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Numquam ponenda est pluralitas sine necessitate.
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Parameter estimation

• Measurements d = (xi , yi )
N
i=1 .

• Model f (x ,θ) with parameters θ ∈ A ⊂ RK .

• Objective: determine θ∗ such that f (x ,θ∗) is the best approximation
to the data d , such that f (xi ,θ

∗) is approximation yi .

All methods start with the likelihood – here a Gaussian likelihood:

pf (d |θ) =
(

(2π)N det(Σ)
)− 1

2
exp

(
−1

2

N∑
i=1

(y − f )TΣ−1(y − f )

)

y = (y1, . . . , yN)T , f = (f (x1,θ), . . . , f (xN ,θ))T , covariance matrix Σ.



Maximum likelihood and least square

• Maximum likelihood: Find θ∗ maximising pf (d |θ∗).

In choosing the parameter θ∗, the data points become the most
probable data points given the model f .

• Least square: simplified maximum likelihood with Gaussian
likelihood and diagonal Σ.

Searching for maximum of the log-likelihood

log pf (d |θ) = const.− 1
2

N∑
i=1

(yi − f (xi ,θ))2

σ2
i

is equivalent to searching for the minimum of

χ2
f =

N∑
i=1

(yi − f (xi ,θ))2

σ2
i

.



Bayesian parameter estimation

• Prior distribution pf (θ) of the parameters for model f (x ,θ).

• Posterior distribution pf (θ |d ) from Bayes theorem

pf (θ |d ) =
pf (d |θ) pf (θ)

pf (d )

• Evidence (or marginal likelihood):

pf (d ) =

∫
pf (d |θ) pf (θ)dθ.

• Maximum posterior estimate (MAP): θ∗ maximising pf (θ∗ |d ).



Model selection

• Consider two models

f (x ,θ) with parameters θ ∈ A ⊂ RK ,

g(x ,φ) with parameters φ ∈ B ⊂ RL.

• Determine θ∗ and φ∗ (with your favourite method).

• Which one is better, f (x ,θ∗) or g(x ,φ∗) ?



Goodness of fit

• With the best fit parameters θ∗ calculate

χ2
f =

N∑
i=1

(yi − f (xi ,θ
∗))2

σ2
i

• Reduced–χ2

χ2
f ,red =

χ2
f

ndf

typically ndf = N − K .

- χ2
f ,red ≈ 1 a good fit,

- χ2
f ,red > 1 a bad fit, and

- χ2
f ,red < 1 an overfit.



Hypothesis test and p–value

N data points independent and with Gaussian error, then χ2
f follows

χ2–distribution with N − 1 degrees of freedom.
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• p–value: p = 1− GN−1

(
χ2
f

)
indicates how incompatible the
data are with our model (the
null hypothesis)

• Level of significance α, often
α = 0.05.

• If p < α our model, the
null-hypothesis gets rejected.

Given the model (the null-hypothesis), a small p-value allows us to reject
the model but we do not learn anything about the false negative rate.



Error of the first and of the second kind
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• Our model H0 and the alternative
model H1

• H0 is not rejected (“accepted”)
at the significance level α = 0.05.

• Assume H1 is true, then the false
negative rate is β = 0.32.

α type I error, false positive rate (grey)
β type II error, false negative rate (red)



Likelihood ratio test

• Nested models: f is a special case of g (i.e. A ( B and f |A ≡ g |A).

Null hypothesis: “f is the true model with θ? ∈ A”
Alternative hypothesis: “g is the true model with φ? ∈ B”

• Likelihood ratio

L =
pf (d |θ∗)
pg (d |φ∗)

- large samples: −2 log L is χ2-distributed
with d.f. ν = dimB − dimA.

- p = 1− Gν(−2 log L),
discard null–hypothesis if p < α
with significance level α

• Neyman-Pearson Lemma: the test based on the likelihood ratio is
minimising the false negative rate.



