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Abstract

The report summarizes the detailed analysis of a tuned Wilberforce
pendulum (Ref-[2]). In the initial sections the normal modes and coordi-
nates are reproduced theoretically and numerically and are in agreement
with Berg and Marshall(1990). In the subsequent sections we present a
detailed stability analysis for damped and undamped systems using lin-
earization technique. We find that origin is the only fixed point in both
the situations and that too a universal sink. The critical values of b
and k are also found numerically which determine the underdamped and
overdamped situation. We also present our theoretical and numerical cal-
culation for the damped Wilberforce pendulum. All the numerics have
been performed using RK-4 scheme in MATLAB.

1 Analysis of the Damped Wilberforce Pendu-
lum

We analyse the motion of the damped Wilberforce pendulum. The equations
are no longer solvable analytically and hence we find the solution numerically
using MATLAB. We will consider the simplistic case of damping which linearly
depends on the velocity (and angular velocity). Since damping term is a non-
conservative force, there is no potential associated with it. Hence it can not be
incorporated as an energy function in the Lagrangian (L) of the system. But
we can include it in Euler-Lagrange equation of motion, as follows-

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+
∂D

∂qj
= 0 (1)

where (qi, q̇i) are the generalized coordinates, D is the term which incorpo-
rates the damping force and i, j = 1, 2, 3, .., N , and i 6= j.

Now introduce the damping term as follows-

Translational Motion : Fdamping = −a1ż

Rotational Motion : Fdamping = −a2θ̇
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where a1and a2 are the damping constants.
Now the Euler-Lagrange E.O.Ms are as follows -

z̈ + bż + ω2
oz +

ε

2m
θ = 0 (2)

θ̈ + kθ̇ + ω2
oθ +

ε

2I
z = 0 (3)

where b = a1
m and k = a2

I .
Writing z in terms of θ from equation (3) with k = 0 and simplifying equation

(2), we get the following differential equation-

d4θ

dt4
+ b

d3θ

dt3
+ 2ω2

o

d2θ

dt2
+ bω2

o

dθ

dt
+ (ω4

o −
ε2

4mI
)θ = 0 (4)

Assuming periodic solution, θ(t) = Aeαteiωt from equation (4) we get-

g(ω) = (α+iω)4+b·(α+iω)3+2ω2
o ·(α+iω)2+bω2

o ·(α+iω)+(ω4
o−

ε2

4mI
) = 0 (5)

Equation (14) will be satisfied only when-

Re(g(ω)) = 0 & Im(g(ω)) = 0

where Re and Im denote the real and imaginary part of g(ω).

Re(g(ω)) = 0⇒ ω4−(6α2+3αb−2ω2
o)·ω2+(α4+bα3−2ω2

oα
2+bω2

oα+ω4
o−

ε2

4mI
) = 0

(6)

Im(g(ω)) = 0⇒ 4α3ω + 3α2bω − α · (4ω3 + 4ωω2
o) + bω2

oω − bω3 = 0 (7)

Equations are too complex to solve simultaneously for ωand α. Using Math-
ematica solution to equation (15) (which is a quadratic equation in ω2) gives

ω2
1,2 =

1

2

[
6α2 + 3bα+ 2ω2

o ±
√

32α4 + 32α3b+ 16α3ω2
o + 9α2b2 + 8αbω2

o +
ε2

4mI

]
(8)

But the equation (7) can not be solved for α in terms of constants. Please
note that if we put b = α = 0 which is the undamped case we exactly recover
the normal modes for the undamped Wilberforce pendulum, confirming that
our solution is correct. Now, we can guess that α < 0 as the amplitudes in both
z and θ should decrease with time in damped situation (see Figure 2). Also in
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Figure 1: Solution for the coordinates z and θ (underdamped situation)

this case energy of the system will no longer be constant, in fact it will decrease
exponentially (see Figure 3). The beat phenomena (underdamped) (see Figure
1) is observed in this case also but with small values b and k. Following table1

summarizes the underdamped and overdamped situation.

b(s−1) k(s−1) Beat Situation

0 0 Yes Undamped

0.1 0.1 Yes Underdamped

0.4 ≥ 0 No Overdamped

< 0.4 < 0.1 Yes Underdamped

≥ 0 0.4 No Overdamped

> 0.25 > 0.25 No Overdamped

1These are some typical values for b and k.
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Figure 2: Solution for the coordinates z and θ (overdamped situation)

Figure 3: Energies as functions of time (damped situation)
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1.1 Stability Analysis

