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ABSTRACT

By performing neutrino-radiation hydrodynamic simulations in spherical symmetry (1D) and axial
symmetry (2D) with different progenitor models by Woosley & Heger (2007) from 12 M⊙ to 100 M⊙,
we find that all 1D runs fail to produce explosion and several 2D runs succeed. The difference of
shock evolution can be interpreted by the difference of mass accretion history, which is determined by
the density structure of the progenitor. The exploding models exhibit high neutrino luminosity with
low mass accretion rate. This is consistent with the discussion about the so-called critical curve in
the mass accretion rate and neutrino luminosity plane, above which there is no steady solution of the
accretion flow so that a dynamical expanding shock wave is expected. In addition, we developed a
phenomenological model to evaluate the trajectories in this plane. This model reasonably reproduces
the numerical results by using the initial density structure of the progenitors alone. By this model, we
can predict the possibility of explosion by using the initial density structure of the progenitors alone.
Subject headings: supernovae: general — hydrodynamics — neutrinos

1. INTRODUCTION

Core-collapse supernova is one of the most energetic
explosions in the universe. Although the explosion mech-
anism is still under a thick veil, there are a few can-
didates. Among them, neutrino heating mechanism is
the most promising scenario, in which a copious amount
of neutrinos are emitted in the vicinity of protoneutron
star (PNS) and are partially absorbed by the postshock
material. In this system, neutrinos transfer the inter-
nal energy from inside to outside and act effectively as a
heating source for the postshock layer.
Although this neutrino-heating mechanism firmly

works, state-of-the-art simulations of neutrino-radiation
hydrodynamics can not produce explosion in spherical
symmetry (Rampp & Janka 2000; Liebendörfer et al.
2001; Thompson et al. 2003; Sumiyoshi et al. 2005).
Recently, modern multi-dimensional simulations became
possible and several exploding simulations have been re-
ported (Buras et al. 2006; Marek & Janka 2009; Suwa
et al. 2010; Müller et al. 2012b; Bruenn et al. 2013 in
two dimensions (2D) and Takiwaki et al. 2012; Hanke
et al. 2013 in three dimensions (3D)). These simulations
basically focused on limited progenitors such as7

• 11.2 M⊙ of Woosley et al. (2002): Buras et al.
(2006); Marek & Janka (2009); Takiwaki et al.
(2012); Müller et al. (2012b); Suwa et al. (2013);
Suwa (2014); Takiwaki et al. (2014)

1 Yukawa Institute for Theoretical Physics, Kyoto University,
Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan

2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-
Str. 1, D-85748 Garching, Germany

3 Department of Physics, Waseda University, 3-4-1 Okubo,
Shinjuku, Tokyo 169-8555, Japan

4 Advanced Research Institute for Science & Engineering,
Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555,
Japan

5 Center for Computational Astrophysics, National Astronom-
ical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

6 Department of Applied Physics, Fukuoka University,
Fukuoka 814-0180, Japan
7 See also Kotake et al. (2012), which includes the spherically
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• 13M⊙ of Nomoto & Hashimoto (1988): Suwa et al.
(2010, 2011)

• 15 M⊙ of Woosley & Weaver (1995): Buras et al.
(2006); Marek & Janka (2009); Suwa et al. (2011);
Müller et al. (2012b); Suwa et al. (2013)

• 27 M⊙ of Woosley et al. (2002): Müller et al.
(2012a); Hanke et al. (2013)

Recently, Bruenn et al. (2013) performed a systematic
study using a progenitor series of Woosley & Heger
(2007) from 12 M⊙ to 25 M⊙ and found similar explo-
sions for all progenitors. However, Dolence et al. (2014)
reported that they found none of them results in explo-
sion. In this study, we perform two-dimensional simula-
tions of a broader mass range from 12 M⊙ to 100 M⊙

using the same progenitor series (Woosley & Heger 2007).
The progenitor structure is one of the most important

ingredients of core-collapse supernova explosion mech-
anism8 because it determines the initial condition and
later accretion rate history. The mass accretion rate is
strongly related to the shock wave evolution since the
force balance between the ram pressure of preshocked
material and the thermal pressure of postshocked mate-
rial determines the shock position. The mass accretion
rate, Ṁ = 4πr2ρv, can be a good measure of the ram
pressure, ρv2. Indeed, an O-Ne-Mg core with an 8.8 M⊙

star can easily produce an explosion even in spherical
symmetry thanks to rapid decrease of the mass accre-
tion rate onto the shock (Kitaura et al. 2006).
Recently, the progenitor dependence of the supernova

dynamics is attracting great attention. Ugliano et al.

