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Angular correlation in He and He-like atomic ions: A manifestation of the genuine
and conjugate Fermi holes
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The ground and low-lying singly excited states of the two-dimensional He and He-like atomic ions have been
studied by the full configuration interaction method focusing on the angular correlation between the two electrons
involved. For small values of the nuclear charge Z,, the two-electron angular-density distribution for the ground
state strongly depends on the two-electron angle ¢_ reaching a peak at ¢_ = 0. This strong dependence on
¢_ strongly decreases with increasing Z, along with the decreasing electron-electron interaction. In contrast,
the probability-density distribution for the singlet-triplet pair of states of the (1s)(2p) configuration becomes
appreciable with increasing Z,, reaching peaks at ¢_ = 0 and at ¢_ = £ /2 for the singlet and triplet states,
respectively. This indicates a preference of the two electrons to be on the same side of the nucleus for the singlet
(1s)(2p) 'P state and on opposite sides of the nucleus for the triplet (15)(2p) 3P state. The origin of these angular
dependences is rationalized on the basis of the genuine and conjugate Fermi hole concepts.
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I. INTRODUCTION

The helium atom represents the simplest fundamental
system for the exploration of electron correlation effects. It
has been extensively studied by both theoreticians and exper-
imentalists. A strong electron correlation in doubly excited
states of He and He-like atomic ions (referred to hereafter
as He-like systems) has been actively studied ever since the
experimental observations of autoionizing levels of He [1,2].
Herrick and Kellman provided a supermultiplet classification
of the intrashell doubly excited states of He-like systems
based on approximate O(4) symmetry and the analogy with
rovibrational levels of a linear triatomic molecule with the two
electrons undertaking a triatomic molecular motion with the
nucleus at their center [3—5]. This interpretation was consistent
with conditional probabilities [6,7] obtained from accurate
wave functions by Berry’s group, and the Kellman-Herrick
model of collective rotational and bending motions of electrons
was later confirmed by accurate results for conditional prob-
ability densities [8]. Berry’s group also studied the helium-
isoelectronic series and showed that the collective behavior
of electrons becomes less appreciable with the increasing
nuclear charge [9]. In the case of singly excited states of
He-like systems, the correlation energy is much smaller than
in the doubly excited states since the former involve a tight
Ls electron and a diffuse outer electron. In view of the lesser
role of the correlation energy, it might seem that the singly
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excited states of He-like systems are of lesser interest than the
doubly excited ones. Yet, there still remains an unsolved and
interesting problem in the singly excited states with respect to
their angular correlation, which we address in this paper.

The angular correlation in singly excited states of He-like
systems has been thoroughly studied by Boyd, Moiseyeyv,
Katriel, Thakkar, and others [10-17], focusing in particular on
the understanding of the origin of the first Hund rule [18-24].
These pioneering studies have revealed that (i) the correlation
energy AFE.,; moderately increases with increasing nuclear
charge Z,, (ii) in the singly excited states of He-like systems,
the angular correlation dominates the radial correlation [12],
and (iii) for the singlet-triplet pair of states of the (1s)(2s)
configuration, the dependence of the probability-density dis-
tribution on the interelectronic angle is very weak, while for the
(1s)(2p) configuration, it becomes appreciable and increases
with Z, [13].

As implied by result (i) listed above, the effective correla-
tion energy for atomic systems as defined by the correlation
energy scaled by Z2, namely, %, approaches zero as
Z, — oo. For increasing Z,, the wave function of singly
excited states of He-like systems should approach, therefore,
the wave function of the independent particle model (IPM)
based on the Hartree-Fock approximation. This should then
result in an isotropic probability-density distribution that is
independent of the interelectronic angle since there should be
little angular correlation between the two electrons according
to the IPM.

Contrary to this conclusion, result (iii) by Thakkar and
Smith [13] considering the so-called angular correlation
coefficients implies that the probability-density distribution for
the (15)(2p) singlet-triplet pair of states for larger Z, becomes
strongly dependent on the interelectronic angle, in spite of the
fact that in the Z,, — oo limit the electron correlation vanishes.
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In order to elucidate the origin of this controversy, i.e.,
the strong dependence of the probability-density distribution
for the (1s)(2p) singlet-triplet pair of states in the Z, — oo
limit, we examine in the present study the details of the nodal
structure of the relevant wave functions in the internal space
of a two-dimensional model of the studied systems. We also
examine the physical nature of the IPM, as represented by a
single-determinant Hartree-Fock wave function, with respect
to the angular correlation.

The paper is organized as follows: Sec. II describes our
theoretical model and computation methodology. Section I1I
presents our results and their discussion. Section III A starts
with the results for the ground state that show a “normal”
behavior for the Z, dependence of angular correlation, i.e.,
a larger angular correlation for smaller nuclear charges.
Section III B presents the results for the singly excited (1s)(2s)
and (1s)(2p) singlet-triplet pair of states displaying a counter-
intuitive trend in the Z, dependence of angular correlation,
namely, a larger angular correlation for larger nuclear charges,
when the wave function of the system approaches the IPM
wave function. Section III C introduces the concepts of the
so-called genuine and conjugate Fermi holes in the internal
space, and Sec. III D rationalizes the observed Z,, dependences
for the singly excited states in a unified way on the basis of
the Fermi and conjugate Fermi holes concept. Section IV then
summarizes all of the results of the present study and points
out an observability of the strange angular correlation for the
(1s)(2p) configuration as observed in actual experiments.

