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ABSTRACT

Aims. We investigate the relation between 1D atmosphere modaisely on the mixing length theory and models based on full 3D
radiative hydrodynamic (RHD) calculations to describevemtion in the envelopes of late-type stars.

Methods. The adiabatic entropy value of the deep convection zegg, and the entropy jumps, determined from the 3D RHD
models, are matched with the mixing length parametgy;r, from 1D hydrostatic atmosphere models with identical npéngsics
(opacities and equation-of-state). We also derive the magig length, oy, and the vertical correlation length of the vertical
velocity, C|[vz, V7], directly from the 3D hydrodynamical simulations of steBabsurface convection.

Results. The calibrated mixing length parameter for the Sun‘,\?lﬁ_T (shot) = 1.98. For diferent stellar parametersy 1 varies
systematically in the range of7- 2.4. In particularay T decreases towards highdfeztive temperature, lower surface gravity and
higher metallicity. We find equivalent results foﬁ”_ (As). Also, we find a tight correlation between the mixing lengérgmeter
and the inverse entropy jump. We derive an analytical espwasrom the hydrodynamic mean field equations that mawabe
relation to the mass mixing lengthyy,, and find that it exhibits qualitatively a similar variatianth stellar parameter (betweer6l
and 24) with a solar value o&$, = 1.83. The vertical correlation length scaled with the pressaale height yields for the Surir1,

but displays only a small systematic variation with steflarameters, the correlation length slightly increasiniy Wig.

Conclusions. We derive mixing length parameters for various stellar peat@rs that can be used to replace a constant value. Within
any convective envelopem and related quantities vary a lot. Our results will help tolaee a constantyt.
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N 1. Introduction (MLT), which was initially proposed by Ludwig Prandtl foreh
o . . i . Earths atmosphere in analogy to the concept of the mean free
O In the past century insights In various f|elds of physu;s ed t path in the kinetic gas theory. In the framework of MLT, it is
—1 substantially more accurate interpretation and undadmgrpf assumed that the heat flux is carried by convective elements
(Y)- the processes taking place in the interior of celestialémdVith ¢ o typical distance, before they dissolve instantankous
(@) "Ehe_orettrl]cal stzl_ltar atmo?r[])herefmodeflstastron%m%rg,ngmgn?r into the background. This distance is the so-called mixing
< erize the conaitions on the surface ot stars, and acafow length,I, usually expressed in units of the pressure scale height,

the theory of stellar structure and evolution, they are bbgpto amit = 1/Hp. The mixing length parameteny,t is a priori
. . predictthe _complex development of stars. unknown, hence it has to be “calibrated”, usually by matghin
= Theradiated energy of cool stars, originating from the @eeqy, o o,rrent radius and luminosity of the Sun by a standat sol
'>2 interior due to nuclear burning in the center, is advectethéd 0o with a single depth-independerf; This calibrated

; . ; ! T

. surface by convective motions in the envelope, driven by n&g e for the Sun is then used for all steflar parameters.utm

6

([ ative buoyancy acceleration. At the thin photosphericsitemn o ocqjjeqd that$, ;, in fact, corrects for all other shortcomings
region the large mean free path of photons allows them (@esCas e oy model, due to, e.g., deficits in the equatiostafe
into space, and the convective energy ﬂ!JX is released dw_u 0S), the opacities, or the solar composition. It themfier
To model theoretically this superadiabatic boundary dongéi "\ onder that its numerical value (typically around 1.7 to
stars is challenging due to the non-linear and non-locaireaif 1.9 e.g., seé Magic etldl. 2010) varies with progress in the
turbulent sub-surface convection and radiative transfied, an nérﬁed. a.a,spects and from code to code. In addition. MLT is
analytical solution is a long-standing unresolved issue. local and time-independent theory that contaiﬁeo&i’vely
B"hTO vaccountl f08r fthe Icorljve(r:]tlve _gnerglgy trr]ansporg]ree additional, free parameters, and assumes symmeitrg in

m-Vitense [(1958) formulated the mixing length t eorMp_ and downflows, hence also in the vertical and horizontal

Send offprint requests to: magic@mpa-garching.mpg.de direction. The actual formulation of MLT can vary slightly

* Appendix is available in electronic form/at hiffwww.aanda.org 00 ée-g-: see Henyey etlal. 1965; Mihalas 1970; Ludwig et al.
** Full Table A.1 is available at the CDS via anony ).

mous ftp to |cdsarc.u-strasbg.fr | (130.79.128.5) or via

httpy/cdsarc.u-strasbg/fiz-bin/qcat?JA+A/?2?7A?7, as well as Many attempts have been made to improve MLT, a
at\www.stagger-stars.net. substantial one being the derivation of a non-local mixing
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length theoryl(Gough 197[7; Unno eilal. 1985; Deng &t al. 200&ect[2). We present the resulting mixing length paramiater
\Grossman et al. 1993). The standard MLT is a local theory, i®ect[B. We also determine the mass mixing length — the iavers
the convective energy flux is derived purely from local thegradient of the vertical mass flux — in Se¢il 4, and the verti-
modynamical properties, ignoring thus any non-local prige cal correlation length of the vertical velocity (Selct. Syeditly
(e.g. overshooting) of the flow. Usually, the non-local modrom the 3D atmosphere models. For the former quantity, we de
els are derived from the hydrodynamic equations, which araiee a relation from the hydrodynamic mean field equatioas th
set of non-linear moment equations including higher order mdemonstrates the relationdgt, which is further substantiated
ments. For their solution, closure approximations areic@msd by our numerical results. Finally, we conclude our findings i
(e.g. difusion approximation, anelatistic approximations or irSect[®.
troducing a difusion length). Also, further aspects have been
studied: the asymmetry of the flow by a two stream MLT model )
), the anisotropy of the eddies (CahutoL.g88) 2. Theoretical models

time-dependence (Xiong et 97) and the depth-depeede
of amit (Schlattl et al. 1997). While standard MLT accounts fo?'l' 3D atmosphere models
only a single eddy size (being, [Canuto & Mazzitelli (1991) We have computed ther&cer-grid, a large grid of 3D RHD
extended the picture to a larger spectrum of eddy sizes by @aimosphere models covering a wide range in stellar paramete
cluding the non-local second order moment (Canutolet al6198pace (see_Magic etlal. 2013a, hereafter Paper ). The 3D at-
see also). The original Canuto-Mazzitelli-theory — alsown mosphere models are computed with thasS8er-code, which
as theFull Spectrum Turbulence model — used the distance tosolves the 3D hydrodynamic equations for conservation agsma
the convective region border, as a proxy for the mixing lapngtmomentum and energy, coupled with a realistic treatmertief t
a later versionl(Canuto & Mazzitelli 1992) re-introducedeef radiative transfer. We employ the EOSngLMiha.La.sjagg ' 52988
parameter resemblingyT. and up-to-date continuum and lines opacit e

