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ABSTRACT
We develop and test a new statistical method to measure the kinematic Sunyaev-Zel’dovich
(kSZ) effect. A sample of independently detected clusters is combined with the cosmic flow
field predicted from a galaxy redshift survey in order to derive a matched filter that optimally
weights the kSZ signal for the sample as a whole given the noise involved in the problem. We
apply this formalism to realistic mock microwave skies based on cosmological N-body simu-
lations, and demonstrate its robustness and performance. In particular, we carefully assess the
various sources of uncertainty, CMB primary fluctuations, instrumental noise, uncertainties in
the determination of the velocity field, and effects introduced by miscentering of clusters and
by scatter in the mass-observable relations. We show that available data (Planckmaps and the
MaxBCG catalogue) should deliver a7.7σ detection of the kSZ. A similar cluster catalogue
with broader sky coverage should increase the detection significance to∼ 13σ. We point out
that such measurements could be binned in order to study the properties of the cosmic gas and
velocity fields, or combined into a single measurement to constrain cosmological parameters
or deviations of the law of gravity from General Relativity.

Key words: cosmology: theory — cosmic microwave background — large scale structure of
Universe — methods: statistical

1 INTRODUCTION

The cosmic microwave background (CMB) radiation has a prime
role in modern cosmology. Its study not only gives us access to
early-Universe physics and to tight constraints on the parameters
of the background cosmological model, but also allows us to ex-
plore the properties of baryons and dark matter in the low-redshift
Universe. The pioneering exploration of the CMB was carriedout
by the Cosmic Background Explorer (COBE) satellite which pro-
vided the first detection of temperature fluctuations. More recently,
the Wilkinson Microwave Anisotropy Probe (WMAP) andPlanck
satellites have provided ever more detailed and accurate full-sky
CMB anisotropy maps, which have even been able to detect lensing
of the CMB photons by the large-scale structure of the Universe.

The structure in the CMB radiation can be classified into
two types. “Primary anisotropies” are those resulting fromphysics
before or on the last scattering surface, whereas “secondary
anisotropies” are those caused by the interaction of CMB pho-
tons with intervening structures at lower redshift. Among the latter,

⋆ E-mail: mingli@mpa-garching.mpg.de, mingli@pmo.ac.cn

the Sunyaev-Zel’dovich effects (SZ;Sunyaev & Zeldovich 1972,
1980a,b) are particularly important and interesting.

The SZ effects refer to the inverse Compton scattering of CMB
photons by free electrons in the hot intracluster and intergalactic
gas that they encounter on their journey fromz ∼ 1100 to z = 0.
This scattering results in a net energy gain of CMB photons atfixed
number density and consequently distorts their spectrum. This ef-
fect is known as the thermal SZ effect (hereafter tSZ). Motions of
the plasma with respect to the CMB rest-frame produces Doppler
effects which shift the temperature of the CMB spectrum while
maintaining its black-body form. This is known as the kinematic SZ
effect (hereafter kSZ). The tSZ and kSZ imprint characteristic pat-
terns in the CMB sky which reflect the structure of the intergalactic
gas at (relatively) low redshifts, so by identifying these patters we
can learn about the distribution of the baryons at the corresponding
epochs.

The tSZ effect provides a measurement of the integral of the
electron pressure along each line-of-sight to the recombination sur-
face. The signals detected so far have primarily been due to the
hot and dense gas in the intracluster medium (ICM) of interven-
ing galaxy groups and clusters. The kSZ, on the other hand, offers
a unique opportunity to characterise the cosmic peculiar velocity
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field in the distant universe, and to search for the so-called“missing
baryons”, the bulk of the cosmic baryon density which apparently
lies outside galaxies and galaxy clusters, and has yet to be identi-
fied directly atz < 2. Thus SZ measurements can shed light on
a number of important aspects of the nonlinear galaxy formation
and feedback processes which structure the low-redshift universe,
as well giving access to the cosmic flow field which is influenced
by the nature of Dark Energy and by possible modifications of the
theory of gravity (e.g.Keisler & Schmidt 2013).

