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ABSTRACT
We present an efficient algorithm for the least squares parameter fitting optimized for com-
ponent separation in multi-frequency CMB experiments like Planck. We sidestep some of
the problems associated with non-linear optimization by taking advantage of the quasi-linear
nature of foreground model i.e. a subset of parameters in the model are non-linear and even
they are expected to lie within a very narrow range from physical considerations. We demon-
strate our algorithm, linearized iterative least-squares (LIL), on the publicly available Planck
sky model FFP6 simulations and compare our result with the other algorithms, in particular
the Commander algorithm which is a Bayesian parameter fitting algorithm. We work at full
Planck resolution and show that degrading the resolution of all channels to that of the lowest
frequency channel is not necessary. We show that the performance of LIL in terms of residuals
and noise is comparable to the existing methods. Finally we present results for the publicly
available Planck data. Our algorithm is extremely fast, fitting 6 parameters to 7 lowest Planck
channels at full resolution (50 million pixels) in less than 160 CPU-minutes (or few minutes
running in parallel on few tens of cores). LIL is therefore easily scalable to future experiments
which may have even higher resolution and more frequency channels requiring more compli-
cated models with more parameters. We also naturally propagate the uncertainties in different
parameters due to noise in the maps as well as degeneracies between the parameters to the
final errors on the parameters using Fisher matrix. One indirect application of LIL could be a
front-end for Bayesian parameter fitting to find the maximum of the likelihood to be used as
the starting point for the Gibbs sampling. Our algorithm is also useful for exploring different
models of foregrounds and the effect on noise and systematic properties of resulting CMB
maps. We show that fitting a single most general model to all pixels is not optimal since not
all components are present everywhere and argue, with the example of CO component, that
the optimal approach should combine parameter fitting with model selection. LIL may also
be useful in other astrophysical applications which satisfy the quasi-linearity criteria.
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1 INTRODUCTION

Multi-frequency CMB experiments such as WMAP (Bennett et al.
2013) and Planck (Planck Collaboration et al. 2013a) make it possi-
ble to separate the observed signal into CMB and foreground com-
ponents by taking advantage of the fact that different components
have different spectral properties. Component separation allows us
to use a larger fraction of the sky for cosmological analysis. For
high sensitivity experiments, such as Planck, even in the relatively
clean parts of the sky the foregrounds would be above the noise
level and we need component separation to take advantage of the
full sensitivity of the experiment. Although most component sep-
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aration methods assume quite simple foreground models, the fore-
grounds in reality are much more complicated. We are limited to
simple models mostly because of the lack of spectral resolution in
the CMB experiments. Planck has just 7 frequency bands from 30
GHz to 353 GHz where CMB dominates over a significant portion
of the sky and an additional two bands at 545 GHz and 857 GHz
which are dominated by the foregrounds over most of the sky. Fore-
grounds on the other hand are expected to have multiple compo-
nents such as synchrotron (Haslam et al. 1981), free-free (Bennett
et al. 2003), anomalous dust emission (Erickson 1957; Draine &
Lazarian 1998a,b, 1999) and dust emission (Wheelock et al. 1994;
Smoot et al. 1992; Sodroski et al. 1994; Fixsen et al. 1996; Schlegel
et al. 1998; Finkbeiner et al. 1999). Each of these components is in
fact made up of superposition of emission from different regions
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2 Khatri

along the line of sight with different temperatures, spectral indices
and intensity. In addition there is also a contribution from the extra-
galactic radio (Longair & Sunyaev 1972; Gervasi et al. 2008) and
infrared backgrounds (Hauser et al. 1998).

The component separation methods must therefore make
many simplifying assumptions about the foregrounds. Although the
details of different methods differ, broadly they can be classified
according to whether they assume that the emission laws vary over
the sky or not. For example, the template fitting method Spectral
Estimation Via Expectation Maximization (SEVEM) (Martı́nez-
González et al. 2003) makes the assumption that the spectral pa-
rameters are constant over large regions of the sky so that a tem-
plate subtraction can be performed. The Spectral Matching Inde-
pendent Component Analysis (SMICA) (Cardoso et al. 2008) and
its Bayesian incarnation (Vansyngel et al. 2014) construct and fit a
template or model of foreground emission, CMB and noise to the
channel maps in the spherical harmonic domain and also makes
the assumption that the emission laws do not vary with the spher-
ical harmonic mode numbers `,m i.e. they are constant over the
whole sky. Commander Eriksen et al. (2006, 2008) uses a simpli-
fied parametric model motivated by the known physics about the
foregrounds. The spectral parameters vary from pixel to pixel on
a much lower resolution map and this method is therefore more
flexible in modelling the varying emission laws on the sky and a
little closer to the physical nature of the foregrounds. The Needlet
Internal Linear Combination algorithm (NILC) Delabrouille et al.
(2009) constructs an internal linear combination map in a wavelet
space whose basis functions are needlets. The needlets are local-
ized both in the spatial and harmonic space and this method lies
somewhere in between the SEVEM and SMICA in terms of the ba-
sis. It fits the foregrounds as a function of both spatial location as
well as angular scale. This method also assumes that the emission
laws over large portions of the sky are constant. The foregrounds
also provide useful information about the galactic and extragalac-
tic physics and accurate estimation of the foregrounds components
is therefore also important. The component separation methods re-
ferred to above, except for Commander, do not separate different
foreground components but only the sum of the foregrounds from
the CMB.

It is also a reasonable question to ask if the assumptions about
the foregrounds and the CMB can bias our CMB results. In partic-
ular can the foreground cleaning/component separation introduce
anomalies in the resulting CMB maps or, what may be even worse,
mask some of the primordial anomalies. It is therefore worthwhile
to have different foreground removal methods which operate on dif-
ferent assumptions. But more importantly we need methods which
rely on minimum amount assumptions about the nature of fore-
grounds and the CMB, especially with regards to the angular corre-
lation structure of both the amplitudes and the emission laws, and
only use what we physically know about the foregrounds.