II. THEORETICAL MODEL AND
COMPUTATIONAL METHOD

In the present study, the spatial degrees of freedom of each
of the two electrons in the helium atom are confined to a
two-dimensional xy plane. In the case of the three-dimensional
helium atom, this xy plane, as defined by the position of the
two electrons and the nucleus, can freely rotate about the
three principal axes of inertia by the Euler angles («, 8, y).
In the two-dimensional helium atom, this rotation is limited to
the axis normal to the xy plane. Although this two-dimensional
(2D) helium atom represents a simplified model, it has all
of the characteristic features of the energy spectrum of the
three-dimensional helium atom, as was shown in our previous
studies [23,24]. This similarity in the energy-level structure of
the 2D and 3D helium atom is due to the fact that the dimension
of the internal space, given by the internal degrees of freedom
of the electrons as defined below, is 3 in either case. This
coincidence happens only for two-electron systems so that the
following reasoning that is based on a 2D model may not be
appropriate for systems involving more than two electrons. By
reducing the number of degrees of freedom, the internal part
of the wave functions can be easily visualized, permitting us to
draw unambiguous conclusions concerning the nature of the
angular correlation.

The electronic Hamiltonian for two-dimensional heliumlike
systems, Hz, has the following form:

1S S| 11
Hz/ZP=—2) V2, =) — 4+ —— (1
Z/ " 2 ; 5t IZ |Si| Zn |Sl _52| ( )

i—1
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where Z, designates the nuclear charge. The coordinates
s; (i=1,2) are the Z,-scaled coordinates s; = Z,r; (i =1,2),
where 7; is the position vector of the ith electron in the
standard length unit with respect to the nucleus. In the
standard Hamiltonian for the three-dimensional helium atom,
7; = (x;,yi,z;), while in the present two-dimensional model,
i = (Xi,91).

The Z,-scaled coordinates s; are of advantage over the
standard coordinates #; (i = 1,2). For large Z, values, the
electron cloud is strongly compressed towards the nucleus
due to the strong nuclear attraction potential. Therefore, the
relevant length scale is very different from that associated with
systems of small Z, values. By multiplying 7; by Z, so as to
enlarge the length unit, the wave functions for different values
of Z, can be compared in the same length scale. Indeed, as
shown by Eq. (1), the one-electron part of the Hamiltonian
becomes independent of Z, on condition that the energy is
normalized by dividing it by Z2. In this way, the effect of the
electron-electron interaction becomes readily apparent.

The energies and wave functions corresponding to the
solutions of the Schrodinger equation for the Hamiltonian (1)
have been obtained by solving the full configuration interac-
tion (FCI) matrix using a large [20s10p7d] Gaussian basis
set [23,24]. The probability density in the internal space,
hereafter called the internal probability density, was extracted
from the resultant FCI wave function W(51,5,) by integrating
over the angular coordinate ¢, that is associated with an
overall rotation.

Briefly, expressing the Cartesian coordinates (sy;,sy;) in
terms of the polar coordinates (s;,¢;) (i = 1,2) allows us to
define two angular coordinates, namely, the ¢, coordinate
¢+ = (¢1 + ¢2)/2 that is responsible for an overall rotation
and is conjugate to the total orbital angular momentum,
and the complementary ¢_ coordinate ¢_ = (¢ — ¢)/2. A
set of three coordinates, s; = |5|, 5o = |5»|, and ¢_, defines
then the internal space of the two-electron systems having
circular symmetry. The probability density integrated over ¢
and multiplied by the radial surface element s;s,, namely,
|W(s1,52,0_)|%s152, represents the internal probability density
and is hereafter designated by pi,.. The relationship between
the internal angle ¢_ and the commonly used interelectronic
angle /(e —a —e), denoted by 65, is as follows. The
individual polar angles ¢; and ¢, associated, respectively,
with electrons 1 and 2, vary from O to 2w. Thus, the ¢_
angle ranges between —m and w. On the other hand, 6, is
defined as the interior angle of the triangle e — o — e, with
« as its vertex, and ranges between 0 and 7. Consequently,
some values of ¢_ correspond to the same value of 61, and we
can write 6y, = 2|¢_| for |¢p_| < /2 and O;, = 2(r — |P_])
for m/2 < |¢_| < m. The computational procedure has been
described in detail in our previous papers [23,24].

III. RESULTS AND DISCUSSION
A. Statistical and ground-state distributions

The probability-density distribution with respect to the two-
electron angle ¢_, namely, the two-electron angular-density
distribution o(¢_), has been obtained by integrating the
internal probability density pin(s1,52,¢—) over the two radial
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FIG. 1. (Color online) Two-electron angular-density distribu-
tions for the (Is)> ground state of He-like systems for different
nuclear charge Z,: (a)-(d) correspond, respectively, to the cases
with Z, = 20, 10, 4, and 2. The statistical distribution, defined by
(r — |¢_|)/m?, corresponding to the mutually independent rotation
of the two electrons around the nucleus, is plotted as a dotted line
in (a)—-(d). The arrows in (d) indicate the special angles ¢_ = 0
and +m/2, which correspond, respectively, to the distinct spatial
configurations of the two electrons where they align parallel on the
same side of the nucleus and where they align antiparallel on opposite
sides of the nucleus.

coordinates (s;,s,). The result for the (1s) 'S ground state
together with the statistical distribution are displayed in Fig. 1.
The statistical distribution, indicated in Fig. 1 by a dotted
triangle, is given analytically by (7w — |¢_|)/m? (cf. [23,24]). It
reflects directly the volume element 2(wr — |¢_|) for ¢+ which
enters the internal probability density by the integration of
|W(51,5,)|? over ¢, . The statistical triangle represents a special
distribution in which the probability for the two electrons to
take a particular value of the interelectronic angle 0, is the
same for all values of 6},. This corresponds to the situation
where both electrons vary their polar angles independently
over the interval [0,27], i.e., the two electrons rotate freely
around the nucleus without correlation between them. This is
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confirmed by a simple geometrical analysis of the statistical
triangular distribution since the set of internal angles +¢_ and
+(r — ¢-) for 0 < ¢p_ < 7/2 gives the same value of 6;.
Summing the probability distribution of Fig. 1 over the four
internal angles gives the same value of 2/7 for any 6.

