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nonlinear, non-

Machine Learning needs
Computations

integration MCMC, VMP EP, ... probabilistic inference
optimization like SGD, Adam, RMSprop, ... i (stochastic) fitting
differential egs. Runge-Kutta, Multi-Step, ... forecasting & control
linear algebra Cholesky, CG, spectral, ... all of the above

generic methods save design time, but do not address special needs
+ overly generic algorithms are inefficient
+ Big Data-specific challenges not addressed by “classical” methods

Data Science / Al / ML needs to build its own numerical methods.
As it turns out, we already have the right concepts!
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Computation is Inference

integration estimate fab f(x) dx given {f(x;)}

linear algebra estimate xst Ax=b given {As =y}
optimization  estimate  xst Vf(x)=0  given {Vf(x)}
simulation estimate  x(f) s.t. x’ = f(x,t) given {f(x; 1)}

It is thus possible to build

probabilistic numerical methods
that use probability measures as in- and outputs and assign uncertainty to computation.

Computation
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A Wiener process prior p(f, F)...

Bayesian Quadrature
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conditioned on collected information ...

computation as the ction of information
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+ maximal reduction of variance yields regular grid
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collected information . ..

...conditioned on

computation as the collection of information
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+ maximal reduction of variance yields regular grid
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[Kimeldorf &

EylF] = /E\y[f(x)] dx=> (Xim — Xi)%(f(xiﬂ) +1(xi))

i=1
+ Trapezoid rule is MAP estimate under Wiener process prior on f
+ regular grid is optimal expected information choice

+ error estimate is under-confident




Computatlon as Inference

ian inference on a latent (non-analytic) quantity from computable *

Estimate z from computations ¢, under model m.
eri prior likelihood
posterior Zlm c Z,m
pz] em) - Pz mp(c | zm)
Jpz [ m)p(c | z,m)dz

evidence




Classic methods as basic probabilistic inference
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maximum ¢ nation in Ge an models

[Ajne & Dalenius 1960; Kimeldorf &

Quadrature 1975; Diaconis 1988; O'Hagan 1985/1991]
Gaussian Quadrature GP Regression
Linear Algebra [Hennig 2014]
Conjugate Gradients Gaussian Regression
Nonlinear Optimization [Hennig & Kiefel 2013]
BFGS / Quasi-Newton Autoregressive Filtering

[Schober, Duvenaud & Hennig 2014; Kerst-
Differential Equations ing & Hennig 2016; Schober & Hennig 2016]
Runge-Kutta; Nordsieck Methods Gauss-Markov Filters

Probabilistic numerical methods can be as fast and reliable as classic ones.
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hober & PH., 2

There is a class of solvers for initial value problems that

has the same complexity as multi-step methods

has high local approximation order g (like classic solvers)
has calibrated posterior uncertainty (order g +1/2)

+ can use uncertain initial value p(xo) = A/ (xo; mg, Po)

+

+

+
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+ Computation is an instance of inference.

+ many classic numerical methods can be interpreted as probabilistic inference, arising from
specific generative models (prior & likelihood)

+ Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead
(dominated by cost of point estimate)

+ Designing a numerical method is a modelling task!

The probabilistic viewpoint allows new functionality for contemporary challenges.
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[Prior: structural knowledge reduces complexity. J

p(z| m)

piz| c,m) = [ p(z | mp(c|z,m)dz
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e Ba an Integration
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a prior specifically for integration of probability measures

+ f > 0(f is probability measure)
+ f oc exp(—x2) (f is product of prior and likelihood terms)

+ f € C*> (fis smooth)
Explicit prior knowledge yields reduces complexity.

[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]
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d S i ian Integration ( ) [Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]
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+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC

Explicit prior knowledge yields reduces complexity.

[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]
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new numerical functionality for machine learning

Estimate z from computations ¢, under model m.

-

[Prior: structural knowledge reduces comp\exity] \/'Likelihood: modelling imprecision stabilizes algorithms

p&lmmw\zmj
p(z | mp(c | z,m) dz

p&lam)=f

The usual assumption:
p(c|z,m)=5(c —An2)



New numerics for Big Data

un on Inputs direct ecting numerice

In Big Data setting, iid. batching introduces Gaussian noise




New numerics for Big Data
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Uncertainty on Inputs direc ecting nun

In Big Data setting, iid. batching introduces Gaussian noise

THIS 15 YOUR MACHINE (EARNING SYSTEM?

N 0 1 (y:0) = £(6) YUP! YOU POUR THE DATA NTO THIS BG
: _ -0) = PILE OF LINEAR ALGEBRA, THEN COLLECT
Z; Y Z / THE ANSLEERS ON THE OTHER SIDE.
v M WHAT IF THE ANSLERS ARE lJRONG?)
~ JUST STR THE PILE UNTIL
pIL| L) ~N (’C £, O( NM )) THEY STPRT LOOKING RIGHT.

Contemporary machine learning requires tedious parameter fitting.

O1 = 0; — atV£(91)

+

step size / learning rate a4
batch size M

number of steps to termination
search directions

+

+

http://xkcd.com/1838

+



Uncertainty Can Induce Free Parameters

and require new observables to identify them
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Uncertainty Can Induce Free Parameters

and require ne\ 0 identify them

Capturing the likelihood requires a new observable! It's computation is not free, but cheap!
But without it, a key algorithmic parameter is unidentified!