The purpose of the present work is to present such a method.
Our approach is parameter fitting in pixel space, similar to the Com-
mander, but we do so at full resolution relaxing the assumption that
the spectral parameters are constant on degree scales. In particular,
we find that there is no need to smooth the resolution of all maps
to the lowest resolution map. In fact re-beaming the low resolu-
tion maps to higher resolution, as is done by SMICA and NILC,
would be a better choice yielding CMB maps with an effective
beam closer to that of the highest resolution channels. Comman-
der explores the full posterior distribution using Gibbs sampling
Eriksen et al. (2006, 2008) and is therefore computationally very
expensive with 100 s per pixel. Commander simultaneously esti-

mates the angular power spectrum of the CMB also which we will
not be concerned about in this paper. We however still need to pro-
duce high quality maps if we want to look for anomalies that go
beyond the isotropic power spectrum.

Our approach is straightforward least-squares parameter fit-
ting. This has been attempted before using non-linear optimiza-
tion algorithms Brandt et al. (1994). The non-linear optimization
algorithms however converge quite slowly and often to the local
minimum which may be far from the solution we are interested in.
We develop a new algorithm taking advantage of the fact that most
of the parameters in the foreground model are linear, for exam-
ple, the amplitudes of different components. Even the non-linear
parameters lie within a narrow range. For example, the low fre-
quency foregrounds originate in free-free and synchrotron emis-
sion and are expected to have spectral indices in the range −2
to −4. Similarly the spectral index of the dust component is ex-
pected to lie between 2 and 3 (see the next section for the exact
definitions of spectral indices and the foreground model) and its
temperature between ∼ 10 and 30 K. This suggests that we can
Taylor expand the foreground model around a reasonable guess
and solve the resulting linear problem. Since the Taylor series is
a good approximation within a narrow range around the central
value, we expect the linear approximation to be a very good one.
This forms the basis of our algorithm presented in the next sec-
tion. In section 2 we present our algorithm explaining the reason-
ing behind the different steps. In section 3 we apply our algorithm
to the publicly available simulations of the Planck sky model (De-
labrouille et al. 2013) called FFP6 simulations1. In section 4 we
discuss a further refinement/extension of our algorithm by includ-
ing model selection. In section 5 we apply our algorithm to the
publicly available Planck maps at full resolution and present the
resulting CMB and foreground component maps. Our results as
well as the FORTRAN code will be made publicly available at
http://www.mpa-garching.mpg.de/˜khatri/lilcmb.

2 LINEARIZED ITERATIVE LEAST-SQUARES
PARAMETER FITTING (LIL)

For definiteness we will work with Planck experiment. However,
the algorithm is quite general and is applicable to future exper-
iments with many more frequency channels compared to Planck
(The COrE Collaboration 2011; Kogut et al. 2011; P. Andre et
al. 2014) and also to more complicated foreground models. Fol-
lowing Planck Collaboration et al. (2013b) we fit the following 6-
parameter model to the 7 Planck frequency channels from 30 GHz
to 353 GHz. In the following we will refer to the observed value of
data = signal + noise in a particular pixel (p) in frequency channel
j as d j(p) and we number the frequency channels from lowest to
highest i.e. j ∈ {1, . . . , 7} for ν ∈ {30, . . . , 353} GHz respectively.
Our parametric model is

sν(p) =ACMB(p) + f lf
ν Alf(p)

(
ν

νlf
0

)βlf (p)

+ f co
ν Aco(p)

+ f d
ν Ad(p)

1

exp
(

hν
kBTd

)
− 1

(
ν

νd
0

)βd(p)

, (1)

1 http://wiki.cosmos.esa.int/planckpla/index.php/

Simulation_data
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LIL CMB component separation 3

where p is the pixel number in HEALPix2 nested numbering
scheme (Górski et al. 2005), sν is the total sky emission in units
of KCMB at frequency ν, Ai(p) is the amplitude of the component
i ∈ {CMB, co, lf, d} where the abbreviations are for the CMB, CO
line emission, low frequency emission including synchrotron, free-
free and anomalous microwave emission, and dust emission respec-
tively. The factors of f i

ν convert the Rayleigh Jeans temperature (or
KRJ Km/s for CO) to the thermodynamic CMB units, KCMB, and
also include the color correction factors, νi

0 are the reference fre-
quencies with νlf

0 = 30 GHz and νd
0 = 353 GHz and βi are the

spectral indices. The f co
ν in addition includes relative amplitudes of

the CO lines in units of KRJ Km/s in different frequency channels
which we keep fixed following Planck Collaboration et al. (2013b)
as (1:0.595:0.297) for 100 GHz , 217 GHz and 353 GHz chan-
nels respectively and zero for all other channels. We will assume
the dust temperature to be constant, Td = 18 K. In principle it is
possible to include higher frequency channels at 545 GHz and 857
GHz and allow the dust temperature to vary. However, it is not ex-
pected to lead to a significant improvement in the foreground sepa-
ration as far as CMB is concerned since the additional information
provided by the higher frequency channels is absorbed in the ad-
ditional complexity of the model as well as having to apply the
simple dust emission model over a wider range of frequencies than
is physically justified. Note that our definitions are slightly differ-
ent from (Planck Collaboration et al. 2013b) to make the formulae
a little simpler. We will also suppress the argument p in the follow-
ing since we work with one pixel at a time, so the value of data in
jth frequency map is denoted by just d j.

We want to do a Taylor series expansion of Eq. 1 around some
initial guess for the parameters. Therefore the zeroth step for our
algorithm is the following:

(0) Set the initial values of parameters for the current pixel as fol-
lows: ACMB = min(d4, d5, d6), Alf = (d1 − ACMB)/ f lf

30 GHz, Ad =

(d7 − ACMB)/ f d
353 GHz, where we ignore the color correction in f lf

ν

and f d
ν which then just convert from Rayleigh-Jeans units to the

thermodynamic units. Similarly using d1 − ACMB and d2 − ACMB as
estimates of low frequency foreground in the lowest two channels
we can solve for βlf and using d7 − ACMB and d6 − ACMB as esti-
mates of dust foregrounds we can solve for the initial βd. Note that
we do not need initial guess for CO amplitude since it is linear and
sub-dominant compared to the other components.