There are two characteristic sets of angles for o(¢-),
namely, ¢_ = 0,£m and ¢_ = £ /2. The former set {0,£7}
is associated with a spatial configuration in which both
electrons are located on the same side of the nucleus.
On the other hand, the set of angles {+m/2} corresponds
to the situation where the electrons are on opposite sides
of the nucleus. Thus, if an actual density distribution for
some state has a larger value than the triangular statistical
density at these angles, the electrons in such a state prefer
to be on the same side of the nucleus for ¢_ = 0,47 and on
opposite sides of the nucleus for ¢_ = £ /2. These angles are
indicated by arrows in Fig. 1(d). Since the density at¢_ = +m
always vanishes because of the volume element 2(x — |¢_|),
the angles ¢_ = = are not indicated by arrows in the figure.

The two-electron angular-density distributions for the (1s)?
ground state displayed in Figs. 1(a)—1(d) show that for Z,, =20,
corresponding to the large Z, regime, the density distribution
closely follows the statistical distribution. This implies that
in the regime of large Z,, both electrons tend to move
independently of one another around the nucleus. On the other
hand, as Z, decreases, the actual distribution deviates more
and more strongly from the statistical distribution. Indeed,
at Z, = 2, corresponding to the helium atom, the density is
significantly smaller than the statistical value at ¢_ = 0 and
larger at ¢_ = =+ /2. It indicates that the two electrons tend to
be on mutually opposite sides of the nucleus and is consistent
with recent results by Koga et al. [25,26].

This observation can be rationalized by considering the
relative importance of the electron-electron interaction with
respect to the one-electron component of the Hamiltonian as
follows. In the regime of large Z,, the role of the electron-
electron interaction is very small relative to the one-electron
component as implied by Eq. (1). Therefore, each of the
two electrons can rotate freely around the nucleus. Their
correlation is negligible even though both electrons occupy
the same (ls) orbital. With decreasing Z,, however, the
effect of the electron-electron interaction increases, forcing
the electrons to be on opposite sides of the nucleus in order
to avoid an energy increase due to the electron repulsion.
The observed Z, dependence for the ground state of He-like
systems, i.e., smaller Z, being associated with a larger angular
correlation, is in accord with earlier studies for the doubly
excited states [9,27]. In the next section, we shall see a
counterintuitive trend for the singlet and triplet singly excited
states of the (1s)(2p) configuration, namely, a large angular
correlation even for larger Z, values.

B. Distributions for the (1s)(2s) and (1s)(2p) configurations

The two-electron angular-density distributions for the
singlet-triplet pair of states of the (1s)(2s) and (1s)(2p)
configurations for different Z, values are displayed in Figs. 2
and 3, respectively. The results for the (15)(2s) configuration
(Fig. 2) show that the density distribution closely follows the
triangular statistical distribution, irrespective of the nuclear
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FIG. 2. (Color online) Two-electron angular-density distribu-
tions for the (1s)(2s) singlet-triplet pair of states of He-like systems
for different nuclear charge Z,: (a)—(d) correspond, respectively, to
the cases of Z,, = 20, 10, 4, and 2. The singlet and triplet distributions
are displayed by green and red (light and dark gray), respectively. Both
the singlet and the triplet distributions closely follow the statistical
distribution for all Z,, values and thus could not be properly resolved
on the scale used in the figure. See the caption to Fig. 1 for further
details.

charge Z, for both the singlet (1s)(2s) 'S and the triplet
(1s)(2s) 3S states. Therefore, the distribution of the two
electrons around the nucleus in either the singlet or the triplet
pair of states of the (15)(2s) configuration is only very weakly
correlated.

The situation is different for the (1s)(2p) singlet-triplet
pair of states (Fig. 3). For small values of Z,, such as Z,, =
2 [Fig. 3(d)], the two-electron angular-density distribution for
both singlet and triplet states roughly follows the statistical
triangle with only small deviations like in the (1s)(2s) case.
However, as Z, increases, the distributions deviate more
and more strongly from the statistical distribution. Further,
the distribution of the singlet state has a larger density at
¢_ = Obutasmaller density at ¢_ = +7r/2 than the statistical
distribution, while an opposite trend is observed for the triplet
state. We recall that for increasing Z,, the singlet and triplet
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FIG. 3. (Color online) Two-electron angular-density distribu-
tions for the (1s5)(2p) singlet-triplet pair of states of He-like systems
for different nuclear charge Z,: (a)—(d) correspond, respectively, to
the cases of Z,, =20, 10, 4, and 2. The singlet and triplet distributions
are displayed by green and red (light and dark gray), respectively. See
the caption to Fig. 1 for further details.

wave functions approach those of the corresponding IPM based
on the Hartree-Fock approximation as implied by Eq. (1),
showing a decreasing role of the electron-electron interaction
for increasing Z,,. Nonetheless, our results for the large Z,
regime indicate that the electrons in the singlet (1s)(2p) 'P
state tend to be on the same side of the nucleus, while those
in the triplet (15)(2p) 3P state tend to be on the opposite sides
of the nucleus. These results are consistent with those of the
study by Thakkar et al. [13], who showed that the modulus
of the angular correlation coefficients for the (1s)(2s) pair of
states is small irrespective of Z,, while that for the (1s)(2p)
pair of states becomes increasingly larger for increasing Z,,
with mutually opposite signs between the singlet and the triplet
states.

