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ABSTRACT

Exploring the power spectrum of fluctuations and velocitiesin the intracluster medium (ICM) can help us to probe the gas physics of
galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with
the ICM thermodynamic perturbations. The normalization ofthe ICM spectrum (related to density, entropy, or pressure fluctuations)
is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. Forlow 3D Mach
numberM ∼ 0.25, gravity waves mainly driveentropyperturbations, traced by preferentially tangential turbulence. ForM > 0.5,
sound waves start to significantly contribute, passing the leading role to compressivepressurefluctuations, associated with isotropic
(or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process:isobaric (low
M), adiabatic (highM), or isothermal (strong conduction). Most clusters residein the intermediate regime, showing a mixture of
gravity and sound waves, hence drifting towards isotropic velocities. Remarkably, regardless of the regime, the variance of density
perturbations is comparable to the 1D Mach number,M1D ∼ δρ/ρ. This linear relation allows to easily convert between gas motions
and ICM perturbations (δρ/ρ < 1), which can be exploited by the availableChandra, XMM data and by the forthcomingAstro-
H mission. At intermediate and small scales (10 - 100 kpc), theturbulent velocities develop a tight Kolmogorov cascade. The
thermodynamic perturbations (which can be in general described by log-normal distributions) act as effective tracers of the velocity
field, broadly consistent with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive
features induce a flattening in the cascade of the perturbations. Thermal conduction on the other hand acts to damp the thermodynamic
fluctuations, washing out the filamentary structures and steepening the spectrum, while leaving unaltered the velocitycascade. The
ratio of the velocity and density spectrum thus inverts the downtrend shown by the non-diffusive models, widening up to∼5. This new
key diagnostic can robustly probe the presence of conductivity in the ICM. We produce X-ray images of the velocity field, showing
how future missions (e.g.Astro-H, Athena) can detect velocity dispersions of a few 100 km s−1 (M > 0.1 in massive clusters), allowing
to calibrate the linear relation and to constrain relative perturbations down to just a few per cent.
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1. Introduction

The power spectrum of perturbations and velocity in a given
fluid has historically represented one of the crucial tools to un-
derstand and constrain the dominant astrophysical processes. In
the cosmology field, the temperature fluctuations in the cosmic
microwave background have allowed to put precise constraints
on the geometry and composition of the universe (e.g. through
the acoustic spectral peaks; Planck Collaboration et al. 2013).
Closer to our case, the observed electron density perturbations
in the interstellar plasma (ISM) have revealed a highly turbulent
medium, showing a Kolmogorov power-law spectrum spanning
more than 10 decades (Armstrong et al. 1981, 1995 and refer-
ences therein). The observed power spectrum of the solar wind
density, also consistent with the famous−5/3 slope, has further
proven that turbulent processes are a key component shaping
the dynamics of astrophysical plasmas (e.g. Woo & Armstrong
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1979; Marsch & Tu 1990). In a similar way, the wealth of in-
formation contained in the power spectrum extracted from the
hot plasma filling galaxy clusters can help us to significantly ad-
vance our knowledge of the ICM astrophysics.

In the context of galaxy clusters, Gaspari & Churazov (2013;
hereafter GC13) have shown for the first time that the power
spectrum of the ICM density fluctuations linearly rises with
the level of turbulent motions. Diffusive processes, as thermal
conduction, instead fight to damp the cascade of perturbations.
Many questions still remain to be tackled. In this work, we
focus on the statistics and features of thevelocity fieldin the
stratified intracluster medium, such as the power spectrum,the
real-space and projected maps, and in particular its intimate re-
lation with the thermodynamic perturbations. The ICM power
spectrum can be viewed in various forms (e.g. Schuecker et al.
2004; Churazov et al. 2012), through the lenses of gas velocities
(δv/cs), density (δρ/ρ), entropy (δK/K), or pressure (δP/P) fluc-
tuations, thus offering multiple joint constraints. Each physical
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process leaves marked imprints behind. The normalization of the
perturbation spectrum is tied to the combined action of gravity
and sound waves excited by large-scale (100s kpc) turbulence.
At intermediate scales, the thermodynamic perturbations act as
‘tracers’ of the eddy inertial cascade (in line with the classic ad-
vection theory by Obukhov 1949 and Corrsin 1951), while rising
diffusivity conspire to decouple the tight relation. Faster gasmo-
tions alter the thermodynamic mode (from isobaric to adiabatic),
changing the interplay between different fluctuations.

The linear relation between the density variance and the
turbulent Mach numberM has been also observed in simula-
tions of supersonic isothermal turbulence in homogeneous and
periodic boxes (e.g. Padoan et al. 1997; Konstandin et al. 2012
and references therein), in connection with ISM studies. How-
ever, this relation purely arises from the high compressionim-
parted by supersonic turbulence, creating shocks and sharppeaks
(e.g. Kim & Ryu 2005). In the subsonic regime, the compress-
ibility drastically diminishes, and density perturbations fade as
M2 (Kowal et al. 2007). In the case of stratified galaxy clusters,
our novel linear relation is instead tied to the radial gradients of
entropy and pressure (§5), already developing in the subsonic
regime, i.e. the realistic state of ICM turbulence (M ∼ 0.2− 0.7;
e.g. Norman & Bryan 1999; Lau et al. 2009; Vazza et al. 2009).

The velocity statistics of the diffuse medium is notoriously
difficult to assess through observations. On the contrary, X-ray
surface brightness images can robustly constrain the ICM den-
sity. Being able to convert between the spectra (or even just
the normalization) of perturbations and velocities, is a power-
ful tool, which can be exploited by theoretical studies and by
the large amount of availableChandraandXXM data. For in-
stance, the quick estimate of the ICM turbulent velocities al-
lows to study the level of hydrostatic equilibrium in the hothalo
(e.g. Vikhlinin et al. 2006), the transport and dilution of metals
(e.g. Rebusco et al. 2005), the deposition of energy imparted by
the active galactic nucleus (AGN) outflows (e.g. Churazov etal.
2004; Gaspari et al. 2011b, 2012b), the evolution of filaments
and bubbles (e.g. Scannapieco & Brüggen 2008), or the reaccel-
eration of cosmic rays (e.g. Brunetti & Lazarian 2007). On the
other hand, being able to quickly assess the conductive state of
the plasma allows to constrain the survival of the cold/warm gas,
which is crucial for star formation (e.g. McDonald & Veilleux
2009) and black hole accretion (e.g. Gaspari et al. 2013), to
study the quenching of cooling flows (e.g. Kim & Fabbiano
2003) and the evolution of cosmic structures (e.g. Dolag et al.
2004).

We could soon take advantage of the inverse process,
albeit more expensive. The upcomingAstro-H mission
(Takahashi et al. 2010) and the futureAthena (Nandra et al.
2013) will provide unprecedented detections of the turbulent ve-
locity dispersion in the ICM (via line broadening), as well as
bulk motions (via line shift; e.g. Inogamov & Sunyaev 2003;
Zhuravleva et al. 2012; Nagai et al. 2013; Tamura et al. 2014),
down to Mach numbers∼ 0.1 for massive clusters (see §4). Re-
liable constraints on the gas motions allow to accurately calibrate
the above relation, and to assess the level of density fluctuations
if the imaging is poor. For instance, apparently ‘relaxed’ sys-
tems may host>∼ 10 per cent density fluctuations, which may
significantly alter the formation or regeneration of cool cores in
clusters, as well as biasing the estimate of radial profiles,to name
a few interesting applications. The same spectral analysiscan be
extended to the gaseous halos of massive galaxies and groups.

The physics of the intracluster medium is a strongly de-
bated topic. Turbulence has been mainly studied by means of
cosmological and isolated simulations (e.g. Norman & Bryan

1999; Dolag et al. 2005; Kim & Ryu 2005; Nagai et al.
2007; Lau et al. 2009; Vazza et al. 2009; Valdarnini 2011;
Borgani & Kravtsov 2011; Miniati 2014; Schmidt et al. 2014;
Shi & Komatsu 2014). Similarly, diffusion processes as
conduction have been mainly investigated via theoretical stud-
ies (Chandran & Cowley 1998; Narayan & Medvedev 2001;
Zakamska & Narayan 2003; Ruszkowski & Oh 2010, 2011;
Voigt & Fabian 2004; Roediger et al. 2013; Smith et al. 2013;
ZuHone et al. 2013). Observations have instead hard time in re-
solving and constraining such processes through local features,
granting in the last decade only a few estimates (Ettori & Fabian
2000; Markevitch & Vikhlinin 2007; Forman et al. 2007;
Eckert et al. 2014, in prep.). However, we are now able to
retrieve the statistics of density/pressure fluctuations in the ICM
(Schuecker et al. 2004; Churazov et al. 2012; Sanders & Fabian
2012), allowing to probe the gas physics without the need to
resolve local structures.