(1) Do Taylor expansion around the current value of the parameters
(or the initial guess if first iteration).

sν ≈ s′ν =ACMB + f co
ν Aco + f lf

ν Alf

(
ν

νlf
0

)βlf
[
δlf + δlf

β βlf ln
(
ν

νlf
0

)]
+ f d

ν Ad
1

exp
(

hν
kBTd

)
− 1

(
ν

νd
0

)βd
[
δd + δd

ββd ln
(
ν

νd
0

)]
(2)

In the above equation the Alf , βlf , Ad, βd are fixed from previous iter-
ation. We thus have a 6 parameter linear model with the parameter
vector x = (ACMB, Aco, δlf , δ

lf
β , δd, δ

d
β). We have defined δlf and δd

as multiplicative corrections to the amplitude while the spectral in-
dices δlf

β , δ
d
β are fractional corrections so that the actual indices are

βlf(1 + δlf
β ), βd(1 + δd

β) and we expect that δd
β, δ

lf
β . 1 so that the

Taylor series is a good approximation.

2 http://healpix.sourceforge.net

(2) We now solve the linear least squares problem minimizing

χ2 =
∑

i

( s′νi
− di

σi

)2

≡
∑

i

[
(Mx)i − d′i

]2 , (3)

where d′i ≡ di/σi and σi is the standard deviation of noise in chan-
nel i in the current pixel p. The problem is easily solved by numer-
ous linear algebra techniques. We use LQ/QR factorization routines
of the Intel Math Kernel Library. The solution of the least squares
problem gives us a direction to move our current parameter vector
as well as the amplitude of the step which is just the actual least
squares solution. In practice we may decide not to take the full step
but only move a fraction of the amplitude in the relevant direction.
We will come back to this point below.

So far we have done nothing new. The steps (1) and (2) are in
fact just the standard Taylor expansion to linear (or quadratic order)
and a Gauss-Newton step. These two steps, with or without some
modification, form the basis of most non-linear optimization algo-
rithms (see e.g. Gill & Murray 1976; Press et al. 1992; Conn et al.
2000). From Eq. 2 it is clear why we do not arrive at the correct
solution in just one step. Although this linear model is a good ap-
proximation, in fact the term multiplying the amplitude parameters
δlf and δd have the wrong spectral indices since they also change
in the step from their current values and vice-versa for the terms
multiplying the spectral index parameters δlf

β and δd
β. This is in fact

the only place the non-linearity of our model manifests itself. This
also suggests a cure.

(3) Use the results of step (2) only to update the spectral indices βlf →

βlf(1 + δlf
β ) and βd → βd(1 + δd

β). Fix the spectral indices and repeat
step (2) for the smaller parameter vector x′ = (ACMB, Aco, δlf , δd).
Update the amplitudes with the new solution.

With the spectral indices fixed the problem is in fact linear and
can be solved exactly. Thus we arrive at the minimum in a subspace
of our full parameter space.

(4) Exit if we meet one of the exit criterion given below otherwise go
back to step (1)

We are therefore searching for a minimum in the two non-
linear directions, which are almost uncorrelated with each other.
while always remaining at the global minimum in the subspace,
defined by the component amplitudes, of the full parameter space.

Finally we can also improve our initial guess and make the ini-
tial amplitudes and indices of the model compatible with each other
by solving the least-squares problem in the subspace of amplitudes
(x′) but keeping the initial guess for the indices.

(0′) After step (0) solve the least squares problem for the amplitudes
(x′) similar to step (3) and update the amplitudes before proceeding
to step (1).

It turns out that the combination of the linearized model, Eq.
2, combined with additional sub-iteration step (3) makes the al-
gorithm extremely efficient in finding the minimum of the χ2. We
have in fact a significant advantage over a general non-linear prob-
lem. The linear model, Eq. 2, is a good approximation over almost
the entire range of allowed parameter space since the spectral in-
dices cannot vary by a large amount and therefore our minimum
lies within the range of validity of the expansion. This is not true
in general and the Taylor expansion at linear or quadratic order for
a general non-linear problem would probably be valid in a small
region of parameter space which may not include the minimum we
are after. It is of course very difficult to prove that we have indeed
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4 Khatri

Figure 1. CMB Residuals for the FFP6 simulation, (CMBout-CMBin). The residuals are less than few µK at high latitudes at nside=128. There is also no
visible bias at high latitudes and the residuals are consistent with noise. Note that our color scale is different from that used by (Planck Collaboration et al.
2013b). A monopole and dipole calculated at latitudes |b| > 30◦ has been subtracted from the residual maps.

found the global minimum and the only way to test the quality of
results is to use simulations which we do in section 3.

2.1 Additional constraints and exit criterion

We need to add additional constraints to the above algorithm mo-
tivated by the physical nature of the foregrounds. In other words
we want to solve the least-squares problem subject to certain con-
straints so that we remain in the physically relevant parameter space
in the presence of noise.

(i) We want to restrict the allowed range of the spectral indices βlf , βd.
We impose a somewhat loose bound in the regions where fore-
grounds have high amplitude and a tighter bound in the regions
with low foregrounds. This is an attempt to emulate a prior in the
Bayesian sense. If a foreground component is detected with high
signal to noise the bounds have no effect and we can allow a wider
freedom for the spectral index to vary. The bounds we use are as
follows:

d1 − d2 > 10−3 KCMB → −5 6 βlf 6 −1

d1 − d2 6 10−3 KCMB → −3.5 6 βlf 6 −2.5

d7 − d6 > 10−2 KCMB → 1 6 βlf 6 5

d7 − d6 6 10−2 KCMB → 2 6 βlf 6 3 (4)

It may happen, usually where foregrounds have too small S/N, that
there is no local minimum in the direction of spectral indices, where
the derivative of χ2 vanishes, within the bounds. We will still have
a minimum value for the χ2 within the bounds which we can use
as the best value of our parameters usually at the one of the bound-
aries. In that case it is not possible to use the Fisher matrix to esti-
mate the uncertainties and in particular it will in general not be posi-
tive definite. In such situations, since foregrounds are anyway small
and therefore their influence on the errors on the CMB component
should be minimal, we calculate the covariance after removing the
columns/rows corresponding to the non-linear parameter (spectral
index) which hit the boundary or which is causing the Fisher matrix
to be non-positive definite.

