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ABSTRACT
The magneto-rotational instability (MRI) is a promising mechanism to amplify the
magnetic field in fast rotating proto-neutron stars (PNS). The diffusion of neutrinos
trapped in the proto-neutron star induces a transport of momentum, which can be
modeled as a viscosity on length scales longer than the neutrino mean free path. This
neutrino-viscosity can slow down the growth of MRI modes to such an extent that a
minimum initial magnetic field strength of & 1012G is needed for the MRI to grow
on a sufficiently short timescale to potentially affect the explosion. It is uncertain
whether the magnetic field of fast rotating progenitor cores is strong enough to yield
such an initial magnetic field in proto-neutron stars. At MRI wavelengths shorter than
the neutrino mean free path, on the other hand, neutrino radiation does not act as a
viscosity but rather induces a drag on the velocity with a damping rate independent of
the wavelength. We perform a linear analysis of the MRI in this regime, and apply our
analytical results to the proto-neutron star structure from a one-dimensional numerical
simulation. We show that in the outer layers of the PNS, the MRI can grow from weak
magnetic fields at wavelengths shorter than the neutrino mean free path, while deeper
in the PNS MRI growth takes place in the viscous regime and requires a minimum
magnetic field strength.

Key words: magnetohydrodynamics – stars: neutron – stars: rotation – supernovae:
general

1 INTRODUCTION

The explosion mechanism of core collapse supernovae and
in particular the role played by rotation and magnetic fields
is still uncertain. The neutrino driven mechanism aided
by multidimensional hydrodynamical instabilities may be
responsible for explosions with normal energies of 1050 −
1051 erg, though robust explosions with sufficient energy
have yet to be demonstrated by three-dimensional numerical
simulations including all relevant physics (e.g. Hanke et al.
2013; Mezzacappa et al. 2014). A small fraction of core
collapse supernovae, however, have much larger explosion
energies of ∼ 1052 erg (”hypernovae” or type Ic BL, e.g.
Drout et al. 2011), which most likely require an additional
energy reservoir beyond neutrinos. Scenarios relying on a
combination of fast rotation and strong magnetic fields
may be good candidates to explain such extreme explo-
sions. The rotation energy contained in a neutron star ro-
tating with a period of one millisecond (near break-up ve-
locity) is indeed a sufficient energy reservoir, which could
be efficiently tapped if strong magnetic fields of the order
of ∼ 1015 G are present. Axisymmetric simulations assum-
ing both a strong poloidal magnetic field and fast differen-

tial rotation have for example demonstrated the possibility
of magnetorotational explosions (LeBlanc & Wilson 1970;
Bisnovatyi-Kogan et al. 1976; Mueller & Hillebrandt 1979;
Symbalisty 1984; Moiseenko et al. 2006; Shibata et al. 2006;
Burrows et al. 2007; Dessart et al. 2008; Takiwaki et al.
2009; Takiwaki & Kotake 2011), although it remains to be
demonstrated whether the explosion energy can reach that
of hypernova-like explosions. Such magnetorotational explo-
sions are furthermore a potential site for the production of r-
process elements (Winteler et al. 2012). Note, however, that
the 3D dynamics of magneto-rotational explosions needs to
be explored further, since Mösta et al. (2014) showed that
non-axisymmetric instabilities can disrupt the jet before it
can launch an explosion.

Another way by which fast rotation and strong mag-
netic fields could impact supernovae explosions is through
the delayed injection of energy due to the spin down of a fast
rotating, highly magnetized neutron star (Kasen & Bildsten
2010; Woosley 2010), which has been invoked as an expla-
nation of some superluminous supernovae like SN 2008 bi
(Dessart et al. 2012; Nicholl et al. 2013; Inserra et al. 2013).
The birth of such ”millisecond magnetars” is furthermore
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a potential central engine for long gamma-ray bursts (e.g.
Duncan & Thompson 1992; Metzger et al. 2011).

The very fast rotation needed by the above scenarios
(magnetorotational explosion, millisecond magnetars) may
not be present in the core of stars following standard stel-
lar evolution, as Heger et al. (2005) showed that magnetic
torques can slow down the core rotation efficiently. However,
Yoon & Langer (2005) and Woosley & Heger (2006) showed
that the fastest rotating stars could follow a chemically ho-
mogeneous evolution, in which the core can retain enough
angular momentum to form a neutron star rotating with
milliseconds period.

The second crucial ingredient for powerful magnetoro-
tational energy release is an extremely strong, large-scale
poloidal magnetic field of the order of 1015 G. The presence
of such a strong magnetic field in some proto-neutron stars
is suggested by the observation of the most strongly magne-
tized neutron stars called magnetars (Woods & Thompson
2006, and references therein). The origin of this strong mag-
netic field remains, however, uncertain. One hypothesis is
a fossil field origin in which the magnetic flux is inherited
from the progenitor star (Ferrario & Wickramasinghe 2006),
but it is not clear whether this can explain the population
of magnetars. Given the uncertainty of having a sufficiently
strong magnetic field in the iron core, intense research has
been undertaken on physical mechanisms that could am-
plify the magnetic field during core collapse (in addition
to the compression due to magnetic flux conservation dur-
ing the collapse). In non-rotating progenitors, the SASI and
convection have been invoked as a source of turbulence giv-
ing rise to a small scale dynamo (Endeve et al. 2010, 2012;
Obergaulinger & Janka 2011; Obergaulinger et al. 2014).
An Alfvén surface has also been shown to be a potential site
of Alfvén wave and therefore magnetic field amplification
(Guilet et al. 2011). But the most promising mechanisms
rely on the fast rotation to drive a dynamo in the convec-
tive region of the proto-neutron star (Thompson & Duncan
1993), or through the magnetorotational instability (here-
after MRI) (e.g. Balbus & Hawley 1991; Akiyama et al.
2003).

Since the suggestion by Akiyama et al. (2003) that the
MRI could play an important role in core collapse su-
pernovae, the MRI has been the subject of a number of
studies in the context of supernovae with the use of lin-
ear analysis (Masada et al. 2006, 2007), local (or ”semi-
global”) numerical simulations representing a small por-
tion of the proto-neutron star (Obergaulinger et al. 2009;
Masada et al. 2012), and two-dimensional global numeri-
cal simulations (Sawai et al. 2013; Sawai & Yamada 2014).
Masada et al. (2007) showed that neutrino radiation in the
diffusive regime has several effects on the MRI. On the one
hand, neutrino thermal and lepton number diffusion alle-
viates the stabilizing effect of entropy and lepton number
gradients in stably stratified regions of the proto-neutron
star. On the other hand, neutrino viscosity slows down MRI
growth if the initial magnetic field is weaker than a crit-
ical strength, which Masada et al. (2012) estimated to be
∼ 3.5×1012 G. As a consequence of neutrino viscosity, a min-
imum magnetic field is needed for the MRI to grow on a suffi-
ciently short timescale to affect the explosion (Masada et al.
2012). In this paper, we revisit this issue by computing the
neutrino viscosity for the conditions given by the output of

a one-dimensional numerical simulation. We find that the
effect of neutrino viscosity is even more pronounced: MRI
growth is slowed down if the magnetic field is weaker than
1013−1014 G (depending on the rotation rate), and becomes
too slow to affect the explosion below a minimum strength of
∼ 1012 G (see Section 3.2). This may be a problem for the
MRI since the initial magnetic field in the proto-neutron
star is extremely uncertain and could well be below this
minimum strength.