In the following section, we shall rationalize the observed
trends by invoking the concepts of the conjugate Fermi holes
as well as of the standard or genuine Fermi holes.
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C. Structure of the genuine and conjugate Fermi holes
in the internal space

In the limit of Z,— oo, the orbital part of the two-electron
wave functions for a pair of singlet and triplet states can be
described exactly by single-determinant Hartree-Fock wave
functions of the form

S 1 - - - -
UH(s),5) = E[l//a(sl)Wb(SZ) + Up(SDVa(s2)],  (2)

- 1 - - - -
Y (s1,82) = %[%(Sl)lﬁb(h) —UpDVa(s2)], ()

where the symmetric and antisymmetric functions, ¥+ and
W, are the singlet and triplet wave functions, respectively.
The subscripts @ and b may refer either to the ls and 2s
orbitals or to the 1s and 2p orbitals, respectively, in the case
of the (1s)(2s) or (15)(2p) singlet-triplet pair of states. Since
these wave functions are independent particle wave functions,
there is no correlation between the two electrons except for the
well-known Fermi correlation in the triplet wave function, in
which case the two electrons cannot occupy the same spatial
position due to the fact that the antisymmetric triplet wave
function vanishes at 5; = 5,. On the other hand, as displayed
in Fig. 3, we observe a strong angular correlation for the
(1s)(2p) pair of states in the regime of large Z,,, even for the
singlet state. In contrast, we observe only weak correlation
for the (1s)(2s) pair in both the singlet and the triplet
states.

In order to rationalize these trends, we focus particularly
on the (ls)(2p) singlet state showing a strong angular
correlation for large Z, and consider the difference in the
probability-density distributions in the internal space between
the singlet and the corresponding triplet states, i.e., the quantity
0 (51,52,0_) — pin(s1,82,¢_), in the limit of Z, — co. These
values are displayed in Fig. 4(a) for the (1s)(2s) configuration
and in Fig. 4(b) for the (1s)(2p) configuration. The three
axes, X, Y, and Z, defining this internal space, correspond,
respectively, to s, 52, and ¢_. By definition, the domain for
the angular coordinate ¢_ is the interval [—m,], but the
corresponding Z axis is labeled numerically in radians rather
than in the units of 7.

The blue and red (light and dark gray) surfaces in these
figures represent, respectively, the regions where the singlet
probability density is larger than the triplet density, and vice
versa. In the limit of Z, — oo, the blue regions represent
the standard or genuine Fermi holes where the triplet state
has a smaller density than the singlet state (cf. Fig. 4). In
the internal space, these regions appear in the vicinity of the
Z axis at 5| = 5». We note that the singlet and the triplet
wave functions, as represented by Eqgs. (2) and (3), give
exactly the same electron density distribution as |y, (5)|> +
|, (5)|%. Therefore, when there is a hole in the triplet wave
function, namely, the Fermi hole, there must also be a hole
somewhere in the corresponding singlet wave function in
order for their electron densities to be balanced. The red
regions displayed in Figs. 4(a) and 4(b) represent this hole
in the singlet wave function and correspond to the so-called
conjugate Fermi holes representing regions with a small
density for the singlet state and a large density for the triplet
states.

PHYSICAL REVIEW A 89, 062501 (2014)

FIG. 4. (Color online) Difference in the probability-density dis-
tributions between the singlet-triplet pair of states of He-like systems
in the limit of Z, — oo. (a) The (15)(2s) configuration and (b) the
(1s)(2p) configuration. (a’) and (b’) represent the same distributions
of (a) and (b), respectively, from a different viewpoint. The X, Y, and
Z axes represent, respectively, the sy, 5,, and ¢_ coordinates (see the
text). The square norm of the displayed surface is 0.005. The blue
(light gray) and red (dark gray) surfaces correspond, respectively, to
the regions where the probability density of the singlet wave function
is larger than that of the triplet wave function (genuine Fermi hole),
and vice versa (conjugate Fermi hole).

The mechanism that leads to the appearance of these conju-
gate Fermi holes has been explained in detail elsewhere [23,24]
and is only briefly described here. There are two key conditions
that are required for the appearance of conjugate Fermi holes.
First, the two one-electron orbitals, v, and v in Egs. (2)
and (3), must possess some spatially overlapping region since
otherwise there would be no singlet-triplet difference in the
probability densities as well as in the energy of these states.
Second, one of the orbitals, 1, or ¥, has to have at least
one node in this overlapping region. This second condition is
automatically satisfied if 1/, and ¥, are orthogonal. Assuming
that we choose coordinates §; and s, to be close to the
nodal point 5 of, say, the orbital ¥, in such a way that
this v, orbital has opposite signs at §; and s,, namely, that
sgn[y,(51)-¥,(52)] = —1, then the first and the second terms
in the bracket on the right-hand side of the symmetric singlet
wave function in Eq. (2) have different signs due to the change
of the sign of v, thus canceling one another. On the other
hand, in the case of the antisymmetric triplet wave function,
the corresponding first and second term have equal signs since
the sign change of the v, orbital is canceled by the minus sign
in front of the second term.

In the case of the (1s)(2s) configuration, the 1s orbital
has no node, while the 2s orbital has one node along the radial
coordinate s = |s|. Due to the orthogonality between the 1s and
2s orbitals, this node of the 2s orbital is located in the range
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of the s coordinate where the densities |v/1,|> and |1/,]> have
a nonzero overlap. Therefore, choosing two radial coordinates
s4 and s so as to satisfy the condition s4 < s¢9 < sp, where s
is the location of the radial node of the 2s orbital, the first and
the second terms on the right-hand side of Eq. (2) cancel one
another, yielding the conjugate Fermi holes along the radial
coordinates of s; and s, as displayed in Fig. 4(a). In the case of
the (15)(2 p) configuration, on the other hand, the 2 p orbital has
no radial node but an angular node. The v, orbital changes
its phase at ¢ = w when its angular coordinate ¢ varies over
the interval [0,27]. Therefore, recalling the factor 2 in the
definition of the internal ¢_ angle, i.e., _ = (¢ — ¢)/2, the
wave function W of Eq. (2) has two conjugate Fermi holes
located along the angular Z axis at ¢_ = £m/2, as is apparent
from Fig. 4(b).