(ii) In the regions of low or non-existent foregrounds there are less
components in reality than present in the model. Therefore we will
be fitting most of the parameters to noise. Also the lowest frequency
channels in Planck have much higher noise and poorer resolution
and they may pull down the S/N of the final component maps. To

avoid this we explicitly fit the low frequency foregrounds only to
the lowest 4 frequency channels and dust to the highest 4 frequency
channels. We do this by setting following conditions

d1 − d2 6 10−3 KCMB → f lf
ν |ν>143 GHz = 0

d7 − d6 6 10−2 KCMB → f d
ν |ν670 GHz = 0 (5)

(iii) It is possible that the amplitudes would tend to go negative dur-
ing the iterations. We take this also as a sign that the foregrounds
are negligible and are just being fitted to noise. When this happens
for the dust and low frequency amplitudes, we multiply the exist-
ing amplitude by a factor of 0.1 instead of updating to negative
value. For the CO amplitude, if the CO contribution to a channel
signal goes below 1% of noise level in all of the three channels in
which the CO contribution is non-zero, we remove CO as a fore-
grounds component for the next 5 iterations. If the final parameters
with minimum χ2 were fitted without CO then we remove the cor-
responding columns/rows also from the Fisher matrix.

Finally we have the following exit criterion out of the iteration
loop:

(i) Exit if χ2 < 0.1 or change in χ2 in the previous 2 iterations is less
than 10−3.

(ii) The number of iterations has exceeded 100.

On exit the output parameters correspond to the iteration which had
the minimum χ2 among all the iterations. This is necessary since as
we mentioned earlier, the global minimum of the non-linear prob-
lem is not necessarily the physical solution that we desire if it lies
outside the physical constraints imposed by us. Within the physi-
cal constraints, the minimum χ2 encountered may be a saddle point
or may even have non-vanishing first derivative, therefore the final
converged value of the χ2 may not be a minimum but an asymptote
flying off to outside the allowed parameter region or even to infin-
ity. Our prescription gives us the best values of parameters within
the physical constraints imposed by us.

3 VALIDATION OF THE ALGORITHM ON THE
PLANCK SKY MODEL FFP6 SIMULATIONS

We know apply our algorithm to the publicly available FFP6 sim-
ulations of the Planck sky model (PSM) (Delabrouille et al. 2013).
In particular we use the nominal survey full sky signal maps. These
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LIL CMB component separation 5

Figure 2. The standard deviation marginalised over the foreground components. The errors roughly follow the pattern of foregrounds on the sky correctly
modelling the uncertainties in foreground subtraction.

Figure 3. The normalized error defined as ratio of residuals to the standard deviation estimate. If the error estimates are correct then this map should resemble
Gaussian noise. The features at the Ecliptic poles are better visible in this map owing to extremely low noise and shows that there are systematic errors not
included in our error estimates.

maps include estimates of the variance in each pixel which we use
as estimates of the noise variance in our least squares fitting. The
low frequency instrument (LFI) maps in the lowest three channels
are at lower resolution of HEALPix nside 1024 compared to the
nside 2048 for the high frequency instrument (HFI). We upgrade
the LFI maps to 2048 also scaling the variance. Since the LFI maps
are anyway more noisy compared to the HFI maps, this upgrada-
tion does not affect the CMB or the high frequency components. To
get the best low frequency components the component separation
can be repeated by degrading all maps to, for example, nside=512.

Since Planck measures only the change in signal across the
sky and not the absolute sky brightness, there are relative offsets
between different channels. Therefore estimates of monopole and
dipole should be subtracted from the maps to prevent systematic
errors. In the FFP6 simulations we find that the offsets are small
enough that they do not matter. For the actual Planck data we will
however subtract the best fit values of the monopoles and dipoles
provided by Planck Collaboration et al. (2013b).

The residual map, i.e. difference (CMBout-CMBin) between
the output from LIL (CMBout) and the input CMB map in FFP6
simulation (CMBin) is shown in Figure 1. We show the differences
for two HEALPix resolution at nside 1024 and 128. The residual at
nside 128 can be compared to that from the other algorithms used
by the Planck collaboration (Fig. 7 in Planck Collaboration et al.

(2013b)). The residuals are about the same level as other algorithms
and of order of few µK at high latitudes. There is a systematic fea-
ture around the Ecliptic poles where because of the Planck scan-
ning strategy the depth of the survey and the noise levels change
abruptly. We discuss this and the small systematic bias near the
galactic plane where the residuals are preferentially positive in de-
tail section 4. We note that similar systematic effects and biases are
also present Planck analysis of FFP6 simulations (Planck Collabo-
ration et al. 2013b). In particular the feature near the Ecliptic poles
can be seen in the Commander residual maps.

3.1 Error estimation

We estimate errors on the final components using Fisher matrix.
As mentioner earlier, for pixels to which the model without the CO
component was fitted we delete the corresponding columns/rows
from the Fisher matrix. Also for pixels which did not converge to
a minimum in the direction of one or both of the spectral indices
those columns/rows are also deleted. We will see that this prescrip-
tion gives us a reasonable estimate for the errors. The Fisher matrix
is calculated at full resolution, nside=2048. For lower resolutions
we combine the errors in the smaller pixels in each larger pixel
assuming that the errors/noise are uncorrelated by first degrading
the variance map to new nside, which averages the variance, and

c© 0000 RAS, MNRAS 000, 000–000



6 Khatri

Figure 4. The χ2 map for the least squares fit performed by LIL. For 1 or
2 degrees of freedom that we have with or without the CO component, the
average χ2 is expected to be between 1 and 2.

Figure 5. The mask used in further validation of the results from FFP6
simulation yielding a sky fraction usable for CMB of 86.4%.

then dividing the variance in each pixel by npix2048/npixnside =

20482/nside2, where npixnside ∝ nside2 is the total number of pixels
in the map. This is an approximation since the beams of all fre-
quency channels are larger than the size of any pixel. We show the
standard deviation error and normalized error map in Figures 2 and
3. The normalized error map ((CMBout-CMBin)/σ) is just the ratio
of the residual map to the standard deviation (σ(p)) map.