The description of the effect of neutrinos by a viscos-
ity is however valid only at length scales longer than the
neutrino mean free path. We will show that, in the outer
parts of the proto-neutron star, the viscous prescription is
not self-consistent because the MRI grows at wavelengths
shorter than the neutrino mean free path. We therefore pro-
vide the first description of the effect of neutrinos on the
growth of the MRI that is valid at wavelengths shorter than
the neutrino mean free path (section 3.3). This allows us to
show that in the outer parts of the proto-neutron star, the
MRI can grow from initially very weak magnetic fields.

The paper is organized as follows. In Section 2, we
describe the numerical model of protoneutron star (here-
after PNS) structure. In Section 3, we analyze the different
regimes in which the MRI can grow: analytical predictions
are obtained, which are then applied to the PNS model. In
Section 4, we discuss and conclude on the relevant regime of
MRI growth as a function of radius in the PNS and magnetic
field strength.

2 PROTO-NEUTRON STAR MODEL

In order to estimate physical quantities relevant for the
growth of the MRI, we use the result of a one-dimensional
numerical simulation as a typical structure of the proto-
neutron star (PNS). The calculations were performed with
the code Prometheus-Vertex, which combines the hydrody-
namics solver Prometheus (Fryxell et al. 1989) with the neu-
trino transport module Vertex (Rampp & Janka 2002). Ver-
tex solves the energy-dependent moment equations with the
use of a variable Eddington factor closure, and including an
up-to-date set of neutrino interaction rates (e.g. Müller et al.
2012). General relativistic corrections are taken into account
by means of an effective gravitational potential (Marek et al.
2006). The model considered hereafter simulates the evolu-
tion of the 11.2M⊙ progenitor of Woosley et al. (2002), us-
ing the high-density equation of state of Lattimer & Swesty
(1991) with a nuclear incompressibility of K = 220MeV.
The results presented in this paper were obtained using a
single time frame at t = 170ms after bounce. The radial
profiles of density (upper panel) and temperature (middle
panel) at this (arbitrary) reference time are shown in Fig-
ure 1. The structure of the PNS evolves in time due to its
contraction and energy and lepton emission. We have there-
fore performed the same analysis at other times between
t = 50ms and t = 800ms after bounce, obtaining very sim-
ilar results: the main difference is the radius of the proto-
neutron star (which decreases from 70 km to about 20 km),
as will be discussed in Section 4.

As a simplified representation of the rotation profiles
obtained by Ott et al. (2006), we further assume that the
equatorial plane of the proto-neutron star is rotating with
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Figure 1. Structure of the proto-neutron star at time t = 170ms
after bounce. Upper panel: Radial profile of the density. Middle
panel: Radial profile of the temperature. Lower panel: radial pro-
files of rotation angular frequency defined in equations (1)-(2),
with parameters Ω0 = 2000 s−1 (black line) or Ω0 = 200 s−1 (red
line), q = 1 and r0 = 10 km.

the following rotation profile1

Ω = Ω0, if r < r0 (1)

Ω = Ω0

(

r
r0

)−q

, if r > r0 (2)

where Ω0 is the angular frequency of the inner solidly rotat-

1 since we restrict our analysis of MRI growth to the equatorial
plane, we do not need to specify the angular dependence of the
rotation frequency

ing core (at r < r0), and q is the power law index of the ro-
tation profile assumed outside this inner core. Note that the
MRI can grow only in regions where the angular frequency
is decreasing outward, such that we only consider the outer
region (r > r0) in the following analysis. As typical parame-
ters, we have chosen q = 1, r0 = 10 km and two different val-
ues of the angular frequency: Ω0 = 2000 s−1 (fast rotation,
black line in the lower panel of Figure 1) or Ω0 = 200 s−1

(moderate rotation, red curve in the lower panel of Figure 1).
Assuming shellular rotation, the total angular momentum
contained in the PNS rotating with these angular frequency
profiles would be: L = 4.7 × 1048 g cm2 s−1 (fast rotation),
and L = 4.7×1047 g cm2 s−1 (moderate rotation). After cool-
ing and contraction to a neutron star with a radius of 12 km
and a moment of inertia of I = 1.5 × 1045 g cm2, the neu-
tron star would be rotating with a period (assuming an-
gular momentum conservation): P = 2ms (fast rotation)
and P = 20ms (moderate rotation). The fast rotation is
comparable to the angular momentum of progenitors follow-
ing the chemically homogeneous evolution (Yoon & Langer
2005; Woosley & Heger 2006), and may be thought of as rep-
resentative of the scenario of millisecond magnetar forma-
tion (if magnetic field amplification to magnetar strength is
indeed achieved), which is one of the central engines consid-
ered for gamma-ray bursts and hypernovae explosions. The
moderately rotating model, on the other hand, is comparable
to the progenitors of Heger et al. (2005) and is relevant to
less extreme supernovae where rotation and magnetic field
amplification may still play an important role.

Note that the PNS structure is taken from a one-
dimensional numerical simulation of a non-rotating pro-
genitor. Assuming a rotation profile is therefore not self-
consistent, but should give the right order of magnitude as
long as the rotation is not too extreme. This will be dis-
cussed in Section 4.

3 DIFFERENT REGIMES OF THE
MAGNETOROTATIONAL INSTABILITY
(MRI)

In this section, we obtain analytical estimates for the effect
of neutrino radiation on the magnetorotational instability
(MRI) growth in different regimes, corresponding to opti-
cally thick or optically thin neutrino transport at the MRI
wavelength. In Section 3.1, we recall classical results on the
linear growth of the MRI in ideal MHD (neglecting the ef-
fects of neutrino radiation). In section 3.2, we study the
effect of neutrino viscosity on the growth of the MRI, which
applies when the wavelength of the MRI exceeds the neu-
trino mean free path. In Section 3.3, we then consider the
growth of the MRI at scales shorter than the neutrino mean
free path.