8 There are other important ingredients investigated so far. The
most ongoing high-profile ingredient is dimensionality of hydrody-
namics (e.g. Ohnishi et al. 2006; Murphy & Burrows 2008; Nord-
haus et al. 2010; Hanke et al. 2012; Couch 2013a; Takiwaki et al.
2014). As for the nuclear equation of state in multidimensional hy-
drodynamic modeling, see Suwa et al. (2013) and Couch (2013b).
In addition, detailed neutrino interactions are also investigated in
(Suwa et al. 2011; Müller et al. 2012b). Note that these studies
listed above are all done using multi-dimensional simulations.
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(2012) performed a systematic study for 101 progeni-
tor models from Woosley et al. (2002) using spherically
symmetric simulations with parametrized neutrino lumi-
nosity and investigated the explosion energy and final
compact objects (neutron stars and black holes), which
strongly depend on the initial progenitor structure. Re-
cently, this study was followed by Nakamura et al. (2014),
in which they showed 2D simulation results for these 101
progenitor models. O’Connor & Ott (2013) performed a
similar systematic study based on 32 progenitor models
from Woosley & Heger (2007), focusing on the compact-
ness parameter at the bounce. They found that not the
zero age main sequence (ZAMS) mass but the compact-
ness parameter is a good measure for the neutrino evo-
lution in the pre-explosion phase. Couch & Ott (2013)
pointed out that, in addition to the density structure,
initial velocity perturbations affect the hydrodynamics.
They showed that model with velocity fluctuations im-
posed before collapse can explode more easily than those
without them. Thus, it can be said that the importance
of the initial condition is growing.
In this paper, we perform a series of neutrino-radiation

hydrodynamic simulations in both spherical symmetry
(1D) and axial symmetry (2D) for progenitors with a
mass range from 12 M⊙ to 100 M⊙ in the main sequence
phase. Then, we directly connect the hydrodynamic out-
comes with the initial density structure. In addition, we
construct a phenomenological model to predict the mass
accretion history and neutrino luminosity using a den-
sity structure of progenitor alone. The paper opens with
the description about the numerical simulations in Sec-
tion 2. Then, introducing a new picture to understand
supernova explosion driven by neutrino-heating mecha-
nism in Section 3, we propose a tuning point combined
with the so-called critical curve as a measure of successful
explosion. A phenomenological model, which describes
the numerical results very well, is presented in Section 4.
We summarize our results and discuss their implications
in Section 5.

2. NUMERICAL SIMULATIONS

2.1. Methods

The numerical methods are basically the same as those
in our previous studies (Suwa et al. 2010, 2011, 2013;
Suwa 2014). With the ZEUS-2D code (Stone & Norman
1992) as a base for the hydrodynamics solver, we em-
ploy the equation of state of Lattimer & Swesty (1991)
with the incompressibility K = 220 MeV, for which the
maximum mass of a cold NS is 2.04 M⊙, i.e. more
massive than the mass of recently discovered massive
NSs (Demorest et al. 2010; Antoniadis et al. 2013). We
solve the neutrino transfer equation for νe and ν̄e by the
isotropic diffusion source approximation (IDSA) scheme
(Liebendörfer et al. 2009) that splits the neutrino distri-
bution function into two components, both of which are
solved with different numerical techniques. The weak
interaction rates for neutrinos are calculated according
to Bruenn (1985). The simulations are performed on a
grid of 300 logarithmically spaced radial zones extend-
ing up to 5000 km with the smallest grid width being 1
km at the center and 128 equidistant angular zones cov-
ering 0 < θ < π for two-dimensional (2D) simulations.
For neutrino transport, we use 20 logarithmically spaced

energy bins ranging from 3 to 300 MeV.

2.2. Progenitor Structures

We employ progenitors calculated by Woosley & Heger
(2007), who performed stellar evolutionary simulations
with solar metallicity. The employed progenitors have
12, 15, 20, 30, 40, 50, 55, 80 and 100 M⊙ at ZAMS.
Some relevant quantities are presented in Table 1.
First, we present the structures of these models. Top

two panels in Figure 1 exhibit the density structures as
functions of the radius (panel (a)) and enclosed mass
(panel (b)). Panel (c) shows the mass-radius relation, in

which the free-fall timescales (tff =
√

r3/GM , where r
is the radius, G is the gravitational constant, and M is
the enclosed mass) are plotted as dashed lines. One can
find that the density structure and ZAMS mass do not
correlated with each other in a simple way: the density
at the enclosed mass of 2 M⊙ (see panel (b)) becomes
the smallest for the model with a ZAMS mass of 12 M⊙

and attains the maximum at 40 M⊙. Models with the
ZAMS masses larger than 40 M⊙ have densities in be-
tween. This is because strong mass loss during the main
sequence and giant phases yield smaller cores (see also
Table 1). From dashed lines in panel (c), one can eas-
ily see that the difference of structure leads to different
accretion time of mass elements, which then results in
different mass accretion histories.
In Figure 2, we show the compactness parameter de-

fined in O’Connor & Ott (2011) as

ξM =
M/M⊙

R(M)/1000 km

∣

∣

∣

∣

t=tbounce

, (1)

where R(M) denotes the radius for the enclosed mass
M . One can find that the 12 M⊙ model has the small-
est ξM at all enclosed masses, which increases with the
progenitor mass up to 40 M⊙. Interestingly, the mod-
els with 50, 55, 80 and 100 M⊙ have smaller ξM than
the model with 40 M⊙, which is consistent with the re-
sults of O’Connor & Ott (2013), in which they showed
that the model with 40 M⊙ gives the maximum values
both for ξ1.75 and ξ2.5. In this sense the model s40 is the
most compact progenitor, whereas the model s12 is the
least compact one. Recently, the ξ parameter before core
bounce is discussed in Sukhbold & Woosley (2014) and
it is found that ξ can be a good measure to examine the
progenitor structure even before the bounce.
From the next subsection we present our numerical

simulations in 1D and 2D consecutively.

