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ABSTRACT
Abundances of the proton-capture elements and their isotopes in globular-cluster stars
correlate with each other in such a manner as if their variations were produced in
high-temperature hydrogen burning at the same time in the past. In addition to these
primordial abundance variations, the RGB stars in globular clusters, like their field
counterparts, show the evolutionary variations of the C and N abundances and 12C/13C
isotopic ratio. The latter are caused by extra mixing operating in the RGB star’s radia-
tive zone that separates the H-burning shell from the bottom of its convective envelope.
We demonstrate that among the potential sources of the primordial abundance vari-
ations in globular-cluster stars proposed so far, such as the hot-bottom burning in
massive AGB stars and H burning in the convective cores of supermassive and fast-
rotating massive MS stars, only the supermassive MS stars with M > 104M� can
explain all the abundance correlations without any fine-tuning of free parameters. We
use our assumed chemical composition for the pristine gas in M13 (NGC 6205) and its
mixtures with 50% and 90% of the material partially processed in H burning in the
6 × 104 M� MS model star as the initial compositions for the normal, intermediate
and extreme populations of low-mass stars in this globular cluster, as suggested by
its O-Na anti-correlation. We evolve these stars from the zero-age MS to the RGB
tip with the thermohaline and parametric prescriptions for the RGB extra mixing.
We find that the 3He-driven thermohaline convection cannot explain the evolutionary
decline of [C/Fe] in M 13 RGB stars, which, on the other hand, is well reproduced
with the universal values for the mixing depth and rate calibrated using the observed
decrease of [C/Fe] with MV in the globular cluster NGC5466 that does not have the
primordial abundance variations.
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1 INTRODUCTION

There is a long-standing problem in stellar astrophysics —
understanding the origin of the abundance anomalies of
the proton-capture elements, such as C, N, O, F, Na, Mg,
Al, and their isotopes in globular-cluster stars (e.g., Kraft
1979, 1994; Gratton, Carretta & Bragaglia 2012). The fact
that the anomalous abundance variations display clear anti-
correlations between C and N, O and Na, Na and F, O and
Al, as well as Al and Mg is unanimously interpreted as a
strong evidence for all of them to have been produced in

? E-mail: pavelden@uvic.ca.

hydrogen burning at a sufficiently high temperature, so that
reactions of the NeNa and MgAl cycles were able to com-
pete with the CNO cycle (Denissenkov et al. 1998; Prant-
zos, Charbonnel & Iliadis 2007). Given that some of these
anti-correlations are found in low-mass main-sequence (MS)
stars in the present-day globular clusters (GCs) (Briley et al.
1996; Cannon et al. 1998; Gratton et al. 2001; Briley, Co-
hen & Stetson 2002; Briley et al. 2004), the required high-
temperature H burning must have occurred in their more
massive siblings in the past. Because anti-correlations of the
same magnitude are observed in a same GC both in MS
and red giant stars (Gratton et al. 2001; Dobrovolskas et al.
2014), the latter possessing deep convective envelopes, quite
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significant fractions of material lost by the massive stars that
had produced those anti-correlations must have been mixed
with the pristine gas in the young GC before the low-mass
stars formed out of that mixture.

Three types of H-burning in stars have been proposed
as possible sources of the primordial abundance variations of
p-capture elements in GCs: hot-bottom burning in massive
asymptotic giant branch (AGB) stars (D’Antona, Gratton
& Chieffi 1983), H burning in convective cores of rapidly ro-
tating massive MS stars (Decressin et al. 2007) and, more re-
cently, core H burning in supermassive MS stars with masses
M & 104 M� (Denissenkov & Hartwick 2014). Fast rotation
with a nearly break-up velocity in the second case plays a
twofold role: firstly, it drives rotation-induced mixing in the
radiative envelope, thus bringing H-burning products from
the convective core to the surface and, secondly, it leads to
equatorial mass loss with a relatively low velocity caused by
the centrifugal force. The second property, like the assumed
low-velocity mass loss by the AGB stars, is required to ex-
plain the retention of the mass lost by the massive stars in
the shallow potential well of the young GC. It is also as-
sumed that the massive AGB and MS stars had migrated to
the GC centre, as a result of dynamical friction, before they
deposited the products of H burning to the GC interstellar
medium. The last assumption is usually used to interpret
the larger fraction of low-mass stars with the stronger abun-
dance anomalies in the cores of some GCs (e.g. Milone et al.
2012).

A solution of the problem of the primordial abundance
variations in GCs should be divided into two steps. The first
step is to find the right massive star candidate, such that
when we dilute its H-burning yields with the GC pristine
gas we get individual abundances and correlations between
them consistent with all the relevant observational data for
GCs. The second step is to understand how the required
massive stellar objects formed and functioned, how their lost
mass was retained and mixed with the pristine gas in GCs,
and how significant fractions of low-mass stars made out of
those gas mixtures survived and got distributed among their
unpolluted counterparts in GCs by the present day.

We think that it is not worth discussing any solution
details pertaining to the second step until the first step is
completed, especially, given that there are a lot of observa-
tional data on abundances of p-capture elements and their
isotopes in GC stars to constrain the solution on the first
step, whereas there are no direct observational data on the
formation of the first generation stars in GCs.

In this paper, we conclude that the massive AGB and
MS stars are not the best candidates for the origin of the
primordial abundance variations in GCs, because they fail
to reproduce the correlations between the abundances of Al
and Mg isotopes, that have recently been reported by Da
Costa, Norris & Yong (2013) and now include stars from
5 GCs. We demonstrate that this failure is a consequence
of temperatures of H burning in these objects that are ei-
ther too high (in the case of AGB stars) or too low (in the
case of massive MS stars). On the other hand, the hypo-
thetical supermassive MS stars with M & 104 M� have the
right temperature to nicely reproduce not only the Mg-Al
anti-correlation, but also all the other observed abundance
anomalies of the p-capture elements in GCs, including en-
hanced He abundances (Denissenkov & Hartwick 2014).