In order to highlight these different regimes in a sim-
ple way, we have chosen to make a number of simplifying
assumptions. First, we assume the initial magnetic field to
be purely vertical, which is the most favorable configura-
tion for MRI growth. The fastest growing MRI modes are
then axisymmetric, with a purely vertical wave vector (e.g.
Balbus & Hawley 1991), and we therefore make this assump-
tion in the linear dispersion relations presented below. Sec-
ond, we assume that the gas is incompressible, i.e. we assume
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that the sound speed is much larger than the velocities and
Alfvén speed (which should be reasonably well justified at
least in the linear phase of the MRI) and neglect buoyancy
effects due to the presence of entropy and composition gra-
dients. Finally, we neglect the resistivity in all the scaling
relations used to estimate the growth rate and wavelength of
the MRI in the conditions prevailing inside the PNS. This
assumption is justified by the very small value of the re-
sistivity compared to the neutrino viscosity (by a factor of
about 1013, e.g. Thompson & Duncan (1993); Masada et al.
(2006)). For completeness, however, resistive effects are re-
tained in the dispersion relations presented in Sections 3.2
and 3.3.

3.1 MRI in ideal MHD

Neglecting all diffusion coefficients as well as the effect of
neutrino radiation, the dispersion relation of the axisym-
metric MRI modes in the presence of a vertical magnetic
field is (e.g. Balbus & Hawley 1991)

(

σ2 + k2v2A
)2

+ κ2
(

σ2 + k2v2A
)

− 4Ω2k2v2A = 0, (3)

where σ is the growth rate, k is the wavenumber, vA ≡
B/

√
4πρ is the Alfvén velocity, and κ is the epicyclic fre-

quency defined by κ2 ≡ 2d log r2Ω
d log r

. The analytical solution of
this dispersion relation gives the growth rate and wavenum-
ber of the fastest growing mode as

σ =
q

2
Ω, (4)

k =
√

q (1− q/4)
Ω

vA
, (5)

where q ≡ −d log Ω/d log r (consistent with the definition of
the rotation profile in Section 2). The growth rate is inde-
pendent of the magnetic field strength, and is extremely fast
for rapid rotation

σ = 500 q

(

Ω

1000 s−1

)

s−1. (6)

The wavelength on the other hand is proportional to the
magnetic field strength, such that weak magnetic fields lead
to very short MRI wavelength in the ideal MHD case. As-
suming q = 1 leads to the following estimate for the wave-
length

λ = 6

(

B

1012 G

)(

ρ

1013 g cm−3

)−1/2 (
Ω

1000 s−1

)−1

m. (7)

3.2 MRI in the presence of neutrino viscosity

3.2.1 Neutrino viscosity in the proto-neutron star

Neutrinos present in a nascent protoneutron star can trans-
port energy, lepton number and momentum. At length
scales much larger than the mean free path of neutri-
nos, their transport can be described well by diffusive pro-
cesses. In this regime, the transport of momentum by neu-
trinos gives rise to a viscosity ν, which can be expressed as
(van den Horn & van Weert 1984)

ν =
2

15

Eν〈lν〉
ρc

, (8)
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Figure 2. Radial profile of the neutrino viscosity, computed by
applying equation (8) to the outputs of the numerical simulation.
The solid black line corresponds to electron neutrinos, the dashed
line to electron antineutrinos, the dotted line to heavy lepton
neutrinos νx (one representative species) and the solid red line to
the total neutrino viscosity (i.e. the sum over the six neutrinos
species). The blue solid line shows the approximate analytical
estimate given by equation (10).

where c is the speed of light, Eν is the neutrino energy den-
sity, and 〈lν〉 is the neutrino mean free path averaged over
energy following

〈lν〉 ≡
(
∫

dEν

dǫ
lνdǫ

)

/Eν , (9)

with ǫ the neutrino energy. Note that the numer-
ical factor in equation (8) is different to that of
van den Horn & van Weert (1984) due to our different defi-
nition of the neutrino mean free path averaged over energy.

We compute the viscosity caused by the neutrinos of
different flavors by applying equation (8) to the output of
the numerical simulation described in Section 2. The sum of
the contributions from the 6 neutrino species gives the total
neutrino viscosity, which varies between a few 109 cm2 s−1

near the inner boundary of the differentially rotating en-
velop and 1012 cm2 s−1 near the neutrinosphere (Figure 2).
An approximate analytical expression for the neutrino vis-
cosity as a function of density and temperature has been
obtained by Keil et al. (1996) by considering six species of
non-degenerate neutrinos in local thermodynamic equilib-
rium and assuming that the opacity comes only from scat-
tering onto neutrons and protons in non-degenerate nuclear
matter

ν = 1.2×1010
(

T

10MeV

)2 (
ρ

1013 g cm−3

)−2

cm2 s−1. (10)

This analytical formula is compared with the viscosity com-
puted from the output of the numerical simulations in Fig-
ure 2. At radii 13 km < r < 23 km, the analytical estimate
reproduces the slope well and is in agreement with the nu-
merical result within 30% (the difference is due to different
prescriptions for opacity, and the neglect of degeneracy for
electron neutrinos and antineutrinos). At r < 13 km, high
density effects like fermion blocking and nucleon correlation
effects increase the mean free path in the numerical model
but are neglected in equation (10), which therefore underes-
timates the viscosity. At r > 23km, the analytical estimate
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increases faster than the value computed from the output of
the simulation. This can be traced back to the fact that the
heavy lepton neutrinos and electron antineutrinos are not
perfectly in thermal equilibrium with the gas as assumed
for equation (10).

It is interesting to compare this result to the litera-
ture. Masada et al. (2007, 2012) estimated a typical value
of the neutrino viscosity ν = 1010 cm2 s−1 at a density
of 1012 g cm−3. This is about 10 times smaller than what
we find at the same density (at a radius of ∼ 32 km):
ν ∼ 1− 2× 1011 cm2 s−1. Thompson et al. (2005) have com-
puted the neutrino viscosity due to different species of neu-
trinos (their Figure 5). The contribution from muon neu-
trinos varies between roughly a few times 1010 cm2s−1 and
1011 cm2s−1, while our results show more variation between
∼ 109 cm2s−1 and a few times ∼ 1011 cm2s−1. This differ-
ence might be due a different PNS structure (for example
due to the different time (105ms in their case) and equation
of state).

In the next subsection, numerical estimates will use as
fiducial values representative of a radius at 20− 25 km from
the center: a viscosity: ν = 2 × 1010 cm2s−1, a density ρ =
1013 g cm−3 and a rotation angular frequency Ω = 1000 s−1

(fast rotation).

3.2.2 Effect on the MRI

The dispersion relation of the magnetorotational instability
in the presence of a viscosity ν and a resistivity η can be
written as (Lesur & Longaretti 2007; Pessah & Chan 2008;
Masada & Sano 2008)

(

σνση + k2v2A
)2

+ κ2
(

σ2
η + k2v2A

)

− 4Ω2k2v2A = 0, (11)

where σν ≡ σ + k2ν and ση ≡ σ + k2η. The effect of
viscosity on the linear growth of the MRI is controlled

by the Elsasser-like dimensionless number Eν ≡ v2

A

νΩ
(e.g.