2.3. Spherically symmetric simulations

In Figure 3, we show the time evolutions of shock ra-
dius (panel (a)) and the mass accretion rates at 300 km
(panel (b)). One can find that all simulations fail to
explode due to insufficient neutrino heating. The evolu-
tion of shock radius is connected with the mass accretion
rate, which is a good indicator for the ram pressure that
determines the shock position. As for models s20, s30,
s50, s55, and s80, since the mass accretion rate decreases
rapidly until ∼ 200 ms after bounce and becomes al-
most stationary later on, the shock expands at ∼ 200
– 300 ms postbounce. The other progenitors, i.e., s12,
s15, and s100, show continuous decreases in the accre-
tion rate, with the maximum shock radius being obtained
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Table 1
Properties of investigated progenitors

Model ZAMS mass final mass final radius Fe core mass Fe core radius
(M⊙) (M⊙) (R⊙) (M⊙) (1000 km)

s12 12 10.91 638.41 1.285 1.061
s15 15 12.79 831.04 1.346 1.172
s20 20 15.93 1066.68 1.540 1.591
s30 30 13.89 1552.89 1.476 1.448
s40 40 15.34 11.80 1.804 2.123
s50 50 9.82 5.42 1.487 1.489
s55 55 9.38 0.70 1.453 1.412
s80 80 6.37 0.60 1.479 1.501
s100 100 6.04 0.55 1.452 1.402

between ∼ 100 and 200 ms postbounce. Note that s40
is an exception, with a rapid decrease in the mass ac-
cretion rate around 500 ms postbounce, although only a
small expansion of shock is observed at this time. This
is because this progenitor has very large accretion rates,
equivalently strong ram pressures, and the shock expan-
sion is almost inhibited. The transition from the rapidly
decreasing accretion phase to the stationary accretion
phase is originated from the transition of accreting lay-
ers, i.e., from the silicon layer to the oxygen layer, where
one can observe a large density jump (see Woosley &
Heger 2007).
In Figure 4, we show the time evolution of each progen-

itor in the Ṁ -Lν plane, where Ṁ is the mass-accretion
rate at 300 km and Lν is the total neutrino luminosity
(i.e. the sum of contributions of νe and ν̄e). On these
curves, each model moves from right (high-accretion
rates) to left (low-accretion rates). As the mass accretion
rate decreases, the neutrino luminosity also decreases.
Although it seems that the neutrino luminosity declines
steeply near the left end, this is just an artifact by the
projection in this plane. The mass accretion rate be-
comes almost constant after a certain time as shown in
Figure 3(b), while the neutrino luminosity continues to
decrease thereafter. This point marks the transition from
the dynamical accretion phase to the stationary accretion
phase. Since the critical curve is a smoothly increasing
function in this plane (see Burrows & Goshy 1993), the

position of this point in the Ṁ -Lν plane is crucial for the
shock revival. If this point locates to the top left corner
in this plane (i.e., low mass accretion rates and high neu-
trino luminosities), such a model will be more likely to
produce an explosion, particularly in multi-dimensional
simulations, in which the critical curve is supposed to be
lower than in the 1D case. Models s12, s55, and s80 are
hence good candidates for exploding models in 2D.
Figure 5 is the same as Figure 4 but for selected

models, i.e., s12, s15, s20, and s55. The other mod-
els not shown in the figure have similar trajectories.
Models s20 and s55 have a clear inflection point —
this point is referred to turning point in the next sec-
tion — at (Ṁ, Lν) ≈ (0.4M⊙ s−1, 9× 1052 erg s−1) and
≈ (0.35M⊙ s−1, 8 × 1052 erg s−1), respectively. This is
due to drastic changes in the mass accretion rate that are
found in Figure 3(b). The luminosities and mass accre-
tion rates for these models move from right to left rapidly
up to the turning point and then shift downwards slowly
later. They are hence expected to stay near the turning
point for a long time, and that is the point, where shock

revival is most likely to occur. This is why we propose
to employ the position of the tuning point as a diagnos-
tic of explosion. Although it may appear that the other
models do not show a clear turning point in this figure,
they actually have similar turning points at later times.

2.4. Axially symmetric simulations

In this subsection, we show the results of 2D simula-
tions for the progenitors explored in the previous subsec-
tion.
Figure 6 gives time-space evolutions of entropy around

north (top panels) and south poles (bottom panels).
There are several oscillations in the shock radius for these
models, which might be consequences of the standing
accretion shock instability (SASI). It is clear that the
material in the postshock region is heated up by neu-
trino irradiation from PNS (the yellow color represents
high entropies). Thanks to long heating by neutrinos,
some models (s12, s40, s55, and s80) eventually produce
a shock expansion. The other models (s15, s20, s30, s50,
and s100) yield no explosion at least by the end of sim-
ulations even though there is certainly neutrino heating
observed.
Figure 7 presents time evolutions of the shock radius

averaged over solid angle. One can find also in this fig-
ure that there are several progenitors that produce shock
expansion. This is necessary condition of the supernova
explosion.9 Models with 12, 55, and 80 M⊙ exhibit the
shock expansion within . 300–600 ms after the bounce,
and the model with 40 M⊙ gives a rather late onset of
expansion at ∼ 1100 ms postbounce. These models cor-
respond to those that realize the condition of low mass
accretion rates with high neutrino luminosities, which is
shown in Figure 4. The onset time of the shock expan-
sion is fairly delayed from the time of the transition from
the dynamical to stationary accretion phases (see Figure
3(b)) because the mass accretion rate in Figure 3(b) is
evaluated at 300 km from the center and it takes some
time for this transition layer to propagate toward PNS.
The development of shock oscillations also needs some
time.
The top panel of Figure 8 exhibits the abundance of