In Churazov et al. (2012), we outlined as possible effects
contributing to the density fluctuations: turbulence (via the
Bernoulli term∝ M2 or via sound waves), entropy variations
(due to mergers or turbulence), perturbations of the gravitational
potential, metallicity variations, and AGN bubbles. Using3D
high-resolution plasma simulations, we focus in this work on the
role of turbulence and thermal diffusivity, and the driven ther-
modynamic perturbations, including entropy and pressure varia-
tions. Controlled experiments allow us to discriminate theexact
contribution of each included physics. In a companion paper
(Zhuravleva et al. 2014, hereafter Z14), we analyze the density
perturbations in cosmological AMR simulations, focusing on the
role of gravity waves. At the price of lower resolution, we are
thus able to include the turbulence driving led by mergers (§5.3).

This work is structured as follows. In §2, we review the main
physical and numerical ingredients of the simulated models. In
§3, we present the power spectrum of velocities and density
fluctuations, focusing on their tight connection and key features
(normalization, cascade, damping). In §4, we analyze the real-
space properties of the velocity and perturbation field, showing
what X-ray observations are able to detect. In §5, we throughly
discuss the physical interpretation of the power spectrum,as the
interplay ofg-waves andp-waves, along with the development
of the spectral cascade of all thermodynamic perturbations, in
relation to the advection theory of tracers. In §6, we summarize
the results and remark how the ICM power spectrum can be ex-
ploited by future observations and theoretical studies, toprobe
the physics of the diffuse medium with high precision.

2. Physics and numerics

The implemented physics and numerics are described in depthin
Gaspari & Churazov (2013; section 2), to which the reader is re-
ferred for the complete details. Here we summarize the essential
features.

The initial conditions for the hot gas are modeled follow-
ing the latestXMM observed temperature and density radial pro-
files of Coma cluster (β−model with core radiusrc = 272 kpc
and index 0.75). Given the high ICM temperature,T ∼ 8.5
keV, and low electron number density,ne ∼ 4 × 10−3, Coma
serves as excellent laboratory to study the effects of conduction
and turbulence, without being strongly influenced by radiative
cooling or AGN feedback. The hot gas is initialized in hydro-
static equilibrium, providing a gravitational potential appropri-
ate for a massive cluster in theΛCDM universe with virial mass
Mvir ∼ 1015M⊙ (r500 ∼ 1.4 Mpc, covered by the width of the 3D
box).
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Gaspari et al.: The ICM power spectrum – gas perturbations trace velocities while decouple via conduction

The conservative hydrodynamics equations are integrated
with the Eulerian code FLASH4 (Fryxell et al. 2000), using a
third order scheme (piecewise parabolic method) in the frame-
work of the unsplit flux formulation. The ICM plasma has adi-
abatic indexγ = 5/3 and mean atomic weightµ ≃ 0.62. We
chose the numerically expensive uniform grid (5123), instead of
adaptive cells, in order to remove any substantial, spurious dif-
fusivity due to the refinement/derefinement. The resolution is
∆x≃ 2.6 kpc, roughly on the scale of the (unmagnetized) plasma
mean free path, mimicking slightly suppressed Spitzer viscos-
ity. Boundary zones have Dirichlet condition, fixed by the large-
scale radial profile; inflow is prohibited. In addition to hydrody-
namics, we add as source terms the turbulence driving, thermal
conduction, and electron-ion equilibration.

Injection of subsonic, solenoidal turbulence is modeled with
a spectral forcing scheme that generates a statistically station-
ary velocity field (GC13, sec. 2.2), based on an Ornstein-
Uhlenbeck random process. The amplitudes of the driven accel-
eration are evolved in Fourier space and then directly converted
to physical space. Since observations (Schuecker et al. 2004;
Churazov et al. 2008; de Plaa et al. 2012; Sanders & Fabian
2013) and simulations (Norman & Bryan 1999; Lau et al. 2009;
Vazza et al. 2009, 2011; Gaspari et al. 2012b; Schmidt et al.
2014; Shi & Komatsu 2014) show that the ICM turbulent ener-
gies are∼ 3 − 30 percent of the thermal energy, we test sub-
sonic Mach numbers in the rangeM ≡ σv/cs ∼ 0.25− 0.75,
whereσv is the 3D1 velocity dispersion (average sound speed
of Coma iscs ≃ 1500 km s−1). The source of turbulence can
be various, including cosmological flows/mergers, galaxy mo-
tions, and feedback processes. The former usually dominates,
affecting large volumes beyond the core (e.g. Shi & Komatsu
2014; Z14), and being related to a solenoidal flow (e.g. Miniati
2014). We thus stir the gas on large scales, with typical injection
peakL ∼ 600 kpc (in a few runs∼ 300 kpc), letting turbulence
to naturally cascade. The turbulence timescale as a function of
physical scalel is the eddy turnover timetturb ≃ (L1/3/σv,L) l2/3,
using the Kolmogorov scalingσv ∝ l1/3. Since turbulence is
kept subsonic, dissipational heating is subdominanttdiss,heat ∼
M−2 tturb (e.g. Ruszkowski & Oh 2011), on timescales of order
of the eddy turnover time. We recall that turbulence acts as
an effective diffusivity on entropy with coefficient Dturb ∼ σv l
(e.g. Dennis & Chandran 2005).

The conduction of thermal energy, due to the plasma elec-
trons, is driven by a fluxFcond = − f κS∇Te, with conductiv-
ity κS ≃ 5 × 10−7 T5/2

e erg s−1 K−1 cm−1 (Spitzer 1962). The
related diffusivity and timescale isDcond = f κS/1.5nekB and
tcond = l2/Dcond, respectively. The conductive flux saturates as
Fsat ∝ neT

3/2
e , whenever the temperature scale height is smaller

than the electron mean free path. We use an advanced implicit
solver which allows for long, Gyr integration times. MHD sim-
ulations (e.g. Ruszkowski & Oh 2010) show that the outcome
of subsonic turbulence is a tangled magnetic field with small
kpc coherence length (see also constraints in Kim et al. 1990).
On scales larger than the coherence length, the average suppres-
sion due to anisotropic conduction and magnetic microinstabili-
ties can be parametrized with the so-calledf factor, commonly
f ∼ 10−3−10−1 (GC13, sec. 2.1.1). Using the effective isotropic
conductivity has the advantage of modeling any level of suppres-
sion affecting the bulk of the ICM. MHD runs only provide the
geometric suppression above the plasma mean free pathλ, in a
chaotic atmosphere typicallyf ∼ 1/3 (Ruszkowski & Oh 2010;

1 Volume-weighted or mass-weighted 3D Mach number is very simi-
lar, within<∼ 3 per cent accuracy.

see also Narayan & Medvedev 2001). However, line wandering
and magnetic mirrors, together with plasma microinstabilities,
well belowλ can strongly suppress the transport of heat down to
f ∼ 10−3 (Rechester & Rosenbluth 1978; Chandran & Cowley
1998; Komarov et al. 2014). The survival of cold fronts, bub-
bles, and cold gas (§1), together with our GC13 spectral analysis,
point towards strongly suppressed values,f ∼ 10−3.

We integrate both the electron and ion temperature equa-
tion, since equilibration times can become considerable ina hot
plasma (tei >∼ 50 Myr). The heat exchange rate is∝ (Te− Ti)/tei,
using Spitzer equilibration timetei ∝ T3/2

e /ne (cf. GC13). The
2T modeling allows to prevent the formation of spurious pertur-
bations due to the unphysical instantaneous transfer of heat.

3. The ICM power spectrum: velocity and δρ/ρ

We now describe the results of the simulated models, focusing
on the spectral and real-space properties of the turbulentveloc-
ity, in relation with the statistics of gas density perturbations,
δρ/ρ. Gas density is indeed the primary astrophysical observ-
able, directly extracted from the X-ray surface brightness. As
thoroughly discussed in §5, the perturbations would be actually
more evident through entropy (for lowM) or pressure (for high
M), and then retrievingδρ/ρ via the main thermodynamic mode
(isobaric, isothermal, or adiabatic). Unfortunately,K andP are
difficult X-ray observables to constrain. Nevertheless, although
the underlying cause differs, the spectrum of the leading ‘tracer’
is tied to velocities in a very similar manner, granting a fairly
universalM − δρ/ρ relation (§5.1.1-5.1.2).

We first retrieve the characteristic amplitude of total velocity,
normalized tocs ≃ 1500 km s−1. It is convenient to use the
characteristic amplitude, instead of the power spectrumP(k) or
energy spectrumE(k), since its units are the same of the variable
in real space. The amplitude spectrum is defined as

A(k) ≡
√

P(k) 4πk3 ≡
√

E(k) k, (1)

wherek =
√

k2
x + k2

y + k2
z ≡ l−1 (kpc−1). No major bulk mo-

tion is present in our box (average velocity∼ 0); the velocity
dispersion is strictly associated with the turbulence driving. The
relative perturbations instead require to be divided by theunder-
lying background radial profile, e.g. for densityδρ/ρ = ρ/ρb − 1
(GC13, sec. 2.7). Except for mild deviations (§5.1.3), the tur-
bulence field can be considered isotropic as a first order approx-
imation, allowing to use the conversionv1D ∼ v/

√
3. All the

power spectra are computed with the ‘Mexican Hat’ filtering
(Arévalo et al. 2012) instead of performing Fourier transforms
(GC13, appx. A for a comparison), which can lead to spurious
features due to the box non-periodicity.