These approaches are often non-trivial, but so far the st2008). For the solar chemical abundances, we use the values
dard MLT is still widely in use, and a breakthrough has beday/Asplund et al.[(2009, hereafter AGS09). Our simulatiomes a
absent, despite all the attempts for improvements. In 1D af-the so-called "box-in-a-star” type, i.e. we compute oaly
mosphere modeling, the current procedure is to assume sorall, statistically representative volume that inclutjgscally
the mixing length parametesy r a universal value of .5 ten granules. Also, our (shallow) simulations cover onlyre

B; Castelli & Kurllcz 2004, see). Fbr firaction of the total depth of the convective envelope. Due t

stellar evolution models, the solar “calibration” yieldalwes the adiabaticity of the gas in the lower parts of the simatati
around~ 1.7— 1.9 (Magic et al 2010, see, e.g. ). Since the valugox, the asymptotic entropy value of the convective zagg,
of the mixing length parameter sets the convectilieiency and is matched by the fixed entropy at the bottom of the simulation
therefore changes the superadiabatic structure of stabidels, domain,syot, which is one of the simulation parameters. The
an accurate knowledge afy 1 for different stellar parameterseffective temperature is therefore a result in our 3D simutetio
would be a first step in improving models in that respect. Howand is actually a temporally averaged quantity. In 1D modlgis
ever, besides the Sun, other calibrating objects are ratelata is an actual fixed input value in addition without fluctuagon
are much less accurate (see SEcil 3.7 for an example), such a¥Ve determine the entropy jumps, as the dierence be-
binary stars with well determined stellar parameters. tween the entropy minimum and the constant entropy value

The mixing length parameter can be deduced froaf the adiabatic convection zone Withs = Spin — Spot.  IN
multidimensional radiative hydrodynamic (RHD) simulaiy Magic et al.(2013b, hereafter Paper Il), we studied in détai
where convection emerges from first principles (e.g., sé#ferences between me&8D) models resulting from dierent
Ludwig et al. [1999). Over the past decades, the comp"@ference depth scales. In the present work, we show and dis-
tational power has increased and the steady developmeuss only averages on constant geometrical he@f},, since
of 3D RHD simulations of stellar atmospheres has estathese fulfill the hydrodynamic equilibrium and extend oves t
lished their undoubted liability by manifold successfulneo entire vertical depth of the simulations. Thes&er-grid en-
parisons with observations (Nordlihd 1082:fRir et al 1989; compasses 220 models ranging infective temperaturel e,
\Ludwig et al| 1994; Freyta mn_&_u_o_mﬂ]mg_jl;gggyom 4000 to 7000K in steps of approximately 500K (recalttha
[Nordlund & Draving 1990; Nordlun . 2009). The 3D RHD e is the result of the input quantits,g, and the intended@eg
models have demonstrated that the basic picture of MLT is igHd point values are adjusted within a margin below 100 K).
correct, namely, the convective bubbles are not presestgad Surface gravity, log, ranges from 5 to 50 in steps of 0.5 dex,
highly asymmetric convective motions are found. Nonethgnd metallicity, [F¢H], from —4.0 to +0.5 in steps of & and
less, an equivalent mixing length parameter has been cdl@dex. We refer the interested reader to Paper | for detailed i
brated by Ludwig et all (1999) based on 2D hydrodynamic mof@rmation on the actual methods for computing the grid madel
els by matching the resulting adiabats with 1D MLT modekbeir global properties and mean stratifications.
(see | Freytag et al. 1999, for the metal-poor cases). They had
shown thaiyy 1 varies significantly with the stellar parameter
(from 1.3 to 18), and they also studied the impact of a vari-
able it on globular clusterl (Freytag & Salatis 1999). AlsoFor the Saceer-grid, a 1D MLT atmosphere code has been de-
Trampedachl (2007) applied a grid of 3D atmosphere modetdoped, which uses exactly the same opacities and EOS as the
with solar metallicity for the calibration of the mixing lgth pa- 3D models (Paper ). Therefore, the chemical compositivas a
rameter (from 1.6 to 2.0), and the so-called mass mixingttengdentical. The code uses the MLT formulationlmm& al.
(Trampedach & Stein 2011). Sé%g%) Esee Agﬁml for details), similar to the MARCS code

In the present work we calibrate the mixing length para 8). Furthermore, we note that forisens
eter with a 1D atmosphere code that consistently employs teacy, the 1D models are computed with exactly the sagmes
identical EOS and opacity as used in the 3D RHD simulatiottse 3D models.

>2. 1D atmosphere models
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Fig. 1. Showing the meax3D), entropy black solid line) vs. depth, and 1D models forftérent mixing length parametergy t = 1.5- 2.5
(blue lines), for the solar modelléft panel) and a metal-poor dwarf with [Fél] = —2.0, Teg = 4500K, and logy = 4.5 (right panel). We indicate
the constant entropy value of the deep adiabatic conveztioe, syo, in both figures by the horizontal dotted line. In the deepsgets, we
extended the 1D modelsglgshed lines) with the aid of the entropy gradient from tk&D) models. The calibration of the mixing length parameter
amt is illustrated by the smaller insets, which depict the re¢atlifferences between the 1D and 3D modéks= s;p/S3p — 1) for syot (solid)
and the entropy jumps (dashed). For the solar model the two approaches resuliyipr = 1.98 and 209, respectively.

The actual implementation of MLT fiers slightly depend- 3D models. Therefore, we had to calculate slightly shallowe
ing on the considered code (elg. Ludwig € 999). In thi® models. However, we extended the 1D entropy stratifica-
standard MLT formulation there are in total four parametersons with the entropy gradients of tki@D) model (see Figl]1).
The mixing length parametery t = I/H,, sets the convective Tests showed that the missing depth in the 1D entropy rurslead
efficiency, while one assumes for the temperature distributitmonly minor uncertainties in the resultiagy 1. We fitted the
y = 3/(47%) ~ 0.076, and for the turbulent viscosity= 8 (see differencesss, with a second order polynom to get the value of
App. [C2 for their discussion). We considered only the ngxinay t. We emphasize that the calibrationafi.t is more mean-
length parametety 1 for the calibration, while the additionalingful for identical EOS, and the entropy is consistentlynco
parameters were kept fixed to their default values and theitur puted. For the calibration, we neglected the turbulentgunesin
lent pressure is entirely neglected. the 1D models entirely (i.e8 = 0).