28Si (red line) and 16O (green line) as well as the den-

9 Note that this is just a consequence of the dominance of the
post-shock thermal pressure over the ram pressure in the pre-
shocked region and does not imply the successful explosion im-
mediately. In fact, it is still possible that the mass accretion to
PNS continues and the PNS mass increases. In order to produce
the successful explosion, the mass accretion onto PNS should stop
and the envelope should move outward. See Suwa et al. (2013) for
more details.
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Figure 1. Stellar structures for investigated models. Top two
panels display the densities as a function of radius (a) and enclosed
mass (b), respectively. Bottom panel (c) give the radii correspond-
ing to the mass and radius relations. Dashed lines show the free-fall
times of 0.01, 0.1, and 1 s from bottom to top. See the text for
detail.

sity (blue line). One can find that there are two density
jumps at 1.66 M⊙ and 2.17 M⊙ in mass coordinate. The
bottom panel of this figure displays as gray lines the tra-
jectories of mass shells at the mass coordinates of 1 M⊙

to 1.85M⊙ with an interval of 0.01M⊙. Three thin black
lines show the representative mass coordinates of 1.66,
1.7, and 1.75 M⊙. Note that 1.66 M⊙ corresponds to
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as a function of mass coordinate M . A lager ξM means a more
compact structure: s12 is the least compact progenitor, while s40
is the most compact.
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Figure 3. The time evolutions of shock radius (a) and mass ac-
cretion rate (b). There are bumps in panel (a), which correspond
to the rapid decreases of mass accretion rate (see panel (b)).

the interface of the oxygen burning shell (see also panel
(a)). It is interesting to see what happens when this
mass shell accretes onto the shock (thick black line). It
is evident that several oscillations ensue and the stand-
ing shock is finally converted to the expanding shock at
∼ 400 ms after the bounce. This is a clear demonstration
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cretion rate is evaluated at 300 km from the center.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1T
ot

al
 N

eu
tr

in
o 

L
um

in
os

ity
 [

10
52

 e
rg

 s
-1

]

Mass accretion rate at 300 km [M
⊙

 s-1]

s12
s15
s20
s55

200 ms
300 ms
400 ms
500 ms
700 ms

Figure 5. Model trajectories in the Ṁ -Lν plane for selected mod-
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that the transition of accretion phases leads to the phase
transition in shock evolution due to the drastic change
in the mass accretion rate.
In Figure 9, we show the so-called diagnostic energy,

which is defined as the integral of the sum of specific in-
ternal, kinetic and gravitational energies over all zones,
in which it is positive. Four exploding models (s12, s40,
s55 and s80) have indeed non-vanishing diagnostic ener-
gies. Some oscillations originate from the shock oscilla-
tions. Though the diagnostic energy is gradually increas-
ing, the final value is still much smaller than the typical
value of observed explosion energy, ∼ 1051 erg. Although
even nonexploding models have positive diagnostic ener-
gies due to neutrino heating, it is insufficient to revive
the stalled shock wave.

2.5. 15M⊙ stars

In this subsection, we focus on different progeni-
tors with the same typical mass of 15M⊙ at ZAMS.
In addition to model s15 just studied, we use four
more models from Nomoto & Hashimoto (1988) (NH88),
Woosley & Weaver (1995) (WW95), Woosley et al.
(2002) (WHW02), and Limongi & Chieffi (2006) (LC06).
First three of them were employed in Suwa et al. (2011),
in which neutrino oscillation effects on the supernova ex-
plosion were investigated. The pre-collapse density struc-

tures are given in Figure 10 (see also Figure 8 of Suwa
et al. 2011 for comparison of the density structures at
100 ms after the bounce. It was discussed in that pa-
per that the structures are similar among the different
models for M < 0.8M⊙ whereas they are different for
M > 0.8M⊙). One can find that even though the initial
mass at ZAMS is the same, the density structures prior
to collapse become different, depending on both physics
and numerics implemented in stellar evolutionary calcu-
lations. It should be noted in particular that difference
between WW95 and WH07 is substantial at 1500–2000
km before collapse (see Figure 10).

Figure 11 presents model trajectories in the Ṁ − Lν

plane evaluated for the 1D simulations, which is the same
as Figure 4 but for the present models. One can find that
NH88 and WW95 are likely to achieve conditions more
suitable for explosion, i.e., larger neutrino luminosities
combined with smaller accretion rates. This is a conse-
quence of the density jump observed in Figure 10. Note,
however, that all 1D simulations failed to produce explo-
sion.
The shock evolutions for the 2D simulations are given

in Figure 12, in which two progenitors (NH88 and
WW95) appear to succeed in producing shock expan-
sions. It is hence clear that even if the ZAMS mass is
the same, the outcome in the shock evolution can be com-
pletely different, depending on the treatment of physics
(e.g., convection, semiconvection, overshooting, and stel-
lar wind) and numerics in stellar evolution calculations.
It is obvious that progenitors realizing high neutrino lu-
minosities with low mass accretion rates as seen in Figure
11 are better for explosion. This is the same conclusion
as in the previous subsection.