In Figure 1, we show the retrieved characteristic amplitudeof

v/cs (blue; notice thatAv =
√

A2
vx
+ A2

vy
+ A2

vz
), superposed to the

amplitude of density perturbations (red), after reaching statistical
steady state (>∼ 2 tturb). From the top left panel, the models have
increasing turbulence: weak (M ∼ 0.25), mild (M ∼ 0.5), and
strong (M ∼ 0.75). The ratio of turbulent to thermal energy is
3.5, 14 and 31 percent (Eturb ≃ 0.56M2Eth), respectively. The
last model (bottom right panel) tests weak turbulence with half
the reference injection scale (∼ 300 kpc). The global behavior of
the spectra related to density, velocities, and their ratio(Fig. 2)
is fairly self-similar, over different Mach numbers and injection
scales. We covered in GC13 the details of theδρ/ρ spectrum, we
focus here on the turbulent velocity and their relationship.
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Fig. 1. Characteristic amplitude ofδρ/ρ (red) andv/cs (blue),A(k) =
√

P(k) 4πk3, after reaching statistical steady state (∼2 tturb) with the same
level of continuous stirring. From top left: models with weak (M ∼ 0.25), mild (M ∼ 0.5), and strong (M ∼ 0.75) turbulence; the last model
(bottom right) has half the reference injection scale (∼ 600/2 kpc), usingM ∼ 0.25. From dark to bright line color, the level of conduction
increases by a factor of 10:f = 0 (hydro), 10−3, 10−2, 10−1, 1. The evolution is overall self-similar, varying the strength of turbulence or the
injection scale. Density perturbations are an effective tracer of the velocity field, especially on large scales, with normalizationAv1D ≈ 1.3 Aρ (at
L ∼ 600 kpc). On smaller scales,δρ/ρ displays a cascade shallower than the Kolmogorov slope followed by velocities. Remarkably, conduction
strongly damps density perturbations, but leaves unaltered the velocity cascade, thus inverting theAv(k)/Aρ(k) ratio (Fig. 2).

The normalization of the velocity spectrum sets the level of
perturbations, tied to theA(k) peak. In Figure 2, we better illus-
trate theAv(k)/Aρ(k) ratios. The hydrof = 0 runs (top) show a
converging maximum valueAv/Aρ ≈ 2.3 (using the 1D velocity
Av1D/Aρ ≈ 1.3), implying that stronger turbulence linearly in-
duces larger density fluctuations. This is a key result that allows
to quickly estimate ICM perturbations via the leading turbulent
motions, and vice versa. For lowM, gravity waves mainly pro-
duce entropy perturbations asδK/K ∝ v1D (see §5.1.1). For slow
motions, the isobaric mode is respected, hencev1D ∝ γ δρ/ρ, as
also simulated. ForM >∼ 0.5 (see §5.1.2), compressive sound
waves start to significantly contribute: entropy perturbations re-
main constant, whileδP/P increases, sustaining the same linear

relation, but smoothly shifting towards the adiabatic mode. In
section 5, we thoroughly discuss all the thermodynamic pertur-
bations (Fig. 8 - 9) and the underlying physical interpretation.

It is important to note that, for applications in other stud-
ies, proper attention should be paid to the conversion to adopt,
given the initial quantity or observable. Shifting from thespec-
tral to physical integrated2 quantities, the velocity/density ratio
remains the same. However, if we relate the real-space Mach
number (i.e. the total variance) to the spectral peak, as in GC13,
the conversion to use isM ≈ 4 A(k)ρ,max (assumingL ∼ 600

2 The total variance can be computed integratingP(k) 4πk2dk over the
whole range of scales. The total variance (as theM value) is here typi-
cally∼ 1.7 times higher than theA(k) peak.

page 4 of 15



Gaspari et al.: The ICM power spectrum – gas perturbations trace velocities while decouple via conduction

Fig. 2. Ratio of the power spectrum related to total velocity and den-
sity perturbations, for all the computed models. Each panelgroups the
models with identical conductivity, but differentM (same colors as in
Fig. 1). Aρ for L/2 runs is rescaled by a factor 21/3, to emphasize slope
similarities. In the hydro runs, the ratio is very tight, decreasing from
∼ 2.5 to roughly unity, near the dissipation scale. An increasing ratio
instead marks the presence of significant conduction. LowerPrandtl
numbers (Pt ∝ M/ f ) lead to wider scatter, with ratios up to∼ 5. The
Av/Aρ ratio is a new key diagnostics able to unveil the presence of sub-
stantial conductivity in the ICM.

kpc). Furthermore, turbulence can not create relative density
perturbations with amplitude higher than roughly the 1D Mach
number (§5). If significantly violated, this would indicatethat
the perturbation or velocity field has been contaminated by the
unfiltered background profile or laminar flows (which are partic-
ularly complex in unrelaxed systems). Similarly, strong inhomo-
geneities must be properly removed: the linear relation applies
to relatively small perturbationsδρ/ρ < 1, not to features as cold
fronts or buoyant bubbles.

Below the injection scale,Av andAρ continue to be tightly
related in the non-diffusive models (Fig. 2). The ratio is indepen-
dent ofM, as indicated by the tight scatter. It is remarkable that

the density acts as effective ‘tracer’ of the velocity field, develop-
ing a similar inertial cascade. This is also true for the leading en-
tropy/pressure perturbations. The phenomenon can be explained
via the classic theory of advection of passive tracers in turbulent
media,A(k)ρ ∝ A(k)v (Obukhov 1949; Corrsin 1951; see §5.2).
On the other hand, we observe that, in the hydro runs, the ratio
steadily declines asl0.13, reaching about unity near the dissipa-
tion scale. The decrease is associated with a shallower cascade
of perturbations, due to the initial radial gradients, compressive
features, and differences in the diffusivity of the ‘tracer’ (§5.2.1).
In Figure 3 (top), we show a test with 2× lower resolution (i.e. 2×
higher effective viscosity). Aside the good large-scale conver-
gence, the run clarifies that the density/tracer is susceptible to
diffusivity in a slightly different way compared withv, hence we
expect departures from the classic tracers theory. Notice also
how the cascade of density perturbations is not a perfect power
law, but tends to exponentially decline, even in the hydro run.

Using half the reference injection scale, theAv peak is
analogous to the that of the reference run (conservingM ∼
0.25), while the density perturbations slightly decrease by∼ 21/3,
i.e. the previous cascade truncated atL/2. Stirring smaller scales
reduces the influence of gravity waves, since the zone where the
turbulence frequency (∝ L−1/3) is shorter than the buoyancy fre-
quency shrinks (Fig. 7). By varying the injection scale between
L′ = L ≡ 600 kpc,L′ = L/2, andL′ = L/3 we find that correct-
ing the ratio by a factor∼ (L′/L)1/3 restores the normalization
to a universal value (Fig. 2, top). Also, the development of the
shorter cascade is hindered by the progressive proximity tothe
dissipation scale.

A key result is the substantial decoupling of velocities and
density perturbations, as we increase the level of conduction
(dark to bright line color: f = 0 , 10−3, 10−2, 10−1, 1; Fig. 1 -
2). In other words, the quick transfer of heat damps density
fluctuations (the forming overdensities quickly re-expanddue to
the temperature increase), while it leaves unaltered the turbu-
lent velocity cascade, or momentum transfer. The risingAv/Aρ
ratio (Fig. 2, top to bottom) is a crucial result that provides a
new constraint on the conductive state of the ICM, in addition
to the slope of the spectrum. It also breaks any minor degen-
eracy that strong conduction (f >∼ 0.1) may induce in the spec-
trum, due to the global damping of power (slightly flatteningthe
cascade). The upcomingAstro-H mission will provide impor-
tant constraints on the ICM turbulent velocities; combinedwith
high-quality determinations of density perturbations viaChan-
dra/XMM (andAthena), our knowledge of the ICM physics could
significantly improve, exploiting theAv/Aρ diagnostic.

The velocity cascade follows the Kolmogorov index (A(k) ∝
k−1/3 or E(k) ∝ k−5/3) in all runs, except with weak turbulence,
where it becomes slightly steeper, though with increased scat-
ter. Considering the substantial stratification, it is remarkable
that classic Kolmogorov theory consistently applies to a clus-
ter atmosphere (see also Vazza et al. 2011; Valdarnini 2011).
The density spectrum instead displays a steep decay towards
Aρ ∝ k−1/2 as the turbulent Prandtl numberPt ≡ tcond/tturb <∼ 100
(see GC133). Such a steepening inducesAv/Aρ to become grad-
ually shallower4, inverting the trend forf >∼ 10−2 (Fig. 2, third
panel). This can be explained in terms of the advection theory of

3 For the weak turbulence run withf = 1, Pt ∼ 1 atL = 600 kpc. We
notePt can be also seen as a turbulent Peclet number, if turbulence is
interpreted as an advection – rather than diffusion – process.
4 In general, significant diffusivity (especially numerical) acting on
bothρ andv tends to align the two spectra, even on small scales, a com-
mon feature we found in cosmological simulations (Z14 and Fig. 3).
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Fig. 3. Top: Characteristic amplitude ofv/cs andδρ/ρ, for the hydro
model with M ∼ 0.5, doubling the numerical viscosity, i.e. using 2×
lower resolution (similar to the Spitzer value; dashed lines). Spectra are
convergent, except at small scales where the increased numerical diffu-
sivity damps bothv andδρ/ρ at∼2 times the original dissipation scale.
The density cascade is affected in a slightly different way by the larger
diffusivity; some deviations from the classic advection theoryof tracers
are thus expected (§5.2.1). Bottom: Spectrum of the above model ex-
tracted in the full box (solid) and in the center (dashed;< r500/4), where
stratification is less prominent. Turbulence and density perturbations
are overall homogeneous, despite the cluster stratification (cf. Fig. 4).

tracers (§5.2), where the diffusivity of the scalar has no effect on
the velocity cascade. The scatter ofAv/Aρ rises with decreasing
Prandtl number, i.e. with stronger conduction and weaker turbu-
lence (Pt ∝ M/ f ). Conductivity with f >∼ 0.1 can globally stifle
the regeneration of perturbations by a factor of 2 - 4. Fig. 2 con-
firms that any substantial conductivity in the ICM will clearly
emerge in theAv/Aρ diagnostic, showing values up to≈ 5 and 3
for weak and strong turbulence, respectively, even at scales of
100s kpc.