In Fig.[, we illustrate the calibration of the solar modetian

o for a cool metal-poor dwarf with the mean entrogyin the con-
3. Mixing length vection zone. For the solar simulation, we determined amgixi
length parameter afy 1 = 1.98 and 209 from matching either
the adiabatic entropy value (left panel) or the entropy jright
We calibratedyy t by matching either the asymptotic entropyanel). Note hows converges asymptotically agairsby. Fur-
value of the deep convection zorsgg, or the entropy jumps, thermore, it is also evident from Figl 1, that for a highgfit
from the 1D and 3D models. Subsequently, we refer to thethe adiabatg,er) of the 1D models is decreasing in the convec-
with amit (Shot) andamit (As), respectively. The value afois  tion zone. The entropy minimum of th@D), on geometrical
an input parameter in our 3D simulations, and representdihe height is slightly mismatched by the 1D models, a fact, which
abatic entropy of the incoming upflows at the bottom of the bdx reflected by slightly dferent calibratedit (As) values. In
that are replenishing the outflows. Therizontally and tempo- the 1D modelssyi, varies only little for diferentay.t, and the
rally averaged entropy at the bottom{s),.;, considers in con- differencespamit, are between 1074 and 102 (cf. also the
trast both the up- and downflows, and is thus slightly lowanth right panel). Since the entropy jumps are in general mudelar
Shot due to the entropy-deficient downflows. However, in ouhan the variation ofqyin, their influence is very small, and only
simulations the deeper layers are very close to adiabatidico for very cool metal-poor models with very small entropy jusnp
tions. The entropy contrast at the bottom is extremely smalifferences irsyin might influence the calibration slightly (right
{(Spot— Sbot < 1 %. panel).

For the calibration, we computed 1D models witl.r from We note that we find in general very similar resultsdgiit
1.0to 25in steps of 0L and determinedyi.t by minimizing the by employing a 1Denvelope code, which solves the stellar struc-
differencess = si0 — 55 or the diference in the entropy jumpstire equations down to the radiative interior by includihg t
5s=AstP — As®P. We remark that some 1D atmosphere modesmme EOS and opacitiés (Christensen-Dalsfiaard 2008).isT his
had convergence issues, when extended to the same depth amtparticular true for solar metallicity. The 1D envelopedeo

3.1. Matching the mixing length parameter

Article number, page 3 ¢f15



7000 6500 6000 5500 5000 4500 4000 7000 6500 6000 5500 5000 4500 4000
Te” [K] Teﬂ [K]

Fig. 2. The Kiel-diagram Teg — logg diagram) with the mixing length parameter calibrated with tonstant entropy value of the adiabatic
convection zonexmit (Shot), for solar and sub-solar metallicitieft andright panels, respectively). The mixing length is color-coded as intida
and shown with contours derived from functional fits (see Agp while the circles represent thesScer-grid models.
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T

| | | | |
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Fig. 3. As Fig.[2, but here the mixing length parameter calibratetth thie entropy jumpeyr (AS) is shown.

relies on an assumet(r) relation in the (Eddington gray) at- f (Teg,l090,[Fe/H]), with the same functional basis, as
mosphere, which obviously influences the thermal stratiica used b)[%ﬁl_el)}ll_(l_&%). For more details see App. B, and
at the outer boundary of the convective envelope. In pdaicu the resulting coiicients are provided in Table B. 1.

metal-poor 1D convective interior models with a fiXe¢r) rela-

tion are dfected by this, and will return fierent mixing length

parameters. The 1D atmosphere code manages without the r&e8dCalibrations with the adiabatic entropy value

for any T(7) relation, since it solves the radiative transfer by it-

self. We therefore present and discuss only the mixing kendh Fig.[2, we show an overview of the variation of thgyt

parameters matched by the 1D atmosphere code. values calibrated withsyo; for different stellar parameters in
Furthermore, we have performed functional fits fothe Kiel-diagram, in particular for two illustrating mefiaities
the calibrated mixing length parameters, iewr = ([Fe/H] =0 and-2). The mixing length parameter varies rather
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Fig. 4. The mixing length parameters illustrating their depenéenit the diferent stellar parametersyg 1 (Shot) andamt (AS) in thetop and
bottom panel, respectively). We varied one stellar parameter ahe, twhile the other two are kept fixetkeft: effective temperaturemiddie:
surface gravityright: metallicity). The fixed stellar parameters are indicated eolor-coded.

systematically in the range betweerl.7 and~ 2.3: ayT in-

surface, which is lower for the 1D models compared to(8i)

creases for loweTe; and [FeH] and higher log (see also Fig. model (see Fid.11), therefore leading to larger mixing larug-
[M). Some minor deviations (from a linear run) towards cooleameters. The metal-poor simulations exhibit larger dewia
Tex for metal-poor models can be attributed to thetences in betweenayt (As) and amit (Shot), Since the boundaryfiect,

the outer boundary condition of the 1D models. A larggir

induced by the dferences im\s, is increasing for lower [FgH].

relates to a higher convectivéhieiency, which implies that a We note that the entropy jump is a relative value, and conse-
smaller entropy jump is necessary to carry the same comreectjuently the matching is less prone to outer boundéiscts.

energy flux. Indeed, we find the entropy jump to increase for

higherTeg, lower logg and higher [F¢H] (see Paper | ); we find

thatay 1 varies qualitatively inversely to the entropy jump. Thé.4. Comparison with global properties

mixing length parameter is inversely proportional to theation ) ] o
ofthe |0garithmicva|ues of the entropyjump, the peakinﬁhe We searched for systematic correlations between the mixing

tropy contrast and vertical rms-velocity (see S€ct] 3.4)isTs

length parameter and mean thermodynamic properties. Fhe in

in agreement with the fact that both the entropy jump and tMgrse of the entropy jump correlates well witiy.r. In Fig.[d
mixing length parameter are related to the convectiieiency We demonstrate this by comparing the mixing length paramete

(see Secf_314).

3.3. Calibrations with the entropy jump

amLt (As) with the logarithm of the inverse of the entropy jump.
Convection is driven by radiative cooling in the surfaceelasy
The entropy jump results from the radiative losses at thizalpt
surface, therefore, the correlationaf t roots in the interplay
of the opacityk,, radiative cooling ratesjag, and vertical ve-

We also calibrated the mixing length parameter with the 10’MUocity, vzrms. The vertical velocity results from buoyancy forces,

atmosphere code by matching the entropy jusp The result-
ing values are summarized for two metallicities in [Fig. Jwh
ing a similar behavior as the results of the previous sectser
also Fig.[4). We find that they t values based ons are sys-
tematically larger by~ 0.1 (between~ 1.8 and~ 2.4) than the
values based osyot (Fig.[3), but the range it (AS) is with

Aamit ~ 0.6 very similar to that formit (Shot). The diferences
arise from the minimum of the entrosi, around the optical

fo = gAp, acting on the overturning, overdense flows at the opti-
cal surface. Hence, a larger entropy jump will entail largm-
trast in the entropy and densit§gms anddprms), which will in-
duce a larger downward acceleration. We illustrate thiggn[®,
where the peak values félsms anddprms Iin the superadiabatic
region are plotted against the peak vertical rms-velociyi-
dently, the entropy and density contrast correlate welhilie
vertical velocity, and this is the underlying reason for tigit
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Fig. 6. Comparison between the mixing length parameter calibra
with the entropy jumpgamit (AS), and the logarithm of the inverse of
the entropy jumps-In(As), for different stellar parameters.