The standard deviation σ roughly follows the distribution of
foregrounds on the sky. This is because there are uncertainties as-
sociated with the foreground subtraction and which we marginalise
over. The normalized error is an estimate of how good and com-
patible our CMB signal and error estimates are. For perfect recon-
struction of the mean signal and errors this map should resemble
Gaussian noise. We see that this is so except in the galactic plane
where our simple model does not capture all the complexities of the
foregrounds. We have also neglected the noise correlations between
pixels and therefore in the degraded maps the noise is slightly un-
derestimated. In particular the features near the Ecliptic poles are
more prominent in the normalized errors map indicating that there
are systematic uncertainties in these extremely low noise regions
which are not included in our error estimates. The goodness of fit
can be quantified by the χ2, and the χ2 map is shown in Fig. 4. This
can be compared with the χ2 map of Commander (Planck Collab-
oration et al. 2013b). One difference is that we get low χ2 values
in the galactic plane in contrast to Commander, implying that our

model is a good fit to the data in the galactic plane. This difference
from Commander could be because of the tight prior they impose
on the spectral indices while we allow a wider range of spectral
indices in the high foreground regions.

3.2 Mask

To better analyze the quality of our component separation for the
CMB as well as the foreground components we need to mask out
the worst regions of the sky. We use the dust amplitude at 353
GHz, low frequency amplitude at 30 GHz and the standard devi-
ation maps as estimated by LIL to construct the mask. We smooth
the maps with a 30 arcmin full width half maximum (FWHM)
Gaussian beam and threshold the dust amplitude at 2 MJ/Sr, low
frequency amplitude at 600 µK and standard deviation estimate at
75 µK resulting in masking 13.6% of the sky. We also mask pix-
els with the χ2 > 10. This scheme also masks the brightest point
sources as can be seen in Fig. 5 and we do not use any additional
point source mask for the results from FFP6 simulations.

3.3 Validation

If our model was a good description of the Planck sky then the χ2

will follow the χ2-distribution with 1 or 2 degrees for freedom for
the pixels with and without the CO components respectively. The
probability density function of χ2 is shown in Fig. 6 for the pixels
fitted with and without the CO component and compared respec-
tively along with the theoretically expected χ2-distributions with
1 and 2 degrees of freedom labeled χ2(1), χ2(2). LIL distributions
match the theoretical curves quite well despite the fact that our fore-
ground model is much simpler compared to the actual foregrounds.
The deviations we see are similar in nature to those observed in the
Bayesian codes (Eriksen et al. 2006).

The χ2 on average is a little larger than the theoretical val-
ues. We should however expect this since not all the components
fitted in our model are present everywhere in the sky. The obvi-
ous example is the CO component which is present at detectable
levels only near the galactic plane. Even the low frequency and
dust components are not present everywhere on the sky. The low
frequency components are below the noise levels in a major frac-
tion of the sky. The dust component also is very weak in the 217
GHz and lower frequency channels in a good fraction of the sky
and so the spectral index of even the dust component cannot al-
ways be determined with any accuracy. We are therefore fitting a
model with more parameters than are required by the data and this
shows up in the higher values of χ2. Our hypothesis is supported
by the fact that the χ2 distribution inside the mask for pixels where
there is detectable CO is much closer to the theoretical curve. This
reasoning also explains why the algorithms such as SMICA, NILC
and SEVEM, which have an equivalent implicit model with smaller
number of parameters, do so well. The above arguments also sug-
gest that fitting the most general model to the data may not be the
optimal approach. What we should really do it fit many models to
the data and choose from the models the one which fits best given
the number of parameter and the degrees of freedom. We will do
exactly this for the CO component in section 4.

We show in Fig. 7 the probability distribution (PDF) of nor-
malized error for the CMB for different resolutions. At high resolu-
tion the PDF is close to a Gaussian. The deviations from the Gaus-
sian are of similar magnitude to that of (Eriksen et al. 2006). The
reason for the under-estimation of errors as we decrease the reso-
lution is because we have calculated the errors ignoring the noise
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Figure 6. The χ2 probability density function obtained by LIL and compared with the theoretically expected χ2 distributions with 1 and 2 degrees of freedom.
The LIL distribution matches well with the theoretical curves for large χ2 values and inside the mask in the left figure where all the modelled components are
present.

Figure 8. Residuals in the CO and dust components. The CO residual away from the galactic plane follows the hit count map decided by the Planck scanning
strategy. A monopole and dipole calculated at latitudes |b| > 30◦ has been subtracted from the residual maps. Note that we are using a different color scheme
for the CO to better highlight the non-zero pixels.

Figure 9. The normalized errors in the CO and dust components. The difference in the CO plot from Fig. 8 around the Galactic plane is because in this plot
we only include pixels for which we fitted for the CO component while Fig. 8 includes all Pixels. In particular CO in the rectangular strips present in the FFP6
simulation is not detected as the signal is too low.
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Figure 7. The probability density function of normalized error (Fig. 3)
(Ain

CMB − Aout
CMB)/σCMB for different resolutions. For high resolution the

curves are close to the expected Gaussian but the error is underestimated
as we go to the lower resolutions because we ignored the correlations in the
noise. We however note that the distribution approaches a Gaussian as the
average pixel size approaches the resolution of the highest frequency chan-
nels. For the foregrounds results therefore we will use nside=1024 for dust
and nside=512 for the low frequency component.

correlations between pixels. The average size of the pixels is closer
to the actual resolution of the Planck HFI channels for nside = 512
and 1024 and these distributions are closest to the Gaussian. This
fact gives us some confidence that we are recovering correctly the
best fit values as well as the error bars.