4. Real-space properties and X-ray constraints

Before delving into the theoretical interpretation (§5), it is worth
to understand the real-space properties related to turbulence and
perturbations of density (or the ‘tracer’), and what X-ray ob-

servations can detect through the spectral line broadeningand
the projected images. As reference, we consider the models
with M ∼ 0.5 (Eturb/Eth ∼ 0.14, a common cluster regime;
e.g. Schuecker et al. 2004; Lau et al. 2009; GC13 – sec. 4.3).

In Figure 4, we compare the mid-plane cross-sections of
δρ/ρ (left) and magnitude of total velocity (middle). The key re-
sult is the progressive smoothing of density fluctuations raising
the level of conduction, while the turbulent velocity field remains
unaltered (top to bottom panels:f = 0, 10−3, 10−2, 10−1). In the
hydro run, the perturbation field shows a complex morphology
of filamentary structures, produced by the turbulent velocity field
and later deformed by Kelvin-Helmholtz and Rayleigh-Taylor
instabilities. The rolls and filaments are almost washed outin
the presence of strong conduction (f >∼ 0.1), transforming the
perturbations from isobaric to isothermal (§5.1.1). On theother
hand, strong conductivity can not completely wipe out fluc-
tuations (bottom maps). While entropy fluctuations decrease,
compressive pressure perturbations still maintain the same level
(Fig. 9, bottom). In other words, strong conduction can also
promote minor fluctuations, due to the fast transfer of heat and
change of compressibility in the medium.

All the velocity maps (middle) are remarkably similar, both
statistically and locally, with minute differences only iff >∼ 0.1.
As density fluctuations, the turbulent velocities do not show any
major difference within or outside the cluster core, signaling a
significant level of homogeneity. To be more quantitative, we
extracted the spectra only from the cluster center (r < r500/4),
where stratification is less prominent. As shown in Fig. 3 (bot-
tom), both theδρ/ρ and velocity spectra are similar to those com-
puted in the full box. At the largest scale,δρ/ρ experiences a mi-
nor decline (∼10%), in part because the entropy/pressure profile
is shallower in the core, in part due to the limited statistics re-
lated to the smallest modes. Concerning isotropy, the real-space
maps also do not highlight major deviations. However, trans-
forming the velocity field in spherical coordinates, we retrieve
mild anisotropies (Fig. 10). AsM < 0.5, the large-scale veloc-
ities become slightly more tangential, due to the stronger influ-
ence of stratification (§5.1.3). Instead, stronger turbulence (and
conduction) increases the relevance of sound waves, restoring
isotropy.

Fig. 4 points out that the phases of the perturbation field are
not coincident with that of the velocity field, although strongly
correlated in amplitude. Pearson coefficient indicates a negligi-
ble anticorrelation betweenδρ/ρ and total velocity (R < −0.2),
in all models. In other words, the density filaments are not
strictly tied to a local high velocity. This is expected since the
cause of fluctuations is the turbulence driving, whileδρ/ρ plays
the role of the tracer in a continuously chaotic environment.

We analyzed the volumetric PDF of the logarithmic den-
sity fluctuations, ln(1+ δρ/ρ). The thermodynamic fluctua-
tions can be in general described by a log-normal distribu-
tion (see example in Fig. 5), with small corrections due to
high-order moments (skewness and kurtosis), thus strengthen-
ing the role of the power spectrum. The log-normal distribu-
tion and weak non-Gaussian contributions are consistent with
classic turbulence studies testing solenoidal stirring, albeit in
non-stratified and controlled boxes (Federrath et al. 2010 and
references therein), together with ICM studies (Kawahara et al.
2007; Zhuravleva et al. 2013). Significant deviations startto
arise with highly compressive turbulence, mainly affecting the
wings (e.g. Kowal et al. 2007). We defer the study of high-order
moments to future work.

What can be inferred from X-ray observations? Besides
X-ray imaging (see surface brightness maps in GC13, fig. 4,
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Fig. 4. Left: Mid-plane cross-sections ofδρ/ρ (per cent) for the models withM ∼ 0.5. From top to bottom: increasing conduction with
f = 0 (hydro), 10−3, 10−2, 10−1 (the latter very similar to thef = 1 run). Middle: Same cross-sections but for the module of total velocity (km
s−1). The hydro runs show sharp filamentary density structures produced by the turbulent velocity field and later deformed byKelvin-Helmholtz
and Rayleigh-Taylor instabilities. Strong conduction damps instead these perturbations, while leaving unaltered the Kolmogorov cascade of
turbulent eddies. Thev andδρ/ρ fields have correlated amplitude, but different phases (the density field is the tracer). Right: Observed relative line
broadening (per cent) due to turbulent motions along they-axis view,∆E/E0 ≡

√
2σ1D,ew/c, whereσ1D,ew is the projected X-ray emission-weighted

velocity dispersion. The forthcomingAstro-Htelescope will be able to detect projected turbulent velocities above∼ 200 km s−1, i.e.∆E/E0 > 0.1
per cent (FWHM= 1.66∆E), using the Fe XXV line.
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Fig. 5. Volumetric PDF of the logarithmic density fluctuations,
ln(1+δρ/ρ), for the run withM ∼ 0.5 and f = 0.1 (black). The thermo-
dynamic fluctuations can be in general described by a log-normal dis-
tribution (red line), with small corrections due to high-order moments
(skewness and kurtosis).

or Churazov et al. 2012), X-ray energy spectra can provide
crucial constraints on turbulence, in particular considering the
forthcomingAstro-H mission (e.g. Inogamov & Sunyaev 2003;
Zhuravleva et al. 2012; Tamura et al. 2014). We have two im-
portant tools to exploit, one is the broadening of the spectral line,
and the other is the line shift. In Fig. 4 (right), we show the ob-
served line broadening due to turbulent motions along they-axis
view. The Doppler broadening relative to the line rest energy E0

is defined5 as∆E/E0 ≡
√

2σ1D,ew/c. The observed 1D veloc-
ity dispersion is computed asσ2

1D,ew = E[v21D] − E2[v1D], where
E[x] is the X-ray emission-weighted average along line of sight,
using as emissivityneniΛ(T) with X-ray thresholdTx >∼ 0.3 keV
(Gaspari et al. 2011a). The related full width of the line at half
maximum is FWHM≡ 2

√
ln 2∆E ≃ 1.66∆E. The projected

maps appear somewhat different from the cross-sections, but the
statistics, as the velocity dispersion, is the same after deprojec-
tion. Astro-Hwill be able to resolve∼4 eV (andAthenahalf this
value); using the bright Fe XXV line at 6.7 keV, the lower detec-
tion limit becomes∆E/E0 ∼ 0.06 per cent (the dark regions in
the right-hand panels of Fig. 4). The maps show that, assuming
good statistics,Astro-H could detect turbulence in most of the
cluster, whereσ1D,ew >∼ 200 km s−1 or 1D Mach number>∼ 0.13
(the non-black regions), covering our entire simulated range (see
Nagai et al. 2013 for synthetic maps usingAstro-Hresponse). Fe
XXV is an excellent line since the associated thermal broaden-
ing is justσth = (kbT/56mp)0.5 ∼ 120 km s−1, thereby the turbu-
lent dispersion typically dominates the contribution to the total
broadening of this line.

While the projected velocity dispersionσ1D,ew highlights the
small-scale motions via the line broadening, the projected– X-
ray emission-weighted – velocity field probes the large-scale
motions via the line shift (e.g. Zhuravleva et al. 2012). Notice
that the driven velocity field still has average 3D laminar motion
∼ 0. Figure 6 shows the large eddies of size several 100 kpc, car-

5 The
√

2 term comes from the definition of the Gaussian distribution,
∝ exp[−x2/2σ2], and not from isotropy arguments.