3. CRITICAL CURVE AND TURNING POINT

In this section, we propose a novel method to diagnose
a possibility of explosion using the Ṁ -Lν plane (see Fig-
ure 13). This plane is often used to discuss the critical
curve, which divides this plane into two regions: in the
region below this line there are steady accretion flows,
while in the other region above this line there is no such
flow (Burrows & Goshy 1993). The latter is hence inter-
preted as the region, where shock revival occurs. Then,
the trajectory in this plane will be a good diagnostic
measure to examine the possibility of explosion.
In Figure 13, we present a schematic picture of the

trajectory and the critical curve in the Ṁ -Lν plane. The
red solid line represents the critical curve and the black
dotted line gives a typical model trajectory. As demon-
strated already, the point in this drawing is that there is a
transition point in the trajectory, which implies a drastic
change in Lν as a function of Ṁ . This point is referred to
as the turning point in this paper. If the turning point is
located above the critical curve and the luminosity and
mass accretion rate stay there for a long time, such a
model will be highly likely to produce explosion.
It is obvious that the combination of a lower critical

curve and a higher turning point is preferred for super-
nova explosion. Multi-dimensionality of supernova dy-
namics has been demonstrated to lower the critical curve
(Murphy & Burrows 2008; Nordhaus et al. 2010; Hanke
et al. 2012). The impact of properties of the nuclear
equation of state on the critical curve is also studied
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Figure 6. Time-space diagrams of specific entropy at poles for two-dimensional simulations. Upper (lower) panels represent the values
at the north (south) pole. Models s12, s40, s55, and s80 eventually produce explosion at different times, depending on the initial density
structures. The other progenitors, i.e., s15, s20, s30, s50, and s100, failed to produce explosion at least by the end of simulations.
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Figure 7. Time evolutions of the angle averaged shock wave ra-
dius. Four of the investigated models, i.e. s12, s40, s55 and s80,
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(Couch 2013b) and is found to be minor compared to the
dimensionality.10 Although the critical curve has been
well studied by several groups, we emphasize that we
should study the trajectory as well. In so doing, however,
neutrino-radiation hydrodynamic simulations, or ab ini-
tio computations with detailed neutrino physics and ra-
diative transfer being incorporated are indispensable to
obtain reliable model trajectories. It is also noted that
the model trajectory is useful to discuss to what extent
particular ingredients included in simulations (e.g., the
nuclear equation of state, neutrino interactions, scheme
to solve the neutrino transfer equation) affect the shock
dynamics. The dependence of the location of the turning
point on them is especially crucial.
In the following, based on results of the neutrino-

10 There are a few attempts to derive the critical curve analyti-
cally (Pejcha & Thompson 2012; Keshet & Balberg 2012).



7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5  1.6  1.7  1.8  1.9  2  2.1  2.2  2.3  2.4
10

5

10
6

10
7

A
b

u
n

d
an

ce

D
en

si
ty

 [
g

 c
m

-3
]

Mass [M
⊙

]

28
Si

16
O

Density

(a) Abundance distribution and density structure

 0

 200

 400

 600

 800

 1000

 0  100  200  300  400  500  600  700  800

R
a
d

iu
s 

[k
m

]

Time after boune [ms]

(b) Time evolution of mass coordinate and shock

Figure 8. (Top) The initial profiles of density and composition
for model s80. The abundance of 28Si (red line) and 16O (green
line), and the density (blue line) are given as a function of mass
coordinate. There are two jumps in density, representing the tran-
sition of layers. (Bottom) Trajectories of the mass shells with the
mass coordinates of 1 M⊙ to 1.85 M⊙ with an interval of 0.01 M⊙

are plotted as grey curves for the same model. Thin black lines
represent 1.66, 1.7, and 1.75 M⊙ from left to right, respectively. A
thick black curve indicates the average shock position. When the
mass shell of 1.66 M⊙ runs across the shock several oscillations
ensue in the shock radius. The shock is eventually expanded at
∼ 400 ms after the bounce.
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model trajectory
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Figure 13. Schematic picture of the critical curve and turning
point. If the turning point is located above the critical curve and
the luminosity and mass accretion rate stay in the vicinity of the
tuning point for a long time, such a model will produce explosion.
The critical curve is expected to be shifted by macrophysics such
as dimensionality and the turning point may be shifted by micro-
physics as well as the progenitor structure. The critical curve and
turning point are also useful to asses the influence of a particular
physics incorporated.

radiation hydrodynamic simulations presented so far, we
develop a phenomenological model that connects the
density structure of progenitor just prior to collapse and
the model trajectory in the Ṁ -Lν plane.

4. PHENOMENOLOGICAL MODEL

In this section, we construct a phenomenological model
to estimate the neutrino luminosity as a function of the
mass accretion rate from the density structure of progen-
itor.
In this model the mass accretion rate is evaluated a

Ṁ =
dM

dtff
(2)

=
dM

dr

(

dtff
dr

)−1

, (3)

where tff is the free-fall time, which is defined as a func-
tion of the radius by

tff =α

√
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Figure 14. Mass accretion rate calculated by the free-falling
model.