We show in Figs. 8 and 9 the residuals and the normalized er-
ror for the two high frequency foreground components, the CO and
the dust amplitudes, at the corresponding reference frequencies.
Figure 10 shows the same quantities for the low frequency com-
ponent of our foreground model. Away from the Galactic plane,
the residuals are consistent with noise. The CO residuals follow the
Planck hit count map and is consistent with the CO component just
fitting noise away from the galactic plane. The true CO emission
in the FFP6 simulation is zero away from the galactic plane. Note
that a large fraction of the pixels are fitted without the CO com-
ponent (54% pixels outside the mask). These pixels have the CO
amplitude set to zero and do not have an error on the CO ampli-
tude. For the CO residual map we have used all pixels while for
the CO normalized error map only the pixels with the CO compo-
nent are non-zero. This accounts for the difference in structure of
the two maps since the residual map includes differences for pixels
which had a non-zero value in the original FFP6 simulation but are
not detectable by LIL in the Planck data. These pixels are mostly
in form of the rectangular bands around the Galactic plane in the
residual map, Fig. 8. We have also used a modified color scheme to
better highlight the non-zero pixels against the background of pix-
els with CO amplitude fixed to zero. Also since most pixels with
the CO component away from the galactic plane are surrounded by
the pixels without the CO component, there is no consistent way to
degrade the resolution of the error map and for the CO component
we present results at the full resolution, nside=2048.

Figure 11 shows the PDF of normalized errors on the fore-
ground amplitudes within and outside our mask. Outside the mask
the PDF is close to Gaussian and we do not see as significant an
underestimation of errors for the dust component as reported in
Planck Collaboration et al. (2013b). Note that our plots are at a
higher resolution compared to Planck Collaboration et al. (2013b),

nside=1024 for the high frequency components and nside=512 for
the low frequency component. Inside the mask the deviations from
the Gaussian are more significant indicating more complex fore-
grounds compared to what we have modelled.

Finally to validate the full foreground model including the
spectral indices, we show the residuals for sum of all foregrounds
in the 7 Planck frequency channels used in our analysis in Figs.
A2 and A1 in the Appendix. The foreground residuals are very low
for the 70 GHz channel of Planck Low Frequency Instrument (LFI)
and 100 GHz, 143 GHz and 217 GHz channels of the Planck High
Frequency Instrument (HFI) thus affirming the accuracy of spectral
indices inferred by LIL.

4 LIL-MS: PARAMETER FITTING WITH MODEL
SELECTION

We have so far emulated the approach of Commander and shown
that our results are consistent. We can improve over this approach
of fitting parameters to a given model. One obvious improvement
is suggested by looking at Figs. 8 and 9 for the CO component. The
CO component is detectable in the Planck data only in the galactic
plane and small regions around it, which show up as small scale
features in the maps. The large scale features are identical to the
Planck hit count maps and are the result of fitting the CO com-
ponent to noise in most of the sky where no CO is present. In LIL
algorithm we did set the CO component to zero in 51% of all pixels
(54% if only considering pixels outside the mask) where the ampli-
tude tended to go negative. These pixels are evenly distributed over
the sky and there are still enough pixels with the CO component all
over the sky that this does not help with the large scale systematics.

Since the CO is present only in the high foreground regions
which are anyway masked for CMB analysis, the simplest solution
to get the best CMB maps would be to ignore the CO component
altogether. This would give incorrect results where the CO compo-
nent is present but would not affect the cosmology if these regions
are masked. A more sophisticated approach, which does not assume
that CO is present only in the high foreground regions, would be to
fit models both with and without the CO component and select the
model which fits best given the number of parameters and degrees
of freedom. In the Bayesian approach this amounts to the compar-
ison of Bayesian evidence. For the least-squares parameter fitting
the equivalent is the comparison of the χ2 of the two models.

We therefore run LIL with and without the CO component.
The difference in χ2 between the two models again has a χ2 dis-
tribution with the degree of freedom to one (i.e. difference in the
degrees of freedom between the two models) (Stuart et al. 2004,
see e.g.). We therefore accept the model with the CO component
only if this model gives an improvement of ∆χ2 > 2.7 over the
model without the CO component. This corresponds to a 10% prob-
ability that we will accept a model with the CO component when
there is no CO component present. When following this criteria the
CO component is now absent in 79.6% of the pixels (84% if only
considering pixels outside the mask) which is a considerable im-
provement over the single model approach. We will refer to this
approach as LIL-MS from now on. There is a small improvement
in the χ2 distributions in LIL-MS compared to LIL (see section 5
for a plot of LIL-MS χ2 distributions).

The CMB residuals are shown in Fig. 12 and the correspond-
ing normalized errors in Fig. 13. The Ecliptic systematic features
are invisible in the residual maps and are only visible in the nor-
malized error map because the noise is underestimated in these ex-
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Figure 10. The residual for the low frequency component at 30 GHz and the normalized error. Away from the galactic plane the residuals and errors are
consistent with Gaussian noise.
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Figure 11. The probability density function of normalized error (Figs. 9 and 10) (Ain − Aout)/σ for different foreground component amplitudes in our
foreground model. Outside the mask, the distributions are closed to Gaussian except for the CO for which there is a significant overestimation of error. Note
that the CO plots are for pixels at nside=2048 while the plots for dust and low frequency components were made after degrading the residual and error maps
to nside=1024 and 512 respectively.

Figure 12. CMB Residuals for the FFP6 simulation, (CMBout-CMBin) for LIL-MS. There is marked improvement compared to LIL near the galactic plane
and the Ecliptic features are also weaker and less sharp.
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Figure 13. The normalized error for LIL-MS.

Figure 14. The residuals and normalized error for the CO component in LIL-MS. There is a marked improvement outside the Galaxy in the residuals compared
to Figs. 8 and 9.
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tremely low noise regions. The systematic bias towards the posi-
tive residuals around the galactic plane has also gone away and the
residuals everywhere except the highest foreground regions, which
would be masked, are consistent with Gaussian noise.

The residuals and standard deviation for the CO component is
shown in Fig. 14. There is a marked improvement compared to LIL.
In particular outside the mask/Galaxy 84% of the pixels have no de-
tected CO component which is much closer to reality. We show the
PDFs for the foreground amplitudes for LIL-MS in Fig. 15. There
is an improvement in the CO component which has become closer
to a Gaussian but not much change in the other components. Note
that the dust component is very lopsided for the pixels inside the
mask because the monopole that was subtracted in doing this cal-
culation was calculated from pixels at latitude |b| > 30◦. The biases
for the dust component are different at high and low latitudes since
the low frequency component is very small at |b| > 30◦ where there
is still considerable dust component. This suggests that we should
extend the model selection to the low frequency component also. In
particular if the model comparison favors absence of low frequency
component in part of the sky then we could remove the noisy low-
est two LFI channels completely from the fit and fit a 4-parameter
model without the LFI component to the remaining five channels.
We will leave such an extension of our model selection approach
for future work. Since the systematic effect we have removed is
quite small, there is not much change in the PDFs for the CMB
component and we do not show them again.