Fig. 6. X-ray emission-weighted velocity (km s−1) along they-axis,
for the hydro model withM ∼ 0.5 (cf. first row in Fig. 4; the conductive
models display similar maps). The projected velocity highlights only
the large-scale motions, which dominate the kinetic energycontent in
our (and cosmological) runs, due to the injection atL > 100 kpc.

rying most of the specific kinetic energy (σ2
v/2 ∼ A2

v,max), which
would be absent in atmospheres stirred only at small scales.The
relative strength of the line broadening and shift thus carries im-
portant informations about the nature of the driven turbulence, a
solid proxy corroborated by its insensitivity to conduction.

In passing, we note that X-ray observations are not the sin-
gle channel to probe ICM fluctuations. We propose to use the
thermal Sunyaev-Zel’dovich (SZ) effect to independently extract
pressure fluctuations. Current X-ray maps still have>∼ 4× higher
spatial resolution. However, future observations (e.g.ALMA,
CCAT, SKA) will allow to constrain the ICM power spectrum
even in the submillimeter/radio band, avoiding the use of expen-
sive X-ray spectroscopy.

5. Discussion and physical interpretation

We discuss in this section the physical interpretation of the ICM
power spectrum, in particular concerning the tight relation be-
tween the velocity and the other primary thermodynamic quanti-
ties (entropy, pressure, density). It shall be kept in mind that the
reason why we perform 3D simulations is the impossibility to
analytically solve a chaotic, nonlinear system. The following ar-
guments arise from first order perturbations or dimensionaltheo-
ries, and shall be regarded as simple estimates. The simulations
generally confirm the ansatz presented below, albeit with rele-
vant differences which are critically discussed. We focus first on
the normalization of the spectra (l ∼ L; §5.1), and then we ana-
lyze the spectral cascade (l < L; §5.2), along with the alterations
imparted by conduction from the ideal evolution.

5.1. Spectra normalization

The normalization of the spectra is likely related to the relative
importance of gravity waves and sound waves. Linearizing the
perturbed hydrodynamic equations, it is possible to describe the
propagation of a general wave in a spherical and gravitationally
stratified atmosphere in terms of the following dispersion rela-
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tion (see Balbus & Soker 1990 for the WKBJ analysis):

ω4 − ω2 c2
s k2 + ω2

BV c2
s k2
⊥ = 0, (2)

wherek2 = k2
r + k2

⊥ (kr and k⊥ are the radial and azimuthal
components of the wavenumber vectork, respectively),cs =

(γ kbT/µmp)1/2 is the adiabatic sound speed, andωBV is the
Brunt-Väisälä (buoyancy) frequency defined as

ωBV ≡
[

g

γ

d ln K
dr

]1/2

, (3)

whereg is the gravitational acceleration. Eq. 2 includes the
action of two key waves. The middle term is associated with
pressure waves, or simply sound waves (p-waves), while the last
term represents gravity waves (g-waves) driven by the restoring
buoyant force. In the next sections, we show that small pertur-
bations driven by the two waves are tied to the Mach number,
∼ δv/cs. For bothg- andp-waves this holds within order unity
(as in the simulated nonlinear regime), but the leading perturba-
tions and dynamical modes differ: g-waves mainly drive entropy
perturbations (δK/K), increase the gas vorticity, and induce a
tangential bias in the turbulent velocity field;p-waves are in-
stead associated with compressive pressure fluctuations (δP/P),
a preferentially irrotational field, and isotropic turbulence (or
with slightly radial bias).

In Figure 7, we show the frequency of the simulated turbu-
lent motions,t−1

turb, compared with the Brunt-Väisälä frequency
(black; Eq. 3) in the full radial range (at variance with GC13,
where we focused on the properties of the central region). At
large scales, the two frequencies tend to be roughly compara-
ble (Froude number∼ 1), hence bothg-waves andp-waves can
be excited. This is a typical condition for most clusters, since
large-scale profiles (entropy, pressure) are fairly self-similar, and
turbulence follows our simulated subsonic range. Let us first an-
alyze the two limiting regimes, in order to understand better both
processes.

5.1.1. Low frequencies (low M): g-waves

The stratification of the ICM atmosphere allows to excite gravity
waves (cf. Lufkin et al. 1995; Ruszkowski & Oh 2010, 2011). In
the low frequency regime, the dispersion relation in Eq. 2 can be
written as

ω2 ≃ ω2
BV

k2
⊥

k2
, (4)

which tells us forω > ωBV gravity waves are evanescent, since
kr must be imaginary. Therefore, whereverω < ωBV g-waves
are excited. For a cluster atmosphere,ωBV declines at larger
and waves are trapped within the radius such thatω ≃ ωBV
(Balbus & Soker 1990), ask ≃ k⊥. More important, buoyant
oscillations damp the radial component of turbulence, inducing
a tangential bias in the gas velocity field (Froude< 1). In the
limiting case, the chaotic motions should collapse in azimuthal
shells (e.g. Ruszkowski & Oh 2010). The profile of the velocity
anisotropy parameter,β ≡ 1 − σ2

v⊥
/2σ2

vr
would showβ ≪ 0.

Tangentially-biased vorticity is thus a good marker of theg-
waves influence (see §5.1.3).

Gravity waves are mainly tied to entropy perturbations (see
also Z14). Using as dominant frequencyωBV , the buoyant ac-
celeration over a displacementδr can be described with a simple
harmonic oscillator:

r̈b = −ω2
BV δr = −

c2
s

γ2 |HP|HK
δr (5)

Fig. 7. Typical frequency of the turbulent motions including the cas-
cade (for the simulated sampleM = 0.25 → 0.75), compared with
the Brunt-Väisälä buoyancy frequency (black). The minimumturbu-
lence frequency is at the injection scale, typicallyL ∼ 600 kpc. For
ωturb < ωBV (Froude< 1), g-waves tend to be the process driving
(entropy) fluctuations, while in the opposite regime sound waves drive
stronger pressure perturbations, in both cases∝ M.

whereωBV is written6 as a function of both the scale height
of entropy, HK ≡ dr/d ln K, and pressure,HP ≡ dr/d ln P.
Physically,g-waves occur because an entropy element is dis-
placed from its equilibrium position,r0, thus inducing an op-
posite force acting to restore the blob back to where the radial
entropy is the same (clusters are convectively stable,∇K > 0).
The small displacement is thus linked toδK/K ≃ (d ln K/dr)0 δr,
i.e. δr ≃ (δK/K) HK0. The specific potential energy of the har-
monic oscillator isEb = ω

2
BV(δr)2/2. Substituting forωBV and

δr, we can write

Eb ≃
c2

s

2γ2

HK0

|HP0 |

(

δK
K

)2

. (6)

Using Eb as estimate for the average specific kinetic energy
(v̄21D/2 ∼ Eb), finally yields

M̄1D ∼
1
γ

√

HK0

|HP0 |

∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

≃ O(1)
∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

. (7)

The last step arises from the fact that, for an isothermal atmo-
sphere, the ratio of the scale heights is constant,HK/|HP| =
1/(γ − 1) = 1.5. In general,HK/|HP| = |αP|/αK ≃ 1− 2 (within
r500), whereαP andαK are the slopes of the logarithmic radial
profiles of pressure and entropy, respectively;αP steepens with
increasing radius (Arnaud et al. 2010), whileαK ≃ 1.

Figure 8 shows the power spectra of all the thermodynamic
quantities, including turbulent velocities, for the hydroand a
conductive run in the low Mach regime. Considering the hydro
model (top), the ratio ofM1D ≃ M3D/

√
3 andδK/K near the in-

jection scale is 0.85, in line with the estimate in Eq. 7. Evidently,

6 Assuming hydrostatic equilibrium, valid for lowM, g = − c2
s/(γHP);

notice thatHP < 0 andHK > 0.
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Fig. 8. Characteristic amplitude of the fluctuations related to allthe
thermodynamic quantities, for theM ∼ 0.25 flow without (top) and with
conduction (f = 10−2; bottom):v/cs (3D Mach),δK/K (entropy),δρ/ρ
(density),δT/T (temperature),δP/P (pressure). Except for turbulent
velocities (laminar motions are null by construction), allother quanti-
ties are divided by the azimuthally averaged profile. For theconductive
runs, we plot the (observable) electron temperature; the entropy param-
eter isK ≡ (Pe + Pi)/ργ. In the lowM flow, entropy perturbations (tied
to g-waves) are the leading tracer of turbulent velocities, respecting the
isobaric regime. Conduction gradually shifts the latter mode towards
the isothermal regime, changing the relation with the derived thermo-
dynamic quantities (δK/K starts to approach density fluctuations).

only one component of velocity is acting as efficient mixer, since
cluster gradients are functions ofr. Fig. 8 clarifies that the low
frequency regime corresponds to
∣

∣

∣

∣

∣

δP
P

∣

∣

∣

∣

∣

≪
∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

, (8)

since slow motions tend to be in pressure equilibrium with the
surroundings, helped by the convective stability of the ICM. The
isobaricbehavior is also manifest in the relation between density

and temperature, or entropy and density (both anticorrelated):
∣

∣

∣

∣

∣

δρ

ρ

∣

∣

∣

∣

∣

≈
∣

∣

∣

∣

∣

δT
T

∣

∣

∣

∣

∣

and
∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

≈ γ
∣

∣

∣

∣

∣

δρ

ρ

∣

∣

∣

∣

∣

[isobaric]. (9)

Both relations are followed within<∼10 per cent, as shown in
Fig. 8 (consistently with the Pearson analysis in GC13). Recall
that halving the injection scale (§3), slightly reduces thestrength
of g-waves asL1/3, sinceωturb ∝ L−1/3 approachesωBV (Fig. 7).
Av/Aρ thus increases by the same factor (sound waves are still
too weak to contribute).