The primordial variations of the C and N abundances
and 12C/13C isotopic ratio in GCs are obscured by their
evolutionary changes that occur in low-mass stars, both in
GCs and in the field, on the upper red giant branch (RGB)
above the bump luminosity. These changes are caused by
some extra mixing that operates in radiative zones of RGB
stars between the H-burning shell (HBS) and the bottom
of the convective envelope (BCE). It results in the decreas-
ing surface C abundance and 12C/13C ratio and increasing
N abundance when the star climbs the upper RGB and its
luminosity increases. At the bump luminosity, the HBS, ad-
vancing in mass, erases a mean molecular weight (µ) dis-
continuity left behind by the BCE at the end of the first
dredge-up. This discontinuity probably prevents extra mix-
ing from reaching the HBS on the lower RGB. Above the
bump luminosity, the µ-profile in the radiative zone is uni-
form everywhere, except the vicinity of the HBS, where the
reaction 3He(3He,2p)4He produces its local depression of the
order of ∆µ ∼ 10−4 (Eggleton, Dearborn & Lattanzio 2006).
This µ-depression should drive thermohaline mixing that
was proposed for the role of RGB extra mixing by Char-
bonnel & Zahn (2007) who assumed that its associated fluid
parcels (“salt fingers”) had a ratio of their vertical length to
horizontal diameter a = l/d ≈ 6.2. However, numerical sim-
ulations of thermohaline convection by Denissenkov (2010)
have shown that the aspect ratio of salt fingers in RGB stars
is rather a . 1. Given that the diffusion coefficient for ther-
mohaline convection Dth is proportional to a2, it turns out
to be too inefficient for the RGB extra mixing.

In this work, we have chosen M13 (NGC 6205) as an
exemplary instance of GCs with abundance anomalies of p-
capture elements, because it is one of a few GCs that show
the most extreme primordial abundance anomalies. We as-
sume that its low-mass stars had been formed out of mix-
tures of the pristine gas and a varying fraction of material
lost by a supermassive MS star with M > 104 M�, as de-
scribed by Denissenkov & Hartwick (2014). Following John-
son & Pilachowski (2012), we use the O-Na anti-correlation
for M13 stars to subdivide them into three populations
according to the strength of their primordial abundance
anomalies: a normal (or primordial) population is made of
the pristine gas, while intermediate and extreme populations
contain, respectively, 50% and 90% of material from the su-
permassive star mixed with the pristine gas. Then, we allow
the low-mass stars belonging to the different populations to
evolve from the zero-age MS to the RGB tip. The RGB ex-
tra mixing is modeled either using the thermohaline diffusion
coefficient (equation 25) from Denissenkov (2010) with the
salt-finger aspect ratios a & 7 that provide the most efficient
mixing or using the observationally constrained parametric
prescription from Denissenkov & Pinsonneault (2008) and
Denissenkov (2012) that employs the same mixing depth as
in the thermohaline case, i.e. log10(rmix/R�) = −1.35, and
diffusion coefficient Dmix = αK, where K is the thermal
diffusivity and α = 0.01 – 0.1 is the free parameter. This
simple model that focuses on the nucleosynthesis part (the
first step) of the solution takes into account both the primor-
dial and evolutionary abundance variations of the p-capture
elements in GC stars. We compare its predictions with the
relevant observational data not only for M13 but also for
other GCs.

c© 2014 RAS, MNRAS 000, 1–11
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Figure 1. Panel A: the O-Na anti-correlation for the M 13 RGB stars (the blue, green and red circles) from Johnson & Pilachowski

(2012) is compared with the dilution curves (the magenta star symbols, squares and diamonds connected by the solid black curves)

obtained by mixing the abundances from the M 13 pristine gas (the lower-right ends of the curves) with a varying fraction (from 0%
to 100%) of material from the supermassive MS stars with the masses 5 × 104 M� (the star symbols), 6 × 104 M� (the squares) and

7 × 104M� (the diamonds). The black asterisks connected by the dashed line are the theoretical data for the massive AGB stars with

the indicated initial masses from Ventura & D’Antona (2009). Panels B, C and D: the Al abundances and Mg isotopic ratios for the 33
RGB stars from 5 GCs collected by Da Costa, Norris & Yong (2013) (the large single symbols, as identified in panel D) are compared

with the theoretical predictions from the supermassive MS and massive AGB stars, as explained for panel A.

2 COMPUTATIONAL METHOD

The MS evolution of supermassive stars with M > 104 M�
is calculated using the revision 5329 of the stellar evolution
code of MESA1 (Paxton et al. 2011, 2013), as described by
Denissenkov & Hartwick (2014). The evolution of low-mass
stars with the RGB extra mixing modeled with the ther-
mohaline diffusion coefficient Dmix = Dth and parametric
prescription Dmix = αK is computed using the older MESA
revision 3251 for which smoothing parameters were adjusted
by Denissenkov (2010) to reproduce the results of his COM-
SOL high-resolution test simulations. Both codes are run
with the same nuclear network that includes 31 isotopes
from 1H to 28Si coupled by 60 reactions of the pp chains,
CNO, NeNa and MgAl cycles. For solar composition, we
use the elemental abundances of Grevesse & Sauval (1998)
with the isotopic abundance ratios from Lodders (2003). The
chemical composition of the pristine gas in M13 is obtained