D. Interpretation

The observed trend of the ¢ dependence of the probability-
density distribution (cf. Figs. 2 and 3), i.e., the strong
dependence for the (1s)(2p) singlet-triplet pair of states in
the large Z, regime and the very weak dependence for the
(1s)(2s) pair of states for all Z, values, can be rationalized
by using the concept of the genuine and conjugate Fermi
holes, as outlined in the preceding section. For this purpose,
we have computed the difference in the probability density
between the (1s)(2s) singlet-triplet pair of states and between
the (15)(2p) pair of states for the nuclear charges Z, = 20,
10, 4, and 2, displayed in Figs. 5 and 6, respectively. In
these figures, we also plotted the electron-electron interaction
potential of the scaled Hamiltonian, i.e., the third term on
the right-hand side of Eq. (1), as an isoenergy surface for the
corresponding values of Z,. As displayed in these figures,
the electron-electron interaction potential manifests itself in
the internal space as three striking “poles” peaked at ¢_ =
0, = 7. Since the electron-electron repulsion is very strong
around these poles, the probability densities of both singlet
and triplet states tend to avoid the regions in the vicinity of
these poles.

For the large nuclear charge Z,, = 20, the structure of the
blue and red (light and dark gray) surfaces for the (1s)(2s)
configuration and for the (1s)(2p) configuration [Figs. 5(a)
and 6(a)] is similar to that of the corresponding genuine and
conjugate Fermi holes displayed in Figs. 4(a) and 4(b), respec-
tively. This similarity is due to the fact that in this large Z,
regime, the electron-electron interaction is very weak, as con-
firmed by the isoenergy surface of Figs. 5(a’) and 6(a’). There-
fore, the wave functions of the singlet and triplet states are close
to those of the independent particle model of Eqgs. (2) and (3).

In the case of the (1s)(2s) configuration, the genuine and
conjugate Fermi holes are located along the X and Y axes
representing the radial s; and s, coordinates, and no structure
is observed along the Z axis representing the angular ¢_
coordinate. This is due to the fact that the 1, orbital that
is responsible for the appearance of conjugate Fermi holes
has a radial node instead of an angular node. This is also
confirmed by the fact that in the Z,, — oo limit, the singlet
and triplet wave functions for the (1s)(2s) configuration do
not depend on angular variables since the 1s and 2s orbitals
have zero angular momentum. Therefore, the two-electron
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FIG. 5. (Color online) Difference in the probability-density dis-
tributions between the (1s)(2s) 'S singlet state and the (1s)(2s) 3S
triplet state of He-like systems in the internal space: (a)—(d)
correspond, respectively, to the cases with Z, = 20, 10, 4, and 2.
The X, Y, and Z axes represent, respectively, the sy, s,, and ¢_
coordinates. The square norm of the displayed surface is 0.001. The
blue (light gray) and red (dark gray) surfaces correspond, respectively,
to regions in which the probability density of the singlet wave
function is larger than that of the triplet wave function, and vice versa.
Figures (a')—(d’) indicate the Z,-adjusted electron repulsion potential
[cf. Eq. (1)] for the corresponding cases. The displayed surfaces
represent the area where the electron repulsion potential energy
becomes larger than 0.5 a.u.

angular density distributions for the (1s)(2s) pair of states
for large Z,, such as Z, = 20, closely follow the statistical
distribution as observed in Fig. 2(a). As Z, decreases, the poles
of the electron-electron interaction potential become stronger,
as shown in Figs. 5(a’)-5(d), and affect the probability-density
distributions of the (15)(2s) pair of states. Indeed, the singlet
probability density associated with the blue (light gray) surface
located around ¢_ = 0 in Fig. 5(a) decreases significantly with
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FIG. 6. (Color online) Difference in the probability-density dis-
tributions between the (1s)(2p) 'P singlet state and the (1s)(2p) P
triplet state of He-like systems in the internal space: (a)—(d)
correspond, respectively, to the cases with Z, = 20, 10, 4, and 2.
See caption to Fig. 5 for further details.

decreasing Z,, [Figs. 5(b)-5(d)] due to the strong potential pole
of the electron-electron interaction. The singlet probability
density that migrated from this region is now located, however,
in regions with larger s; or s, but at almost the same value
of ¢_. Due to the zero angular momentum of the ls and
2s electrons, they avoid the strong potential pole by simply
increasing the interelectron distance while hardly changing
their angle. This is the reason why the two-electron angular-
density distributions of the singlet-triplet pair of states for the
(1s)(2s) configuration depend only very weakly on ¢_, even
for small Z,, where the electron-electron interaction is strong.

In contrast to the (1s)(2s) case, the genuine and conjugate
Fermi holes that are associated with the (1s)(2p) configura-
tion are located along the Z axis (representing the angular
coordinate ¢_) showing an angular alignment of these holes.
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Further, an inspection of Fig. 4(b) shows that the genuine Fermi
holes are, in this case, located at ¢_ = 0,=£m, whereas the
conjugate Fermi holes are located at ¢_ = £ /2. Recalling
that the triplet density is smaller than the singlet density in
genuine Fermi holes and larger than the singlet den-
sity in conjugate Fermi holes, we see that the observed
¢_ dependence of the two-electron angular-density distri-
bution for the (1s)(2p) triplet state is in accord with the
existence of the genuine and conjugate Fermi holes. Similarly,
since the singlet probability density is smaller and larger than
the triplet probability in the conjugate and in the genuine
Fermi holes, respectively, the two-electron angular-density
distribution for the (1s)(2p) singlet state shows smaller and
larger densities at the location of the conjugate and genuine
Fermi holes, respectively. These coincidences indicate that
the observed strong ¢_ dependence of the probability-density
distributions for the (1s)(2p) singlet-triplet pair of states in
the large Z, regime can be rationalized by the appearance of
the genuine and conjugate Fermi holes due to the decreasing
electron-electron interaction.

