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The Numerics of Data Science & Machine Learning
nonlinear, non-analytic computations dominate the cost of data science

Data ModelMachine Learning needs
Computations

integration
like

MCMC, VMP, EP, . . .
for

probabilistic inferenceoptimization SGD, Adam, RMSprop, . . . (stochastic) fittingdifferential eqs. Runge-Kutta, Multi-Step, . . . forecasting & controllinear algebra Cholesky, CG, spectral, . . . all of the above
generic methods save design time, but do not address special needs

d overly generic algorithms are inefficient
d Big Data-specific challenges not addressed by “classical” methods

Data Science / AI / ML needs to build its own numerical methods.As it turns out, we already have the right concepts!
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Computation is Inference
http://probnum.org [Poincaré 1896, Kimeldorf & Wahba 1970, Diaconis 1988, O’Hagan 1992, . . . ]

Numerical methods estimate latent quantities given the result of computations.
integration estimate ∫ ba f(x) dx given {f(xi)}linear algebra estimate x s.t. Ax = b given {As = y}optimization estimate x s.t. ∇f(x) = 0 given {∇f(xi)}simulation estimate x(t) s.t. x′ = f(x, t) given {f(xi, ti)}

It is thus possible to buildprobabilistic numerical methodsthat use probability measures as in- and outputs and assign uncertainty to computation.
Input OutputComputation
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Integration
as Gaussian regression
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f(x) = exp(− sin(3x)2 − x2) F =
∫ 3
−3 f(x) dx =?
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A Wiener process prior p(f , F). . .
Bayesian Quadrature [O’Hagan, 1985/1991]

p(f) = GP(f ; 0, k) k(x, x′) = min(x, x′) + c
⇒ p

(∫ b
a f(x) dx

)
= N

[∫ b
a f(x) dx;

∫ b
a m(x) dx,

∫∫ b
a k(x, x′) dx dx′

]

= N (F; 0,−1/6(b3 − a3) + 1/2[b3 − 2a2b + a3]− (b− a)2c)
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. . . conditioned on actively collected information . . .
computation as the collection of information

xt = arg min [varp(F|x1 ,...,xt−1)(F)
]

d maximal reduction of variance yields regular grid
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. . . yields the trapezoid rule!
[Kimeldorf & Wahba 1975, Diaconis 1988, O’Hagan 1985/1991]
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Ey[F] =
∫

E|y[f(x)] dx = N−1∑

i=1
(xi+1 − xi) 12 (f(xi+1) + f(xi))

d Trapezoid rule is MAP estimate under Wiener process prior on f
d regular grid is optimal expected information choice
d error estimate is under-confident
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Computation as Inference
Bayesian inference on a latent (non-analytic) quantity from computable “observations”

Estimate z from computations c, under model m.
posteriorp(z | c,m) =

priorp(z | m) likelihoodp(c | z,m)∫ p(z | m)p(c | z,m) dz
evidence
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Classic methods as basic probabilistic inference
maximum a-posteriori estimation in Gaussian models

Quadrature [Ajne & Dalenius 1960; Kimeldorf & Wahba
1975; Diaconis 1988; O’Hagan 1985/1991]

Gaussian Quadrature GP Regression
Linear Algebra [Hennig 2014]
Conjugate Gradients Gaussian Regression
Nonlinear Optimization [Hennig & Kiefel 2013]
BFGS / Quasi-Newton Autoregressive Filtering
Differential Equations [Schober, Duvenaud & Hennig 2014; Kerst-

ing & Hennig 2016; Schober & Hennig 2016]
Runge-Kutta; Nordsieck Methods Gauss-Markov Filters

Probabilistic numerical methods can be as fast and reliable as classic ones.
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Probabilistic ODE Solvers
Same story, different task [Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

x′(t) = f(x(t), t), x(t0) = x0
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There is a class of solvers for initial value problems that
d has the same complexity as multi-step methods
d has high local approximation order q (like classic solvers)
d has calibrated posterior uncertainty (order q + 1/2)
d can use uncertain initial value p(x0) = N (x0;m0, P0)
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d Computation is an instance of inference.
d many classic numerical methods can be interpreted as probabilistic inference, arising fromspecific generative models (prior & likelihood)
d Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead(dominated by cost of point estimate)
d Designing a numerical method is a modelling task!