Bayesian model comparison

• Probability of model f and data d : p(f and d ) = pf (d ) πf
similarly for model g : p(g and d ) = pg (d ) πg

πf and πg prior probabilities of our models.

• Bayes factor

p(f and d )

p(g and d )
=

pf (d )

pg (d )
≡ Bfg

(assuming πf = πg ).

• Bfg > 1 then favour model
f over model g
(compare Jeffreys’ scale).

• Evidence (marginal Likelihood)

pf (d ) =

∫
pf (d |θ) pf (θ)dθ

(nested sampling, Chib’s method,
population MC, direct integration)

• BIC: asymptotic for large N
(Schwarz 1978)



Information theoretic approach

• Compare the predictive distribution pp,f (d) to the true probability
pT (d) using Kulback–Leibler (KL) divergence (relative entropy)

D(pT | pp,f ) =

∫
pT (d) log

pT (d)

pp,f (d)
dd

=

∫
pT (d) log pT (d) dd︸ ︷︷ ︸

independent of model f

−
∫

pT (d) log pp,f (d)dd

• Classical approach: use predictive likelihood (marginalised
Likelihood):

pp,f (di ) ≡ pf (di |θ) =

∫
pf (d |θ) dd[i ]

with d[i ] = ((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xN , yN))T .



Classical information theoretic approach I

• compare predictive likelihood pf (d |θ∗) with parameter θ∗ to true
distribution pT (d):

D(pT | pf ) = const︸ ︷︷ ︸
independent from f

−
∫

pT (d) log pf (d |θ∗) dd︸ ︷︷ ︸
η(f )

• The expected log likelihood:

η(f ) =

∫
log pf (d |θ∗) dFT (d),

• Expectation over the true distribution FT — not available.



Insertion: Empirical distribution function

Cumulative distribution function

F (x) =

∫ x

−∞
p(x ′)dx ′
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● • {x1, . . . , xN} i.i.d. from F .

• Empirical distribution function

FN(x) =
1

N

N∑
i=1

I[xi ,∞)(x)

• Glivenko-Cantelli:
‖FN − F‖∞ → 0 uniformly



Classical information theoretic approach II

D(pT | pf ) = const(f )−
∫

log pf (d |θ∗) dFT (d)︸ ︷︷ ︸
η(f )

• Estimate η(f ) by replacing FT (d) with FT ,N(d)

η̂(f ) =

∫
log pf (d |θ∗) dFT ,N(d) =

1

N

N∑
i=1

log pf (di |θ∗)

• However η̂(f ) is biased (θ∗ is point estimate) with

b(f ) =

∫
(η̂(f )− η(f )) dFT .



AIC and beyond

• b(f ) asymptotically goes like K/N (Akaike, 1972)

AIC(f ) ≡ −2N (η̂ − K/N) = −2
N∑
i=1

log pf (di |θ∗) + 2K ,

the model with a smaller value of the AIC is favoured.

• Estimate b̃(f ) using bootstrap, then

EIC(f ) ≡ −2N
(
η̂(f )− b̃(f )

)
,

the model with a smaller value of the EIC is favoured.



Bayesian information theoretic approach

Posterior predictive
distribution:

pppd,f (d) =

∫
pf (d |θ) pf (θ |d ) dθ.

Compare pppd,f (d) to true pT (d)
with KL-divergence

D(pT | pppd,f ) = const−∫
log pppd,f (d) dFT (d)︸ ︷︷ ︸

κ(f )

• Estimate κ(f ) using empirical distribution FT ,N

κ̂(f ) =
1

N

N∑
i=1

log
(∫

pf (di |θ) pf (θ |d )dθ︸ ︷︷ ︸
estimate from the MC chain

)

• Bayesian Predictive Information Criterium

BPIC(f ) ≡ −2N κ̂(f )



The methods

• goodness of fit: χ2
red, p–value

• likelihood ratio test: p–value

• Bayesian: Bayes factor and BIC

• Classical information theoretic approach: AIC, EIC

• Bayesian information theoretic approach: BPIC



The expansion history of the Universe

• SN Ia’s: redshift z and magnitude → distance modulus µ
Union 2.1 (Suzuki et al. 2011) N = 580 data points di = (zi , µi )

• Distance modulus – redshift relation

µ(z ,θ) = 5 log10 dL(z ,θ) + 25

model dependence through luminosity distance dL(z ,θ).