SZ measurements are challenging since the signals are small
and are buried beneath primary CMB fluctuations, instrument
noise, and foreground contaminants (e.g. galactic dust andsyn-
chrotron emission, free-free emission, etc.). The measurement of
kSZ effects is particularly tough, since for galaxy clusters, which
provide the strongest individual signals, the kSZ amplitude is an or-
der of magnitude smaller than the tSZ, and two orders of magnitude
smaller than primary CMB fluctuations. In addition to this, unlike
the tSZ which has a distinctive spectral signature, the frequency de-
pendence of the kSZ signal is identical to that of the primaryCMB
fluctuations. Furthermore, for an ensemple of clusters, thesignal
is predicted to be symmetrically distributed about zero, making it
impossible to enhance the signal-to-noise by stacking, as is often
done for the tSZ.

Despite these difficulties, the latest generation of CMB
telescopes – the South Pole Telescope (Carlstrom et al. 2011;
Schaffer et al. 2011), the Atacama Cosmology Telescope
(Fowler et al. 2007; Swetz et al. 2011), and the Planck satel-
lite – have achieved high-resolution measurements of the CMB at
millimetre wavelengths over large areas, which is enablingdetailed
studies of the SZ effect. In particular, the thermal SZ has been
detected at high significance and is currently posing interesting
challenges to our current understanding of structure formation and
cosmological parameters (Planck Collaboration et al. 2013e,d).

There have also been several claims of detection of the
kSZ. Samples of (X-ray) detected clusters combined with WMAP
CMB maps have been used to estimate cosmic bulk flows in
Kashlinsky et al.(2010); Kashlinsky, Atrio-Barandela, & Ebeling
(2011); Osborne et al.(2011); Mak, Pierpaoli, & Osborne(2011);
Mody & Hajian (2012). These results appear to be in tension with
ΛCDM, but the discrepancy may not be as severe as claimed
(Li et al. 2012), since it has not been confirmed by newPlanck
results (Planck Collaboration et al. 2013a). More recently, a3.8σ
kSZ detection has been reported from correlations of CMB resid-
uals about pairs of luminous red galaxies (Hand et al. 2012).
This finding is in qualitative agreement with theΛCDM expec-
tations as inferred from cosmological hydrodnamics simulations
(Dolag & Sunyaev 2013). Another approach is to use linear per-
turbation theory to estimate the cosmic flow field field from a 3-
dimensional distribution of galaxies, and in this way obtain a tem-
plate for the expected kSZ signal on the sky (Ho, Dedeo, & Spergel
2009; Shao et al. 2011). There has been a marginal detection
of the kSZ from applying this method to the 2MASS survey
(Lavaux, Afshordi, & Hudson 2013). All these examples illustrate
the potential of the field and show that the quality of the datais
reaching a level where cosmological and astrophysical exploitation
of the kSZ effect is imminent.

In this paper, we develop and test a new but related statistical
method to measure the kSZ signal. The idea is to combine a sample
of independently detected galaxy clusters with a velocity field es-
timated by applying perturbation theory to the galaxy distribution.
These two ingredients allow construction of a matched filterthat
optimally weights the signal from each cluster based on the noise

in the CMB and velocity maps and the signal amplitude predicted
from cluster scaling relations and the velocity reconstruction itself.
We investigate the various sources of uncertainty in this measure-
ment and show that our approach should yield a kSZ detection with
high statistical significance (7.7σ), even with current datasets. An
advantage of this scheme with respect to previous ones is that it al-
lows kSZ measurements to be grouped into different mass binsto
study the gas properties of galaxy clusters. Alternatively, they can
be combined into a single measurement to constrain the relation
between density and velocity fields, giving information about the
law of gravity and about cosmological parameters.

Our paper is organised as follows. We first present our sta-
tistical methods, including the derivation of the matched filter for
kSZ measurements (§2). In §3 we describe the way in which we
create mock CMB skies including the kSZ effects expected fora
realistic sample of clusters. We provide details of the application of
our approach to mock data in §4. In §5 we present our results, and
explore and quantify different sources of systematic errors. In the
final section, §6, we discuss our results and conclude.

2 OPTIMAL MEASUREMENT OF THE KSZ EFFECT

In this section we will present and discuss our method to measure
the kSZ effect for a given set of galaxy clusters.