3.5. Comparison with 2D calibrations

(inverse) correlation between mixing length parameteremd We compare the ffierences between our inferred mixing length
tropy jump. In Paper | we have already discussed the coisalatparameters with those of Ludwig et al. (1999) based on simila
of the entropy jump with the peak vertical velocity and the-de but 2D hydrodynamical surface convection simulations. oAls
sity at the same location, and we deduced the reason for tifiey matched the resulting 2D-basgg; by varyingau.t of a

in the convective energy flux, which essentially contaireséh 1D envelope code that uses the same EOS and opacity. How-
quantities. ever, these are not identical to those used by us, and there ar
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Fig. 9. The mixing length parameter along stellar evolutionargksa Fig. 10. Relative diferences between the the mixing length parameter
with solar metallicity against the normalized age for thessgs from derived from observations and our 3D RHD models fdfedent stellar
0.7 to 1.5Mg, (indicated). The tracks are derived from the functiongdarameters.
fits f (Teg,100Q) of a7 -calibrations withsyo; andAs (top andbottom
panel, respectively) and all tracks end on the RGB whengegL.
solar value ¢}, ;). Note that in that figure we show 1 along
tracks calculated with a constant value of the mixing lerggh
further diferences in the models, such as, most importantly, thémeter (178) obtained from the usual solar model calibration
solar composition. Therefore, these facts should be keptrid, (se [.2010). The figure is therefore not showieg th
when interpreting the comparison. actual, self-consistent changesin.t along the evolution, how-

We also remark that _Ludwig etlal. (1999) deriv@dr)- ever, significant dferences are hardly to be expected. During
relations from the 2D models, and used them for the 1D modéfie main-sequence evolutieny 1 varies only little and is al-
as boundary conditions to render the entropy minimum of the 2nost constant, in particular for the lower masses withoudra ¢
simulations more closely. In Paper | we noticed that result-  vective core. The variable mixing length parameter hasgelar
ing from the Saccer-grid is very similar to values from the 2Dinfluence during later evolutionary stages, the TO and th8 RG
grid, while the entropy jumps exhibits slight diferences. ascentamit increases first towards values around.9-2.1,

In Fig.[8 we show the calibrated mixing length parametend then drops sharply down to values~o1.7 for all masses,
from both studies in comparison. The resulté__ng_Tu_ijm%ig_ét alhich is the consequence of the narrow range in red giant tem-
(1999) also show a cledli;-dependence, while surface gravityerature and surface gravity.
has only very little influence oaw r. While the 3D-calibrated The mixing length parameter not only determifigg of the
mixing length parameter decreases with lower surface tyravistellar models, but also influences the adiabatic strdiificaf
its 2D equivalent is moderately increasing. Their solar -mixhe 1D models in the deeper convection zone. In particudag f
ing length parameter igy it = 1.59, which is lower by 0.39 largeramit the lower boundary of the convection zone is located
(~ 20%) compared to our mixing length parameter, but compdeeper in the interior. Therefore, for stars with lower (t@g
rable to the solar model value of that time, as is ours for theasses, a variable mixing length parameter with stelleaimper
present generation of solar models. That values for dwarf ter will increase (decrease) the depth of the convectioe zés
models (log = 4.5) are in general around 20 % lower than in oust consequence one can expect that the convective mixing will
case. Towards giants thefidirence is diminishing, since the 3Dbe enhanced (reduced) for less (more) massive stars iarstell
values are decreasing with Igg In the case of 3D convectionevolutionary calculations. This may influence, for examfie
simulations, it is known that convection is moféi@ent in com- depletion and burning of Li in low-mass stars.
parison to the 2D case. Therefore, the mixing length pararset
derived from the 3D models are in general systematicaltydar , ) ,

Taking into account the aforementioned “model generatfon & /- Comparison with observations

fect”, the comparison is, with the exception of the discrépagpservations provide an opportunity to constrain free para
logg-dependence, quite satisfactory. eters in theoretical models. Bonaca et al. (2012) attemyuted
calibrate the mixing length parameter parameter from Keple
observations of dwarfs and sub-giants (90 stars). Empipyia
usual scaling relations for the frequency of the maximalllasc
When one considers the variation@fi .t along typical stellar tion mode powerymax, and the large frequency separatiaw,
evolutionary tracksgyv.t ranges from B to 24 from higher to (see, for examplé, Huber efl 11), in connection Wigh
lower mass (see Fi@l] 9), and deviates by ug20 % from the and [F&H] from spectroscopic observations, they estimate mass

3.6. Impact on stellar evolutionary tracks

Article number, page 7 615



and radius of the observed objects. Then, from a grid ofastellThen, similar to the temperature gradiént; dIn(T) /dIn{prot),

evolutionary tracks computed withfterentay t values, they we introduce the notation for the gradient for a vaXyéowever,

selected the one matching the inferred stellar parameters. instead of the total pressure it is scaled by the thermodimam
Bonaca et al.[(2012) derived an average mixing length peressure scale height,

rameter of 160 from the observations, being in general lower

than their solar-calibrated value with 1.69, which resiilte

from the 1D models without the comparison with observddx = 9zIn(X)/dzIn{pm),

tions. We compare the (linear) functional fit efy.t derived

in Bonaca et &l.[ (2012), with stellar parameters to our own rend we can rewrite the vertical velocity to

sults in Fig[ID. We compare the calibration resulting fréweirt

complete data set. They also derive a fit for a subset of dyarfs 9/02In(pm) — (pen) / ()

which, however, is quite restricted in the range of stelkam- (Vz) = vV 12V :

eters and quite tlierent from the fit for the full sample. Their P vz

determined solar mixing length parameterf . = 1.59, which g analvtical exact equation depicts the correlatiorhefiter-

is 20% smaller than our result ofdB. However, we remark thatyic| velocity with the gravity and pressure stratificatias well

differences between our and their EOS and opacity will have @dlihe gradient of the density and the gradient of the véxi&a

important impact onvwr, therefore, the comparison betweey iy itself in the hydrodynamic equilibrium. Now, we cdder
absolute values afmir are limited. Interestingly, the variation, o gradient of the absolute vertical mass fl(x) = (ov,), for

with Teq for a given logg and [FgH] is rather similar apart from 6 yn_ or downflows (due to conservation of mass, the mass

an almost constantiset. For diferent logy and [FgH], we find 1
significant systematical fierences (see Fifl. 110). The values f fllux of the upflows,}z, equals the mass flux of the downflows,

dwarfs are in general smaller by up4+®0— 40% depending on Jz) With
gravity and metallicity, while the giants are greater bygtmailar
amount. The comparison is made mor#idult by the fact that

@)

even the full sample of Bonaca ef dl. (2012) is rather limited g, _  J2InI{iz")
logg, and biased towards dwarfs. Additionally, the input physic zIn{pw) °