≈ 0.130 s
( α

1.5

)( r

1000 km

)3/2
(

M

M⊙

)−1/2

, (4)

where α is a parameter introduced to adjust to numer-
ical result. Inverting this relation, we regard the radius
as a function of tff in Eq. (3). Figure 14 shows the
mass accretion rates as a function of t, which is identifi-
cation with tff , for the progenitor models investigated in
this paper. The figure should compared with the bottom
panel of Figure 3 (note that the vertical scale is differ-
ent.). It is seen that the the mass accretion rates are
high and rapidly decreasing at first. When the silicon
layer fully accretes to a PNS, the mass accretion rates
become smaller significantly because of the density drop
at the layer boundary and remain almost constant there-
after.
Although there have been several approximate func-

tional forms, e.g. e−t/τ (Janka & Mueller 1996), pro-
posed for the total neutrino luminosity as a function of
time, we employ the following form based on the diffusion
time scale:

Lν(t) =
Ldiff

1 + t/tdiff
, (5)

where Ldiff = Eint/tdiff is the diffusion luminosity with
Eint = (3/5)GM2

PNS/Rν being the internal energy stored
inside a PNS and tdiff being the diffusion timescale de-
fined shortly later, and MPNS and Rν are the mass and
the radius of the PNS. Again identifying tff with t, we
get the following expression,

Lν =
Eint

tff + tdiff
. (6)

The diffusion time tdiff can be evaluated as (see Appendix
for the derivation)

tdiff =
3σ

4πcmp

M

Rν

≈ 0.402 s
( εν,PNS

57 MeV

)2
(

M

M⊙

)(

Rν

50 km

)−1

, (7)

where σ is the cross section of neutrino-nucleon scat-
tering, which is given as σ(εν) ≈ σ0(εν/mec

2)2 with
σ0 = 1.705 × 10−44 cm2,11 the electron mass me, and

11 There are coefficients of O(1), which are neglected for sim-
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the neutrino energy εν . The proton mass is denoted by
mp. Additionally, εν,PNS is a characteristic energy of
neutrinos inside the PNS.12 The mass of PNS increases
as matter accretes and can be expressed as a function of
time by the use of the free fall time.
The idea that underlies Eq. 7 is the following. The

material that is initially located at r falls onto the PNS
in its free-fall time; the gravitational energy is then con-
verted to the internal energy, which is finally radiated
as neutrinos in the diffusion time. We can then evaluate
the neutrino luminosity as Eq. (6). This phenomenolog-
ical model is consistent with the fact that the neutrino
luminosity seems to be regulated by the smaller of the
accretion and diffusion luminosities (Fischer et al. 2009;
Mueller & Janka 2014). In fact, since Lacc ∼ Eint/tff
and Ldiff ∼ Eint/tdiff . It follows that Lacc < Ldiff for
tff > tdiff , and vise versa.
Figure 15 represents the model trajectories in the Ṁ -

Lν plane obtained this way. In this plot, we employ α =
1.5, εν,PNS = 57 MeV, and Rν = 50 km in Equations (4)
and (7). The comparison between the phenomenological
model and the numerical results is given in Appendix B
(see Fig. 17). Filled squares shown in Figure 15 represent
the points on each trajectory, which will be the most
favorable for the explosion and are determined so that
the maximum value of the ratio of the calculated Lν to
the critical luminosity given by Burrows & Goshy (1993)
as

Lcrit
BG = 5× 1052erg s−1

(

Ṁ

1.1 M⊙ s−1

)1/2.3

(8)

should be maximum. Note that, strictly speaking, Eq.
(8) is valid only for the luminosity of electron-type neu-
trino, Lνe , with the temperature of kTνe = 4.5 MeV.
Here the Boltzmann constant is denoted by k. We be-
lieve, however, that it will not be so bad for the cur-
rent purpose. One can find that the filled squares coin-
cide with the turning points, where the Ṁ -Lν relation
changes drastically. For example, for model s12, this
point occurs at Ṁ ≈ 0.2M⊙ s−1 and Lν is a rapidly

increasing function of Ṁ for larger mass accretion rates
whereas it increases rather slowly for smaller mass accre-
tion rates. As mentioned repeatedly this drastic change
comes from the transition of accreting layers from silicon
to oxygen layers.
In Figure 16 the locations of the turning points for

different models are plotted as open circles for exploding
models and as crosses for nonexploding models in 2D sim-
ulations given in Section 2.4. The dashed line is given by
Lν = 13×1052erg s−1(Ṁ/1.1 M⊙ s−1)1/2.3, which seems
to divide the exploding models from the nonexploding
ones. Note that s20 does not meet this condition be-
cause we do not take into account the dependence of the
critical curve on the average energy of emitted neutrinos

plicity (see Burrows et al. 2006, for more details).
12 The characteristic value employed here seems rather large

compared with the commonly used one ∼ 10 MeV. This is because
the former represents the average energy inside the PNS, where
the matter temperature is O(10) MeV and, as a consequence, the
neutrino average energy is also O(10) MeV. On the other hand, the
latter value reflects the matter temperature at the neutrinosphere,
O(1) MeV.
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Figure 15. Phenomenological model for neutrino luminosity as a
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Figure 16. The location of turning points of investigated models
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regions.

and PNS mass (see, e.g., Pejcha & Thompson 2012). We
do not make an attempt to improve it here to avoid fur-
ther complications. We stress, however, that it is evident
from the figure that the comparison of the turning point
with the critical curve is useful to predict the possibility
of explosion from the progenitor structure alone.
The critical curve based on our 2D simulations seems

to indicate that larger neutrino luminosities are nec-
essary to produce explosion in self-consistent simula-
tions than in the simple light-bulb approximation. As
a matter of fact, Murphy & Burrows (2008) provided

Lν ≈ 10×1052erg s−1(Ṁ/1.1 M⊙ s−1)1/2.3 as their crit-
ical curve based on their 1D simulations, which is already
lower than our critical curve, and the critical luminosi-
ties in 2D are even smaller as shown in their Figure
17. This discrepancy should be ascribed to the differ-
ent treatments of neutrino transfer. We suspect that the
overestimations of neutrino luminosities and, as a conse-
quence, of neutrino heating at late times in the simple
approximation are responsible for the discrepancy.