As the nuclear charge Z, decreases, the electron-electron
interaction becomes stronger, as displayed in Figs. 6(a’)-6(d").
It is noted that by definition, the genuine Fermi holes exist in
the vicinity of the regions satisfying 5; = 5,. The electron-
electron interaction potential zl ﬁ diverges to infinity
in the same region. Consequently, the three “poles” of the
electron-electron interaction penetrate exactly into the three
blue surfaces of the genuine Fermi holes, as displayed in
Fig. 4(b). As Z, decreases, the singlet probability density
located in these genuine Fermi holes is forced by the strong
poles of the electron-electron interaction to migrate away from
the Z axis, as displayed in Figs. 6(b)-6(d). Since, unlike the 2s
electron, the 2 p electron has a nonzero angular momentum, the
singlet probability density that migrates from the Fermi holes
is located in regions with different values of ¢_. This levels
out the probability density along the ¢_ axis and explains the
observed weak ¢_ dependence of the probability density for
the small nuclear charge Z, = 2.

IV. SUMMARY

In the present study, the angular correlation in the ground
and singly excited states of the two-dimensional He and He-
like atomic ions has been studied by relying on highly accurate
full configuration interaction (FCI) wave functions. The two-
electron angular-density distributions have been calculated by
integrating the square modulus of the FCI wave functions over
all coordinates other than the two-electron angle ¢_ defined
by the difference between the two polar angles ¢, and ¢, for
the respective electrons 1 and 2.

The resultant distribution for the (1s)? ground state in the
regime of large nuclear charges Z, shows a very weak ¢_
dependence, while the dependence increases for small Z,
values, such as for Z,, = 2 of the helium atom. This dependence
is in accord with the variation of the electron correlation in
units of the Z,-adjusted correlation energy Agg"". In contrast,
the two-electron angular density distributions for the singly
excited states of the (1s)(2s) and (15)(2p) configurations have
a different character than those for the (1s)? ground state: In
the case of the (1s)(2s) configuration, the singlet and the triplet
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states show only a very weak dependence on ¢_ irrespective
of Z,, while in the case of the (1s)(2p) configuration, both
the singlet and the triplet states show a weak dependence for
small Z, yet a strong dependence for large Z,, in spite of
the fact that the electron correlation decreases towards zero
for increasing Z,. Further, in the large Z, regime, the singlet
state of the (15)(2p) configuration shows a peak in probability
density at ¢_ = 0, indicating a tendency of the two electrons
to be on the same side of the nucleus. On the other hand, in the
case of the corresponding triplet state, the probability density
is peaked at ¢_ = % /2, indicating a tendency of the two
electrons to be on opposite sides of the nucleus. We would
like to emphasize that this counterintuitive trend that we find
for the (1s)(2p) configuration is not limited to the present 2D
model. Thakkar and Smith have already identified a similar
behavior for the same states in their evaluation of the angular
correlation coefficients for regular 3D He-like systems [13].
In order to rationalize the observed trends of the angular
¢_ dependence of the probability density, focusing particularly
on the unexpected trend found for the (15)(2p) singlet-triplet
pair of states with respect to the variation of Z,, we have
examined in detail the probability-density distributions of the
relevant states in the internal space defined by the Z,-adjusted
radial coordinates s; (i = 1,2) and the two-electron angle
¢_. The difference in the probability densities between the
singlet-triplet pair of states in the internal space in the Z,, — oo
limit defines, respectively, the genuine and the conjugate
Fermi holes in which the singlet probability density is larger
than the triplet density, and vice versa. The genuine and
conjugate Fermi holes for the (15)(2s) singlet-triplet pair show
no structure along the angular ¢_ coordinate. This is consistent
with the two-electron angular-density distributions for the
(1s)(2s) pair of states showing a very weak ¢_ dependence
irrespective of the nuclear charge Z,,. In contrast, the genuine
and conjugate Fermi holes for the (1s)(2p) singlet-triplet
pair of states align alternately along the ¢_ axis. They are
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centered at ¢_ = 0,+m for the genuine Fermi holes and at
¢_ = £ /2 for the conjugate Fermi holes. Since the triplet
density is smaller than the singlet density in genuine Fermi
holes and larger than the singlet density in conjugate Fermi
holes, the observed strong ¢_ dependence for the (1s)(2p)
singlet-triplet pair of states in the large Z,, regime is supported
by the appearance of these holes due to the decreasing
electron-electron interaction for increasing Z,,.

Recent advances in high-power free-electron lasers for
extreme ultraviolet (EUV) and x-ray wavelength regions have
enabled us to study nonlinear multiphoton processes in simple
atoms [28,29]. We note that these pioneering experiments
have succeeded in generating Rabi oscillations between the
(1s)? ground state and the (15)(2p) singlet state in the helium
atom [30], indicating a possibility of transferring the whole
probability density from the ground state to the (1s)(2p)
excited state at a certain time. Combining it with the (e,2¢) type
of experiments [31] that measure the correlated two electrons
instantaneously ejected from the target atom, it should be
feasible to design an ambitious experiment which would
enable one to directly observe the anisotropic distribution of
the two electrons that have been explored in the present study.
This would thus experimentally verify the existence of the
conjugate Fermi holes as well as of the standard Fermi holes.