(EOS and opacity) of their models deviates from ours. The au-

thors themselves mention the absence of strong corredatiith  which indicates the length, over which the up- or downflow has

logg, their restricted range in [F&l], the discrepancies to thechanged by the-fold, where the length scale is expressed in

results by Ludwig et al[ (1999) ahd Trampeddch (2007), aed tressure scale heights. Trampedach & Stein (2011) intextiuc

fact thatay 1 effectively compensates for everything else thdlhe mass mixing length as the inverse vertical mass flux scale

influencesT o height, i.e.lm = 8-In[(j1*)|~%, which is in concordance with the
Our mixing length parametersftér also significantly from gradient of the vertical mass flux witl, = Hp/V,. Further-

the spectroscopical findings by Fuhrmann etal. (1993), whwore, we define the mass mixing length as the inverse gradient

concluded that one would need afy 1t with very low values of the vertical mass flux,

with ~ 0.5, in order to properly fit hydrogen lines for various 1

stars with the resulting temperature stratifications. Thav- am = Vi,

ever, can be explained completely by the fact that here ¢y t i i i

outermost convective layers are traced, which are nottesta  and we can decompose the gradient of the vertical mass floix int

our method for inferringyy 1 from the adiabatic structure at/tS components and find

the bottom of the convection zone, and that the mixing length 1

parameter is indeed depth-dependent (see Bett. 4.2). Hsis e = (Vp +sz) ,

already verified by Schiattl etlal. (1997).
which states that the mass mixing length is the inverse sum
of the changes in the density and vertical velocity gradient
4. Mass mixing length We note that this definition is the same as introduced by
[Trampedach & Stelin (20111). Finally, we can identify now the
4.1. Deriving the mass mixing length mass mixing length in the denominator of the vertical veioci
In the following, we denote the temporal and spatial avaﬂag‘eEq'D) and get the following expression
thermodynamic quantities with..), which depict only thez-
dependence. Then, the momentum equation for a stationsty N,y = \/ am ( g B <pth>). @)
tem yields 1+amVy, \0zIn(pn) (o)
3z(<pth>+(pV§)) = (p)g. This illustrates why the vertical velocity depends on thessna

mixing length, similar to the MLT velocityy 1 that depends on

This equation states that a given mass stratificaight{as to be Mixing length parameter withyr o et (see EQLCRR). _
supported by the joint thermodynamiy() and turbulent pres-  T0 complete the comparison of the mass mixing length with
sure P = pv2) forces, in order to sustain equilibrium. Sincdhe (MLT) mixing length parameter, we derive its dependence

the vertical velocityy,, appears here, we solve for the latter an@ith the convective energy flux. The mean convective energy
get flux consists of the fluctuations of the total energy(= € +

P/p +V?/2), which we depicted with, and is carried by the
mean vertical mass flux, i.e.

371N oy +20,In(vz)y (Feonw = (f)pova),
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Top panel: The mass mixing lengthy, (solid) and the in- Fig. 14. The mean gradient of the densi%y, and the vertical velocity,

verse gradient of the densityyjl (triple-dotted dashed line). For clar-Vy,, in the convection zone for fierent stellar parameters.

ity we excluded values witIV;l > 5/3 just below the optical surface

(0 < log prot/ psurf < 0.5). Bottom panel: the gradient for densityy,,,

?nd Vter:ICI?l veIocny,Vtvz, (dashed and solid lines, respectively) for dif3nq also the influence afyr becomes negligible towards the

erent steflar parameters. optical surface, where the Balmer lines form (see Fig. 1préh
fore, the agreement of the depth-dependgpiwith their low

where we assume theg is the hydrodynamic velocity given in Values foramr might be just a coincidence. Furthermore, just

Eq. . We determine the divergence of the convective ene%‘gow the optical surface (Iq@ot/ Psurf = 0) at the photospheric
flux, i.e. 9,(Fcony), and solve for the total energy quctuation% nsition regiong, features a peak, which depends on the stel-

and get ar parameters, in particular, for highBg, the peak in between

increases, while in the convection zone it is the flatter. ¥ r

¢ 1 0z(Fconv/{oVz) + Iz (f) mark that the peak iny, coincides with the location of the peak
V,+Vy, 3,In Py in thevzms. We included also the inverse gradient of density in

the same figure witkyy,, demonstrating that the adiabatic value
Then, we can substitute the convective energy logs€Bcony), Of @ in the convection zone is mainly contributed by the density
with the radiative cooling rate; {(grag), due to conservation of gradient.

total energy, and we can identify the mass mixing length & th  \we show also the gradients of the density and vertical ve-
convective energy flux as well and yield locity in Fig.[Id, which are the both componentsaf. One
(Grad) + (PV2) D5 (F)) can depict that the variation af;, in the convection zone arises
rad z (3) mainly due the dferent velocity gradients, since the density
9zIn (pin) gradient converges always against very similar adiabatices

This equation is basically the expression for the consemaf (Yad = V,,%). For an monoatomic ideal gas with radiation pres-
energy. Both of these equations for the velocity and the cosure the adiabatic exponent is given fay = (1- Va9 ™%, and
vective energy flux are just reformulations of the hydrodyita Wwith Vaq= 1/4 one getyaq~ 4/3 (Kippenhahn 3, see).
mean field equations. To close this set of equations one stlhen one consider’§;1 (see Fig[1N), it is close to 1.2. For
would need information about the gradient of the velocitg ara non-ideal gas ffierences due to non-idedfects are to be ex-
total energy fluctuation, as well as the radiative coolintgsa  pected. On the other hand, is close to~ 0.8, therefore, similar

to a value for an ideal gas withy3, while V,, is between-0.4

and-0.15 (see also Fif.14).

At the vicinity of the optical surface, the cooling rates e

In Fig.[11, we illustrate the horizontally and temporallyeav printed in the gradients for the density and velocity witharp
aged, depth-dependent mass mixing length fdiedént stellar transition. Towards the interior, the density is incregsine to
parameters, which we have derived from our 3D RHD simul#ie stratification and hydrostatic equilibrium, hence tredgent
tions. In the convection zone, the mass mixing length hasegal is V,, > 0, while the velocity is decreasing, and therefdyg< 0.
around~ 2, while above the optical surfacem exhibits lower The signs ofV, andV,, are opposite due to the conservation of
values around- 0.5. [Fuhrmann et all (1983) found that similamass. In the interior, the stellar fluid gets compressed taad
low values for the mixing length parametay 7 yield better fits velocity slows down, i.e. the convective energy is carrigthw
for Balmer lines, however, they also use large values fotahe slower, thicker mass flux. For high&gs, the (negative) velocity
perature distribution parameter wigh= 0.5 (see also Apg._Cl2), gradient has a lower amplitude and therefore closer to zewb,

(Fconw = —-am

4.2. Depth-dependence of the mass mixing length
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Fig. 12. As Fig.[2, but here the mass mixing lengtf is shown.
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Fig. 13. As Fig.[4, but here the mass mixing lengtf is shown.