2.1 Matched Filter

As mentioned before, the typical amplitude of the kSZ effectis
smaller than the tSZ and than the primordial CMB temperature
fluctuations. Thus, it is necessary to develop the best possible esti-
mator of the signal given all the sources of noise. Here, we choose
to follow the so-called matched filter formalism.

A matched filter is a linear processing of the data, specifically
designed to maximise the signal to noise ratio for a set of known
template signal and (additive and stochastic) noise power spectra.
For the case we consider here, this means to optimally extract the
kSZ signal from clusters assuming the expected signal profile, the
power spectrum of CMB fluctuations, and the uncertainties inthe
estimates for the velocity and mass of clusters.

The first step in the formalism is to define a signal template.
This is simply the expected kSZ signal, whose amplitude and spa-
tial distribution for a galaxy cluster are given by:

(

∆T

TCMB

)

kSZ

(θ) ≡ k(θ)

= −σT

c

∫

adχne(θ, χ) vr(θ, χ) . (1)

HereσT is the Thomson cross section andc is the speed of
light, a is the expansion factor,χ is a line-of-sight distance in co-
moving coordinate,vr represents the velocity of the gas along the
line of sight, andne is the number of free electrons both as a func-
tion of θ, the angular position on the sky. The minus sign follows
the convention that CMB photons gain energy when the free elec-
trons move towards us, and thus the temperature of CMB photons
increases.

Assuming that i) the spatial distribution on the sky of free elec-
trons inside a cluster can be described as a projected NFW profile,
ii) that the velocity field has a large correlation length (much larger
than the extent of a cluster), and iii) that the gas is fully ionised, we
obtain:

© 2014 RAS, MNRAS000, 1–14
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k(θ) = −σTvc
c

fbµΣNFW(θ), (2)

wherevc is the line-of-sight velocity of the cluster,fb is the (cos-
mic) baryon fraction,µ is the number of electrons per unit of gas
mass. For building the filter we choose the spatial template profile
to be

τ (x) =
A

(cx)2 − 1



















1− 2√
1−(cx)2

tanh−1
√

1−cx
cx+1

0 < x < 1

0 x = 1

1− 2√
(cx)2−1

tan−1
√

cx−1
cx+1

x > 1,

(3)
c is the cluster’s concentration parameter,x = r/r200 = θ/θ200
the dimensionless radius.A is a constant normalizing the template
profile atx = 0, so when this filter is located on the center of a
cluster, it will return a statistically unbiased amplitudeof the kSZ
signal. We note that our approach and results do not depend on
assuming this particular functional form, the only requirement is
to the correct profile to be know. Our choice (a projected NFW
profile) is justified here since in our forthcoming tests we assume
that the spatial distribution of baryons follows that of thedark mat-
ter. However, when applied to real data, a different, observationally
motivated profile might be preferred.

The next step is to defineP (k), the power spectrum of the
noise. In Fig.1 we show the contribution to the total angular CMB
power spectrum of different components for aPlanck-like exper-
iment: primordial anisotropies (blue line), instrumentalnoise (or-
ange line) and kSZ (green line). Here we can see that the kSZ
signal is sub-dominant at all scales. In consequence, we approx-
imate the noise in our kSZ estimates as the power spectrum of
primordial CMB fluctuations plus the noise contribution, that is
P = PCMB|B̂|2 + Pnoise.

The shape of the matched filer is set by requiring a mini-
mum variance estimator. FollowingHaehnelt & Tegmark(1996);
Melin, Bartlett, & Delabrouille(2005, 2006), in our case it is pos-
sible to show that the Fourier transform of the filter is givenby:

Ψ̂(k) = σ2 τ̂ (k)B̂(k)

P (k)
, (4)

whereτ̂ is the Fourier transform of the signal profile,B̂(k) is the
beam function of a given CMB experiment which we assume fol-
lows a Gaussian profile. The variance of the filtered input data is
denoted byσ2:

σ2 =

[

∫ |τ̂(k)B̂(k)|2

P (k)

d2k

(2π)2

]−1

. (5)

In Fig. 2 we show the resulting filterΨ(θ), for a cluster (with
mass around1014h−1M⊙ andz ∼ 0.1) with an angular size of 10
arcmin on the sky. By comparing the solid black and dot-dashed
blue lines we can see how the filter is modified when the instru-
ment noise in considered in addition to the primary anisotropies in
the CMB. For comparison, we show the assumed beam profile as
a dashed red line. We note we have checked the impact of uncer-
tainties in the determination of the center of clusters (c.f. §5.2.2).
In this case, the amplitude of the filter changes, but its shape re-
mains largely unaffected due to the dominating effect of thebeam