5. SUMMARY AND DISCUSSIONS

In this paper, we performed neutrino-radiation hydro-
dynamic simulations in spherical symmetry (1D) and
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axial symmetry (2D) for different progenitor models by
Woosley & Heger (2007) from 12 M⊙ to 100 M⊙. We
found that all 1D runs failed to produce explosion and
several 2D runs succeeded. The difference in the shock
evolutions can be ascribed to different mass accretion
histories, which are determined by the density structures
of progenitors. The exploding models have in common
high neutrino luminosities and low mass accretion rates.
This is consistent with the criterion based on the criti-
cal curve, above which there is no steady accretion flow
and shock revival is expected. In addition, we devel-
oped a phenomenological model to estimate trajectories
in the Ṁ -Lν plane. This model reproduces the numer-
ical results reasonably well by using the initial density
structures of progenitor alone. With this model, we can
predict the possibility of explosion without detailed sim-
ulations.
Our results also suggest a new methodology to com-

pare different simulation codes of neutrino-radiation hy-
drodynamics for the supernova explosion in the context
of the neutrino heating mechanism. Interestingly, the
results obtained by these codes do not agree with each
other and comparative studies are much required (see
Liebendörfer et al. 2005, for comparison of 1D simula-
tions). We propose to employ the trajectory in the Ṁ -Lν

plane for comparison. The methodology can be also used
to gauge the effects of particular physical processes, i.e.,
to see how the trajectory is shifted using 1D simulations.
At last, we comment on the assumptions adopted in

this study. Firstly, we performed 2D simulations al-
though it is well known that axial symmetry leads to
some hydrodynamic features that are qualitatively differ-
ent from those in three dimensions (3D) (Couch 2013a;
Hanke et al. 2013; Handy et al. 2014; Takiwaki et al.
2014). The critical curve in 3D is shifted from that in
2D (Nordhaus et al. 2010; Hanke et al. 2012) although
the magnitude and its dependence on the spacial resolu-
tion is still controversial. We believe, however, that the
qualitative features in this study will not change even
for 3D models although they are quantitatively sensitive
to details of convection and standing accretion shock in-
stability. Incidentally,, at the moment 3D hydrodynamic
simulations with spectral neutrino transfer are still com-
putationally too expensive to perform a systematic study
like the one in this paper. Secondly, the microphysics
used in this study is not so elaborate as other numerical
studies (Müller et al. 2012b; Bruenn et al. 2013) and our
critical curve may be different from theirs. This might
be the reason for the different outcomes that Bruenn
et al. (2013) obtained for the same progenitor series:
they found explosion for all the progenitors from 12 to
25 M⊙ progenitors whereas we produced explosion only
for the 12 M⊙ model. The phenomenological model we
proposed in this paper should be improved using more
sophisticated numerical simulations, which will be done
as a future project.

We thank A. Heger, M. Limongi, and K. Nomoto for
providing progenitor models and M. Tanaka for fruitful
discussion. Numerical computations in this study were
in part carried on XT4 and XC30 at CfCA in NAOJ and
SR16000 at YITP in Kyoto University. This study was
supported in part by the Grant-in-Aid for Scientific Re-

search (Nos. 25103511, 26870823, 23540323, 23340069,
24103006, 26707013, and 24244036), JSPS postdoctoral
fellowships for research abroad, MEXT SPIRE, and JIC-
FuS.

APPENDIX

A. DIFFUSION TIMESCALE

Here, we obtain a useful expression of the diffusion
timescale for neutrinos in a uniform density sphere of
radius Rν , which is meant to be a rough approximation
to a PNS. The diffusion timescale is given by

tdiff =
τνRν

c
, (A1)

where τν is the optical depth of the sphere, which is

τν =
∫ Rν

0
dr

ρσ

mp
(A2)

=
3σ

4πmp

M

R2
ν

. (A3)

Here we used M = 4πρR3
ν/3. By combining Eqs. (A1)

and (A3), we get

tdiff =
3σ

4πcmp

M

Rν
. (A4)

B. COMPARISON BETWEEN PHENOMENOLOGICAL
AND NUMERICAL MODELS

In this section, we show the comparison between the
phenomenological model introduced in Section 4 and the
numerical results presented in Section 2.3. Figure 17
presents the model trajectories for models s12, s20, and
s80. Solid curves show the model trajectories obtained
with the phenomenological models and dashed curves
display the trajectories given by the numerical simula-
tions. One can find that for s80 these lines agree very
well, while for s12 the phenomenological model fails to
reproduce the numerical result. As for s20, there is a dis-
crepancy between two lines at high mass accretion rates,
whereas the turning point is almost perfectly reproduced.
For models s30, s50, and s55, which have clear turning
points in the simulations they are reproduced reasonably
well by the phenomenological model. It fails, however,
for models s15, s40, and s100. These results indicate that
the phenomenological model is useful for progenitors that
have clear turning points, i.e., progenitors with a large
density jump between the silicon and oxygen layers.