1 http://mesa.sourceforge.net

from the solar composition using [Fe/H]2 = −1.53 for the
metallicity of M13 as a scaling factor and [α/Fe] = +0.4 for
the abundances of α-elements (16O, 20Ne, 24Mg etc.). We
also assume [Na/Fe] = −0.4 and the solar Mg isotopic ra-
tios in the initial composition of the pristine gas because
these values are suggested by the observational data (e.g.,
Fig. 1). With the MESA kap pre-processor we have gener-
ated opacity tables appropriate for our initial composition,
i.e. the ones based on the Grevesse & Sauval (1998) solar
abundances with [α/Fe] = +0.4, and employed them for all
of our mixtures. The pre-processor uses the corresponding
OPAL opacity tables (Iglesias & Rogers 1993, 1996) and low-
temperature molecular opacities of Ferguson et al. (2005) as
input data. For the convective mixing length, we have cho-
sen the MESA solar calibrated parameter αMLT = 1.92 in
the Henyey, Vardya & Bodenheimer (1965) MLT prescrip-

2 We use the standard spectroscopic notation [A/B] =

log10(N(A)/N(B)) − log10(N�(A)/N�(B)), where N(A)

and N(B) are number densities of the nuclides A and B.

c© 2014 RAS, MNRAS 000, 1–11
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Figure 2. The same theoretical plot as in Fig. 1A, but for the
He mass fraction Y . The dilution curves for the different super-

massive MS star models are overlaying one another.

tion. Atmospheric boundary conditions are calculated in the
approximation of Krishna Swamy (1966).

For M13 isochrone calculations, we have used the Victo-
ria stellar evolution code (VandenBerg et al. 2012), because
it treats both atomic diffusion and its counteracting turbu-
lent mixing, whereas MESA code does not include the latter,
which leads to an excessive depletion of the surface He abun-
dance on the MS3. Therefore, in our MESA calculations of
the evolution of low-mass stars we neglect atomic diffusion.
This increases the effective temperature at the MS turn-off,
but does not lead to important differences, except for Li, in
the evolution of surface composition on the RGB as com-
pared to the Victoria models, because the first dredge-up
erases most of the surface abundance changes produced by
atomic diffusion on the MS.

3 THREE POPULATIONS OF LOW-MASS
STARS IN M13

Following Denissenkov & Hartwick (2014), we calculate the
evolution of supermassive MS stars with M > 104 M� only
until the He mass fraction at the surface and, because these
stars are fully convective, also at the centre has reached the
value Y = 0.40, which is close to the maximum He abun-
dances reported in the present-day GC stars (Pasquini et al.
2011; King et al. 2012). The corresponding ages of the super-
massive stars are less than 105 years. Their initial chemical
composition is assumed to be that of the M13 pristine gas,
which is equivalent to the composition of the M13 normal
population in Table 1.

The filled blue, green and red circles in Fig. 1A rep-
resent, respectively, the normal (or primordial), interme-
diate and extreme populations of low-mass RGB stars in
M 13, according to the selection criteria used by Johnson

3 When very close to the same physics is assumed, the Victoria
and MESA codes predict nearly identical evolutionary tracks and

lifetimes for stars of a given mass and chemical composition (see

VandenBerg et al. 2012).

& Pilachowski (2012). Together, they form the O-Na anti-
correlation which, like the other correlations between the p-
capture elements and their isotopes, is usually interpreted as
a result of mixing of the pristine gas with different fractions
of material lost by massive stars that had taken place in the
young GC, before those low-mass stars formed. In this inter-
pretation, one end of a correlation, e.g. the lower-right end of
the O-Na anti-correlation, gives abundances in the pristine
composition ([O/Fe]≈ +0.4 and [Na/Fe]≈ −0.4 for M13),
while the other end points towards abundances characteris-
tic of the polluting star ([O/Fe]. −1 and [Na/Fe]≈ +0.4
for M 13).

The filled magenta star symbol, square and diamond at
the left ends of solid black curves in Fig. 1A give the O and
Na abundances in the MS stars with the masses 5×104 M�,
6 × 104 M� and 7 × 104 M� at Y = 0.40. The same sym-
bols at other locations along the solid black curves show the
results of these final abundances having been mixed with
10%, 20%,. . . , 90% and 100% of the O and Na abundances
from the pristine gas. As the abundance mixtures represen-
tative for the normal, intermediate and extreme populations
of stars in M13, we choose those with 0%, 50% and 90% of
material from the supermassive stars (the first, sixth and
tenth points on the solid black curves counting from their
lower-right ends). We make such a discrete choice only for
simplicity, while keeping in mind that, actually, there are no
sharp boundaries between the three populations in Fig. 1A.

The different single symbols in Figs. 1B, 1C and 1D
form the discernable dependences of the Mg isotopic ratios
on the Al abundance. They represent observational data for
33 RGB stars from 5 GCs, including M13, that have recently
been collected by Da Costa, Norris & Yong (2013). The filled
magenta squares and diamonds connected by the solid black
curves show the Al and Mg isotopic abundances for the same
supermassive star models and mixtures as in Fig. 1A. The
four panels in Fig. 1 illustrate the fact, already discussed
by Denissenkov & Hartwick (2014), that the supermassive
stars with M > 104 M� reproduce all the primordial abun-
dance variations of p-capture elements in GCs surprisingly
well. The two filled black triangles in Fig. 1 are M13 stars
that belong to the extreme population. From their locations
in the four panels, we conclude that all the six abundances
in these stars are consistent with the supermassive star hy-
pothesis.