Pessah & Chan 2008; Longaretti & Lesur 2010). For Eν <
1, viscosity affects significantly the growth of the MRI: as
a result the growth rate is decreased, and the wavelength
of the most unstable mode becomes longer. Typical con-
ditions inside the protoneutron star lead to the following
estimate of the Elsasser-like number for fast rotation at a
radius ∼ 20− 25 km

Eν ∼ 4× 10−4

(

B

1012 G

)2 (
ρ

1013 g cm−3

)−1 (
Ω

1000 s−1

)−1

×
(

ν

2× 1010 cm2 s−1

)−1

. (12)

Viscosity therefore has a large effect on the linear growth of
the MRI, unless the magnetic field is initially quite strong.
The critical strength of the magnetic field below which vis-
cous effects become important (at which Eν = 1) is

Bvisc =
√

4πρνΩ (13)

= 5× 1013
(

ρ

1013 g cm−3

)1/2 (
ν

2× 1010 cm2 s−1

)1/2

×
(

Ω

1000 s−1

)1/2

G. (14)

This critical magnetic field strength is shown as a function
of radius in the PNS in Figure 3 (dashed lines). It decreases
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Figure 3. Radial profile of the critical magnetic field strengths
that determine the regime of MRI growth. The dashed lines show
the magnetic field strength Bvisc (defined in equation (14)) below
which viscous effects are important. The solid lines show the min-
imum magnetic field strength necessary for the MRI to grow at
a growth rate faster than σmin = 10 s−1 (computed using equa-
tion (19)). The vertical dotted lines show the radius above which
the viscous description breaks down because the mean free path
of heavy lepton neutrinos becomes larger than the wavelength of
the MRI. The two colors represent the two different normaliza-
tions of the rotation profile: fast rotation (black) and moderate
rotation (red).

outward but only weakly because the effect of the decrease
of density and angular frequency is partly compensated by
the increase in neutrino viscosity. The initial magnetic field
should be quite large so that MRI growth is not much af-
fected by viscosity : B & 5× 1013 − 1014 G for fast rotation,
and B & 1 − 2 × 1013 G for moderate rotation. Note that
these values are significantly larger than the one estimated
by Masada et al. (2012) (∼ 3.5 × 1012 G), which is due to
the fact that the viscosity we have computed is significantly
larger than the one they have estimated.

In order to describe the MRI growth in the viscous
regime, useful analytical formulae can be obtained in the
asymptotic limit Eν ≪ 1 (and neglecting the resistiv-
ity). The growth rate and wavenumber of the most unsta-
ble mode can then be expressed as (Pessah & Chan 2008;
Masada & Sano 2008; Masada et al. 2012)

σ =

(

qEν

κ̃

)1/2

Ω, (15)

k =
(κ

ν

)1/2

, (16)

where κ̃ ≡ κ/Ω =
√

2(2− q) is the dimensionless epicyclic
frequency. In contrast to the ideal MHD case, the wavelength
of the fastest growing mode is independent of the magnetic
field strength (because it is set by the viscous length scale),
while the growth rate is proportional to the magnetic field
strength: weak magnetic fields lead to slower growth. Using
equations (15) and (16), we obtain the following estimates
for the growth rate and wavelength of the fastest growing
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Figure 4. Growth rate (left) and wavelength (right) of the fastest growing MRI mode in the viscous regime as a function of the magnetic
field strength for the following fiducial parameters: ν = 2× 1010 cm2 s−1, ρ = 1013 g cm−3 and Ω = 1000 s−1. The solid black line shows
the numerical solution of the dispersion relation (equation 11). The dashed line shows the asymptotic behavior in the viscous regime
(Eν ≪ 1), given by equations (15) and (16). The dotted line shows the asymptotic behavior in the ideal regime (Eν ≫ 1), given by
equations (4) and (5).

MRI mode in the viscous regime

σ = 17

(

B

1012 G

)(

ρ

1013 g cm−3

)−1/2

×
(

ν

2× 1010 cm2 s−1

)−1/2 (
Ω

1000 s−1

)1/2

s−1,(17)

λ = 240

(

Ω

1000 s−1

)−1/2 (
ν

2× 1010 cm2 s−1

)1/2

m. (18)

Compared to the ideal regime described in Section 3.1, the
wavelength is much longer and the growth much slower for
a moderate magnetic field of 1012 G. The growth rate and
wavelength of the most unstable MRI mode are shown in
Figure 4 as a function of magnetic field strength (and the
fiducial parameters for the viscosity, density and angular
frequency representative of a radius at 20−25 km). The nu-
merical solution of the dispersion relation (black solid line) is
compared to the analytical solution in the asymptotic lim-
its of ideal MRI Eν ≫ 1 (dotted blue lines, Section 3.1)
and viscous MRI Eν ≪ 1 (dashed blue lines). The solu-
tion agrees within 20% with the ideal limit for Eν > 1.5 or
B > 6×1013 G (within 10% for Eν > 4 or B > 1014 G), and
with the viscous limit for Eν < 0.05 or B < 1013 G (within
10% for Eν < 10−2 or B < 5× 1012 G).

Figure 4 shows that, because of neutrino viscosity, the
MRI requires a minimum magnetic field strength in order to
grow fast enough to affect the explosion (as was already dis-
cussed by Masada et al. 2012). The minimum magnetic field
necessary for the MRI to grow at a minimum growth rate
σmin can be expressed using the viscous limit (equation 15)

Bmin =

(

4πρκ̃ν

qΩ

)1/2

σmin, (19)

= 6× 1011
( σmin

10 s−1

)

(

ρ

1013 g cm−3

)1/2

(

ν

2× 1010 cm2 s−1

)1/2 (
Ω

1000 s−1

)−1/2

G. (20)

Figure 3 shows this minimum magnetic field strength2 as a
function of radius, for σmin = 10 s−1. Similarly to the crit-
ical field Bvisc, this minimum magnetic field strength Bmin

depends very weakly on the radial position in the PNS (but
this time slightly increasing outward due to the different
scaling with Ω and the same scaling with density and vis-
cosity). Bmin is not that small (∼ 6×1011 G for fast rotation,
and ∼ 2 × 1012 G for moderate rotation), and we therefore
conclude that neutrino viscosity sets a strong constraint on
the initial magnetic field for the MRI to be able to grow on
a sufficiently short timescale.