100 1000
10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

TOTAL
CMB

NOISE
KSZ

ℓ

ℓ(
ℓ
+
1
)
C

ℓ
/
(2
π
)

Figure 1. Angular power spectra of one realisation of our simulatedPlanck
SMICA-like sky maps. Three components are shown as CMB (bluesolid
line), instrument noise (yellow solid line) and KSZ (green solid line). All
power spectra have been convolved with a beam function with FWHM=5
acrmin.

size of thePlanckexperiment. This, however, might be different for
higher-resolution CMB experiments.

In general, the central value returned by the filter refers tothe
signal integrated over a patch on the sky of a given radius (a cone in
three dimensions). Here, we choose to integrate up to three times
the size of the target cluster, though our results are not sensitive
to the exact integration limit. Due to the large coherence length of
the cosmic velocity field, integrating outside the clustersboundary
has the advantage of including material that is likely to be moving
with the target cluster (c.f. §3.2). Thus, our kSZ measurement cor-
responds toKcyl

3r200
, the total signal within a cylinder of aperture

radius3× r200 (wherer200 is the radius containing a mean density
equal to 200 times the critical value in the Universe). This measure-
ment can be scaled to the expected signal produced by a spherical
halo,K200, by the following quantity:

Kcyl
3r200

K200
=

∫

∞

0
dr

∫

r sin θ<3r200
dθ ρ(r)2πr2

∫ r200
0

drρ(r)4πr2
, (6)

whereρ(r) is given byρ(x) = ρ0
x(1+x)2

, ρ0 is a characteristic den-
sity, andx = r/r200.

At this point, this estimator also contains contributions from
the thermal SZ effect, radio sources, etc. As we will see next, if
there is an external estimate for the velocity field, then these extra
terms will vanish and we can recover a clean measurement of the
kSZ effect which can be used to constrain the law of gravity, cos-
mological parameters and gas properties in our cluster catalogue.

2.2 The velocity field

In linear theory, and assuming a linear bias, the peculiar veloc-
ity field is directly proportional to the logarithmic derivative of
the growth rate and to the galaxy overdensity field. Explicitly, the
Fourier Transform of the velocity field is:

© 2014 RAS, MNRAS000, 1–14
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Beam function with FWHM = 5 arcmin

Filter with P = PCMB|B̂|2 + Pnoise

Filter with P = PCMB|B̂|2

Figure 2. An example of matched filter for a cluster with a angular scale
θ200 = 10 arcmin. The black solid line shows the radial filter profile when
noise power spectrumP (k) in Eq. 4 only contains CMB component. The
filter when both CMB and instrument noise are contained inP (k) is shown
as blue dotted-dashed line. The red dashed line gives a reference of a beam
function with FWHM=5 acrmin.

v(k) = −iβ(z)H0δg(k)
k

k2
, (7)

with β(z) = f(Ωm, z)/bg(z), bg is the galaxy bias,H0 is the Hub-
ble constant andf(Ωm, z) ≡ d lnD(z)

d ln a
, whereD(z) is the growth

factor anda is the expansion factor.
Thus, on large scales (where these relations hold) the observed

galaxy distribution can be used to obtain an estimate of the velocity
of galaxy clusters. Note also that there are equivalent expressions
in higher order perturbation theory. These can achieve higher accu-
racies and are valid down to smaller scales (Kitaura et al. 2012b).

Contrasting the reconstructed velocities with the measure-
ments obtained by our matched filter for a clusteri, one can con-
strain a parameterα:

αi =
c

σT fb µ

K200,i

M200

1

vrec,i
, (8)

=
vkSZ,i
vrec,i

+
ǫi

vrec,i
, (9)

whereǫ captures all other sources to CMB temperature fluctuations
inside clusters (e.g. tSZ, radio sources, etc). The measurement from
individual clusters can be combined into a single measurement of
theα parameter:

α =

∑

i αi wi
∑

i wi
, (10)

with the associated error:

σα =

[

1
∑

i wi

]1/2

, (11)

Sinceǫ is expected to be uncorrelated with the velocity field,
the expectation value ofǫ/vrec is zero. Therefore ifα is equal to the
unity, this means that the gravity model and cosmological param-
eters assumed are supported by the kSZ data. Otherwise,α 6= 1,
a different model is preferred. In other words, this ratio constrains
directly β/βfid, whereβfid is the fiducial value ofβ assumed in
computing the velocities from the galaxy distribution.