Denissenkov & Hartwick (2014) have noted that the suc-
cess of the supermassive star models in the reproducing of
the primordial abundance variations of the p-capture ele-
ments in GCs, including the Mg-Al anti-correlation, is not
surprising, because these models have central temperatures
in the right range for this, 74 × 104 K . Tc . 78 × 106

K, as was first shown by Denissenkov et al. (1998) in their
“black box” solution and, later, independently confirmed by
Prantzos, Charbonnel & Iliadis (2007). However, in both of
the cited papers the H burning was considered to take place
at a constant temperature and, as a result, the required fi-
nal abundances were reached when less than 5% of H was
consumed, which would not be sufficient to explain the He
enhancements of up to Y ≈ 0.4 measured in some GCs.
In the fully convective supermassive MS stars, as much as
20% of H can be transformed into He, thus changing Y from
its initial value 0.25 to 0.4, by the moment when the p-
capture elements and their isotopes still have the required

c© 2014 RAS, MNRAS 000, 1–11
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Table 1. Initial mass fractions of isotopes used in our calculations

isotope norm. pop.a int. pop.b extr. pop.c

1H 0.748815 0.674238 0.614576
3He 6.55411 × 10−5 3.27706 × 10−5 6.55416 × 10−6

4He 0.250000 0.324641 0.384353
7Li 1.04586 × 10−9 5.23263 × 10−10 1.05187 × 10−10

12C 9.50177 × 10−5 5.77948 × 10−5 2.80165 × 10−5

13C 1.15310 × 10−6 3.50972 × 10−6 5.39501 × 10−6

14N 2.80540 × 10−5 3.52988 × 10−4 6.12936 × 10−4

15N 1.10507 × 10−7 6.43548 × 10−8 2.74331 × 10−8

16O 6.55465 × 10−4 3.31200 × 10−4 7.17876 × 10−5

17O 1.03384 × 10−7 5.94662 × 10−8 2.43319 × 10−8

18O 5.88641 × 10−7 2.94323 × 10−7 5.88687 × 10−8

19F 1.38744 × 10−8 6.94144 × 10−9 1.39506 × 10−9

20Ne 1.35740 × 10−4 1.31317 × 10−4 1.27779 × 10−4

21Ne 1.36018 × 10−7 6.96419 × 10−8 1.65412 × 10−8

22Ne 4.37084 × 10−6 2.21363 × 10−6 4.87857 × 10−7

23Na 1.16195 × 10−6 4.76080 × 10−6 7.63988 × 10−6

24Mg 4.37780 × 10−5 2.34966 × 10−5 7.27160 × 10−6

25Mg 5.77473 × 10−6 3.70320 × 10−6 2.04597 × 10−6

26Mg 6.60731 × 10−6 1.36472 × 10−5 1.92791 × 10−5

27Al 2.01755 × 10−6 2.25630 × 10−5 3.89994 × 10−5

28Si 5.69495 × 10−5 5.86796 × 10−5 6.00638 × 10−5

56Fe 3.92893 × 10−5 3.92893 × 10−5 3.92893 × 10−5

58Ni 4.33457 × 10−5 4.33457 × 10−5 4.33457 × 10−5

[(C + N + O)/H] −1.24 −1.19 −1.15

a The heavy-element mass fraction for this and the other two mixtures is Z ≈ 0.0011.
bFor the intermediate population, we assume a mixture of 50% of the abundances from the normal population with 50% of the

abundances from our 6 × 104 M� MS star model when its He abundance has increased to Y = 0.40.
cFor the extreme population, we assume a mixture of 10% of the abundances from the normal population with 90% of the abundances

from our 6 × 104 M� MS star model when its He abundance has increased to Y = 0.40.

abundances. The filled magenta squares in Fig. 2 show the
He and O abundances in the mixtures of the M13 pristine
gas with different fractions of the material from the super-
massive MS stars. According to this figure, the normal, in-
termediate and extreme populations of stars in M13 should
have Y = 0.25, Y = 0.32 and Y = 0.38, respectively (see
Table 1). These values agree with the He abundances in the
blue horizontal branch stars in the GC NGC2808 measured
by Marino et al. (2014).

4 SUPERMASSIVE MS STARS WITH
M > 104 M� VERSUS MASSIVE MS AND
AGB STARS

4.1 The Al abundance and Mg isotopic ratios

Hydrogen burning in the convective cores of MS stars with
M . 103 M� that occurs at Tc . 60 × 106 K as long as
Y < 0.40 can result only in a marginal depletion of the 24Mg
abundance. Therefore, neither the fast-rotating massive MS
stars with 20M� 6M 6 120M� (Decressin et al. 2007), nor
the stars with M = 20M� in close binaries (de Mink et al.
2009), nor the very massive MS stars with M ∼ 103 M�
(Sills & Glebbeek 2010), all of which have been proposed as
the potential sources of the primordial abundance variations
of the p-capture elements in GCs, can actually reproduce
the observed patterns between the abundances of Al and
Mg isotopes in Figs. 1B, 1C and 1D.

The four asterisks connected by the dashed line in

Figs. 1B, 1C and 1D represent the theoretical data for the
AGB stars with the initial masses 5.0M�, 5.5M�, 6.0M�
and 6.3M� and heavy-element mass fraction Z = 10−3,
which is close to that of M13 stars, from Table 2 of Ventura
& D’Antona (2009). They are located far away from the
observed dependences which, on the other hand, are very
well matched by the H-burning yields from the supermas-
sive stars. Unlike the massive MS stars, the problem with the
massive AGB stars is that the hot-bottom burning (HBB)
of H in their convective envelopes occurs at too high tem-
peratures, THBB & 108 K. In Fig. 3, we have plotted the
(p,γ) reaction rates as functions of T9 ≡ T/109 K for 24Mg
(the solid blue, black and red curves), 25Mg (the dashed
curves) and 16O (the green curve) taken from the most re-
cent experimental data compilations that we found using a
Web interface4 to the JINA REACLIB default library (Cy-
burt et al. 2010). This figure shows that at T9 . 0.06 the
reaction 24Mg(p,γ) is more than three orders of magnitude
slower than 16O(p,γ). This explains why H burning in mas-
sive MS stars is not accompanied by the required depletion
of 24Mg. On the other hand, during the HBB in the massive
AGB stars at T9 & 0.1 the rate of the reaction 24Mg(p,γ) ex-
ceeds that of 16O(p,γ). This should lead to a faster destruc-
tion of the most abundant magnesium isotope 24Mg than
16O, which could be a problem, because [O/Fe] usually ex-
hibits much lower values than [Mg/Fe] in GCs (Denissenkov

4 https://groups.nscl.msu.edu/jina/reaclib/db/

c© 2014 RAS, MNRAS 000, 1–11
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different compilations indicated in the legend box (including Il-
iadis et al. (2001) and NACRE data from Angulo et al. (1999)),

as well as for 16O (the green curve) from Iliadis et al. (2010).