In the presence of mild conduction, the normalization is
unaltered for f < 10−2, although the intermediate cascade is
damped by the increased diffusivity of the ‘tracer’ (§5.2). For
f >∼ 10−2, also the large-scale perturbations are progressively
driven towards the isothermal regime. Gravity waves can still
induce a significant entropy contrast, but buoyancy is weakened
by the increased diffusivity, tracing the shallower temperature
gradient instead of∇K (Ruszkowski & Oh 2010). The normal-
ization of perturbations can thus decrease by a factor∼ 2. The
relation between the different perturbations changes as
∣

∣

∣

∣

∣

δρ

ρ

∣

∣

∣

∣

∣

≫
∣

∣

∣

∣

∣

δT
T

∣

∣

∣

∣

∣

and
∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

≈ (γ − 1)
∣

∣

∣

∣

∣

δρ

ρ

∣

∣

∣

∣

∣

[isothermal]. (10)

Since turbulent regeneration is continuous and ions-electrons
have a non-negligible equilibration time, the pure isothermal
regime is impossible to achieve. Nevertheless, as shown in Fig. 8
(bottom panel), the gap between entropy and density perturba-
tions starts to shrink, asTe fluctuations gradually lower (see also
Fig. 9, bottom).

5.1.2. High frequency (high M): p-waves

In the opposite regime, i.e. high frequency (M > 0.5), the dis-
persion relation (Eq. 2) is shaped by the contribution of sound
waves (p-waves), which can be now written as

ω2 ≃ c2
s k2. (11)

The azimuthal component of the wavenumber scales ask⊥ ∝ r−1.
Therefore,p-waves excited in the cluster central regions become
mainly radial further out,k ∼ kr . Moreover, disturbances to the
vorticity results to be proportional to (Lufkin et al. 1995)

∂

∂t
δ (∇ × u) ∝ k × ∇ ln K, (12)

implying thatp-waves are preferentially7 characterized by an ir-
rotational velocity field, in contrast with the more tangential g-
waves. Overall, strongerp-waves tend to restore isotropic tur-
bulence, or to induce a slightly radial bias (depending on how
many sound waves are excited in the central regions; §5.1.3).

The characteristic injection frequency ofp-waves isω2
s ≃

c2
s/L

2. In this high frequency regime
∣

∣

∣

∣

∣

δP
P

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

δK
K

∣

∣

∣

∣

∣

, (13)

meaning that pressure perturbations drive the dynamics andfluc-
tuations follow theadiabatic regime (constant entropy). Fol-
lowing the same arguments provided in the previous section,
the displacement magnitude is now tied to pressure variations

7 Vorticity can be in part generated via the baroclinic instability, i.e. as
sound waves travel obliquely across the entropy gradient.
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Fig. 9. Characteristic amplitude of all the thermodynamic fluctuations,
for the runs withM ∼ 0.5 (hydro andf = 0.1) and M ∼ 0.75 (cf.
Fig. 8). In significantly turbulent atmospheres,p-waves start to affect
the fluctuations dynamics viaδP/P, still in conjunction with entropy
perturbations (ωturb is not yet≫ ωBV). The derived quantities follow
from the adiabatic/isothermal mode, for the hydro/conductive flow.

as |(δP/P) HP0|. Using the potential energy as estimate for the
average kinetic energy (cf. Eq. 6-7) now yields

M̄1D ∼
|HP0 |

L

∣

∣

∣

∣

∣

δP
P

∣

∣

∣

∣

∣

≃ O(1)
∣
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∣

∣

∣

δP
P

∣

∣

∣

∣

∣

, (14)

where |HP0| ≃ L/|αP|, since we are analyzing the large-scale
power. We note that stratification allows a more efficient gener-
ation of sound waves compared with uniform media (e.g. Stein
1967), as shown by the simulations, due to the partial conversion
of solenoidal turbulence in more compressive motions.

Comparing the last estimate with Eq. 7, it is clear that in both
cases the (1D) Mach number drives the spectrum normalization
of perturbations, as found in the simulations. The transition must
be smooth, as hinted by the general dispersion relation (Eq.2).
However, the driving perturbations change character. Figure 9
shows that forM >∼ 0.5,δP/P rises linearly withM, while δK/K
remains constant (AK,max ∼ 0.15 in both hydro runs). In the
M ∼ 0.75 flow (middle panel),δP/P has reachedδK/K, hence
p-waves do not yet fully overcomeg-waves, which would hap-
pen forM >∼ 1 (asωturb > ωBV at each radius, or Froude> 1;
Fig. 7). Moreover, while gravity waves tend to accumulate in
the system,p-waves may leave it in a few sound-crossing times.
Again, turbulence with high Mach number is required to see a
system fully dominated byp-waves.

According to Eq. 13, the perturbations of the other thermo-
dynamic quantities start to shift from the isobaric to adiabatic
regime, implying the following conversion:
∣
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≈ γ
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∣

[adiabatic], (15)

as signaled by the increasing gap between density and tempera-
ture fluctuations (up to≃ 1.5). Adding conduction (Fig. 9, bot-
tom) shifts again the adiabatic mode towards a partial isother-
mal regime (Eq. 10). Interestingly, pressure fluctuations are now
more clearly the driver of density fluctuations (δP/P ∼ δρ/ρ),
sinceδK/K has degraded by over 50% compared with the hydro
run.

We note that, in the lowM regime, the presence of weak
δP/P can be mainly attributed to the conservation of the
Bernoulli parameter (although exactly valid only in the steady
state). For a constant potential, it can be written as

v2

2
+

c2
s

γ − 1
= const. (16)

Differentiating and taking as reference velocityv0 = 0, yields
δP/P ∝ M2, which is indeed followed by the runs withM < 0.5
(compare Fig. 8 and 9, top panels), while models with stronger
turbulence followδP/P ∝ M (Fig. 9, top and middle panel).

5.1.3. Real systems: g- and p-waves interplay

The estimates in Eq. 7 and 14 are crude approximations to real-
ity. In the realistic cluster evolution, the 3D hydrodynamic equa-
tions, and the related perturbations, are nonlinear, with the addi-
tion of chaotic stirring (§5.2.1 for other deviations). Multiple
frequencies act at the same time, describing waves at different
scales and radii. Although the simulations confirm that the spec-
tra normalization is provided byM1D, we expect a combination
of g- and p-waves shaping the dynamics of a turbulent cluster.
This is visually highlighted by the maps in Fig. 4. More quanti-
tatively, we can discriminate the action of both channels through
an important marker, i.e. the anisotropy of velocities along the
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Fig. 10. Velocity anisotropy as a function of radius,β(r) ≡ 1 −
σ2
v⊥/2σ

2
vr

, for all the hydro models. Negative/positive values imply a
tangential/radial bias. g-waves (M ≤ 0.25) tend to damp the radial
component of turbulent motions, inducing a tangential bias; p-waves
(M ≥ 0.75) tend instead to preserve isotropic motions, or to inducea
slightly radial bias. In realistic clusters, the anisotropy is expected to be
minor, due to the interplay of both waves and the recurrent stirring.

radial direction (§5.1.1-5.1.2). Notice that computing the veloc-
ity spectra over the scalel obfuscates the radial anisotropy.

In Figure 10, we show theβ ≡ 1−σ2
v⊥
/2σ2

vr
parameter for all

the hydro models. For the lowM ∼ 0.25 flow, above∼100 kpc
the motions are mildly8 tangential, reaching a minimum value
β ∼ −1. Analyzing the frequencies in Fig. 7, this corresponds to
the region whereω < ωBV , i.e. whereg-waves tend to be more
dominant, damping the radial component of turbulent motions.
RaisingM increases the turbulence frequency up to∼ ωBV , even
near the injection scale at several 100s kpc. Therefore, thelarge-
scale motions progressively lose the tangential bias, drifting to-
wards isotropy (β ∼ 0). In theM ∼ 0.75 flow (red),p-waves
start to dominate: motions show no sign of the tangential bias,
with instead a slightly radial bias (§5.1.2). Withinr < 100 kpc,
the frequencies of the turbulent cascade are always greaterthan
ωBV , hencep-waves start to have a major influence. The transi-
tion occurs at smaller radii for lowerM, as suggested by Fig. 10.
On the other hand, large-scaleg-waves tend to be trapped within
the cluster core; the combination of the two effects results in a
quasi isotropicβ in the core (or slightly radialβ ∼ 0.2). In the
presence of conduction, the same scenario applies, but theβ fac-
tor is globally reduced (by∼2), towards the isotropic value. As
noted in §5.1.1, thermal conduction indeed inhibits buoyancy.