It is important to emphasise that this method of measurement
effectively weights individual kSZ measurements by the signal-to-
noise ratio (SNR) expected for each cluster, and thus it optimally
combines the available signal. For instance, regions with aveloc-
ity close to zero, are expected to contribute mostly to the noise,
not the signal, and are therefore given less importance in the final
measurement.

Additionally, the weight factors can be modified to include
all uncertainties affecting the measurement. In our case, there are
two major sources: one is intrinsic to the kSZ measurement (we
label it withσkSZ), the second is in the uncertainty in the velocity
estimation due to a given reconstruction method (labelled asσrec).
If the two contributions are uncorrelated, the weight assigned to
each cluster is:

w−1
i =

(

1

vrec,i

)2
(

σ2
kSZ,i + σ2

ǫ + β2
fidσ

2
rec,i

)

. (12)

Both of σkSZ andσrec vary from cluster to cluster, andσ2
ǫ is

approximately proportional to the inverse of the number of systems
averaged over. If we assume that the uncertainty arises mainly due
to the kSZ measurement, then Eq.12 is simplied to:

w−1
i =

(

1

vrec,i

)2

σ2
kSZ,i. (13)

For the remainder of this paper, we will present our results
based on this simplified form of the weight factor. We furtherdis-
cuss uncertainty related to velocity reconstruction in §5.3.1.

3 MOCK OBSERVATIONS

In this section we describe the mock kSZ observation we have cre-
ated to test and assess the performance of our approach.

3.1 The MXXL simulation

We build kSZ mocks based on the MXXL simulation (Angulo et al.
2012). The MXXL simulation uses67203 particles to follow the
distribution and evolution of dark matter within a cubic volume
with a comoving side length of3h−1Gpc. The mass of each simu-
lation particle ismp = 6.17×109h−1M⊙, thus we resolve galaxy
clusters with tens of thousands of particles. The cosmological pa-
rameters match those of the previous two Millennium simulations
(Springel et al. 2005; Boylan-Kolchin et al. 2009).

The MXXL simulation combines a large volume and a rel-
atively high mass resolution. Simultaneously fulfilling these con-
ditions posed a serious challenge to supercomputational facilities
in terms of raw execution time, RAM requirements, I/O load and
long-term storage. In order to alleviate these, the full particle data
was stored at redshiftsz = 0, 0.25, 1 and3. Self-bound halo and
subhalo catalogues, among other data products were produced on-
the-fly. For further information we refer the reader toAngulo et al.
(2012).

© 2014 RAS, MNRAS000, 1–14
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Most important for our purposes is the fact that this simulation
produces a suitable dark matter backbone for our kSZ modelling.
This provides a realistic catalogue of dark-matter clusters as well as
a fully nonlinear velocity field with all the features and correlations
we expect inΛCDM, including the non-negligible contribution of
large Fourier modes.

3.2 Light-cone and the kSZ effect

We build a light-cone using thez = 0.25 snapshot from
the MXXL, and considering all particles within a sphere of
1500 h−1Mpc radius. This produces an all-sky light-cone up to
z = 0.56, without any repetition of the simulation box. Note that
this procedure effectively neglects the evolution of the mass clus-
tering along the line of sight, however this is a reasonable approx-
imation given the restricted redshift range we consider. Wealso
build a light-cone with the position and velocities of all haloes in
our catalogue.

Then, we assume that all the gas in the Universe is ionised and
that the position and velocity of baryons follow those of dark mat-
ter. This is a reasonable approximation on large and intermediate
scales (Angulo et al. 2013). Thus, the kSZ effect integrated over a
area element in our simulated sky is given by the discrete version
of Eq. (1)

(

∆T

T

)

kSZ

= k = −σT fb x

c

∑

i

vr,i mdm,i

dΩpixD2
a,i

, (14)

where the summation runs over all particles that contributeto the
given area element on the sky.dΩpix is the solid angle of the area
element.