This constraint, however, only applies if the MRI wave-
length is longer than the mean free path of neutrinos, which
may not be the case everywhere in the PNS. Figure 5
shows the mean free path of the different species of neu-
trinos as a function of radius (the mean free path is av-
eraged over neutrino energy following equation (9)). It in-
creases by 4 to 5 orders of magnitudes from 〈lν〉 ∼ 1m at
r0 = 10 km to 〈lν〉 & 10 km near the PNS surface around
40 km. This dependence is approximately reproduced by the
scaling lν ∝ ρ−1T−2 (due to the main opacity contribu-
tions being proportional to the density and the square of
the neutrino energy). The wavelength of the MRI in the vis-
cous regime is independent of magnetic field strength (equa-
tion 17), and can be compared to the neutrino mean free
path to check the consistency of the description (it is shown
with the red curve in Figure 5 for the case of fast rota-
tion). Because of the strong variation of the neutrino mean
free path, the description of the effect of neutrino radia-
tion as a viscosity is well justified deep inside the PNS, but

2 This growth rate corresponds to an e-folding growth time of
σ−1 = 100ms and is only a very rough estimate of the mini-
mum growth rate needed for a significant magnetic field ampli-
fication. A significant amplification of the magnetic field by the
MRI probably requires many e-folding times, and might actu-
ally take several seconds with this minimum growth rate. It is
therefore possible that a dynamical effect of the MRI in the first
second after shock bounce might require larger magnetic fields by
a factor of a few.
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Figure 5. Radial profile of the neutrino mean free path. The
solid black line corresponds to electron neutrinos, the dashed
line to electron antineutrino and the dotted line to heavy lep-
ton neutrinos νx. The mean free paths are average over neutrino
energy following equation (9). The blue line shows the scaling
lν = 104(ρ/1013 g cm−3)−1(T/10MeV)−2. For comparison, the
density scale height is plotted with a green line, and the wave-
length of the MRI in the viscous regime in red. For the latter
we use the fast rotation profile defined in equations (1)-(2) with
Ω0 = 2000 s−1, q = 1 and r0 = 10 km.
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Figure 6. Radial profile of the neutrino drag damping rate com-
puted according to equation (21). The solid black line corresponds
to electron neutrinos, the dashed black line to electron antineu-
trinos, the dotted black line to heavy lepton neutrinos νx (one
representative species) and the solid red line to the total neutrino
damping rate (i.e. the sum over the 6 neutrino species). Finally,
the dashed blue line shows the scaling Γ = 6× 103 (T/10MeV)6.

breaks down at larger radii where the mean free path be-
comes longer than the MRI wavelength. This happens at
radii ∼ 27 km for fast rotation and ∼ 34 km for moderate
rotation, which are marked by the vertical dashed lines in
Figure 3. At larger radii, the effect of neutrinos on the MRI
cannot be described by a viscosity because neutrino trans-
port begins to enter the non-diffusive regime.

3.3 MRI growth at wavelengths shorter than the
neutrino mean free path

3.3.1 Neutrino drag

At length scales shorter than the neutrino mean free path,
the transport of momentum by neutrinos can no longer be
described as a viscous process. This momentum transport
does nevertheless damp velocity fluctuations. Agol & Krolik
(1998) and Jedamzik et al. (1998) showed that, in this
regime, radiation induces a drag on the velocity field which
is independent of the wavenumber of the velocity fluctua-
tions. This drag is caused by the Doppler effect due to fluid
motion with respect to the background neutrino radiation
field. This creates a neutrino flux in the rest frame of the
fluid, which is responsible for the drag upon absorption or
scattering of the neutrinos. The neutrino drag can be rep-
resented by an acceleration −Γδu, where δu is the velocity
perturbation and the damping rate Γ is given by

Γ ∼ Eν〈κ〉
ρc

, (21)

where 〈κ〉 is the neutrino opacity averaged over energy in
the following way

〈κ〉 ≡
(
∫

dEν

dǫ
κdǫ

)

/Eν . (22)

Agol & Krolik (1998) obtained this result (with a numer-
ical factor of 4/3) for photons subject to Thomson scat-
tering, by performing a linearisation of the transport equa-
tion around an isotropic and steady radiation field, using
a closure model that keeps terms up to the quadrupole
and neglecting higher order (note that this is a higher or-
der approximation than the so called Eddington closure).
Jedamzik et al. (1998) found a similar result for neutrinos
but did not derive the relevant numerical factor, which is
most likely different from the one obtained by Agol & Krolik
(1998) for photons.

Figure 6 shows the radial profile of the damping rate
caused by the different neutrino species, obtained by evalu-
ating equation (21) for the output of the numerical simula-
tion. The contribution from electron neutrinos is dominant
compared to that of other neutrino species because of their
shorter mean free path. The damping rate decreases outward
by about 6 orders of magnitudes from 107 s−1 at 10 km to
10 s−1 at 40 km. This can be explained by the scaling Γ ∝ T 6

(shown with a blue line in Figure 6), which results from the
assumption of thermal equilibrium Eν ∝ T 4 and κ ∝ ρT 2.
Thompson et al. (2005) obtained a neutrino damping rate of
Γ ∼ 50 s−1 at a radius of 50 km (they do not show the values
at smaller radii), which is of the same order of magnitude
as what we obtain at the surface of the PNS.

Note that the damping rate Γ is related to the neutrino
viscosity through Γ ∼ 15ν〈κ〉/(2〈lν 〉) ∼ ν/〈lν〉2, i.e. it is
(within a numerical factor) the rate at which fluctuations
on the same scale as the neutrino mean free path would
be damped by the neutrino viscosity. As a consequence the
damping of fluctuations at scales shorter than the neutrino
mean free path is less efficient by a factor ∼ k2〈lν〉2 (with
k the wavenumber of the fluctuations) than what would be
obtained by applying the viscous formalism at these scales.
It is therefore conceivable that the MRI could grow on length
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scales shorter than the neutrino mean free path even if the
viscous formalism predicts the growth to be too slow.

3.3.2 Growth of the MRI in the presence of neutrino drag

In this section we study the growth of the MRI in the pres-
ence of neutrino drag, which is relevant to scales shorter
than the neutrino mean free path. The equations of in-
compressible MHD in the shearing sheet approximation
(Goldreich & Lynden-Bell 1965) are written as

∂tu+ u ·∇u = −1

ρ
∇P +

1

µ0ρ
(∇×B)×B (23)

−2Ω× u+ 2ΩSxex − Γδu,

∂tB = ∇× (u×B) + η∆B, (24)

∇ · u = 0, (25)

∇ ·B = 0, (26)

where Ω ≡ Ωez, S ≡ qΩ is the shear rate, and ex,ey,ez

are units vector in the radial, azimuthal and vertical direc-
tions (we restrict the analysis to the equatorial plane of the
PNS). δu ≡ u−u0 and δB ≡ B−B0 are the velocity and
magnetic field perturbations with respect to the stationary
equilibrium solution B0 = Bez, u0 = −qΩxey. The only
non-standard term in these equations is the neutrino drag
−Γδu discussed in the preceding section. The velocity and
magnetic field perturbations then follow the following set of
equations

σδux =
B

µ0ρ
ikδBx + 2Ωδuy − Γδux, (27)

σδuy − Sδux =
B

µ0ρ
ikδBy − 2Ωδux − Γδuy, (28)

δuz = 0, (29)

σδBx = Bikδux − k2ηδBx, (30)

σδBy = Bikδuy − SδBx − k2ηδBy , (31)

δBz = 0, (32)

where the perturbations are assumed to have the following
time and space dependence δA ∝ eσ+ikz, with σ being the
growth rate of the modes, and k their vertical wave vector.
Note that these equations are actually valid for any ampli-
tude of the perturbations, as no linearisation had to be done
to obtain them (just like the channel modes of the classi-
cal MRI are non-linear solutions in the incompressible limit
(Goodman & Xu 1994)). These equations can be combined
to obtain the dispersion relation of the MRI in this regime
(

σvση + k2v2A
)2

+ κ2
(

σ2
η + k2v2A

)

− 4Ω2k2v2A = 0, (33)

where we have defined

σv ≡ σ + Γ. (34)

Note that the form of this equation is very similar to the
dispersion relation in the viscous-resistive regime given by
equation (11), the only difference being that σν = σ + k2ν
has been replaced by σv = σ + Γ. As we will show, the
fact that the neutrino damping rate is independent of the
wavenumber makes a big difference for the wavelength and
growth rate of the fastest growing mode.