4.1 Resolution and noise in CMB maps

The FFP6 simulations also provide half-ring maps in addition to
the full survey maps and we use these to estimate the resolution
and noise in our CMB maps. We have processed the half-ring fre-
quency maps with LIL-MS which produces the corresponding two
CMB half-ring maps. The half the difference between the two CMB
half-ring maps (HRHD) then gives an estimate of the noise in the
half ring half sum (HRHS) or the average of the two CMB half-ring
maps. To get an estimate of the resolution, we calculate the pseudo-
power spectrum (Ĉ`) of the HRHD and HRHS maps on masked sky.
We create the mask as described in section 3.2 but lower the thresh-
olds so that 30% of the sky is masked and also apodize the mask
with a 30′ Gaussian beam. We then deconvolve the mask by solv-
ing the linear convolution equation for C` (see Hivon et al. 2002,
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Figure 17. The angular power spectra corrected for the effect of mask and
beam. Compared to similar figure in Planck Collaboration et al. (2013b) for
Commander-Ruler our noise is slight larger because of the non-linearity of
our model even on small scales.

for a derivation)

Ĉ`1 =
∑
`2

M`1`2C`2 (6)

where C`2 is the full sky power spectrum and

M`1`2 =
2`2 + 1

4π

∑
`3

(2`3 + 1)W`3

(
`1 `2 `3

0 0 0

)2

, (7)

W` is the power spectrum of the mask and the term in brackets is
the Wigner-3j symbol. This equation is strictly applicable to only
ensemble averages but it is good enough for our purpose to test
the quality of our algorithm. Subtracting the HRHD or noise power
spectrum Cnoise

` from HRHS power spectrum CHRHS
` gives an esti-

mate of the CMB power spectrum which we call Cout
` . We apply the

same mask and deconvolution procedure to the input CMB map.
The input CMB map for the FFP6 simulation was made with a 4′

Gaussian beam with spherical harmonic transform b(l). We there-
fore divide the power spectrum of the input CMB map by b(l)2 to
get the input CMB power spectrum Cin

` . The ratio of the output and
the input power spectrum then gives an estimate of the beam func-
tion of our CMB map. This ratio is shown in Fig. 16 and is well
approximated by a Gaussian beam of FWHM 7.8′. This is close
to the resolution achieved by Commander-RULER of 7.4′ (Planck
Collaboration et al. 2013b). We plot the input, HRHS and noise
power spectrum corrected for the effect of the respective beams in
Fig. 17. The noise in our CMB map is a little worse compared to
Commander-RULER. The reason for it is probably the fact that we
did not change the resolution of all frequency maps to a common
one. Therefore the high noise low resolution channels get higher
weight than they are entitled to during the least squares fitting, i.e.
the relative noise in the low resolution channels is underestimated
compared to the higher resolution channels. This effect is aggra-
vated for us compared to Commander-RULER since we fit a non-
linear model at full resolution while RULER fits a linear model. We
leave detailed investigation and possible improvements to mitigate
the noise and improve the resolution for future work.
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Figure 18. The CMB and foreground parameter maps from LIL-MS applied to Planck data.

5 APPLICATION TO PLANCK DATA AND
COMPARISON WITH OFFICIAL PLANCK MAPS

We now apply LIL-MS to the Planck first data release. The maps for
the 6 parameters recovered by LIL-MS are shown in Fig. 18. The
CO amplitude is negligible away from the galactic plane and model
selection plays an important role in recovering the true behavior of
CO. In particular the CO component was removed from 84% of
the pixels outside a 12.3% mask on the highest foreground regions.
The low frequency component parameters are consistent with those
from Commander. The low frequency amplitude is mostly deter-
mined by 30 GHz channel which has high signal to noise and this
is apparent in the amplitude map. To constrain the spectral index
we need high signal to noise in more than one channel. Since the
foreground amplitude drops quite a bit from 30 GHz to 44 GHz, the
spectral index is well constrained in much smaller region and there-

fore looks much noisier at high galactic latitudes. The dust ampli-
tude is very well constrained and fine features such as streams and
filaments are well recovered over most of the sky. Same constraints
as low frequency index apply also to the dust spectral index and it is
well constrained in regions of high amplitude but becomes noisier
and unconstrained as we go to the higher latitudes. Our CMB map
has some residual small scale noise in a narrow ridge in the galactic
plane compared to the CMB maps released by the Planck collabo-
ration. This is probably because we did not adjust the resolution of
channel maps to a common resolution before parameter fitting. We
will discuss a possible solution to this in the conclusions section.

We show in Fig. 19 the standard deviation estimated using the
Fisher matrix. Comparison of these maps gives useful information
about the degeneracies between the parameters. The CMB is in-
fluenced by both the dust and the low frequency components and
against a background that follows the Planck hit count map, the in-
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Figure 19. The CMB and foreground parameter standard deviation maps estimated by LIL-MS using Fisher matrix.

fluence of low and high frequency foregrounds is clearly visible.
Comparison of CO map with dust map shows that these two are
very degenerate while there is not much degeneracy between the
low frequency foregrounds with the dust and CO. The spectral in-
dex is well constrained in the high signal regions, where there is
good signal to noise for the corresponding foreground component
in at least two of the channels. The errors on the spectral indices
therefore follow the morphology of the respective foreground com-
ponents.

We show the χ2 map in Fig. 20 and compare the χ2 distribu-
tion with expected distributions with one or two degrees of freedom
in Fig. 21. The tails agree very well for the χ2 distribution with one
degree of freedom for pixels with the CO component selected by
our model selection criteria and that of χ2 distribution with two de-
grees of freedom for pixels where the CO component is not present.

Overall the distributions are close to what we expected from simu-
lations.