Overall, we suggest to use theβ parameter to discriminate
the effects ofg- andp-waves, in conjunction with the thermody-
namic mode. We remark that typical cluster conditions are ex-
pected to show at best mild anisotropic motions, and emerging
only in spherical coordinates; most clusters are not in a regime
in whichω ≪ ωBV (or the opposite), where radial motions are
dramatically suppressed. The recurrent stirring also promotesβ
values drifting towards isotropy. Nevertheless, the ICM spec-
trum normalization is always comparable toM1D within order

8 The retrieved anisotropy is not strong, sinceβ ≃ −1 corresponds to
vφ ≃

√

1− β vr ≃ 1.4vr , difficult to observe by visual inspection.

unity, regardless of which one is the driving wave, and for both
the linear approximation (Eq. 2) and the nonlinear simulations.

5.2. Spectral cascade: advection of tracers

We have analyzed so far the physical interpretation of the spectra
normalization (l ∼ L). The next question is why do perturbations
show an inertial cascade similar to that of velocities (l < L)?
The main thermodynamic variables can be crudely consideredas
‘tracers’ of the velocity field, whose spectra are explainedwith
the advection theory of passive scalars (e.g. Sreenivasan 1991;
Monin & Yaglom 1975; Warhaft 2000 for a review). This is par-
ticularly relevant in the subsonic regime, since the compressive
term∇ · u→ 0.

The equation governing the advection of a passive incom-
pressible scalarC is given by (Warhaft 2000, sec. 1)

DC
Dt
≡ ∂C
∂t
+ u · ∇C = ∇ · (κ∇C), (17)

whereκ is the diffusivity of the tracer andD/Dt is the Lagrangian
derivative. According to the classic Kolmogorov-Obukhov-
Corrsin theory (KOC; Obukhov 1949; Corrsin 1951; Warhaft
2000), the energy spectrum of the scalar linearly traces that of
velocities, i.e.

EC(k) ∝ Ev(k) ∝ k−5/3. (18)

Considering a 2D vortical motion, the vorticity is conserved (see
also Kelvin’s theorem),D(∇ × u)/Dt = 0, in analogy to Eq. 17.
The turbulent eddies and the scalar are thus expected to share
similar properties, like the spectral cascade, although the diffu-
sive term will introduce some discrepancies (§5.2.1).

Entropy is an excellent example of ‘passive tracer’.S ≡
kB/[(γ − 1)µmp] ln K has indeed the advantage of being insen-
sitive to adiabatic compressions or expansions. Aside diffusion,
the lagrangian derivative of entropy is thus conserved, if no irre-
versible heating (H) or cooling (L) occurs, such as

ρT
DS
Dt
≡ ρT

(

∂S
∂t
+ u · ∇S

)

= H −L ≃ ∇ · (DturbρT ∇S), (19)

The hot ICM has negligible radiative cooling (L ≃ 0); the
only source of heating can be turbulent diffusion or dissipation.
The latter is subdominant for subsonic flows,tdiss,heat≃ M−2 tturb.
The entropyS can thus replace the scalarC in Eq. 17, with a dif-
fusivity tied to the turbulent field,Dturb ∼ σv l (§2). In the lowM
regime (§5.1.1), entropy fluctuations tend to lead the dynamics
of perturbations, linked to the large-scaleg-waves. TheδK/K
cascade then develops overl < L, tracing the velocity inertial
regime (Fig. 8), in line with KOC theory (Eq. 18). Since the
fluctuations of density and temperature follow from the domi-
nant mode – isobaric (Eq. 9), isothermal (Eq. 10), or adiabatic
(Eq. 15) –, also their cascade traces that ofδK/K. As discussed
before, increasing the Mach number, boosts the impact ofp-
waves. The leading tracer gradually shifts towardsδP/P fluctu-
ations. In theM ∼ 0.75 hydro run (Fig. 9), density perturbations
start to track more closely theδP/P cascade. Pressure is affected
by adiabatic processes, yet the simulations show that its cascade
is slightly steeper than that of velocities, signaling thatit can be
used as a crude tracer of the (subsonic) flow. Interestingly,pres-
sure is not directly affected by turbulent mixing (which acts on
entropy), and thus displays a tighter cascade with velocities9.

9 In the M ∼ 0.25 run, theδP/P cascade is instead steeper, following
the classicalEP ∝ k−7/3, solely driven by the Bernoulli term (Eq. 16).
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Adding conduction, increases the effective diffusivity of the
tracer (κ → f κS), leading to a cascade steeper than that of Kol-
mogorov (Fig. 8, bottom; notice howTe fluctuations are strongly
damped). The decline of the tracer spectrum starts to occur as
Dcond > Dturb/100, i.e.Pt < 100. Physically, the quick increase
in temperature induces a rapid re-expansion of the forming over-
density, overcoming the action of turbulent regeneration.In the
conductive regime, theAv/Aρ ratio is thus expected to gradually
increase as a function off (Fig. 2). The ratio widens up to a fac-
tor of 3 - 5 over all scales in the presence of strong conduction
( f >∼ 0.1).

It is interesting to note that in the simple KOC picture

E(k)C = b ǭ −1/3
C ǭv k−5/3, (20)

whereb is a universal constant. The average dissipation rate of
the passive tracer and velocity is ¯ǫC ∼ σ2

C/(L/σv) andǭv ∼ σ3
v/L,

respectively, implying that the normalization of Eq. 20 isinde-
pendentof σv. In reality, the compressive term sustains a rela-
tion between the density variance and the Mach number, even
in homogeneous media: in the subsonic rangeδρ/ρ fade asM2

(cf. §5.1.2), while the relation becomes linear for supersonic tur-
bulence (see Kowal et al. 2007 and §1). The latter is however
conceptually different from our retrieved linear relation devel-
oping in the subsonic state of galaxy clusters. In thestratified
ICM plasma, increasing Mach number implies larger coherent
displacement, leading to a larger contrast of entropy/pressure de-
fined by the cluster gradients or scale heights (Eq. 7 and 14).

5.2.1. KOC departures and the radial gradients

Although KOC theory can explain the global picture of the spec-
tral cascade, its arguments are purely based on dimensionalanal-
ysis. Our retrieved slope of entropy/density is typically shal-
lower than the Kolmogorov index, in the non-diffusive models.
Physical experiments (e.g. fig. 5 in Sreenivasan 1991) show that
the tracer slope approaches the Kolmogorov cascade only for
very high Reynolds numbers and in a slow asymptotic way. For
low Reynolds numbers, as in our ICM simulations (RL <∼ 500;
GC13, sec. 2.6), the spectral index is expected to be shallow
(cf. figure 4 in Warhaft 2000). Even pressure fluctuations, albeit
in line with the Kolmogorov cascade, are shallower than the clas-
sic expectationEP ∝ k−7/3 (AP ∝ k−2/3; Schuecker et al. 2004),
in the M >∼ 0.5 runs. A slope as shallow asAk ∝ k−1/5 signals
that the timescale for transferring the tracer variance from large
to small scales is∝ k−4/5, instead of the Kolmogorov∝ k−2/3,
due to diffusion effects affecting the transfer process in different
ways (see the viscosity test in Fig. 3). This is remarked by the
uncorrelated phases between velocity and the tracer (Fig. 4).

Another departure from the KOC cascade may be associated
to compressive features. In the extreme case of highly super-
sonic turbulence, shocks induce very thin peaks in gas density
(Kim & Ryu 2005, fig. 2). Sharp peaks can be seen as delta func-
tions, which in Fourier space generate a flat spectrum,Pδ ∼ k0.
ICM turbulence is however subsonic, thus the contribution of
thin compressive features to our observed flattening is limited.

The incomplete similarity with the Kolmogorov cascade
more likely depends on the initial entropy/pressure gradients. In
fact, Eq. 7 and 14 are only valid for small displacements. For
a nonlinear evolution, the injected eddy will experienceHK and
HP varying with radius, given that the initial cluster profilesare
self-similar power laws (§5.1.1):

δK
K
= αK

δr
r

and
δP
P
= αP

δr
r
. (21)

Fixing for instanceδr ∼ L, the injected turbulence at smaller
radii can create relatively larger contrasts, inducing a flattening
in the spectral cascade. The magnitude of this effect depends
however on the relationr ←→ l. Since chaotic motions are 3D,
the turbulent streamlines intersect different projections of the ra-
dial gradients, hence the dependence shall be weak. Neglect-
ing the previous KOC departures, the flattening of the simulated
spectra corresponds to an averager ∼ l0.13. An opposing effect
is related to the fact that the indicesαK andαP are not constant,
but both declines within the core radius (turbulent mixing also
slightly lowersαK in time; GC13). According to Eq. 21, a lower
slope implies a lower contrast. This may explain why theAv/Aρ
ratio slowly declines towards smaller scales (Fig. 2, top),though
always remaining larger than unity. We will investigate in future
other cluster atmospheres, to assess the impact of differentK and
P scale heights. In closing, we note that all these secondary ef-
fects are washed out in the presence of any significant diffusivity,
which completely inverts theAv/Aρ downtrend (Fig. 2).

5.3. Further improvements

Finally, we discuss the limitations of the models and further im-
provements. We studied here the evolution of the intracluster
plasma, primarily in the hot regime. In future works, we planto
extend the simulated sample (e.g. strong cool-core systems) and
to test additional physics. Needless to say, 3D high-resolution
2T simulations with turbulence and diffusive terms are extremely
expensive, hence small steps must be taken.