Figure 7 shows the growth rate and wavelength of the
fastest growing MRI mode (the numerical solution of the dis-
persion relation for η = 0 is shown with the solid black line)

as a function of the dimensionless parameter Γ/Ω charac-
terizing the effect of neutrino drag on the MRI. The growth
of MRI channel modes is not much affected by the neutrino
drag as long as Γ < Ω. When the damping rate Γ is increased
further, the growth rate of the MRI is reduced significantly
while the wavelength of the fastest growing mode changes
only slightly.

A useful analytical solution can be obtained in the
asymptotic limit Γ ≫ Ω (and therefore Γ ≫ σ since σ < Ω)
and η = 0. In this limit, the dispersion relation reduces to
(

Γσ + k2v2A
)2

= k2v2A
(

4Ω2 − κ2
)

. (35)

The growth rate of the MRI as a function of vertical
wavenumber is therefore

σ =
kvA
Γ

(

√

2qΩ− kvA
)

, (36)

and the growth rate and wavenumber of the fastest growing
mode are

σ =
q

2

Ω2

Γ
, (37)

and

k =
√

q/2
Ω

vA
, (38)

respectively. The asymptotic limits Γ ≫ Ω (drag regime)
and Γ ≪ Ω (i.e. the ideal regime described in Section 3.1)
are compared to the full numerical solution in Figure 7.
An agreement within 10% is obtained for Γ/Ω < 0.2 (ideal
regime) and Γ/Ω > 3 (drag regime), and within 20% for
Γ/Ω < 0.4 (ideal regime) and Γ/Ω > 2 (drag regime).

The analytical solution shows that compared to the
ideal MHD case, the maximum growth rate is reduced by a
factor Γ/Ω. Importantly, and contrary to the viscous regime,
the growth rate remains independent of the magnetic field
strength. This comes from the fact that the neutrino drag
is independent of the wavenumber, and as a consequence
affects the MRI growing on a weak magnetic field (with
short wavelength) in the same way as if it were growing
on a stronger magnetic field (with longer wavelength). As a
consequence, if the initial magnetic field is weak the MRI
is more likely to grow in this regime than in the viscous
regime (where the growth rate is proportional to magnetic
field strength). The condition for the MRI to grow at a min-
imum growth rate σmin is independent of the magnetic field
strength, and can be cast as an upper limit on the neutrino
damping rate

Γ < qΩ2/(2σmin). (39)

Applying the analytical results of this section to the nu-
merical model of the PNS allows one to compute the growth
rate of the MRI as a function of radius in the PNS. The
result is shown in Figure 8 for the two rotation profiles con-
sidered. Due to the large variation of the neutrino damping
rate inside the PNS, different MRI growth regimes are en-
countered depending on the radius. Deep inside the PNS, the
very large neutrino drag suppresses the growth of the MRI
: this is due to the high temperature. Near the PNS surface
on the contrary, the neutrino drag does not have much effect
on the growth of the MRI (because Γ < Ω), which therefore
occurs in the ideal regime described in Section 3.1. Finally,
at intermediate radii, the neutrino drag has a significant im-
pact on the MRI growth rate but still allows a sufficiently
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Figure 7. Growth rate (left) and wavelength (right) of the fastest growing MRI mode at scales shorter than the neutrino mean free
path as a function of the damping rate Γ (assuming zero resistivity). The numerical solution of the dispersion relation (equation (33))
is shown with the solid black lines, the strongly damped limit Γ ≫ Ω (equations (37)-(38)) with dashed lines, and the ideal limit Γ = 0
(Section 3.1) with dotted lines. All quantities are shown in a non-dimensional way: Γ and σ are normalized by the angular frequency Ω,
while Ω/(kvA) is a non-dimensional measure of the wavelength.
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Figure 8. Radial profile of the maximum growth rate of the MRI
at scales shorter than the neutrino mean free path. The growth
rate (solid lines) is computed by applying equation (37) where
Γ > Ω, and equation (4) where Γ < Ω. The dotted lines show
the growth rate in the ideal MHD limit (equation (4)). The two
colors represent the two different normalizations of the rotation
profile: fast rotation (black) and moderate rotation (red).

fast growth (we call this the drag regime). The extent of the
three different regimes depends on the rotation frequency :
the MRI can grow in a larger portion of the PNS for fast
rotation than for moderate rotation. Indeed if Ω is larger
the MRI can grow in the ideal regime for higher values of Γ,
and therefore smaller radii. The extent of the drag regime
also depends sensitively on Ω: equation (37) shows that in
this regime the MRI growth rate has a steeper dependence
on the rotation rate (σmax ∝ Ω2) than in the ideal MHD
case (σmax ∝ Ω). This explains why the region where the
MRI grows in the drag regime is less extended in the case
of moderate rotation.

Finally, we should determine the condition for the for-
malism developed in this section to be self-consistent, i.e.
that the wavelength of fastest MRI growth be shorter than
the neutrino mean free path. As noted above, the wave-
length of the fastest growing mode is of the same order of

magnitude as in the ideal MHD case, and is therefore pro-
portional to the magnetic field strength. This is again in
contrast to the viscous case, where the wavelength of the
fastest growing mode is set by the viscosity and angular fre-
quency (independently of the magnetic field strength). The
results of this section are self-consistent if the wavelength of
the fastest growing MRI mode is shorter than the neutrino
mean free path. Using equation (38), this condition can be
expressed as an upper limit on the magnetic field strength,

B <
√

ρq/2πΩ/〈κ〉, (40)

because the relevant neutrino mean free path is the inverse
of the opacity averaged over neutrino energy as defined by
equation (22). Figure 9 shows this maximum magnetic field
strength for consistency of MRI growth in the drag regime.
It is quite weak (1010 − 1011 G) deep inside the PNS (where
the MRI anyway does not grow efficiently due to the strong
drag), and increases by two orders of magnitude toward the
surface of the PNS reaching values of 2×1012 G for moderate
rotation and 2 × 1013 G for fast rotation. This shows that
the growth of the MRI at length scales shorter than the
neutrino mean free path is relevant for weak to moderate
initial magnetic fields in the outer parts of the PNS.