5.1 Comparison with the Planck collaboration results

We show in Fig. 23 the difference between our CMB maps and the
CMB maps from different algorithms released by the Planck col-
laboration (Planck Collaboration et al. 2013b). We also show for
comparison the difference between the Commander-RULER(CR)
and SMICA/SEVEM maps on the same color scale. The agreement
between our maps and other algorithms is as good as the agree-
ment in-between the methods used by the Planck collaboration. All
maps are downgraded to HEALPix nside=128 so they can be com-
pared with similar maps in Planck Collaboration et al. (2013b). We
also show the comparison between the foreground amplitudes re-
covered by us and those from the CR in Fig. 22 for CO and Fig. 24
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Figure 21. The χ2 probability density function obtained by LIL-MS for Planck maps and compared with the theoretically expected χ2 distributions with 1
and 2 degrees of freedom. The distributions are close to what we predicted from the FFP6 simulations. The tails for real data has even better agreement with
the theoretical distributions than what we had for simulations.

Figure 20. The χ2 map for the least squares fit performed by LIL-MS. For
1 or 2 degrees of freedom that we have with or without the CO component,
the average χ2 is expected to be between 1 and 2.

Figure 22. Difference between LIL-MS CO amplitude at 100 GHz and
the CR map degraded to nside=128. A monopole and dipole calculated at
latitudes |b| > 30◦ has been subtracted.

for the low frequency and dust amplitudes. The agreement is again
quite good away from the galactic plane. It is not possible to di-
rectly compare the spectral indices since for Commander algorithm
they are calculated at much lower resolution and are mostly driven

by the prior over most of the sky away from the Galactic plane. In
the Galactic plane we see that our maps are broadly consistent with
those from Commander by comparing our Fig. 18 with the corre-
sponding figure in Planck Collaboration et al. (2013b).

6 CONCLUSIONS

The main aim of this paper is to present a least squares parameter
fitting algorithm, LIL, optimized for component separation in the
CMB sky. Our algorithm is extremely efficient, fitting 6 parameter
model to 7 frequency channels for 50 million pixels in 160 CPU-
minutes or a few minutes running in parallel on few tens of cores.
We have also argued for an extension to the algorithm, LIL-MS, by
including model selection for the components such as CO and per-
haps also for the low frequency component, which we know from
observations are only present in detectable amount over a fraction
of the sky. In particular we have shown that parameter fitting can
be done at high resolution and in particular there is no need to
smooth all channels to the resolution of the lowest channels. The
main aim of developing such a parameter fitting algorithm is to try
to get maximum information about the foregrounds and the CMB
from data while making least amount of assumptions. In particular
our assumptions and models are motivated by the prior knowledge
about the foregrounds from other observations. Our method is still
not optimal and there are several improvements which can be done
based on the results we have obtained so far.

(i) Difference in resolution between different channels can be a
source of high frequency noise and we see this in the CMB map.
In addition the resolution of our final CMB map is close to that of
143 GHz channel. SMICA and NILC (Planck Collaboration et al.
2013b) achieve a higher resolution by re-beaming all channel maps
to 5′. In principle we see no reason why we cannot do that also
for LIL-MS. Re-beaming to highest resolution channel will lead
to increase in noise in the lower resolution channels. Thus dur-
ing parameter fitting, the low resolution data will get the correct
additional down-weighting and the final maps would be closer to
the resolution of the highest resolution channels, especially for the
CMB. We expect that this should also take care of the residual high
frequency noise we see in our CMB map around the Galactic plane.
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Figure 23. Difference between LIL-MS CMB map and maps released by the Planck collaboration using different algorithms. All maps have been downgraded
to nside=128. We also show for comparison the difference between the Commander-RULER and SMICA/SEVEM maps on the same color scale. A monopole
and dipole calculated at latitudes |b| > 30◦ has been subtracted.

(ii) The low frequency component, like the CO component, is impor-
tant only on a fraction of the sky. This suggests to extend the model
selection to include the low frequency component. In particular in
parts of the sky where a model with a low frequency component is
disfavored, the two lowest frequency LFI channels can simply be
omitted from the fit.

(iii) If we are interested in low frequency component, then doing a
fit at the nside=2048 does not really make sense. For the low fre-
quency component therefore a dedicated analysis can be done by
re-beaming to a lower resolution close to that of the 70 GHz chan-
nel.

(iv) We have assumed that the noise between different pixels in un-
correlated at nside=2048. This is not true since for most channels
the beam size is much bigger than the pixel size. A better treatment

of noise is therefore needed when doing cosmological analysis. We
note that Commander also ignores correlations between the pixels.

We leave study of the above issues as well as cosmologi-
cal results for a future publication. Nevertheless we have shown
that our simple approach to component separation using the least
squares fitting works quite well for multi-frequency experiments
like Planck. An advantage of parameter fitting over other meth-
ods (see however Vansyngel et al. 2014) is that the errors we get
take into account the uncertainties in the foregrounds and that it
allows for considerable flexibility to the foregrounds to vary over
the sky. We have shown our results to be consistent with the pub-
lished results by the Planck collaboration. We hope to overcome the
shortcomings in our algorithm concerning the resolution and noise
compared to the existing methods in the near future. Our algorithm
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Figure 24. Difference between LIL-MS low frequency and dust amplitudes at 30 GHz and 353 GHz respectively and the corresponding CR maps degraded
to nside=128. A monopole and dipole calculated at latitudes |b| > 30◦ has been subtracted.

can be also be extended to include polarization, since the only re-
quirement for it to be applicable is that the foreground model be
almost-linear. As recent results from the Bicep2 show (Ade et al.
2014; Planck Collaboration et al. 2014) we are entering a regime in
the CMB experiments where the signal is buried in the foregrounds
and assumptions about the foregrounds can have a big influence
on the interpretation of the experimental data. Finally, LIL-MS can
be easily modified to separate out the y-type distortion (Zeldovich
& Sunyaev 1969) by simply replacing the CO component by the
y-type distortion component. We will present the results for the y-
distortions in a separate publication.
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Figure A1. Residuals for the sum of all foregrounds for the LFI channels.
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Figure A2. Residuals for the sum of all foregrounds for the HFI channels.
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