We pixelise our sky map using theHEALPix software
(Górski et al. 2005)1 with Nside = 2048 pixels. This corresponds
in total to50 331 648 elements, each of which covers an area equal
to 1.43−5 deg2.

In Fig. 3 we show a Mollweide representation of our kSZ
sky. The mean of the map corresponds to a value of〈∆TkSZ〉 =
0.12 µK with varianceσ = 1.36 µK. The actual power spectrum
of the simulated kSZ is shown by the green line in Fig.1. Note
that the map shows a large coherence length, with regions of sim-
ilar amplitude extending over large fractions of the sky. This is a
consequence of the large correlation length of the velocityfield ex-
pected in CDM density power spectra, where velocity fluctuations
receive significant contributions from very large modes. The inset
in this figure shows a zoom to the fluctuations inside a16.6 deg
patch (approximately200Mpc wide atz = 0.25).

Finally, we mimic Planck observations by adding primary
CMB fluctuations and by smoothing our maps by the appropriate
beam size. The CMB observations imaged byPlancksatellite cover
nine frequency channels from 30 GHz to 875 GHz, the angular
resolution range from 33 arcmin for the lowest frequency channel
down to 5 arcmin for the highest. Here, we focus on simulatingthe
SMICA map, which is a foreground-cleaned map. In consequence,
we assume that the total temperature fluctuation is the kSZ effect
plus primordial CMB fluctuations,∆T = ∆TkSZ + ∆TCMB. Af-
ter generating the map, we smooth the map with a Gaussian ker-
nel with FWHM=5 arcmin (angular resolution ofPlanckSMICA
map). Posteriorly, we will also include the corresponding instru-
ment noise.

1 http://healpix.jpl.nasa.gov/
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Figure 4. The distribution of clusters used in this work on the radii and red-
shift plane. The black dots and yellow dots are clusters in each catalogue.
The MaxBCG clusters are also shown (blue dots), assuming thesame cos-
mology as MXXL simulation. The solid lines around clusters indicate se-
lection boundaries we use to construct the catalogues. The black dashed
lines are here to lay out the relation of cluster radius for fixed angular size
as a function of redshift.

3.3 Cluster Catalogue

For our analysis we consider two different cluster catalogues. We
restrict the samples to a volume similar to that of the SDSS,
over which there are reconstructed density and velocity fields
(Kitaura et al. 2009; Jasche et al. 2010b):

1) MXXL Selected: Our first sample contains all halos in our
light-cone with mass above1.5 × 1013h−1M⊙. This contains
24529 objects.

2) Mock MaxBCG: Our second sample employs a higher mass
cut, 5 × 1013h−1M⊙, which roughly corresponds to a threshold
in optical richness of10 for the MaxBCG catalogue (Koester et al.
2007). This extra condition reduces the number of clusters in this
catalogues down to5663.

We summarise the main properties of our samples in Table1.
In Fig. 4 we show the redshift and size of the clusters in our sam-
ples. These properties will help us to understand the contribution
of different types of clusters to the total SNR for the kSZ measure-
ments. We can see that given our selection criteria most systems
are found at redshifts below 0.3. This validates the redshift range
covered by our kSZ light-cone. For comparison, we also show the
properties of MaxBCG cluster catalogue. We note that the mass
cut-off of our Mock MaxBCG catalogue roughly coincides with
the observational catalogue. Because no selection function is ap-
plied, our Mock MaxBCG sample contains28% more clusters than
the real one, most of these additional clusters have redshifts below
∼ 0.1.

© 2014 RAS, MNRAS000, 1–14



6 Li et al

Figure 3. Simulated all-sky map of the kSZ signal with a resolution ofNside = 2048. The map is smoothed with a beam function with FWHM=5 acrmin and
is color-coded by arsinh(∆TkSZ). The overlaid panel shows a patch with side lenght of14.66◦, zooming in around a prominent structure which produces a
clear kSZ signal.