These data have been found using a Web interface to the JINA
REACLIB default library (Cyburt et al. 2010). The black circles

are the most recent data for the reaction 25Mg(p,γ)26Al from

Straniero et al. (2013).

& Herwig 2003), unless the 24Mg destruction would lead to
a commensurate accumulation of 25Mg. This is exactly what
happens in the massive AGB stars, because the reaction
25Mg(p,γ) at T9 & 0.1 is slower than both the p-captures
by 24Mg and 16O (Fig. 3). Only at T9 ≈ 0.075, which is
close to the central temperatures in supermassive MS stars
with M > 104 M�, we do find the right relative rates of the
above three reactions, which guarantees that when 16O is
destroyed, a smaller amount of 24Mg can also be burned,
while the freshly produced 25Mg will be rapidly converted
into 26Mg because its p-capture rate is higher than that
of 24Mg(p,γ). This explains why both the massive MS and
AGB stars fail to reproduce the observed (anti-)correlations
between the abundances of Al and Mg isotopes, while the
H burning in the supermassive MS stars with M > 104 M�
does the work.

The black circles in Fig. 3 present the new rate for the
reaction 25Mg(p,γ)26Al from Straniero et al. (2013), which
is approximately two times as large as the older rates in the
range of T9 characteristic of the HBB in the massive AGB
stars. Ventura, Carini & D’Antona (2011) estimated that
with such the increase of this reaction rate they could obtain
the [Mg/Fe] depletion and [Al/Fe] enhancement in a better
agreement with observations. However, their Mg isotopic
ratios in this case, 25Mg/Mg = 90% and 26Mg/Mg = 5.4%,
as well as the ratios 25Mg/Mg = 76% and 26Mg/Mg = 5.6%
from the super-AGB star with the initial mass 8M� are still
far away from the observed ones.

4.2 The O-Na anti-correlation

The minimum value of [O/Fe], that is still accompanied
by a relatively high value of [Na/Fe] to fit the O-Na anti-
correlation, obtained in the massive AGB models with the
HBB is close to −0.5 (see the asterisks connected by the
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Figure 4. The relative changes of the mean molecular weight and
oxygen abundance in the radiative zones of the normal (the blue

curve) and extreme, i.e. He-rich, (the red curve) population RGB

models with the masses 0.8M� and 0.65M�, respectively, imme-
diately above the bump luminosity. The µ ratio drops vertically

in the vicinity of the H-burning shell (HBS), where the reaction
3He(3He,2p)4He decreases µ locally, but the O abundance has
not changed yet. Deeper in the HBS (to the right), the CNO cy-

cle increases both µ and the relative deviation of the O abundance

from its value at the bottom of the convective envelope (BCE).

dashed line in Figs. 1A and 2). This presents another prob-
lem for the massive AGB star pollution hypothesis because
some stars in M13 (the red circles to the left of [O/Fe] =
−0.5), as well as stars in a few other GCs, possess much
lower O abundances. To solve this problem, D’Antona &
Ventura (2007) have proposed that the low-mass stars from
the extreme population of GCs experience deeper extra mix-
ing on the RGB than their counterparts from the normal
population because the higher initial He abundance in the
former (Fig. 2) should reduce the µ-discontinuity that pre-
vents the RGB extra mixing from penetrating deep into the
HBS. However, what really matters when one considers ex-
tra mixing in the radiative zone of an RGB star is its ability
to overcome the restoring Archimedes force that is propor-
tional to ∆µ/µBCE, where ∆µ = µ(r)−µBCE, provided that
Dmix � K which is true for the RGB extra mixing (see the
next section). In Fig. 4, we compare the ratios ∆µ/µBCE

plotted as functions of a relative deviation of the local O
mass fraction from its value at the BCE (we use the posi-
tive difference ∆X(O) = XBCE(O) − X(O)) in our 0.8M�
and 0.65M� RGB models with the normal and extreme ini-
tial compositions from Table 1 immediately above the bump
luminosity. Both quantities remain zero until we reach the
vicinity of the HBS, where the µ-profile has the depression
caused by the reaction 3He(3He,2p)4He. There, the µ ra-
tio drops vertically because there are no changes of the O
abundance yet. When we move further to the right into the
HBS, the H burning in the CNO cycle increases both ∆µ
and ∆X(O). Fig. 4 shows that the ∆µ/µBCE ratio increases
faster in the extreme population RGB model, which means
that its chemical structure does not facilitate the penetra-
tion of extra mixing deeper into the HBS and dredge up
more material with a deficit in O, as compared to the nor-
mal population RGB model. Moreover, in order to attain

c© 2014 RAS, MNRAS 000, 1–11
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Figure 5. The three 11.5 Gyr isochrones generated with the Vic-
toria stellar evolution code for the indicated combinations of Y ,

[Fe/H] and [α/Fe] that are close to those assumed in our normal

(Y = 0.25, blue), intermediate (Y = 0.33, green) and extreme
(Y = 0.38, red) compositions of low-mass stars in M 13 are com-

pared with the M 13 HST ACS color-magnitude diagram.

the same level of the surface O depletion, if it is required by
observations, the extreme population RGB star must have
more powerful extra mixing, e.g. if the RGB extra mixing
is driven by rotation then the extreme population stars in
GCs must rotate faster than their normal population coun-
terparts by some reason, which is difficult to understand.