Following the same linearization technique as in the case of undamped one-
We write the equation of the motions in terms of functions with several

variables as follows2-

dż

dt
= −ω2

oz − bż −
ε

2m
θ = f1(z, θ, x, y) (9)

dθ̇

dt
= −ω2

oθ − kθ̇ −
ε

2I
z = f2(z, θ, x, y) (10)

dz

dt
= ż = x = f3(z, θ, x, y) (11)

dθ

dt
= θ̇ = y = f4(z, θ, x, y) (12)

To find the fixed points,

f1(z∗, θ∗, x∗, y∗) =f2(z∗, θ∗, x∗, y∗) = f3(z∗, θ∗, x∗, y∗) = f4(z∗, θ∗, x∗, y∗) = 0

where, (z∗, θ∗, x∗, y∗) is 4-tuple fixed point in four-dimensional hyperspace.

f1 = 0⇒ ω2
oz

∗ + bż∗ +
ε

2m
θ∗ = 0 (13)

f2 = 0⇒ ω2
oθ

∗ + kθ̇∗ +
ε

2I
z∗ = 0 (14)

f3 = 0⇒ x∗ = ż∗ = 0 (15)

f4 = 0⇒ y∗ = θ̇∗ = 0 (16)

Solving equations (13) & (14) we get-

z∗ = θ∗ = 0 or ω4
o = ε2

4mI

But from our definition of ω2
o = ks

m = δ
I we know that, ω4

o = ksδ
mI 6=

ε2

4mI and
therefore the only values which satisfy the equations (5) & (6) simultaneously
are z∗ = θ∗ = 0. Hence the only fixed point for this system is -

(z∗, θ∗, x∗, y∗) = (0, 0, 0, 0)

Now the Jacobian matrix for this fixed point can be written as-

J(0, 0, 0, 0) =


∂f1
∂z

∂f1
∂θ

∂f1
∂x

∂f1
∂y

∂f2
∂z

∂f2
∂θ

∂f2
∂x

∂f2
∂y

∂f3
∂z

∂f3
∂θ

∂f3
∂x

∂f3
∂y

∂f4
∂z

∂f4
∂θ

∂f4
∂x

∂f4
∂y


(0,0,0,0)

=


−ω2

o − ε
2m b 0

− ε
2I −ω2

o 0 k
0 0 1 0
0 0 0 1


2The coordinates have usual SI units such as z in (m), θ in (rad), x in (m

s
) and y in ( rad

s
)
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Figure 4: Phase portrait for the Translational motion (damped)

To find the stability of this fixed point we need to calculate the eigenvalues
of this matrix. The following expression will give the eigenvalues of this matrix-

det(J(0, 0, 0, 0)− λI) = 0

where, λ denotes the eigenvalues for this matrix and I is 4 x 4 identity matrix
and det(·) denotes the determinant of the matrix. This gives-

det


−ω2

o − λ − ε
2m b 0

− ε
2I −ω2

o − λ 0 k
0 0 1 0
0 0 0 1

 = 0

Solving this we get following eigenvalues and eigenvectors-

Eigenvalues (λ) Eigenvectors (ν)

1 > 0 ν1 = ( εk
2m(−1+ ε

2mk−2ω2
o−ω4

o)
,

−k(1+ω2
o)

(−1+ ε
2mk−2ω2

o−ω4
o)
, 0, 1)

1 > 0 ν2 =(
b(1+ω2

o)
2m(−1+ ε

2mk+2ω2
o+ω

4
o)
, bk
2I(−1+ ε

2mk−2ω2
o−ω4

o)
, 1, 0)

−
√

ε2

4mI − ω
2
o < 0 ν3 =(

√
I
m , 0, 0, 0)√

ε2

4mI − ω
2
o < 0 ν4 =(−

√
I
m , 0, 0, 0)
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Figure 5: Phase portrait for the Rotational motion (damped)

Form the above table we can easily compare the eigenvalues and eigenvectors
of damped system with undamped system. The only difference comes in the first
two eigenvectors. The flowlines here also are repelling from the fixed point in the
directions ν1 and ν2 and attracting in the directions ν3 and ν4 in 4-dimension
phase portrait. In the damped case also the origin is a universal sink and
we can clealry observe the spirals (as z & θ decay in time in this case). The
separate phase portrait for translational and rotational are plotted numerically
in MATLAB (See Figure 4 & Figure 5).

2 Table for Parameters3

Parameters Values (units)

Coupling constant: ε 9.27× 10−3N
Natural frequency: ωo 2.31rad/s

Mass: m 0.49kg
Moment of Intertia: I 1.29× 10−4kg −m2
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