3.4 Reconstructed velocity field

As discussed before, the peculiar velocity of galaxy clusters can be
estimated using perturbation theory and a three-dimensional distri-
bution of galaxies. Naturally, there are uncertainties associated to
this procedure, thus, in order to explore the impact of these, for our
analysis we consider three different types of velocity fields:

1) vhalo: These correspond to the true velocity of the cluster, as
computed by the center of mass velocity of the parent FoF halo.
Naturally, this corresponds to the best possible estimation, and it is
useful to differentiate the impact of the uncertainties in the veloci-
ties from other sources.

2) vrec: These correspond to velocities estimated from the dark
matter density field with linear perturbation theory. In practice, we
compute these by the mapping DM particles onto a grid using a
Clouds-in-Cell (CIC) assignment scheme, with a spatial resolution
of 1.5 h−1Mpc. Then, we smooth the density field with a Gaussian
kernel of sizers = [2.5, 5, 10] h−1Mpc, and use the smoothed
field as a source in Eq.7 to obtain an estimate for the velocity field.
Finally, we interpolate this field to the positions of clusters.

3) vCIC: We generate another velocity field by directly mapping
the velocity of dark matter particles onto a grid using the CIC as-
signment scheme. We then smooth this field using Gaussian kernels
of sizers = [2.5, 5, 10] h−1Mpc, and interpolate back to the clus-
ters positions.

Table 1.Halo catalogue used in this work

M200 Range θ200 RangeCata.Name Number
[×1010h−1M⊙] [degree]

MXXL Selected [1500, 210885] [0.035, 1.897] 24529
Mock MaxBCG [5000, 210885] [0.052, 1.897] 5263

MaxBCG [5082, 144073] [0.052, 0.374] 4058

Note: For clusters in real MaxBCG catalogue, the cluster mass is computed
with M200 − N200 provided byHilbert & White (2010). The cluster an-
gluar size is computed under the same cosmology model as MXXLsimula-
tion.

4 KSZ AND α MEASUREMENTS

Now we are in position to apply our matched filter procedure tothe
simulated kSZ+CMB sky, and using the different cluster catalogues
and velocity estimates discussed in the previous section.

At the position of each cluster, we convolve the CMB maps
with the matched filter. We do this in Fourier space and on a patch
of side length of14.66◦ and512×512 pixels, which makes patches
have the same angular resolution as the original sky map. Thepatch
size is chosen to be large enough to ensure a representative assess-
ment of background noise. The characteristic size of the filter is set
by the cluster’s apparent size on the sky and by using the concen-
tration mass relation of proposed byDuffy et al. (2008).

The value ofα is estimated for each cluster in our catalogues
(Eq. 8) and the combined measurement is given by taking the en-
semble weighted mean (Eq.10).
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In order to assess the advantages of the matched filter ap-
proach, we perform another measurement of the kSZ signal us-
ing a simple aperture photometry method (AP filter). The kSZ
flux is estimated as the total kSZ flux within a circular area ofra-
dius R1 minus the expected background which is set by the av-
erage kSZ flux in a annulus of dimensionsR1 = 3 × r200 and
R2 =

√
2R1. Therefore, the kSZ signal within a cylinder of aper-

ture radius3 × r200, (analogous to the quantity measured by the
matched filter) is given by:

Kcyl
3r200

= K[0,R1] −K[R1,R2]. (15)

FollowingPlanck Collaboration et al.(2013a), the uncertainty
for the measurement about each cluster is set as the rms fluctuation
of the AP filter applied at 100 randomly chosen positions. As in
the case of matched filters, the value ofαi for each cluster is the
weighted by its uncertainty and in this way a globalα is computed.

5 RESULTS

In this section we test the ideas presented before, and assess their
performance when applied to mock kSZ observations. We will start
with the simplest case, in which a perfect cluster catalogueand
velocity fields are assumed to be known. Then, we progressively
increase the realism of the cases we consider and include further
sources of uncertainty. In all cases, we explore different estimates
of the velocity field and the two cluster catalogues described in
§3.3, unless otherwise stated. The main results are summarised in
Table2, Table3 and Fig.7.

We note that if our measurement ofα is equal to the unity, our
method would provide an unbiased estimate of the relation between
density and velocity, which is captured by theβ parameter. The
uncertainty inα can be regarded as the accuracy with whichβ is
measured.

