (nested sampling, Chib’s method,

population MC, direct integration)
e Bg > 1 then favour model
f over model g
(compare Jeffreys' scale).

e BIC: asymptotic for large N
(Schwarz 1978)



Information theoretic approach

e Compare the predictive distribution p, ¢(d) to the true probability
pr(d) using Kulback—Leibler (KL) divergence (relative entropy)

pr(d)
Pp.f(d)

— /pT(d) log pr(d) dd—/PT(d) log pp,£(d) dd

independent of model f

D(pr | pps) = /PT(d) log dd

e Classical approach: use predictive likelihood (marginalised
Likelihood):

Pp,r(di) = pr(di | 0) = /Pf(d |0) dd)

with d[l] = ((X17y1)7 R (Xl'flvyifl)v (Xi+layi+l)a SO (XNayN))T'



Classical information theoretic approach |

e compare predictive likelihood pr(d | 6*) with parameter 6* to true
distribution pr(d):

D(orlp)= o~ [ prid)logpi(d]6")dd
independent from f ~

n(f)

e The expected log likelihood:

n(f) = / log pr(d | 6%) dFr(d),

e Expectation over the true distribution F+ — not available.



Insertion: Empirical distribution function

Cumulative distribution function

., xn}iid. from F.

L4 {Xl, ..
e Empirical distribution function

1 N
Fn(x) = N 2 Ixi,00) (%)
i=1

Fr(x)

o Glivenko-Cantelli:
|IFN — Flloo — 0 uniformly




Classical information theoretic approach Il

D(pr | pr) = const(f) — / log pr(d | 67) dFr(d)

~~

n(f)

e Estimate 7)(f) by replacing Fr(d) with Fr n(d)

N
~ . 1 .
U(f) = /lngf(d‘g )dFT,N(d) - N ._E - Ingf(d,- ’ 0 )
e However 7)(f) is biased (6* is point estimate) with

b(f) = [ (tF) - () aFr.



AIC and beyond

e b(f) asymptotically goes like K/N (Akaike, 1972)

AIC(f) = —2N (7 — K/N) = —2 Zlogpf (di|6*) + 2K,
i=1

the model with a smaller value of the AIC is favoured.

o Estimate b(f) using bootstrap, then

EIC(f) = —2N (ﬁ(f) - E(f)) :

the model with a smaller value of the EIC is favoured.



Bayesian information theoretic approach

Compare pppd.r(d) to true pr(d)

ith KL-di
Posterior predictive wit divergence

distribution:
D(pT | Pppd,f) = const—

Pwa(d) = [ pi(d|6) pr(6] d) do. [ 108 P () aF1(0)

w(f)

e Estimate x(f) using empirical distribution F7 y

NZI()g(/Pf (d; |0)pf(9!d)d0)

estimate from the MC chain

e Bayesian Predictive Information Criterium

BPIC(f) = —2N &(f)



The methods

goodness of fit: Xfed, p—value

likelihood ratio test: p—value

Bayesian: Bayes factor and BIC

Classical information theoretic approach: AlC, EIC

Bayesian information theoretic approach: BPIC



.......

LVIU| | iemsiis The expansion history of the Universe

e SNla's: redshift z and magnitude — distance modulus
Union 2.1 (Suzuki et al. 2011) N = 580 data points d; = (z;, ;)

e Distance modulus — redshift relation
M(Zv 0) =5 IOglO dL(Za 0) +25

model dependence through luminosity distance dj(z, 8).
o ACDM (with Qp = 1 — Q)

z dZ/
di(z,Qn)=dy(1+ 2z / ,
i )=du{l+2) o VQm(1+2')3+Qa

e wCDM model (with constant e.o.s. p = wp)

dz’

di(z,Qm,w)=dy(1+z / .
L( ) H( ) o \/Qm(l+Z')3+QA(1+Z/)3(1+W)
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e ACDM (blue): Q,, = 0.278 + 0.007
e wCDM (red): Q= 0.2794+0.06 and w = —1.0 + 0.13
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Goodness of fit:
Xeed(N) = 0.971, pp = 0.68 X2q(w) = 0.973, p,, = 0.67

Likelihood ratio test:
p=1— Gi(—2log L) =0.975

Bayesian approach:
BICA = —231.1 BIC,, = —224.8

Baw = % = 5.45 substantial evidence for ACDM (Jeffreys' scale)

Classical information theoretic approach:
AICp = —235.5 AIC,, = —233.5

EICA = —239.2 EIC,, = —241.0

Bayesian information theoretic approach:
BPICy, = —237.5 BPIC,, = —237.3



Is there a substantial difference?

Generate random artificial data sets assuming ACDM:

0.012- 0.012-

0.009- 0.009-
0.006- 0.006-

0.003- 0.003-

0.0-
000 025 050 075 100
p —value

0.000- " 0.000-
-300 -250 -200 -150 -300 -250 -200 -150 -1
AIC BPIC

midspread:
Ap, =0.46, Aaic, = 42, Ay, =0.034, Ap,, = 3.4, Apic, =42, Appic, =43

Using the Union 2.1 data set we cannot decide wether the ACDM or
the wCDM model should be preferred.



Summary of the methods

e With the goodness of fit you rank models according to their ability to
fit the data points.

e The likelihood ratio allows you to discard a given model (your null
hypothesis) in favour of the alternative model.

¢ In a Bayesian model comparison you use the evidence ratio to
compare the joint probabilities of the models and the data.

e In the classical information theoretic approach you measure how good
the best fitting models are at predicting new data.

e In the Bayesian information theoretic approach you measure how
good the posterior predictive distributions of the models are at
predicting new data.
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Discussion

Two questions - - -
- Which model, with sufficient data, can be identified as the true model?
- Based on the data, which model lies closest to the true model?

- two answers?

Both likelihood ratio test and the Bayesian model selection go for the
truth: Either you discard the false models via tests, or you determine
the most probable model.

With the information theoretic approach one tries to identify the
model which is closest to the true distribution and most effective in
predictions.

BUT: All models are wrong (G. Box).



AddOn



Bootstrap for b(f)

Explicating the dependence on the data d
b(f) =Er; [n(f;0°(d), Fr) —n (f:0°(d), Frn.d)] -

generate bootstrap samples d= (%, 7i)¥.; from the data by
repeatedly drawing from d with putting back (sampling from Fr p 4).

With bootstrap samples d from y estimate b(f):

b(F) = Erna [ (£:0°(d). Frua) — 0 (£6(d). Frp3)]

e Again an asymptotic result, variance reduction possible.



Priors

e subjective priors
e objective priors, non-informative priors, reference priors

e priors suggested by preceding results (regress?)



e Two models for generating mocks:
> Q,=0.278,w = —1 (red)
> Q,=0.171,w = —0.8 (blue)

e For each mock calculate

AAIC = AIC, — AIC,,, ABPIC = BPIC) — BPIC,,.

e Empirical distribution
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