In the hypothesis that proposes the supermassive stars
with M > 104 M� as the source of the primordial abun-
dance variations in GCs, it is sufficient to assume that some
low-mass stars in GCs were formed out of more than 90%
of the material lost by these supermassive stars (Fig. 1A).
We also note that the total CNO abundances in the M 13
RGB stars measured by Cohen & Meléndez (2005), namely
the [(C+N+O)/H] ratios between -1.4 and -1.1 with the av-
erage value -1.23, are very close to those in our Table 1.
Like massive MS stars, the supermassive stars destroy Li.
However, we do not think that this is a serious problem at
present because unevolved low-mass stars in some GCs, e.g.
MS turn-off stars in 47 Tuc, show an order of magnitude
variations in the Li abundance marginally correlating with
[O/Fe] (Dobrovolskas et al. 2014).

5 THE EVOLUTIONARY ABUNDANCE
VARIATIONS IN M13 RGB STARS

We have used the Victoria stellar evolution code to generate
three 11.5 Gyr isochrones for the combinations of the initial
He mass fraction, metallicity and α-element enhancement
that are close to those assumed for the extreme, intermedi-
ate and normal populations of low-mass stars in M13 (Ta-
ble 1). These isochrones are transformed to the HST ACS
photometric system (using the colour–Teff relations given
by Casagrande & VandenBerg 2014) and compared with the
HST CMD data for M13 in Fig. 5, for which we have selected
the 100 stars in each 0.10 mag bin that have the smallest
error bars on the observed magnitudes and colors. The indi-
vidual evolutionary tracks of stars with the masses 0.65M�,
0.7M� and 0.8M� calculated for the first, second and third
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Figure 6. The isochrones (solid curves) for the normal (blue),

intermediate (green) and extreme (red) populations of low-mass
stars in M 13 and the stellar evolutionary tracks (dashed curves) of

stars with the masses 0.8M� (blue), 0.7M� (green) and 0.65M�
(red) that have the corresponding initial compositions from Ta-
ble 1 and matching red gian branches. The blue and red curves

have been shifted by ∆ log10 Teff = ±0.05 relative to the green

curves.

initial compositions, respectively, are found to have RGBs
coinciding with the RGBs of their corresponding isochrones
(Fig. 6). Therefore, we have chosen these masses as the initial
ones for our study of the evolutionary abundance variations,
caused by the RGB extra mixing, in the M13 low-mass stars
belonging to the extreme, intermediate and normal popula-
tions, using for them the initial abundances from Table 1.
In this study, we employ the revision 3251 of MESA instead
of the Victoria code because the latter cannot model extra
mixing on the upper RGB, although the Victoria code pro-
duces better isochrones than MESA because it accounts for
the atomic diffusion and its counteracting turbulent mix-
ing on the MS, which has not yet been implemented in the
MESA code.

The red, green and blue curves in Fig. 7A show the evo-
lution of the surface C abundance in the models representing
the three populations of low-mass stars in M13, in which the
RGB extra mixing has been modeled using the thermohaline
diffusion coefficient (equation 25) from Denissenkov (2010).
We have used the salt-finger aspect ratio a = 7 that gives
the maximum possible depletion of [C/Fe] in these models.
The open blue diamonds in Fig. 7A are M13 MS turn-off
and subgiant stars for which the [C/Fe] values were deter-
mined by Briley, Cohen & Stetson (2002). They demonstrate
a pattern characteristic of the equilibrium CNO cycle — the
floor at [C/Fe]≈ −0.8 (Denissenkov et al. 1998), which sup-
ports the idea that the primordial abundance variations in
GC stars were produced in H burning at a sufficiently high
temperature for the CNO cycle to reach equilibrium. The
rest of the symbols in Fig. 7A, except the red star symbols
that represent low-mass AGB stars, present the [C/Fe] data
for RGB stars with MV < +0.8 compiled by Smith & Briley
(2006) from the literature. We have used (m−M)V = 14.42
as the distance modulus for M13 and applied the correction
∆[C/Fe] = +0.4 to all of the RGB [C/Fe] values, as recom-
mended in the cited paper. We see that the thermohaline

c© 2014 RAS, MNRAS 000, 1–11
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Figure 7. Panel A: the evolution of the surface C abundance in the stars with the masses 0.8M� (blue), 0.7M� (green) and 0.65M�
(red) and initial chemical compositions from the second, third and fourth columns of Table 1, respectively, calculated from the MS to

the RGB tip. The RGB extra mixing is modeled using the thermohaline diffusion coefficient (equation 25) from Denissenkov (2010) with
the salt-finger aspect ratio a = 7 that produces the maximum possible decrease of [C/Fe]. The results of these calculations are compared

with the observational data for M 13 MS turn-off and subgiant stars (the open blue diamonds) and RGB stars (the other symbols, except

the red star symbols which represent AGB stars) from Briley, Cohen & Stetson (2002). Panel B: the same as in panel A, but for the
stars of the single stellar population GC NGC5466 observed by Shetrone et al. (2010) and a = 10. Panel D: The same as in panel B,

but here we have also used the parametric prescription for the RGB extra mixing with the mixing depth log10(rmix/R�) = −1.35 (same

as for the thermohaline mixing) and diffusion coefficient Dmix = αK, where K is the radiative diffusivity and α = 0.02 (magenta line)
and 0.03 (black line). Panel C: the same as in panel D, but for the M 13 stars with the dashed and solid curves representing the cases of
α = 0.02 and 0.03.

convection driven by the 3He burning produces shallow evo-
lutionary declines of [C/Fe] incompatible with the observa-
tional data for the M13 RGB stars.

