This archive is a catalogue of the maximum density evolution
of 136 supernova core collapse models as described in detail
in this paper:
1. Dimmelmeier, H., Ott, C.D., Marek, A., and Janka, H.-T.,
"The gravitational wave burst signal from stellar core collapse and bounce",
Phys. Rev. D, submitted, (2008).
It contains the following files:
density_e15a_shen.dat density_e15a_ls.dat
density_e15b_shen.dat density_e15b_ls.dat
density_e20a_shen.dat density_e20a_ls.dat
density_e20b_shen.dat density_e20b_ls.dat
density_s11a1o01_shen.dat density_s11a1o01_ls.dat
density_s11a1o05_shen.dat density_s11a1o05_ls.dat
density_s11a1o07_shen.dat density_s11a1o07_ls.dat
density_s11a1o09_shen.dat density_s11a1o09_ls.dat
density_s11a1o13_shen.dat density_s11a1o13_ls.dat
density_s11a2o05_shen.dat density_s11a2o05_ls.dat
density_s11a2o07_shen.dat density_s11a2o07_ls.dat
density_s11a2o09_shen.dat density_s11a2o09_ls.dat
density_s11a2o13_shen.dat density_s11a2o13_ls.dat
density_s11a2o15_shen.dat density_s11a2o15_ls.dat
density_s11a3o05_shen.dat density_s11a3o05_ls.dat
density_s11a3o07_shen.dat density_s11a3o07_ls.dat
density_s11a3o09_shen.dat density_s11a3o09_ls.dat
density_s11a3o12_shen.dat density_s11a3o12_ls.dat
density_s11a3o13_shen.dat density_s11a3o13_ls.dat
density_s11a3o15_shen.dat density_s11a3o15_ls.dat
density_s15a1o01_shen.dat density_s15a1o01_ls.dat
density_s15a1o05_shen.dat density_s15a1o05_ls.dat
density_s15a1o07_shen.dat density_s15a1o07_ls.dat
density_s15a1o09_shen.dat density_s15a1o09_ls.dat
density_s15a1o13_shen.dat density_s15a1o13_ls.dat
density_s15a2o05_shen.dat density_s15a2o05_ls.dat
density_s15a2o07_shen.dat density_s15a2o07_ls.dat
density_s15a2o09_shen.dat density_s15a2o09_ls.dat
density_s15a2o13_shen.dat density_s15a2o13_ls.dat
density_s15a2o15_shen.dat density_s15a2o15_ls.dat
density_s15a3o05_shen.dat density_s15a3o05_ls.dat
density_s15a3o07_shen.dat density_s15a3o07_ls.dat
density_s15a3o09_shen.dat density_s15a3o09_ls.dat
density_s15a3o12_shen.dat density_s15a3o12_ls.dat
density_s15a3o13_shen.dat density_s15a3o13_ls.dat
density_s15a3o15_shen.dat density_s15a3o15_ls.dat
density_s20a1o01_shen.dat density_s20a1o01_ls.dat
density_s20a1o05_shen.dat density_s20a1o05_ls.dat
density_s20a1o07_shen.dat density_s20a1o07_ls.dat
density_s20a1o09_shen.dat density_s20a1o09_ls.dat
density_s20a1o13_shen.dat density_s20a1o13_ls.dat
density_s20a2o05_shen.dat density_s20a2o05_ls.dat
density_s20a2o07_shen.dat density_s20a2o07_ls.dat
density_s20a2o09_shen.dat density_s20a2o09_ls.dat
density_s20a2o13_shen.dat density_s20a2o13_ls.dat
density_s20a2o15_shen.dat density_s20a2o15_ls.dat
density_s20a3o05_shen.dat density_s20a3o05_ls.dat
density_s20a3o07_shen.dat density_s20a3o07_ls.dat
density_s20a3o09_shen.dat density_s20a3o09_ls.dat