• ΛCDM (with ΩΛ = 1− Ωm)

dL(z ,Ωm) = dH (1 + z)

∫ z

o

dz ′√
Ωm(1 + z ′)3 + ΩΛ

,

• wCDM model (with constant e.o.s. p = w%)

dL(z ,Ωm,w) = dH (1 + z)

∫ z

o

dz ′√
Ωm(1 + z ′)3 + ΩΛ(1 + z ′)3(1+w)

.
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• ΛCDM (blue): Ωm = 0.278± 0.007

• wCDM (red): Ωm = 0.279± 0.06 and w = −1.0± 0.13



Goodness of fit:

χ2
red(Λ) = 0.971, pΛ = 0.68 χ2

red(w) = 0.973, pw = 0.67

Likelihood ratio test:

p = 1− G1(−2 log L) = 0.975

Bayesian approach:

BICΛ = −231.1 BICw = −224.8

BΛw = pΛ(d )
pw (d ) = 5.45 substantial evidence for ΛCDM (Jeffreys’ scale)

Classical information theoretic approach:

AICΛ = −235.5 AICw = −233.5

EICΛ = −239.2 EICw = −241.0

Bayesian information theoretic approach:

BPICΛ = −237.5 BPICw = −237.3



Is there a substantial difference?

Generate random artificial data sets assuming ΛCDM:
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midspread:
∆pΛ

= 0.46, ∆AICΛ
= 42, ∆η̃Λ

= 0.034, ∆BΛw
= 3.4, ∆BICΛ

= 42, ∆BPICΛ
= 43

Using the Union 2.1 data set we cannot decide wether the ΛCDM or
the wCDM model should be preferred.



Summary of the methods

• With the goodness of fit you rank models according to their ability to
fit the data points.

• The likelihood ratio allows you to discard a given model (your null
hypothesis) in favour of the alternative model.

• In a Bayesian model comparison you use the evidence ratio to
compare the joint probabilities of the models and the data.

• In the classical information theoretic approach you measure how good
the best fitting models are at predicting new data.

• In the Bayesian information theoretic approach you measure how
good the posterior predictive distributions of the models are at
predicting new data.



Discussion

• Two questions · · ·
- Which model, with sufficient data, can be identified as the true model?
- Based on the data, which model lies closest to the true model?

· · · two answers?

• Both likelihood ratio test and the Bayesian model selection go for the
truth: Either you discard the false models via tests, or you determine
the most probable model.

• With the information theoretic approach one tries to identify the
model which is closest to the true distribution and most effective in
predictions.

• BUT: All models are wrong (G. Box).



AddOn



Bootstrap for b(f )

• Explicating the dependence on the data d

b(f ) = EFT

[
η (f ;θ?(d ),FT )− η

(
f ;θ?(d ),FT ,N,d

)]
.

• generate bootstrap samples d̃ = (x̃i , ỹi )
N
i=1 from the data by

repeatedly drawing from d with putting back (sampling from FT ,N,d ).

• With bootstrap samples d̃ from y estimate b(f ):

b̃(f ) = ET ,N,d

[
η
(
f ;θ?(d̃ ),FT ,N,d

)
− η

(
f ;θ?(d̃ ),F

T ,N,d̃

)]
.

• Again an asymptotic result, variance reduction possible.



Priors

• subjective priors

• objective priors, non-informative priors, reference priors

• priors suggested by preceding results (regress?)



• Two models for generating mocks:
I Ωm = 0.278,w = −1 (red)
I Ωm = 0.171,w = −0.8 (blue)

• For each mock calculate

∆AIC = AICΛ − AICw , ∆BPIC = BPICΛ − BPICw .

• Empirical distribution
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