C. OTHER PROGENITORS

We show the turning points for all 32 progenitors from
Woosley & Heger (2007) in Figure 18. The turning point

is defined for each model to be the point in the Ṁ -Lν

plane, at which the ratio of Lν/L
crit
BG takes the maximum

value on the trajectory. The values of max(Lν/L
crit
BG) at

the turning points are summarized in Table 2, in which
the compactness parameters ξ1.5, ξ1.75, and ξ2.5 at the
precollapse phase are also given (see Sukhbold &Woosley
2014 for the relations of these quantities with the com-
pactness parameters defined at the bounce). Note that
these parameters can be also evaluated only from the
density structure of progenitor and no simulation is re-
quired.
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There is no clear correlation between the maximum
values of (Lν/L

crit
BG) and the compactness parameters.

The critical value of max(Lν/L
crit
BG) that divides explod-

ing from non-exploding models may be set at is ∼ 2.18
because models s55 and s80 (max(Lν/L

crit
BG)=2.19) ex-

plode, while s20 (max(Lν/L
crit
BG)=2.18) fails. It is hence

true that max(Lν/L
crit
BG) is very useful in judging whether

a particular model is likely to explode before doing de-
tailed simulations.

D. CONDITIONS FOR CONSTANT Ṁ

In this section, we give a simple explanation of why we
obtain almost constant mass accretion rates at late times
for most of the progenitors in this study. We assume the
following density structure,

ρ(r) = ρ0

( r

R

)−n

, (D1)

where R is a core radius and ρ0 is the density at r = R.
The mass coordinate is given by

M(r) = M0 +

∫ r

R

4πr′2ρ(r′)dr′, (D2)

Table 2
Properties of all progenitors

Model ZAMS mass max(Lν/Lcrit
BG) ξpre1.5 ξpre1.75 ξpre2.5

(M⊙)

s12 12 2.19 0.617 0.235 0.023
s13 13 2.36 0.869 0.370 0.067
s14 14 2.25 0.857 0.502 0.128
s15 15 2.06 0.882 0.549 0.181
s16 16 2.19 0.792 0.333 0.150
s17 17 2.24 0.877 0.374 0.168
s18 18 2.43 0.961 0.656 0.194
s19 19 2.15 0.962 0.517 0.177
s20 20 2.18 1.003 0.771 0.286
s21 21 2.07 0.696 0.323 0.143
s22 22 2.16 1.001 0.783 0.289
s23 23 2.14 0.998 0.870 0.434
s24 24 2.17 1.013 0.859 0.398
s25 25 2.25 1.008 0.821 0.331
s26 26 2.48 0.968 0.641 0.234
s27 27 2.37 0.993 0.677 0.257
s28 28 1.79 0.987 0.596 0.272
s29 29 2.17 0.965 0.534 0.225
s30 30 2.13 1.006 0.688 0.218
s31 31 2.17 0.995 0.617 0.219
s32 32 2.15 0.999 0.750 0.253
s33 33 2.14 1.003 0.783 0.284
s35 35 2.26 1.010 0.846 0.360
s40 40 2.62 0.980 0.876 0.547
s45 45 2.58 0.982 0.875 0.516
s50 50 2.12 0.999 0.643 0.222
s55 55 2.19 0.980 0.564 0.239
s60 60 2.24 0.939 0.451 0.175
s70 70 2.20 0.989 0.663 0.233
s80 80 2.19 0.965 0.550 0.210
s100 100 2.13 0.989 0.702 0.245
s120 120 2.09 0.911 0.454 0.171

where M0 is the mass coordinate at r = R. Then, mass
accretion rate is estimated as

Ṁ =
dM

dtff
=

dM

dr

(

dtff
dr

)−1

, (D3)

where tff =
√

r3/GM(r) is the free fall timescale. Short
calculations give

dM

dr
= 4πr2ρ0

( r

R

)−n

, (D4)

and

dtff
dr

=
1

2

√

r

GM(r)

{

3− 4πr2ρ0

( r

R

)−n r

M(r)

}−1

.

(D5)
Suppose that M(r) ≈ M0, i.e., the central accelera-
tor’s mass is dominant and r ≫ R. Then, dtff/dr ≈
(3/2)

√

r/GM(r) and we obtain becomes

Ṁ ≈
8πρ0R

n
√
GM0

3
r

3

2
−n, (D6)

which becomes constant if n = 3/2. On the other hand,
if the mass at r > R, that is the mass of accreting matter,
is dominant, we get

M(r) ≈
4πρ0R

n

3− n
r3−n, (D7)
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which leads to

dtff
dr

≈
n

2

√

3− n

4πGρ0Rn
r

n

2
−1. (D8)

Then we obtain

Ṁ ≈
2

n

√

(4πρ0R)3G

3− n
r3−

3

2
n, (D9)

which is again constant for n = 2. The progenitor models
used in this study realize n ≈ 2 for the oxygen layer so
that the latter case is valid for them.
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