density_s20a3o12_shen.dat density_s20a3o12_ls.dat
density_s20a3o13_shen.dat density_s20a3o13_ls.dat
density_s20a3o15_shen.dat density_s20a3o15_ls.dat
density_s40a1o01_shen.dat density_s40a1o01_ls.dat
density_s40a1o05_shen.dat density_s40a1o05_ls.dat
density_s40a1o07_shen.dat density_s40a1o07_ls.dat
density_s40a1o09_shen.dat density_s40a1o09_ls.dat
density_s40a1o13_shen.dat density_s40a1o13_ls.dat
density_s40a2o05_shen.dat density_s40a2o05_ls.dat
density_s40a2o07_shen.dat density_s40a2o07_ls.dat
density_s40a2o09_shen.dat density_s40a2o09_ls.dat
density_s40a2o13_shen.dat density_s40a2o13_ls.dat
density_s40a2o15_shen.dat density_s40a2o15_ls.dat
density_s40a3o05_shen.dat density_s40a3o05_ls.dat
density_s40a3o07_shen.dat density_s40a3o07_ls.dat
density_s40a3o09_shen.dat density_s40a3o09_ls.dat
density_s40a3o12_shen.dat density_s40a3o12_ls.dat
density_s40a3o13_shen.dat density_s40a3o13_ls.dat
density_s40a3o15_shen.dat density_s40a3o15_ls.dat
The equation of state used during the evolution is either
the one of Shen et al. (Shen EoS) or the one by Lattimer
and Swesty (LS EoS).
The initial model is the presupernova stellar model
e15a/e15b/e20a/e20b/s11.2/s15/s20/s40, where the
e15a/e15b/e20a/e20b have an angular momentum distribution
from stellar evolution calculations, while the
s11.2/s15/s20/s40 models rotate at prescribed
different rates with various profiles.
Each collapse model is specified by two parameters, A and O:
A1: A = 5.0 * 10^9 cm
A2: A = 1.0 * 10^8 cm
A3: A = 5.0 * 10^7 cm
A1O01: Omega_c,i = 0.45 rad/s
A1O05: Omega_c,i = 1.01 rad/s
A1O07: Omega_c,i = 1.43 rad/s
A1O09: Omega_c,i = 1.91 rad/s
A1O13: Omega_c,i = 2.71 rad/s
A2O05: Omega_c,i = 2.40 rad/s
A2O07: Omega_c,i = 3.40 rad/s
A2O09: Omega_c,i = 4.56 rad/s
A2O13: Omega_c,i = 6.45 rad/s
A2O15: Omega_c,i = 7.60 rad/s
A3O05: Omega_c,i = 4.21 rad/s
A3O07: Omega_c,i = 5.95 rad/s
A3O09: Omega_c,i = 8.99 rad/s
A3O12: Omega_c,i = 10.65 rad/s
A3O13: Omega_c,i = 11.30 rad/s
A3O15: Omega_c,i = 13.31 rad/s
Only for the s20 model, this corresponds to the following rotation
rates beta_rot_ini (with the 'old' notation):
O01 --> B0.05: beta_rot_ini = 0.05%
O05 --> B0.25: beta_rot_ini = 0.25%
O07 --> B0.50: beta_rot_ini = 0.50%
O09 --> B0.90: beta_rot_ini = 0.90%
O12 --> B1.60: beta_rot_ini = 1.60%
O13 --> B1.80: beta_rot_ini = 1.80%
O15 --> B2.50: beta_rot_ini = 2.50%
Column 1 is the coordinate time 't' in units of milliseconds.
Column 2 is the maximum density 'rho_max' in units of gramms per
cubic-centimeter.
This density evolution catalogue can be obtained freely from this URL:
http://www.mpa-garching.mpg.de/rel_hydro/
-----------------------------------------------------------------
27 February 2008, Harald Dimmelmeier (harrydee@mpa-garching.mpg.de).