a smaller amplitude of,, implies a steeper drop of the verticalelocity gradients by considering all snapshots, and frath b
velocity towards the interior, which also entails a largeaxin  gradients we determined the mean valuex@f The convection
mum of the vertical velocity (see Fig.114). The velocity gead zones in the 3D simulations have to be extended enough, so tha
is reducing the density gradient, however, a lower suM,adnd lower boundary fiects on the vertical velocities are minimized,
V,, relates to a highery due to the inverse relation (see Higl 12)which is the case for most models, except some metal-poor gi-
Since the density gradient is very similar foffdrent stellar pa- ants that are slightly too shallow for matchiag properly.
rameters, the variation im, arises mainly from the étierences

in the velocif[y gradi_ent, thereforg, We can relate_ the \mmnaof The results fou, are displayed in Fig12, while in Fifg. 114
g‘:fgtvrvgpw#i?hp V"\)’gg g;govigﬁgfun dgfjth| € vIeIocny glradl legma' telve depict the mean val_ues of the dens_ity and velocity _gras_;lien
(2011) fo'r the mass mixing length in an extended solar simu rom the solar simulation e determinef) = 1.83, which is ;
tion &ose to the solar mass mixing length [oy Trampedach & Stein
: (2011) with 176. Furthermore, the mass mixing length depicts
qualitatively very similar systematic variations with Ite pa-
4.3. Mean mass mixing length in the convection zone rameter, as we found fery .t above. In particular, it decreases
for higherTeg and [FE'H], and lower logy, and the range i,
We determined thenean mass mixing length of the convectionbetween~ 1.7 and~ 2.3 is qualitatively similar to the that of
zone below the optical surface between the location of tla pexy t (see also Fid13). In general, we find qualitatively similar
in the density scale height, i.e. m@xInp).., and the bottom, values foran, as found by Trampedach & Stein (2011), in par-
however, avoiding bottom boundaryfects on the vertical ve- ticular, the dwarf models (log= 4.5) have a similar slope with
locity. We performed linear fits of the density and verticabr  Teg.
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Fig. 15. Correlation of the mass mixing lengttg,, with the logarith- Fig. 16. Comparison of the mass mixing lengthy, with the mixing
mic inverse of the entropy jumpIn(As) and the peak of the vertical length parameter calibrated withyo: and As (top and bottom panel,
rms-velocity (top and bottom panel, respectively). respectively).

-1.6 -0.6 0.5 1.6 199 Pra/Pug

The variation ofx, is also similar to the logarithmic inverse 1.0

variation of the entropy jump. In FigIL5 we compang with

the logarithmic inverse entropy jump, and we find a similghti 0.8
correlation between the two, as we have found for the mixing
length parametaem 1 (AS) above (Secf_313). The strongerde- _ ;4
viations for the metal-poor giants originate from the fduatt
these models are slightly shallower, therefore, the mattheo
mass mixing length is perturbed due to the lower boundary ef-~ ©
fects on the velocity. We illustrate also the tight antiretation

C[VZ’VZ

4

of the peak vertical rms-velocity with the mass mixing lénigt 0.2
Fig.[18.
A comparison of the mass mixing length with the mixing 0.0E \
length parameter calibrated with the entropy of the deep-adi -3 -2 -1 0 1 2 3
batic convection zone and the entropy jump is shown in[Ely. 16 Alog (Py,)

a’.‘d thes‘? correlate also .We”' The mixing length paramerers Fig. 17. Vertical two-point correlation function of the verticalloeity,
slightly higher thanem with a systematic fiset around~ 0.1 ¢y, ] vs. the diference in the thermodynamic pressuséog Py,
and~ 0.2, which is in the case afwir (Shor) smaller than for or the solar simulation. The fierent heights are indicated with a blue
amvit (As). This illustrates that the mixing length parameter igolor-coding. Note the convergence of the correlation idtthe con-
the framework of MLT has a physical background rooted Wection zone against an adiabatic value.
the mass mixing length (or inverse vertical mass flux graglien
However, since the MLT is incomplete a one-to-one correspon o
dence betweenyr andaem would be hardly to be expected function for the valuesj; andq is given by
nonetheless, the good agreement between the two is ansintere

(Q102) —{q1) (92)

ing result. Clangz] = (4)
g1072

with o being the the standard deviation@gfand(...) depicts

the spatial horizontal average. To derive the verticalelation

function of the convective velocity field, we consider thetive

The physical interpretation of the mixing length paraméser @ component of the velocity fieldg, of a single fixed layer
conceptually the mean free path of a convective eddy, ovattwh? and derived the correlation functions for all other laygrs

it can preserve its identity, before it resolves into itsiemw i.€. C[Vzo,Va], which is performed for twenty equidistant layers
ment. In a real stratified hydrodynamic fluid the spatial twaovering the whole vertical depth scale of the simulatior.bo
point (auto)correlation function of the vertical velocitgn be In Fig.[I7 we show the two-point correlation function of
regarded as the 3D analog of the mixing length paramajer the vertical velocity fieldC[v,,V;], derived for the solar sim-
as proposed by Chan & Sofla (1987). The two-point correlatiamation for the individual snapshots and then temporally av

5. Velocity correlation length
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Fig. 18. Top panel: Vertical correlation length of the vertical velocity Fig. 19. Correlation length of the vertical velocity vs. surfacemai-
(solid line with triangles) and pressure scale height @btlashed line) ized pressure for flierent stellar parameters.

shown against the depth for the solar model. We indicateditfierent

heights with the same color-coding as used in Eig. B@ttom panel:

Vertical correlation length scaled by the pressure scaighbewhich ‘ ‘ ‘ T T 7
yields an average of.71 (dashed line) in the considered region for av- 1.9 [Fo/H) = +0.00 8™
eraging the correlation length (vertical dotted lines witled circles)
for the solar simulation.

eraged. For convenience, the correlation function is shown
in differences of logarithmic pressure to the considered layer,
AlogPy = logPin(20) —logPw(z). Then, the correlation func- &, ;1 P
tion reaches always unity fat = zy and exhibits a Gaussian- =,
like shape. Furthermore, it is broader above the opticdhsar = .
(Prot/ Psurt = 1), which is due to the rapid decline of the pressure 3
scale height; while below the latter the width seems to cgwe Z 1-6
against a certain adiabatic value (see Eig. 18). When ongigton =

ers the width of the correlation function in geometricaltthe -

Mm

stead of pressure, thé(v;) is constant around 0.6 Mm from 150 s _
the top down to~ 0.5Mm and increases then with a fixed mul- 2%

tiple (1L71) of the pressure scale height (see FEig. 18), which is - 3.00 .
the same as Robinson et al. (2003) found. The larger values fo s

W (v;) /Hp above 06 Mm result from the loweHp. T4 450 = logg .