It will be interesting to include the effect of cooling, which
can induce thermal instability and condensation of cold filaments
(Gaspari et al. 2012a, 2013). AGN feedback balances cooling,
preserving the cluster core in global quasi-thermal equilibrium
(e.g. Gaspari et al. 2012b). However, both processes just affect
the inner regionr < 0.1R500 (cf. Gaspari et al. 2014), while at
large radii galaxy clusters maintain self-similarity, especially in
the entropy profile (αK ∼ 1; e.g. Panagoulia et al. 2014). We
thus do not expect dramatic deviations from the current ICM
power spectrum (which is intrinsically volume-weighted) and
we believe our results can be applied to a wide range of clus-
ters and conditions. Strongly unrelaxed systems, as major merg-
ers, might present significant variations, e.g. due to the dynamic
gravitational potential, and requires to be further tested. We are
also studying the role of very small injection scales (e.g. AGN
outflows): for L < 50 kpc entropy perturbations may be con-
siderably weaker (asωBV < ωturb), while pressure perturbations
should drive the normalization of the density power spectrum,
even at low Mach numbers.

In the companion work (Z14), we improve the driving, in-
cluding the cosmological evolution and the turbulence generated
by mergers and large-scale inflows. Albeit limited by low reso-
lution, we find that the linearM1D-δρ/ρ relation holds across a
large sample of simulated clusters. We retrieve a relation scatter
of ∼ 30 per cent. In the cosmological context, it is more difficult
to disentangle the source of the velocity anisotropy, especially in
unrelaxed systems. As for observational data, it is important to
accurately remove the underlying radial profile and the strongly
nonlinear sub-structures, which can contaminate the large-scale
power. We find that the most reliable scales dominated by the
turbulent cascade arel < 300 kpc, which is fortunately the op-
timal regime for X-ray observations (see GC13, sec. 4.3 for a
comparison with real data).

We plan to test additional physics. We currently probed the
effects of (nearly maximal) Spitzer-like viscosity and electron-
ion equilibration. It will be interesting to assess the roleof the re-
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lated magnetic suppression factors (which can be different from
that of heat transport). On the other hand, diffusivities linked to
the ions are roughly two orders of magnitude slower compared
with electron thermal conduction, since the electron soundspeed
is≃ 43 times that of ions. We thus expect conduction to dominate
the shape of the power spectrum over a large range of scales. A
viscosity lower than the present Spitzer-like value (whichwould
require a much higher resolution) would imply a more extended
inertial cascade. Compared with Fig. 2,Av/Aρ should thus differ
only below 10s kpc, continuing to widen in combination with
high conductivity. In the presence instead of both low viscosity
and conductivity, density and velocity spectra are expected to be
tightly coupled again (KOC theory).

Fully MHD simulations are a further route of improve-
ment, modeling better the local features (as cold fronts andfil-
aments). However, besides the numerical complication of inte-
grating anisotropic conduction for long times, MHD runs canat
best retrieve the geometric suppression factor (see §2). There-
fore, we would still be forced to parametrize the conductivity
with a factor f‖, in order to include microinstabilities and line
divergence below the gas mean free path.

6. Conclusions

We carried out 3D high-resolution hydrodynamic 2T simula-
tions, in order to study the power spectrum of the hot intra-
cluster plasma in its various manifestations. We focused onthe
properties of the velocity field and the intimate relation with the
driven thermodynamic fluctuations (in particular of density, the
primary observable). The ICM power spectrum contains enough
information to accurately constrain the dominant physics of the
diffuse medium, as the strength of turbulent motions, the level
of thermal diffusivity, and the thermodynamic mode, among the
most notable. The spectra ofv/cs and of perturbations (e.g.δρ/ρ)
are globally self-similar, varying the strength of turbulence via
the 3D Mach number,M, or changing the injection scale,L.
At the large cluster scales (l ∼ L), i.e. several 100 kpc:

• Weak turbulent motions in the cluster (M <∼ 0.25) mainly
excite gravity waves (ωturb < ωBV); the leading perturba-
tions are related to entropy variationsδK/K. For stronger
turbulence (M > 0.5), sound waves start to significantly
contribute (ω >∼ ωBV), passing the leading role to the
compressive pressure fluctuationsδP/P.

• The other thermodynamic perturbations, asδρ/ρ andδT/T,
derive from the dominant mode of the process: isobaric
(for g-waves/low M), adiabatic (forp−waves/high M), or
a mixed state for intermediateM. Conduction shifts the
perturbations towards the isothermal mode.

• In both the regimes driven byg- or p-waves, the turbulent 1D
Mach number is comparable to the variance of the leading
perturbations (K or P), within order unity. E.g. forM <∼ 0.25
flows, M1D ∼ δK/K ∼ γ δρ/ρ. Quantitatively, all simula-
tions show alinear relation given by Av,max≃ 2.3 Aρ,max (at
L∼ 600 kpc), with a weakL1/3 scaling. We remark that to
convert between Fourier and real space the relation to apply
is insteadM ≈ 4 Aρ,max (at L∼ 600 kpc).

• Turbulent motions with a tangential bias (β(r) < 0) mark the
influence ofg-waves (lowM), while p-waves (highM) tend
to preserve isotropy or to induce a slightly radial bias. Most
clusters show intermediate Mach numbers, hence we expect

a mixed regime drifting towards global isotropy (Froude
∼ 1).

At the intermediate/small scales (l < L), i.e. 10 - 100 kpc:

• The turbulent velocities develop a Kolmogorov cascade
(Av ∝ k−1/3 or Ev ∝ k−5/3) in all subsonic runs, despite strat-
ification (ωturb < ωBV). The thermodynamic perturbations,
in particular entropy, act as effective ‘tracers’ of the velocity
field, developing an analogous inertial cascade, in line
with the classic (Kolmogorov-Obukhov-Corrsin) advection
theory of passive scalars in turbulent media.

• The cluster radial gradients, together with compressive
features, conspire to moderately flatten the perturbations
spectrum, slightly departing from the KOC theory and
inducing a slow decrease inAv/Aρ.

• Thermal conduction strongly damps density/entropy per-
turbations (the spectral steepening occurs where Prandtl
Pt < 100), but leavesunalteredthe velocity cascade. This
has a dramatic consequence onAv/Aρ, inverting the down-
trend shown in the non-diffusive model. The ratio can widen
up to∼5, as a function ofP−1

t ∝ f /M, unveiling the presence
of significant conductivity in the ICM, and breaking any
degeneracy in the interpretation of single spectra.

The real-space and projected maps carry important informations:

• The ideal or poorly diffusive flows (f <∼ 10−2) show
complex filamentary and patchy density/entropy structures
(similar in the core and outskirts), excited by the large-scale
waves and later altered by hydrodynamical instabilities.
The conductive models instead show smooth maps due to
the smearing of sharp features, which does not affect the
turbulent eddies. Albeit sharing similar amplitude, velocities
have uncorrelated phases with the tracer, hence a filament
does not necessarily imply a high local velocity.

• The thermodynamic fluctuations can be described by log-
normal distributions, with weak non-Gaussian deviations,
strengthening the role of the power spectrum.

• Synthetic X-ray images of velocity dispersion show that
the forthcomingAstro-H (andAthena) will be able to well
detect subsonic ICM turbulence. Using the broadening of
the Fe XXV line, the detectable turbulent broadening will
be >∼ 200 km s−1, i.e. M1D >∼ 0.13 for massive clusters,
probing density perturbations of the order of a few per cent
and allowing to calibrate the linear relation. The projected
velocity maps (line shift) highlight instead the power stored
in the large-scale motions, constraining the injection scale.

The analysis presented in this work shows the wealth of
information that can be extracted from the ICM power spec-
trum. For instance, Schuecker et al. (2004) retrieve in Coma
pressure fluctuations which are mildly adiabatic and trace aKol-
mogorov spectrum, in line with aM ∼ 0.4 turbulent flow. In
Gaspari & Churazov 2013 (see also Churazov et al. 2012), we
showed that the density spectrum arising from deepChandra
data of Coma is consistent with a similar level of turbulence
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(several 100s km s−1), along with highly suppressed conduc-
tion ( f ∼ 10−3). Sanders & Fabian (2012) found density fluc-
tuations (<∼ 8 per cent) having a cascade shallower than Kol-
mogorov in AWM7 cluster, implying highly suppressed conduc-
tion andM <∼ 0.18. Being able to quickly convert between ther-
modynamic properties and gas motions through a simple linear
relation, or being able to assess the plasma diffusivity through
the spectral slope or theAv/Aρ diagnostic, is a powerful tool for
both observational and theoretical study. The same analysis can
be extended to other gaseous halos, such as massive galaxiesand
groups. Although current constraints are in its embryonic stage,
we are beginning to understand the richness of informationsthat
the ICM power spectrum can convey. Future studies and obser-
vations (not only in the X-ray band, but also via SZ maps) willbe
able to improve and exploit the full potential of the ICM power
spectrum, helping us to probe the physics of the gaseous medium
with high precision.
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