ACKNOWLEDGMENTS

The present study has been supported in part by the
Grants-in-Aid for Scientific Research (C) (No. 23550025) and
the Grants-in-Aid for Scientific Research on Innovative Areas
(No. 25110006) of the Japan Society for the Promotion of
Science (JSPS), and by the Nihon University Strategic Projects
for Academic Research. T.S. and J.P. would like to thank
the Alexander von Humboldt Foundation for its kind support
and Geerd H. F. Diercksen and the Max-Planck-Institute for
Astrophysics in Garching for their hospitality.

[1] R. P. Madden and K. Codling, Astrophys. J. 141, 364 (1965).
[2] M. E. Rudd, Phys. Rev. Lett. 15, 580 (1965).
[3] D. R. Herrick and M. E. Kellman, Phys. Rev. A 21, 418 (1980).
[4] D. R. Herrick, M. E. Kellman, and R. D. Poliak, Phys. Rev. A
22,1517 (1980).
[5] M. E. Kellman and D. R. Herrick, Phys. Rev. A 22, 1536
(1980).
[6] P. Rehmus, C. C. J. Roothaan, and R. S. Berry, Chem. Phys.
Lett. 58, 321 (1978).
[7] P. Rehmus, M. E. Kellman, and R. S. Berry, Chem. Phys. 31,
239 (1978).
[8] H.-J. Yuh, G. Ezra, P. Rehmus, and R. S. Berry, Phys. Rev. Lett.
47,497 (1981).
[9] G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1974 (1983).
[10] E. R. Davidson, J. Chem. Phys. 41, 656 (1964).
[11] E. R. Davidson, J. Chem. Phys. 42, 4199 (1965).
[12] N. Moiseyev and J. Katriel, Chem. Phys. 10, 67 (1975).
[13] A.J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 23, 473 (1981).
[14] P. E. Regier and A. J. Thakkar, J. Phys. B 17, 3391 (1984).
[15] J. M. Ugalde and R. J. Boyd, Chem. Phys. Lett. 114, 197 (1985).

[16] J. M. Ugalde, R. J. Boyd, and J. S. Perkyns, J. Chem. Phys. 87,
1216 (1987).

[17] N. M. Cann, R. J. Boyd, and A. J. Thakkar, J. Chem. Phys. 98,
7132 (1993).

[18] J. Katriel and R. Pauncz, Adv. Quantum Chem. 10, 143 (1977).

[19] R.J. Boyd, Nature (London) 310, 480 (1984).

[20] Y. Sajeev, M. Sindelka, and N. Moiseyev, J. Chem. Phys. 128,
061101 (2008).

[21] T. Sako, J. Paldus, and G. H. F. Diercksen, Phys. Rev. A 81,
022501 (2010).

[22] T. Oyamada, K. Hongo, Y. Kawazoe, and H. Yasuhara, J. Chem.
Phys. 133, 164113 (2010).

[23] T. Sako, J. Paldus, A. Ichimura, and G. H. F. Diercksen, Phys.
Rev. A 83, 032511 (2011).

[24] T. Sako, J. Paldus, A. Ichimura, and G. H. F. Diercksen, J. Phys.
B: At. Mol. Opt. Phys. 45, 235001 (2012).

[25] T. Koga and H. Matsuyama, Chem. Phys. Lett. 375, 565 (2003).

[26] T. Koga, H. Matsuyama, and A. J. Thakkar, Chem. Phys. Lett.
512,287 (2011).

[27] P. C. Ojha and R. S. Berry, Phys. Rev. A 36, 1575 (1987).