The full-width-half-maximum (FWHM) of the two-point NI NN IR IR NI B

correlation function of the vertical velocit& [ vz, v;], which we 7000 6500 6000 5500 5000 4500 4000
denote withW (v;), gives an estimate on the size or length scale Tere [K]

of the coherent vertical structures. Th‘? charactensualltength Fig. 20. Overview of mean vertical correlation length of the vertica
scale for the turbulent convective eddies can be determifitd yejocity in the convection zone for fiierent stellar parameters.

W(vz). With the term vertical correlation length we refer to

W (v;). Similar to the mixing length, it is preferable to scale the

correlation length by the pressure scale height, W§v,) /Hp, We determined also the mean value of correlation length in
since the the latter is increasing towards deeper layer®n,Ththe convection zone below Iqgyt/l0og psurf > 1 and close to the
for the solar simulation (see Fig.]18) the convergent vaare foottom boundary, the correlation function will increadingver-
the width isW(v;) /Hp = 1.71. This means that the coherenturn due to missing information in the deeper layers. Theesf
vertical structures are extendingg1Hp in the convection zone, for the consideration of a mean correlation length we appdie
and this value is comparable to the mixing length parametarn at the bottom, wheré/(v;) /Hp starts to turn towards lower
(amt = 1.94).[Chan & Sofial (1987, 1989) found also a similavalues (see Fif.18).

scaling ofC[vz, vz] with pressure scale heightin a 3D simulation The resulting mean values ©¥(v;) /Hp for different stel-
for the Sun. For dferent stellar parameters we find a rather sintar parameters are depicted in Higl] 20, which are distribbe
ilar convergence of the correlation length of the verticdbeity tween~ 1.5 and~ 1.8. This is an interesting result, since it con-
in the convection zone (see Hig]19). firms, to a certain extent, the physical motivation for thex-mi
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ing length and mixing length, we find a strong correlationhwit )
the logarithmic inverse of the entropy jump forfirent stellar N Table[A.1, we have listed the results we have presented and

parameters, i.exuit ~ —InAs. Finally, we derived also the ver-discussed in this work. The complete table is available a5CD

tical velocity correlation length, which features similalues cdsarc.u-strasbg.frandat www.stagger-stars.net as well
to the mixing length with approximately 1.6 — 1.8 of pressure

scale height, however, the dependence Wighis inverted, i.e.

the correlation length decreases witk. Appendix B: Functional fits

To summarize the importance of our work: we can finally res. ilar t : 9 f d functional i
move the free parameters inherent in MLT and also avoid Igav?ﬁ'm' ar tolLudwig et al.[(1999), we performed functional fifs
o he mixing length parameters and the mass mixing length with
to use solar calibrations for other stars. : e T
the Teg and logg for the diterent metallicities individually. We
Acknowledgements. We thank Regner Trampedach, Ake Nordlund and Boransformed the stellar parameters Wit (Teﬁ' _5777)/1000

Stein for helpful discussions. We acknowledge access tgating facilities at _ _ - : _
the Rechenzentrum Garching (RZG) of the Max Planck Societlyza the Aus- andy n loQg 4.44, and fitted the values with a least squares

tralian National Computational Infrastructure (NCI), wdhe 3D RHD simu- Minimization method for the functional basis
lations were carried out.

6. Conclusions

f(xy) = ao+(ar+(az+asx+apy)X+agy)x+azy. (B.1)
References

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009A&R, 47, 481 The resulting cofficients,a;, are listed in TablEBI1.
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Table A.1. Stellar parametersfiective temperaturd,of, and surface gravity, lag(Cols. 1 and 2 in [K] and [deX]).

Ter 1009 19pbot 19Thot 19P2! Soot  AS  OSma’  Sphmas  Vhmms oL ofS an W(v)/Hp
4023 150 0.717 4.272 1.061 2.300 0.587 13.829 46.897 0.46%811 1.826 1.686 1.698
4052 2.00 1.125 4.233 1.368 2.018 0.354 8.885 35.288 0.379131.1.952 1.784 1.658
3938 250 1.691 4.239 1.889 1.775 0.172 4.614 24.764 0.300542.2.117 1914 1.621
4569 2.00 0.679 4.342 1.120 2.411 0.683 15947 50.583 0.528121 1903 1.614 1.719
4532 250 1.357 4.279 1669 2.039 0.382 9.719 36.301 0.398961.1.961 1.697 1.753
4492 3.00 1.785 4.266 2.029 1.808 0.206 5.636 26.808 0.328122.2.074 1.849 1.775
4530 3.50 2.103 4.269 2.322 1682 0.123 3.614 20.261 0.270692.2.138 1.921 1.656
4513 4.00 2.419 4277 2625 1578 0.068 2.154 14.454 0.229472.2.215 2.075 1.487
4516 450 2.721 4.292 2927 1500 0.037 1.323 9.928 0.191632.2.407 2.173 1.546
4512 5.00 3.013 4.308 3.226 1.434 0.020 0.817 6.377 0.154452.2.875 2.221 1.684
5013 250 0.883 4.374 1358 2376 0.673 16.094 51.278 0.538071 1.889 1.623 1.676
4998 3.00 1534 4308 1.882 2.024 0.384 9.898 35.942 0.408801.1.957 1.749 1.705
5001 350 1960 4.295 2243 1.805 0.215 5.981 27.035 0.338951.2.086 1.820 1.698
4978 4.00 2.292 4293 2538 1661 0.121 3.605 19.745 0.278572.2.155 1.902 1.687
4953 450 2.604 4301 2.837 1560 0.066 2.144 14.015 0.228082.2.209 1.998 1.607
4963 5.00 2.885 4.314 3.118 1.485 0.038 1.370 9.888 0.185432.12.228 2.130 1.577
5465 3.00 1.084 4.403 1589 2.337 0.647 15.763 48.856 0.527891 1.892 1.614 1.742
5560 350 1.663 4.345 2.062 2.040 0.410 10.655 37.436 0.418611 1.951 0.000 1.637
5497 400 2.139 4.322 2456 1.791 0.216 6.086 26.379 0.339561.2.068 1.820 1.684
5510 450 2486 4.322 2.769 1.649 0.123 3.690 19.527 0.280482.2.168 1.893 1.668
5480 5.00 2.791 4.330 3.060 1.547 0.070 2.283 14.272 0.226692.2.188 2.002 1.670
5768 4.44 2367 4336 2688 1.725 0.179 5.171 23.788 0.308821.2.090 1.825 1.702
6023 350 1.130 4.493 1.737 2.395 0.703 16.886 51.883 0.562431 1.875 1.617 1.764
5093 400 1.865 4.364 2281 1991 0.379 10.084 35917 0.418691 1971 1.728 1.700
5998 450 2.301 4.344 2644 1.771 0.213 6.067 25.994 0.339621.2.081 1.820 1.670
6437 4.00 1.384 4495 1989 2.315 0.647 15.974 48.227 0.533621 1.896 1.635 1.739
6483 450 2.008 4.386 2.448 1.969 0.370 9.841 34.007 0.418B881.1.997 1.691 1.744
6918 4.50 1.545 4543 2201 2.292 0.640 15.600 46.039 0.528921 1.908 1.621 1.730

Notes: The conditions at the lower boundary: dengityemperaturel, pressurepy,, entropy at the bottom; the entropy juniys;

the peak fluctuations in: entropssie2¥ density,gpPeak

mixing length,am, and correlation lengtiV (v;) /Hp.