From Fig. 7B, the same conclusion can be made for
the GC NGC 5466 stars studied by Shetrone et al. (2010),
for which the value of a = 10 gives a maximum effect for
the evolutionary depletion of [C/Fe] on the upper RGB (our
defined maximal-mixing salt-finger aspect ratio slightly de-
pends on the metallicity). This GC is unique because it does
not appear to have any primordial abundance variations.
Therefore, it can be used to calibrate the depth and rate
of the RGB extra mixing. To eliminate the mixing depth
as a free parameter, we assume that it is equal to the al-
most universal depth that we usually find for the 3He-driven
thermohaline convection in upper RGB models of different
metallicities, i.e. log10(rmix/R�) = −1.35. This depth guar-
antees that only the products of H burning in the CN branch
of the CNO cycle are dredged up from the HBS to BCE, as
indicated by observations. In the absence of a good candi-

date for the mechanism of the RGB extra mixing, we assume
that it can be modeled as a diffusion process with a diffusion
coefficient Dmix proportional to the radiative diffusivity

K =
4acT 3

3κCP ρ2
, (1)

where a is the radiation constant, c the speed of light, κ is
the Rosseland mean opacity, CP is the specific heat at con-
stant pressure and ρ is the density. This assumption makes
sense as long as the RGB extra mixing operates on a ther-
mal timescale, when the radiative heat diffusion facilitates it
by reducing temperature contrasts between rising and sink-
ing fluid parcels. In Fig. 7D, the magenta and black curves
are obtained with Dmix = αK for α = 0.02 and 0.03, respec-
tively. When we employ the same parameters of the RGB ex-
tra mixing in models of the M13 low-mass stars, we get very
good agreement with the observational data (Fig. 7C), in
spite of the fact that the two GCs have different metallicities,
[Fe/H] = −1.53 for M13 and [Fe/H] = −2.2 for NGC 5466.
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Figure 8. The theoretical differential luminosity functions for

the evolutionary tracks from Fig. 7A (the blue, green and red his-
tograms) constructed assuming that the three populations con-

tribute 15%, 63% and 22% to the total population of stars in

M 13, like in its O-Na anti-correlation (Johnson & Pilachowski
2012), as well as their composite luminosity function (the black

histogram).

6 CMDS FOR THE THREE POPULATIONS OF
LOW-MASS STARS IN M13

The color difference between our theoretical isochrones for
the normal and extreme populations of low-mass stars in
M13 in Fig. 5 is approximately as large as the width of its
CMD observed with the HST ACS. Therefore, our assump-
tion that M13 has the populations of low-mass stars with
Y varying between 0.25 and 0.38 cannot be rejected on the
basis of these photometric data5. This conclusion appears
even more true when we take into consideration that both
the extreme and normal populations are likely to be poorly
presented in M13, as compared to its intermediate popula-
tion. This possibility is supported by the fact that the O-
Na anti-correlation for M13 in Fig. 1A includes 63% of the
intermediate-population RGB stars, while the normal and
extreme populations contribute only 15% and 22% (John-
son & Pilachowski 2012). Also, the M13 RGB stars with the
most extreme abundance anomalies are predominantly lo-
cated near the RGB tip, where the three isochrones almost
converge. We remind the reader that our subdivision of the
M13 low-mass stars into the three distinct populations is
an approximation that has been made using the rather ar-
bitrary selection criteria, while in fact both its O-Na anti-
correlation and CMD display smooth distributions of stars.

From Fig. 7C, it is seen that the evolutionary tracks
of the low-mass stars belonging to the different populations
in M13 have slightly different bump luminosities, at which
the RGB extra mixing starts to operate, increasing with Y .
A differential luminosity function constructed for the nor-

5 The implications of high helium abundances and/or a wide

range in Y for the horizontal branch of M13 will be considered

in a separate paper (P. Denissenkov et al., in preparation). Some
studies (e.g. Catelan et al. 2009) have argued in support of a nor-

mal helium content for this cluster, while others have estimated

Ymax ≈ 0.31 for M13 HB stars (e.g. Dalessandro et al. 2013).

mal population (the blue curve in Fig. 8) has a bump at
V ≈ 14.7 which is very close to its observed location in
M13, V ≈ 14.75, as reported by Sandquist et al. (2010), or
V ≈ 14.77, according to the most recent HST GC data anal-
ysis by Nataf et al. (2013). However, if the M13 low-mass
stars represent a mixture of the three populations, then loca-
tion and width of the bump depend on its relative strength
and a number of stars in the different populations. It turns
out that the former decreases when Y increases. The red,
green and blue curves in Fig. 8 show the differential lumi-
nosity functions for the M13 three populations constructed
assuming that they include 22%, 63% and 15% of all the M13
stars, like in its O-Na anti-correlation, while the black curve
is their superposition. Given that the intermediate popu-
lation is dominating in this mixture, the composite bump
luminosity has shifted to V ≈ 14.6. This analysis demon-
strates that the observed location of the bump luminosity in
a GC with multiple stellar populations can in principle be
used to estimate their relative weights.