062501-8


http://dx.doi.org/10.1086/148132
http://dx.doi.org/10.1086/148132
http://dx.doi.org/10.1086/148132
http://dx.doi.org/10.1086/148132
http://dx.doi.org/10.1103/PhysRevLett.15.580
http://dx.doi.org/10.1103/PhysRevLett.15.580
http://dx.doi.org/10.1103/PhysRevLett.15.580
http://dx.doi.org/10.1103/PhysRevLett.15.580
http://dx.doi.org/10.1103/PhysRevA.21.418
http://dx.doi.org/10.1103/PhysRevA.21.418
http://dx.doi.org/10.1103/PhysRevA.21.418
http://dx.doi.org/10.1103/PhysRevA.21.418
http://dx.doi.org/10.1103/PhysRevA.22.1517
http://dx.doi.org/10.1103/PhysRevA.22.1517
http://dx.doi.org/10.1103/PhysRevA.22.1517
http://dx.doi.org/10.1103/PhysRevA.22.1517
http://dx.doi.org/10.1103/PhysRevA.22.1536
http://dx.doi.org/10.1103/PhysRevA.22.1536
http://dx.doi.org/10.1103/PhysRevA.22.1536
http://dx.doi.org/10.1103/PhysRevA.22.1536
http://dx.doi.org/10.1016/0009-2614(78)85045-3
http://dx.doi.org/10.1016/0009-2614(78)85045-3
http://dx.doi.org/10.1016/0009-2614(78)85045-3
http://dx.doi.org/10.1016/0009-2614(78)85045-3
http://dx.doi.org/10.1016/0301-0104(78)87040-2
http://dx.doi.org/10.1016/0301-0104(78)87040-2
http://dx.doi.org/10.1016/0301-0104(78)87040-2
http://dx.doi.org/10.1016/0301-0104(78)87040-2
http://dx.doi.org/10.1103/PhysRevLett.47.497
http://dx.doi.org/10.1103/PhysRevLett.47.497
http://dx.doi.org/10.1103/PhysRevLett.47.497
http://dx.doi.org/10.1103/PhysRevLett.47.497
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1103/PhysRevA.28.1974
http://dx.doi.org/10.1063/1.1725942
http://dx.doi.org/10.1063/1.1725942
http://dx.doi.org/10.1063/1.1725942
http://dx.doi.org/10.1063/1.1725942
http://dx.doi.org/10.1063/1.1695919
http://dx.doi.org/10.1063/1.1695919
http://dx.doi.org/10.1063/1.1695919
http://dx.doi.org/10.1063/1.1695919
http://dx.doi.org/10.1016/0301-0104(75)85008-7
http://dx.doi.org/10.1016/0301-0104(75)85008-7
http://dx.doi.org/10.1016/0301-0104(75)85008-7
http://dx.doi.org/10.1016/0301-0104(75)85008-7
http://dx.doi.org/10.1103/PhysRevA.23.473
http://dx.doi.org/10.1103/PhysRevA.23.473
http://dx.doi.org/10.1103/PhysRevA.23.473
http://dx.doi.org/10.1103/PhysRevA.23.473
http://dx.doi.org/10.1088/0022-3700/17/17/011
http://dx.doi.org/10.1088/0022-3700/17/17/011
http://dx.doi.org/10.1088/0022-3700/17/17/011
http://dx.doi.org/10.1088/0022-3700/17/17/011
http://dx.doi.org/10.1016/0009-2614(85)85086-7
http://dx.doi.org/10.1016/0009-2614(85)85086-7
http://dx.doi.org/10.1016/0009-2614(85)85086-7
http://dx.doi.org/10.1016/0009-2614(85)85086-7
http://dx.doi.org/10.1063/1.453302
http://dx.doi.org/10.1063/1.453302
http://dx.doi.org/10.1063/1.453302
http://dx.doi.org/10.1063/1.453302
http://dx.doi.org/10.1063/1.464756
http://dx.doi.org/10.1063/1.464756
http://dx.doi.org/10.1063/1.464756
http://dx.doi.org/10.1063/1.464756
http://dx.doi.org/10.1016/S0065-3276(08)60580-8
http://dx.doi.org/10.1016/S0065-3276(08)60580-8
http://dx.doi.org/10.1016/S0065-3276(08)60580-8
http://dx.doi.org/10.1016/S0065-3276(08)60580-8
http://dx.doi.org/10.1038/310480a0
http://dx.doi.org/10.1038/310480a0
http://dx.doi.org/10.1038/310480a0
http://dx.doi.org/10.1038/310480a0
http://dx.doi.org/10.1063/1.2837456
http://dx.doi.org/10.1063/1.2837456
http://dx.doi.org/10.1063/1.2837456
http://dx.doi.org/10.1063/1.2837456
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1063/1.3488099
http://dx.doi.org/10.1063/1.3488099
http://dx.doi.org/10.1063/1.3488099
http://dx.doi.org/10.1063/1.3488099
http://dx.doi.org/10.1103/PhysRevA.83.032511
http://dx.doi.org/10.1103/PhysRevA.83.032511
http://dx.doi.org/10.1103/PhysRevA.83.032511
http://dx.doi.org/10.1103/PhysRevA.83.032511
http://dx.doi.org/10.1088/0953-4075/45/23/235001
http://dx.doi.org/10.1088/0953-4075/45/23/235001
http://dx.doi.org/10.1088/0953-4075/45/23/235001
http://dx.doi.org/10.1088/0953-4075/45/23/235001
http://dx.doi.org/10.1016/S0009-2614(03)00913-8
http://dx.doi.org/10.1016/S0009-2614(03)00913-8
http://dx.doi.org/10.1016/S0009-2614(03)00913-8
http://dx.doi.org/10.1016/S0009-2614(03)00913-8
http://dx.doi.org/10.1016/j.cplett.2011.07.047
http://dx.doi.org/10.1016/j.cplett.2011.07.047
http://dx.doi.org/10.1016/j.cplett.2011.07.047
http://dx.doi.org/10.1016/j.cplett.2011.07.047
http://dx.doi.org/10.1103/PhysRevA.36.1575
http://dx.doi.org/10.1103/PhysRevA.36.1575
http://dx.doi.org/10.1103/PhysRevA.36.1575
http://dx.doi.org/10.1103/PhysRevA.36.1575

ANGULAR CORRELATION IN He AND He-LIKE ATOMIC ...

[28] Y. Hikosaka, M. Fushitani, A. Matsuda, C.-M. Tseng,
A. Hishikawa, E. Shigemasa, M. Nagasono, K. Tono, T. Togashi,
H. Ohashi ef al., Phys. Rev. Lett. 105, 133001 (2010).

[29] N. Miyauchi, J. Adachi, A. Yagishita, T. Sako, F. Koike, T. Sato,
A. Iwasaki, T. Okino, K. Yamanouchi, K. Midorikawa et al.,
J. Phys. B: At. Mol. Opt. Phys. 44, 071001 (2011).

PHYSICAL REVIEW A 89, 062501 (2014)

[30] T. Sako, J. Adachi, A. Yagishita, M. Yabashi, T. Tanaka,
M. Nagasono, and T. Ishikawa, Phys. Rev. A 84, 053419
(2011).

[31] E. Weigold and I. E. McCarthy, Electron Momentum
Spectroscopy  (Kluwer  Academic/Plenum, New  York,
1999).

062501-9


http://dx.doi.org/10.1103/PhysRevLett.105.133001
http://dx.doi.org/10.1103/PhysRevLett.105.133001
http://dx.doi.org/10.1103/PhysRevLett.105.133001
http://dx.doi.org/10.1103/PhysRevLett.105.133001
http://dx.doi.org/10.1088/0953-4075/44/7/071001
http://dx.doi.org/10.1088/0953-4075/44/7/071001
http://dx.doi.org/10.1088/0953-4075/44/7/071001
http://dx.doi.org/10.1088/0953-4075/44/7/071001
http://dx.doi.org/10.1103/PhysRevA.84.053419
http://dx.doi.org/10.1103/PhysRevA.84.053419
http://dx.doi.org/10.1103/PhysRevA.84.053419
http://dx.doi.org/10.1103/PhysRevA.84.053419