Appendix C: Addendum on MLT
Appendix C.1: Mixing length formulation

vertical velocityv25as; the mixing lengthiowmt (Sho) andawt (As); mass

can be included, but a depth-independent turbulent velogity
is assumed, which is the common approach for atmospheric
modeling. The resulting photospheric temperature sicatifins

In the framework of MLT, the convective flux is determined byare very similar to the MARCS (Gustafsson et al. 2008) and AT-

Feoov = [amircrTA/2]pvLT, (C.1)

with cp being the heat capacity, the superadiabatic energy ex

cess, andvyt the adjustablenixing length parameter, giving

the mean free path of convective elements in units of pressur

scale height. The convective velocity is determined by

ﬂ/aaLTgHFﬁA/v,

whereHp is the pressure scale height= —(dInp/dInT), the
thermal expansion cdécient, andv the energy dissipation by
turbulent viscosity. The superadiabatic excess is given by

VMmLT (C.2)

r
= m(V—Vad), (C.3)
and the convectiveficiency factor by
c -
= ?;Te(y+Tez)pVM|_T, (C4)

with the optical thicknesse, and temperature distributionof
the convective element. The turbulent pressure

Purb = lgpvtzurb’
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(C.5)

LAS models [(Kurudz 1979; Castelli & Kurucz 2004). In Paper
I, we showed that below the surface, where convective energy
transport starts to dominate, the 1D models are systertigtica

‘cooler than thg3D) stratifications due to the fixeaw 1 with

1.5, in particular for hottel .

Appendix C.2: Influence of additional MLT parameters

In the Henyey et all (1965) formulation of MLT, there are aise
three additional free parameters apart fragat, which usu-
ally are not mentioned explicitly, but are compensated fpor b
the value ofauy t. These are the scaling factor of the turbulent
pressures, the energy dissipation by turbulent viscosityand
the temperature-distribution of a convective elemgni,he de-
fault values are usuallg = 1/2, v = 8 andy = 3/47% = 0.076
(sed_Gustafsson etlal. 2008). In many cases the turbulesit pre
sure is neglecteg(= 0). In the notation of Ludwig et al. (1999),
these parameters would yield=vtandfs =y, f,=1/2 and
fa=(8y)™".

The turbulent pressure indirectly influences the
stratification, gradients and hydrostatic equilibrium byucing
the gas pressure. The parametenters the convective velocity
inverse proportionallyyyit o« v1 (see Eq. CCR), and since
VMLT & afm, an increase iv would have the sameffect as a
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Table B.1. The codficientsa; of the linear functionf (Eq.[B.2) foramit (Shot), amLT (AS), andam, for different metallicities.

Value [Fe'H] ag a ap ag a4 as ag
amr(So) 405 1.974688 -0.142021 0.170741 0.024297 0.052544 -0312200.049356
+0.0 1.977865 -0.106418 0.175735 -0.000828 0.119129 -QFB3 0.090105
0.5  1.957010 -0.134908 0.134950 0.029573 0.049614 -@8&89 0.060188
-1.0  1.970111 -0.136446 0.148661 0.006539 0.060244 -Q@RI7 0.052210
-2.0  2.010999 0.020070 0.159245 -0.022815 0.173832 -Q7B2 0.088476
-3.0 1.989143 0.047037 0.099284 -0.049489 0.125301 -0%%6 0.049417
-4.0  2.105519 -0.026359 0.188547 -0.105125 0.210455 7652 0.046338
awr(AS) 405 2.058149 -0.119213 0.180661 0.028582 0.085363 -002410.067584
+0.0 2.089614 -0.091350 0.173393 -0.004769 0.102243 -67B8 0.088211
-0.5  2.089800 -0.115589 0.150432 0.067208 0.083192 -Q9BO 0.117587
-1.0  2.138877 -0.158683 0.203997 0.001463 0.099322 -QAB2 0.063329
2.0 2.228230 -0.101193 0.245259 -0.028850 0.188122 50@F 0.094004
-3.0 2.230910 0.116557 0.216279 -0.114575 0.323863 -0530 0.150333
-4.0  2.251819 -0.025839 0.223897 -0.161554 0.224572 1068 -0.014593
am +0.5 1.794271 -0.185369 0.184148 -0.024718 0.099181 -GBA26 0.052865
+0.0  1.834453 -0.187970 0.174615 0.013326 -0.006504 -0X®2 0.012212
-0.5  1.875566 -0.260200 0.173911 0.110922 -0.038815 8a4% 0.069665
-1.0 1962526 -0.421215 0.255133 0.016063 -0.127566 @088 -0.124965
2.0 2.018201 -0.282156 0.250964 -0.013607 0.042364 666A -0.013242
-3.0 1.940639 -0.323805 0.191152 0.059047 -0.029973 0313 -0.045249
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reduction inemT, i.€.v « $or. On the other hang,enters in the
(nonlinear) convectivef@ciency factorT’, for the superadiabatic
excess (see E._C.4), and therefpiis correlated withyy 1 in

a more complex way.

Considering a variation of the three additional parameters
the computation of the solar 1D model, we notice that the-adia
batic entropy value of the deep convection zone is alteigrdfsi
icantly (see Fig_C]1). Furthermore, both parametensdy also
change the entropy jump and the superadiabatic tempegate
dient,Vsag and in particular, its maximum &fsa¢ The dfect of
the variation ofy on the entropy stratification is similar to that by
amT (see Fig[dL). However, the entropy of the deep convection
zone exhibits a more nonlinear dependence withytparame-
ter. The increasing turbulent pressure with highehanges the
stratification only slightly, but shifts the location of tmeaxi-
mum of Vgaqto the deeper interior. Towards the optical surface
the influence of the MLT parameters is diminishing, as should
be expected due to decreasing convective flux. A fine-tuning o
B, v andy is only useful, when these parameters introduce an
independent influence to the mixing length, since othenitsse
effects can be summarizeddmy 1 solely.

0.5 1.0
Depth [Mm]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Depth [Mm]

Fig. C.1. The entropy and superadiabatic gradient vs. depth (left
and right panel, respectively) illustrating the influené¢he additional
MLT parameters, y andg (top, middle and bottom panel, respectively),
the latter with the depth-independenri;, = 1km/s. The mixing length

is kept fixed atapy 7 = 1.5. We included also the standard values of
B =0,v=8andy=0.076 (dashed lines). Shown is the case for solar
parameters.
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