The probabilistic viewpoint allows new functionality for contemporary challenges.
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New Functionality, and new Challenges
making use of the probabilistic numerics perspective

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity. Likelihood:

Posterior: Evidence:
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An integration prior for probability measures
WArped Sequential Active Bayesian Integration (WSABI) [Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

a prior specifically for integration of probability measures
d f > 0 (f is probability measure)
d f ∝ exp(−x2) (f is product of prior and likelihood terms)
d f ∈ C∞ (f is smooth)

Explicit prior knowledge yields reduces complexity.
[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modelling imprecision stabilizes algorithms

Posterior: Evidence:
The usual assumption: p(c | z,m) = δ(c− Amz)
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New numerics for Big Data
Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, iid. batching introduces Gaussian noise
L(θ) = 1

N
N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

p(L̂ | L) ≈ N
(
L̂;L,O

(N− M
NM

))

L

y1 yN
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In Big Data setting, iid. batching introduces Gaussian noise
L(θ) = 1

N
N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

p(L̂ | L) ≈ N
(
L̂;L,O

(N− M
NM

))

Contemporary machine learning requires tedious parameter fitting.
θt+1 = θt − αt∇L̂(θt)

d step size / learning rate αt
d batch size M
d number of steps to termination
d search directions http://xkcd.com/1838
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Uncertainty Can Induce Free Parameters
and require new observables to identify them [Balles, Mahsereci, Hennig (ICML-AutoML 2017)]

L(θ) = 1
N

N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N p(L̂ | L) ≈ N

(
L̂;L,O

( 1
M
))
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Uncertainty Can Induce Free Parameters
and require new observables to identify them [Balles, Mahsereci, Hennig (ICML-AutoML 2017)]
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var L̂(θ) ≈ 1
M− 1


 1

M
M∑
j=1
`2(yj;θ)− L̂2(θ)


 p(L̂ | L) ≈ N (L̂;L, var L̂)

Capturing the likelihood requires a new observable! It’s computation is not free, but cheap!But without it, a key algorithmic parameter is unidentified!
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Choosing Step Sizes in the Presence of Noise
Probabilistic Line Searches [Mahsereci & Hennig, NIPS 2015 (oral) / JMLR 2017]
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d f′(tcand) > 0 ? bisect : extend
d until Wolfe conditions are fulfilled:

f(t) < f(0) + c1f′(0) AND |f′(t)| < c2|f′(0)|
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Probabilistic Line Searches
[Mahsereci & Hennig, NIPS 2015 (oral) / JMLR 2017]

5.5

6

6.5
f(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.40
0.2
0.4
0.6
0.8

1

step size

pWo
lfe (t

)

weak
strong

17



No more Learning Rates!
two-layer feed-forward perceptron. Details, additional results: Mahsereci & Hennig, JMLR 18(119):1–59, 2017.

10−3 10−2 10−1 100 101
0.6
0.8

intial learning rate

test
erro

r
CIFAR10 2layer neural net
fixed α decaying α Line Search

10−3 10−2 10−1 100 10110−2

10−1

100

intial learning rate

MNIST 2layer neural net

f
0 2 4 6 8 10

line search

0 2 4 6 8 10
epoch

decaying α

0 2 4 6 8 10
0.6
0.8

1

test
erro

r

fixed α

0 2 4 6 8 10

fixed α

0 2 4 6 8 10
epoch

decaying α

0 2 4 6 8 100
0.2
0.4
0.6
0.8

1
line search

https://github.com/ProbabilisticNumerics/probabilistic_line_search
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Choosing Batch Sizes
trading off cost and precision [Balles, Romero, Hennig, UAI 2017]

L(θ) = 1
N

N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

d trade-off: std[∇L̂] = O(1/√M), but cost isO(M)
d for SGD: lower bound on improvement: Assume∇L Lipschitz

L(θt)− L(θt+1) ≥ G := α∇L(θt)ᵀ∇L̂(θt)− Lα2
2 ‖∇L̂(θt)‖2

expected improvement: under p(L̂ | L) E(G) =
(
α− Lα2

2
)
‖∇L(θt)‖2 − Lα2

2M
∑

`

var[∇`L̂(θt)]
d maximize expected improvement per cost, let line-search find α = 1/L, some furthersimplifications (local 2nd order approximation, assert minL & 0),