Monelli et al. (2013) have recently proposed a new pho-
tometric index, cU,B,I = (U−B)− (B−I), that should help
reveal multiple stellar populations in GCs more easily. They
have used this index to identify three populations of RGB
stars in M13, members of which occupy different parts of
its O-Na anti-correlation. In Fig. 9, we have plotted RGBs
of our three models with the initial masses 0.8M�, 0.7M�
and 0.65M� and chemical compositions from the second,
third and fourth columns of Table 1, respectively, using the
same photometric colors and panel formats as in Fig. 5 of
Monelli et al. (2013), where the corresponding observational
data were presented for the GC M13 (NGC 6205). Note that
in this figure we have changed our population color coding,
so that the green, red and blue curves now correspond to
the normal, intermediate and extreme populations of stars
in M13, as in the cited paper. The main difference between
our and their plots is that the curves in our left panel have
the opposite order. We have found the most likely expla-
nation of this in the paper of Sbordone et al. (2011), who
show that the enhanced abundance of N in the population
of stars polluted by the products of H burning (the inter-
mediate and primordial populations in our case) leads to
a significant increase of the U magnitude because of the
higher concentrations of the CN and NH molecules in these
stars that absorb more light in the U band. To compensate
for this effect, the U magnitude should be increased by an
amount that depends on the effective temperature, gravity
and detailed chemical composition. Sbordone et al. (2011)
have calculated the required corrections for U , as well as
similar bolometric corrections (BCs) for other photometric
bands, using synthetic spectra for low-mass stars with chem-
ical compositions typical for an intermediate-metallicity GC
with multiple stellar populations at different evolutionary
phases from the MS to the RGB tip. For the range of the V
magnitude in Fig. 9, the BCs are important only for the U
magnitude. When we apply them to the extreme-population
RGB in the left panel, the solid blue curve is transformed
into the dashed blue one, so that we get the right arrange-
ment of the green and blue curves. The other difference is
that the RGBs of our normal and extreme population mod-
els have larger separations in the V −B and B−I colors. This
is probably caused by the fact that the M13 extreme popu-
lation in the classification of Monelli et al. (2013) is actually
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Figure 9. The lower RGBs of our three assumed populations of M 13 stars plotted for the same colors and in the same format as in the

middle panel of Fig. 5 in Monelli et al. (2013). Note that now the green, red and blue curves correspond to the normal, intermediate and
extreme populations, like in the paper of Monelli et al. (2013). The dashed blue curve in the left panel is obtained from the solid blue

curve with the bolometric corrections to U from Sbordone et al. (2011) that take into account the larger N abundance in the extreme
population.

closer to our intermediate population in the V range shown
in Fig. 9, as suggested by the lower panel of their Fig. 15.
Therefore, to compare our plots with theirs, we have to only
keep our normal and intermediate populations, their inter-
mediate populations falling between them, in which case the
separations become comparable.

7 CONCLUSION

In this paper, we have elaborated on the hypothesis, recently
proposed by Denissenkov & Hartwick (2014), that the pri-
mordial abundance anomalies of the p-capture elements and
their isotopes in GC stars had been produced during a short
time (∼ 105 years) of H burning in the fully convective super-
massive MS stars with M > 104 M�. Because such stars are
supported against the force of gravity almost entirely by the
radiation pressure, they are subject to the diffusive mode of
the Jeans instability, which develops on all length scales and
on a timescale comparable to the lifetime of the supermas-
sive stars (Thompson 2008; Denissenkov & Hartwick 2014).
Therefore, those stars might have fallen apart (fragmented)
soon after they had formed, by a moment when only a small
fraction of H was transformed into He, as we have assumed.
It is out of the scope of the present paper to discuss how the
supermassive stars had formed in the young GCs (the two
possible formation scenarios are briefly reviewed by Denis-
senkov & Hartwick 2014), or how they had lost their mass
and how that mass, polluted with the products of H burn-
ing, had been mixed with the GC pristine gas before the
low-mass stars formed out of that mixture. Here, we have
focused on the nucleosynthesis part of the solution.

We have shown that among the massive star candidates
for the origin of the primordial abundance anomalies in GCs
proposed so far, such as the massive MS stars (rapidly rotat-
ing, members of binary systems, or as massive as ∼ 103 M�),
massive AGB stars and supermassive MS stars with M >
104 M�, only the latter have the right temperatures of H
burning in the range 74×106 K . Tc . 78×106 K for the suc-
cessful reproduction of the (anti-)correlations between the
Al and Mg isotopic abundances, that have now been found
to be common for 5 GCs.

The agreement between the primordial abundance
anomalies of the p-capture elements in GCs and their cor-
responding abundance variations in the mixtures composed
of the pristine GC material and H-burning yields from the

supermassive MS stars with M > 104 M� is so good that
it is worth trying to (1) use such mixtures, e.g. those from
Table 1, as the initial compositions for low-mass star mod-
els that are supposed to belong to different populations of
stars in a GC with multiple stellar population, (2) allow
these models to evolve and (3) see how various physical as-
sumptions, e.g. the parameters of the RGB extra mixing
and mass loss, will affect their surface chemical composition
and evolution on the CMD in comparison with observational
data. We have tried this for the GC M 13 (NGC6205) and
found that the evolutionary decline of the C abundance in
its upper RGB stars cannot be explained by the 3He-driven
thermohaline convection. We have estimated the depth and
rate of the RGB extra mixing that allow to reproduce the
observational decrease of [C/Fe] with MV . They turn out to
have the same values for both M 13 that has the most ex-
treme primordial abundance anomalies and NGC5466 that
does not have such anomalies. The fact that the two GCs
also have different metallicities supports the old idea about
the universality of the RGB extra mixing (e.g. Denissenkov
& VandenBerg 2003). However, we are still missing the un-
derstanding of its physical mechanism. Given that the super-
massive stars considered by Denissenkov & Hartwick (2014)
are hypothetical objects and that neither the massive MS
stars nor the massive AGB stars can reproduce the (anti-
)correlations between the Al and Mg isotopic abundances in
GCs, the source of the primordial abundance variations in
GCs also remains uncertain. This leaves us with a problem
with two unknowns.
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