4 DISCUSSION AND CONCLUSION

In this paper we have studied the impact of neutrino ra-
diation on the growth of the MRI. We have shown that,
depending on the physical conditions, the MRI growth can
occur in three different regimes:

• Ideal regime (orange color in Figure 10) : this is the
classical MRI regime which applies when neutrino viscos-
ity or drag are unimportant, i.e. if Eν > 1 and Γ/Ω < 1.
The growth rate of the MRI is then a fraction of the angu-
lar frequency independently of the magnetic field strength,
while the most unstable wavelength is proportional to the
magnetic field strength.

• Viscous regime (dark blue color in Figure 10) : on
length scales longer than the neutrino mean free path, neu-
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Figure 10. Different regimes of MRI growth as a function of radius and magnetic field strength in the case of fast rotation (left panel)
and moderate rotation (right panel), for a PNS model at t = 170ms post-bounce. See text for a description of the different regimes. The
parameter range used in the simulations by Obergaulinger et al. (2009) is shown in red on the left panel, and the parameters assumed
by Masada et al. (2012) are shown with a red cross on the right panel.
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Figure 9. Magnetic field strength at which the wavelength of the
fastest growing MRI mode equals the mean free path of electron
neutrinos 1/〈κ〉 (as defined by equation (22)): below this critical
strength the formalism used in section 3.3 is self consistent. The
two colors represent the two different normalizations of the rota-
tion profile: fast rotation (black) and moderate rotation (red).

trino viscosity significantly affects the growth of the MRI
if Eν < 1. The growth of the MRI is then slower and
takes place at longer wavelength compared to the ideal
regime. In the viscous regime, the wavelength of the most
unstable mode is independent of magnetic field strength,
while the growth rate is proportional to the magnetic field
strength. As a result, a minimum magnetic field strength
of ∼ 1012 G is required for the MRI to grow on sufficiently
short timescales.

• Drag regime (light blue color in Figure 10) : on length
scales shorter than the neutrino mean free path, neutrino ra-
diation exerts a drag on moving fluid elements. This drag has
a significant impact on the MRI if the damping rate is larger
than the rotation angular frequency (Γ > Ω). In this regime,
the growth rate of the most unstable mode is independent of
the magnetic field strength, but is reduced by a factor Γ/Ω
compared to the ideal regime. The wavelength of the most
unstable mode is not much affected by the neutrino drag.

Figure 10 shows where in the parameter space these
three regimes apply, as a function of radius and magnetic
field strength for the two rotation profiles considered in this
paper: fast rotation (left panel) and moderate rotation (right
panel). Three regions in the proto-neutron can be distin-
guished:

• Deep inside the PNS, the neutrino mean free path is
much shorter than the wavelength of the viscous MRI, and
Γ ≫ Ω. In this case, the growth of the MRI at scales shorter
than the mean free path is strongly suppressed, and the
relevant MRI regime is the viscous MRI described in Sec-
tion 3.2. The MRI can grow on sufficiently short timescales
if the initial magnetic field is above a critical strength given
by equation (19). Viscous effects become unimportant for
strong magnetic fields above Bvisc given by equation (14).

• At intermediate radii, the mean free path of neutrinos
is still shorter than the wavelength of the viscous MRI, but
Γ is not too large such that the MRI can also grow in the
drag regime (i.e. equation (39) is verified). This is there-
fore an intermediate case where MRI growth can take place
both in the viscous regime at wavelengths longer than the
neutrino mean free path, and in the drag regime at length
scales shorter than the mean free path. Since the growth rate
in the viscous regime is proportional to the magnetic field
strength, the growth is faster in the viscous regime above a
critical magnetic field strength, which can be expressed as

Bvisc−drag =
√
qπρνκ

Ω

Γ
. (41)

Below Bvisc−drag, the growth is predicted to be faster in the
drag regime. However, this regime is self-consistent only if
the magnetic field strength is weaker than that given by
equation (40) (the MRI wavelength is then shorter than the
mean free path of electron neutrinos). In between these two
critical strengths, the MRI growth should actually occur in
a mixed regime (shown in green in Figure 10) where electron
neutrinos are diffusing and thus induce a viscosity, while the
other species make the transition to free streaming and exert
a drag.

• Near the PNS surface, the viscous regime is irrelevant
because the neutrino mean free path is longer than the wave-
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length of the MRI. Furthermore, in this region the neutrino
drag does not affect much the growth of the MRI because the
damping rate is smaller than the angular frequency Γ < Ω.
As a consequence the MRI growth takes place in the ideal
regime without much impact of neutrino radiation.

For the two rotation rates considered in this paper, the
regimes of MRI growth have somewhat different locations
in the parameter space. The region where the MRI can-
not grow is more extended for moderate rotation than for
fast rotation. The viscous and drag regimes are also less ex-
tended. For the ideal regime it is a bit more complicated:
it extends to lower magnetic fields deep inside for slower
rotation (because the wavelength is longer and the MRI is
therefore less affected by viscosity), but weak field growth
in the ideal regime can take place deeper inside the PNS for
fast rotation (as explained in Section 3.3).

The results presented so far correspond to a single time
frame at 170ms after bounce. In order to study how the
different MRI regimes are affected by the PNS contrac-
tion, we have performed the same analysis at two different
times: 50ms after bounce (at which time the PNS radius3

is ∼ 70 km), and 800ms after bounce (the PNS radius has
then decreased to ∼ 22 km). Although the size and struc-
ture of the PNS is quite different at these different times,
the results are strikingly similar: the location of the different
MRI regimes is almost identical once rescaled to the size of
the PNS, in particular with very similar values of Bmin and
Bvisc delimitating the viscous regime.

Note that the physical conditions inside the proto-
neutron star (neutrino viscosity, neutrino damping rate etc.)
have been estimated using a one dimensional numerical sim-
ulation of core collapse, which considered a non-rotating pro-
genitor. The moderate rotation is expected to change the
PNS structure in a negligible way because the ratio of cen-
trifugal to gravitational forces is less than 10−3 everywhere
in the PNS. Fast rotation, on the other hand, should have
a significant influence on the structure of the PNS, as the
centrifugal force amounts to 4 to 8% of the gravitational
force in the radius range considered. Rotational support is
expected to lead to a more extended PNS and lower tem-
peratures along the equatorial direction (Kotake et al. 2004;
Ott et al. 2006). This would change quantitatively the re-
sults presented in this paper: for example the lower temper-
ature would lead to smaller values of the neutrino damping
rate, such that the MRI would be less affected by the neu-
trino drag in the outer envelop of the PNS. The centrifu-
gal force also leads to an oblate PNS, and the MRI growth
regime will therefore depend on the angular direction in ad-
dition to the radial dependence studied in this paper.