Choosing Step Sizes in the Presence of Noise

Probabilistic Line Searches [Mahser
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+ f'(teang) > 0 ? bisect : extend
+ until Wolfe conditions are fulfilled:

f(f) < f(0) +&:f'(0) AND |F'(f)] < colf'(0)|
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Probabilistic Line Searches

TUBINGEN

reci & Hennig, NIPS 20
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No more Learning Rates!

rd perceptron. Details, additional r

CIFAR10 2layer neural net
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https://github.com/ProbabilisticNumerics/probabilistic_line_search
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Choosing Batch Sizes

trading off cost and on [Balles, Romero, Hennig, UA
P s

£(6) = % > i0) Z 0y;;0) =: M <N

+ trade-off: std[V £] = O(1/v/M), but cost is O(M)
+ for sGD: lower bound on improvement: Assume V£ Lipschitz
R La? _ .
L(0)) — L(Orw) > 6 = aVL(0)TVL(O:) — %ch(at)u2
2
expected improvement: under p(£ | £) E(G) = (a — La) IVL(6Y)? - 7/1 > varlv,£(0,)]
¢

+ maximize expected improvement per cost, let line-search find « = 1/L, some further
simplifications (local 2nd order approximation, assert min £ > 0),

= ar maX@N !
=arg M ~ Ot

M




Choosing Batch- S|zes

trading off c

Train loss

0.65
A e B = s B T e B T s
1 2 3 4 0020406081 0020406081 0 2 4 6 8
data read 10° data read 107 data read 107 data read 106

10°

107

1

Tt AT AR RITT

- = -M=128
- - - M=512
adaptive

ithub.com/ProbabilisticNumerics/CABS
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Preventmg Overﬂttmg

+ in empirical risk minimization, just figuring out when to stop the optimizer is a non-trivial problem
+ even the full data set is a sample relative to the population

+ overfitting becomes a problem when gradients (with their estimatable variance) are statistically
indistinguishable to white noise around zero

logp(VL | VL = 0) > Eyvzjveeo) [109P(VL [ VL = 0)]

D
Z (VLo >0 = STOP!
= arV(;L‘Ot



Towards Black Box Deep Learning

inferring free parameters erarchical inference

+ step sizes Mahsereci & Hennig
Probabilistic Line Searches for Stochastic Optimization NIPS 2015
https://github.com/ProbabilisticNumerics/probabilistic_line_search

+ batch sizes Balles, Romero, Hennig
Coupling Adaptive Batch Sizes with Learning Rates UAI 2017
https://github.com/ProbabilisticNumerics/cabs

+ termination criteria Mahsereci, Balles, Lassner, Hennig
Early Stopping without a Validation Set arXiv 1703.09580

+ data sub-sampling gives rise to imprecise computations / non-Dirac observations likelihoods
free algorithmic parameters may then become un-identified
likelihood shape can be identified with minor computational overhead

classic methods provide a blue-print
re-phrasing them probabilistically allow inference on free parameters

22
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umerical functionality for machine learning

Estimate z from computations ¢, under model m.

[Prior: structural knowledge reduces comp\exity] [Likelihood: modelling imprecision stabilizes algorithms ]

/

> plz | mp(c | z,m)
[ p@z| mp(c|zm)dz

pz | c,m)

[Posterior: tracking uncertainty for robustness ]

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

23



Computational Pipelines NG

Probabilistic Numerics in the Loop [Hennig, Osborne, Girolami, Proc. Royal §

data variables parameters
inference by estimation by
o U & @
[ [ -
quadrature optimization

1
1 learning / inference / system id.
|
|
T
|
|

action by
Mk Xiest
control

action prediction

)

analysis

prediction by

environment | machine

for some recent theory, see Thm. 5.9 in Cockayne, Oates, Sullivan, Girolami. arXiv 1702.03673
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ipedia / DKFZ

radiation treatment planning involves approximately optimizing an imprecise function subject to
uncertainties.

DEUTSCHES
z KREBSFORSCHUNGSZENTRUM
. IN DER HELMHOLTZ-GEMEINSCHAFT 25



Propagatmg Uncertainty through Pipelines

al Probabilistic Treatment Planning — with DKFZ Heidel 013 017]

ol counts
1o 15 20 25 3 95 40
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{mm] fmm)

+ map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees,
bounds on approximation error

26
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[Bangert et al.,

(a) E[RBE % D] conv. opt. (b) 6{RBE % D] conv. opt.
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+ map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees,
bounds on approximation error
+ track and optimize uncertainties across computation

+ toimprove treatment outcome, reduce risk of complications
26



Computation as Inference o iniigan systems

umerical functionality for machine learning

Estimate z from computations ¢, under model m.

[Prior: structural knowledge reduces comp\exity] [Likelihood: modelling imprecision stabilizes algorithms ]

/

> plz | mp(c | z,m)
[ p@z| mp(c|zm)dz

pz | c,m)

[Posterior: tracking uncertainty for robustness ] [Evidence: checking models for safety ]

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

27



Probabilistic Certification
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28



Summary
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Uncertain computation as and for statistical modelling and machine learning

+ computation is inference — probabilistic numerical methods

+ probability measures for uncertain inputs and outputs
+ classic methods as special cases

Building numerical methods for contemporary challenges amounts to designing probabilistic models.

prior:
likelihood:
posterior:
evidence:

structural knowledge reduces complexity

imprecise computation lowers cost

uncertainty can be propagated through computations
model mismatch is detectable at run-time

http://probnum.org https://pn.is.tue.mpg.de

Probabilistic Numerics — Uncertainty in Computation
Hennig, Osborne, Girolami  Cambridge University Press, ETA 2019

29
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