This archive is a catalogue of the maximum density evolution
of 26 supernova core collapse models as described in detail
in these two papers:
1. Dimmelmeier, H., Font, J.A., and M\"uller, E.,
"Relativistic simulations of rotational core collapse.
I. Methods, initial models, and code tests",
Astron. Astrophys., 388, 917-935 (2002);
astro-ph/0204288.
2. Dimmelmeier, H., Font, J.A., and M\"uller, E.,
"Relativistic simulations of rotational core collapse.
II. Collapse dynamics and gravitational radiation",
Astron. Astrophys., 393, 523-542 (2002);
astro-ph/0204289.
It contains the following files:
density_A1B1G1_N.dat density_A1B1G1_R.dat
density_A1B2G1_N.dat density_A1B2G1_R.dat
density_A1B3G1_N.dat density_A1B3G1_R.dat
density_A1B3G2_N.dat density_A1B3G2_R.dat
density_A1B3G3_N.dat density_A1B3G3_R.dat
density_A1B3G5_N.dat density_A1B3G5_R.dat
density_A2B4G1_N.dat density_A2B4G1_R.dat
density_A3B1G1_N.dat density_A3B1G1_R.dat
density_A3B2G1_N.dat density_A3B2G1_R.dat
density_A3B2G2_N.dat density_A3B2G2_R.dat
density_A3B2G4_N.dat density_A3B2G4_R.dat
density_A3B2G4_soft_N.dat density_A3B2G4_soft_R.dat
density_A3B3G1_N.dat density_A3B3G1_R.dat
density_A3B3G2_N.dat density_A3B3G2_R.dat
density_A3B3G3_N.dat density_A3B3G3_R.dat
density_A3B3G5_N.dat density_A3B3G5_R.dat
density_A3B4G2_N.dat density_A3B4G2_R.dat
density_A3B5G4_N.dat density_A3B5G4_R.dat
density_A4B1G1_N.dat density_A4B1G1_R.dat
density_A4B1G2_N.dat density_A4B1G2_R.dat
density_A4B2G2_N.dat density_A4B2G2_R.dat
density_A4B2G3_N.dat density_A4B2G3_R.dat
density_A4B4G4_N.dat density_A4B4G4_R.dat
density_A4B4G5_N.dat density_A4B4G5_R.dat
density_A4B5G4_N.dat density_A4B5G4_R.dat
density_A4B5G5_N.dat density_A4B5G5_R.dat
The initial models are rotating gamma = 4/3 polytropes in equlibrium
with a central density rho_c_ini = 1.0 * 10^10 g/cm^3.
Each collapse model is specified by three parameters, A, B, and G:
A1: A = 5.0 * 10^9 cm
A2: A = 1.0 * 10^8 cm
A3: A = 5.0 * 10^7 cm
A4: A = 1.0 * 10^7 cm
B1: beta_rot_ini = 0.25%
B2: beta_rot_ini = 0.5%
B3: beta_rot_ini = 0.9%
B4: beta_rot_ini = 1.8%
B5: beta_rot_ini = 4.0%
G1: gamma_1 = 1.325
G2: gamma_1 = 1.32
G3: gamma_1 = 1.31
G4: gamma_1 = 1.30
G5: gamma_1 = 1.28
The parameter _R/_N in the density name stands for a simulation in
relativistic/Newtonian gravity, respectively. Thus, for example
'density_A2B4G1_R.dat' is the maximum density evolution of model
A2B4G1 in relativistic gravity. One model, A3B2G4_soft, has been
simulated with a soft equation of state. For details we refer to
paper 1 as listed above.
For the Newtonian models
A1B1G1, A1B2G1, A1B3G1, A1B3G2, A1B3G3, A1B3G5, A2B4G1, A3B1G1,
A3B2G1, A3B2G2, A3B2G4, A3B2G4_soft, A3B3G1, A3B3G2,
and the relativistic models
A1B1G1, A1B2G1, A1B3G1, A1B3G2, A1B3G3, A1B3G5, A2B4G1, A3B1G1,
A3B2G1, A3B2G2, A3B2G4, A3B2G4_soft, A3B3G1, A3B3G2, A3B3G3,
A3B3G5, A3B4G2,
the maximum density rho_max is identical to the central density
rho_c. All other models have a toroidal density structure, and
thus rho_max > rho_c.
Column 1 is the coordinate time 't' in units of milliseconds.
Column 2 is the maximum density 'rho_max' in units of gramms per
cubic-centimeter.
This density evolution catalogue can be obtained freely from this URL:
http://www.mpa-garching.mpg.de/rel_hydro/
-----------------------------------------------------------------
23 June 2004, Harald Dimmelmeier (harrydee@mpa-garching.mpg.de).