M∗ = arg maxM
E[G]
M ≈ αt

∑
` var[∇`L̂(θt)]
L̂(θt)
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Choosing Batch-Sizes
trading off cost and precision [Balles, Romero, Hennig, UAI 2017]
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https://github.com/ProbabilisticNumerics/CABS 20



Preventing Overfitting
early stopping without a validation set [Mahsereci, Balles, Lassner, Hennig, arXiv 1703.09580]

d in empirical risk minimization, just figuring out when to stop the optimizer is a non-trivial problem
d even the full data set is a sample relative to the population
d overfitting becomes a problem when gradients (with their estimatable variance) are statisticallyindistinguishable to white noise around zero

log p(∇L̂ | ∇L = 0) > Ep(∇L̂|∇L=0)
[log p(∇L̂ | ∇L = 0)]

1− M
D

D∑
`=1

(∇`L(θt))2var∇`L̂(θt) > 0 ⇒ STOP!
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Towards Black Box Deep Learning
inferring free parameters by hierarchical inference

d step sizes Mahsereci & Hennig
Probabilistic Line Searches for Stochastic Optimization NIPS 2015

https://github.com/ProbabilisticNumerics/probabilistic_line_search

d batch sizes Balles, Romero, Hennig
Coupling Adaptive Batch Sizes with Learning Rates UAI 2017

https://github.com/ProbabilisticNumerics/cabs

d termination criteria Mahsereci, Balles, Lassner, Hennig
Early Stopping without a Validation Set arXiv 1703.09580

d data sub-sampling gives rise to imprecise computations / non-Dirac observations likelihoods
d free algorithmic parameters may then become un-identified
d likelihood shape can be identified with minor computational overhead
d classic methods provide a blue-print
d re-phrasing them probabilistically allow inference on free parameters
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modelling imprecision stabilizes algorithms

Posterior: tracking uncertainty for robustness Evidence:

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Computational Pipelines
Probabilistic Numerics in the Loop [Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015]

machineenvironment

learning / inference / system id.

predictionaction

D xt θ

xt+δtat

data variables parametersinference by
quadrature

estimation by
optimization

pred
ictio

nby
ana

lysis

action by
control

for some recent theory, see Thm. 5.9 in Cockayne, Oates, Sullivan, Girolami. arXiv 1702.03673
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Probabilistic Treatment Planning
with M. Bangert @ DKFZ Heidelberg images: wikipedia / DKFZ

radiation treatment planning involves approximately optimizing an imprecise function subject touncertainties.
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Propagating Uncertainty through Pipelines
Analytical Probabilistic Treatment Planning — with DKFZ Heidelberg [Bangert et al., PMB, 2013, 2016, 2017]

d map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees,bounds on approximation error

d track and optimize uncertainties across computation
d to improve treatment outcome, reduce risk of complications
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modelling imprecision stabilizes algorithms

Posterior: tracking uncertainty for robustness Evidence: checking models for safety

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Probabilistic Certification
proof of concept: [Hennig, Osborne, Girolami. Proc. Royal Society A, 2015]

−2 0 200.20.40.60.81
f(x)

−2 0 2

10−10
10−5
100

F−
F̂

100 101 102 103
# samples

100 101 102 103
−400−2000

200400

# samples

r

r = Ef̃
[
log p(f̃(x))

p(f(x))
]

= (f(x)− µ(x))ᵀK−1(f(x)− µ(x))− N
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Summary
Uncertain computation as and for statistical modelling and machine learning

d computation is inference _ probabilistic numerical methods
d probability measures for uncertain inputs and outputs
d classic methods as special cases

Building numerical methods for contemporary challenges amounts to designing probabilistic models.
prior: structural knowledge reduces complexity

likelihood: imprecise computation lowers cost
posterior: uncertainty can be propagated through computations
evidence: model mismatch is detectable at run-time

http://probnum.org https://pn.is.tue.mpg.de

Probabilistic Numerics — Uncertainty in ComputationHennig, Osborne, Girolami Cambridge University Press, ETA 2019
29
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