Numerical simulations of the MRI in core collapse su-
pernovae have so far neglected the effects of neutrino radi-
ation on the growth of the MRI (Obergaulinger et al. 2009;
Masada et al. 2012; Sawai et al. 2013; Sawai & Yamada
2014). Our study shows that this assumption is reason-
able for the exponential growth of the MRI only in a lim-
ited region of the parameter space, namely in the outer
region of the proto-neutron star or deeper in the proto-
neutron star but for quite strong initial magnetic fields

3 The PNS radius is defined here as the radius at which the den-
sity equals 1011 g cm−3.

(B & 3 × 1013 − 1014 G depending on the rotation rate4).
If the initial magnetic field is not very strong, the growth of
the MRI deep inside the PNS is strongly affected by neutrino
viscosity. The effect of neutrinos should therefore be taken
into account in numerical simulations either by adding a
viscous or a drag term (depending on the regime of MRI
growth) or by directly computing the neutrino transport
and back reaction on the velocity field. In order to prop-
erly describe the effects of neutrinos on the MRI (viscosity
and drag), a neutrino transport scheme should be multidi-
mensional (i.e. not ray by ray) and should include velocity
dependent terms.

Masada et al. (2012) performed local simulations of the
MRI assuming a density ρ = 1012 g cm−3 (this corresponds
to a radius of ∼ 32 km in our PNS model), an initial mag-
netic field strength B = 2.2 × 1012 G and an angular fre-
quency Ω = 100 s−1. This lies just at the limit between
the viscous, mixed, and no-MRI regimes in the moderate
rotation profile (their rotation is only slightly faster). We
therefore conclude that neutrinos should be taken into ac-
count under these conditions, though the prescription to be
applied (viscosity or drag) is not clear. Obergaulinger et al.
(2009) considered a box localized at 15.5 km from the cen-
ter of the PNS, with values at the center of the box of
ρ = 2.5 × 1013 g cm−3, Ω = 1900 s−1 (i.e. close to the fast
rotation profile we considered), and different values of the
magnetic field strength varying between B = 4×1012 G and
B = 8 × 1013 G. Under these conditions, the MRI is actu-
ally in the viscous regime and the neutrino viscosity should
therefore be taken into account in the numerical simulation.

The large value of the neutrino viscosity has an-
other important consequence: since the resistivity is quite
small in comparison, this leads to a huge value of the
magnetic Prandtl number (the ratio of viscosity to resis-
tivity): Pm ≡ ν/η ∼ 1013 (Thompson & Duncan 1993;
Masada et al. 2007). Studies in the context of accretion discs
have shown that the level of MRI turbulence is very sensi-
tive to the magnetic Prandtl number, and that it generally
increases with this number (e.g. Lesur & Longaretti 2007;
Fromang et al. 2007; Longaretti & Lesur 2010). If viscosity
is not explicitly taken into account in numerical simulations,
numerical dissipation will give rise to a numerical magnetic
Prandtl number which may depend on the numerical scheme
but which should be of order unity (Fromang & Papaloizou
2007; Fromang et al. 2007). This is very far from the true
regime, and could lead to underestimate strongly the final
magnetic energy and stress. Numerical simulations taking
explicitly into account neutrino viscosity will therefore be
necessary to assess its influence on MRI saturation.

Let us now discuss the implications of our findings for
the explosion mechanism of core collapse supernovae. We
have shown that neutrino viscosity and drag have important
consequences for the growth timescale of the MRI, which
need to be taken into account. If the magnetic field is ini-
tially weak, the MRI growth can be suppressed by neutrino
viscosity (if B . 1012 G in the PNS) or significantly slowed
down (if B . 1013 − 1014 G). The most important finding

4 Note that this criterion only ensures that the linear growth rate
is not much reduced by the viscosity, but the non-linear saturation
of the MRI may still be affected by viscosity.
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of this paper is probably that, even if the growth of the
MRI from very weak magnetic fields is suppressed in the
viscous regime deep inside the proto-neutron star, the MRI
can grow on wavelengths shorter than the mean free path
of neutrinos in the outer parts of the proto-neutron star. To
have an impact on the explosion, it is probably more im-
portant that magnetic field amplification takes place in the
outer parts of the PNS rather than in its inner parts. In this
respect, our findings confirm that the growth of the MRI
can be fast enough to play a role in the explosions of fast
rotating progenitors. Which impact it has on the explosion
will ultimately depend on the non-linear evolution and satu-
ration of the MRI, which set the efficiency of magnetic field
amplification. How this non-linear evolution is affected by
the neutrino drag is currently unknown and should be the
subject of future numerical studies.

In order to highlight the different regimes of MRI
growth in a simple way, we have made a number of sim-
plifying assumptions, which are discussed below. First, we
have assumed the magnetic field to be purely poloidal.
If the azimuthal magnetic field were much stronger than
the poloidal one as obtained by Heger et al. (2005), the
fastest growing perturbations would be non-axisymmetric
(Masada et al. 2006). In a local analysis (like this article or
Masada et al. (2006)), these shearing waves are only tran-
siently growing typically during a few shear timescales, due
to the fact that their radial wave vector increases linearly
with time (and proportionally to the azimuthal wave vector).
These transiently growing perturbations may play an impor-
tant role in MRI turbulence and can be meaningfully stud-
ied using a non-modal approach (Squire & Bhattacharjee
2014b,a). It would be interesting to study their proper-
ties in the presence of neutrino drag. Second, we have ne-
glected buoyancy effects, which can arise due to the presence
of entropy and composition gradients. Buoyancy can how-
ever significantly impact MRI growth in stably stratified
regions of the PNS (Balbus & Hawley 1994; Menou et al.
2004; Masada et al. 2006, 2007; Obergaulinger et al. 2009).
In the neutrino diffusive regime, thermal and lepton number
diffusion can alleviate the stabilizing effect of buoyancy on
the MRI (Menou et al. 2004; Masada et al. 2007). Buoyancy
effects on the MRI growth at wavelengths shorter than the
neutrino mean free path are so far unknown and should be
studied in the future, since they are relevant in the outer
parts of the proto-neutron star.
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Winteler C., Käppeli R., Perego A., Arcones A., Vasset N.,
Nishimura N., Liebendörfer M., Thielemann F.-K., 2012,
ApJL, 750, L22

Woods P. M., Thompson C., 2006, Soft gamma repeaters
and anomalous X-ray pulsars: magnetar candidates. pp
547–586

Woosley S. E., 2010, ApJL, 719, L204
Woosley S. E., Heger A., 2006, ApJ, 637, 914
Woosley S. E., Heger A., Weaver T. A., 2002, Reviews of
Modern Physics, 74, 1015

Yoon S.-C., Langer N., 2005, A&A, 443, 643

This paper has been typeset from a TEX/ LATEX file prepared
by the author.

c© 0000 RAS, MNRAS 000, 000–000


	1 Introduction
	2 Proto-neutron star model
	3 Different regimes of the magnetorotational instability (MRI)
	3.1 MRI in ideal MHD
	3.2 MRI in the presence of neutrino viscosity
	3.3 MRI growth at wavelengths shorter than the neutrino mean free path

	4 Discussion and conclusion