5.1 CMB primary anisotropies and instrument noise

We start by considering the CMB primary anisotropies as the
only source of uncertainty inα. We applied the procedure out-
lined in the previous section to50 realisations of the CMB sky.
The results are provided in the 4th column in Table2 (labelled as
"CMB"). The mean measured value ofα is 0.963± 0.0046 for the
Mock MaxBCG sample. For the more abundant MXXL sample is
0.977 ± 0.0035, which shows a similar bias inα but the statistical
error decreases. This is the first validation of the performance of
our matched filter approach.

Another important source of uncertainty on small scales is the
instrument noise and foreground residuals. As shown in Fig.E.3
of Planck Collaboration et al.(2013c) and in Fig.1, at the scale
of our Mock-MaxBCG clusters (around 6 arcmin orℓ ∼ 1600),
the typical amplitude of this noise is similar to that causedby pri-
mary CMB anisotropies. In our formulation of the matched filter
this contribution is implicitly taken into account, since we use the
power spectrum of our sky map itself as the noise term in Eq.4.

In order to assess the impact on this extra noise contribution
onα, we have generated 50 independent maps of the CMB primary
fluctuations plusPlanckproduct SMICA-like instrument noise. We
apply our matched filter approach and show the result in the 5th
column in Table2 (labelled as "CMB+Noise"). As expected, the

mean value ofα remains the same, since this new noise compo-
nent is uncorrelated with the signal. The associated uncertainties,
however, roughly double.

We note that the uncertainties onα estimated from the vari-
ance across50 sky realisations and by the matched filter proce-
dure agree remarkably well. For instance, when only CMB sky
included, the scatter onα from the 50 sky realisations is0.0459,
compared with matched filter output value of0.0455. For the case
of "CMB+Noise", the value is0.089 compared with0.096. A fur-
ther support our implementation of the matched filter approach can
be obtained by comparing the results provided above with those
obtained from a simple AP filter, which are provided in the 2nd
and 3rd columns of Table3. Even though the estimatedα for all
cases is consistent with those obtained using an matched filter, the
statistics errors quoted are a factors of20− 30 larger and are com-
parable with the level of the signal itself. These two facts support
the statistical validity and advantage of our formulation.

In all the cases we have considered so far there is a small bias
in α, α 6= 1 roughly at the1 − σ level. We have checked that this
originates from the fact that the peculiar velocity measured from
the kSZ is actually a mass-weighted average over a cylinder on the
sky of size3× r200. This is not necessarily identical to the center of
mass velocity of the cluster. This explains why the bias is slightly
larger in the MXXL cluster which contains less massive clusters.
Nevertheless, we will see that the systematic biased introduced are
smaller than the statistical uncertainty introduced by other sources
of noise, and thus validates our modelling given the accuracy with
which current measurements are possible.

5.2 The uncertainties in the cluster catalogue

We now consider the impact of uncertainties in estimating cluster
masses observationally. Also we address the difficulty of optical
cluster finders algorithms to identify the clusters center of mass.

5.2.1 The mass-richness relation

The mass of a cluster is not a direct observable, one has to in-
fer it from other observed properties (e.g. optical richness, strong
and weak gravitational lensing signal, X-ray luminosity ortSZ flux
signal). Although the mean relations can be calibrated observa-
tionally or using numerical simulations, deviations of individual
clusters from the mean relation lead to a scatter on the estimated
cluster mass. Furthermore, there are other sources of scatter in the
observable-mass relationship related to line-of- sight contamina-
tion, the dynamical state and triaxiality of the parent halo, etc. This
affects the shape of matched filter and its normalisation, and there-
fore this introduces a further source of uncertainty in the estimated
velocity of a cluster from its kSZ signal.

Here, we explore this effect in the case of a optically-
detected cluster catalogue, such as the MaxBCG sample. The
mass-richness relation and its scatter for such catalogue have been
studied with both observations (Johnston et al. 2007) and simu-
lations (Hilbert & White 2010; Angulo et al. 2012). For example
Angulo et al. (2012) give an mean relation which is described
by a power law〈M200〉 = M1.07, with a log-normal scatter
σlog10(M200) = 0.36. In order to incorporate this effect in our simu-
lations, we assign a richness to each cluster according the following
procedure.

We utilize the results provided byHilbert & White (2010),
that the mean mass〈M200〉, the log-normal scatter of mass
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Table 2. Estimated meanα value comparison with 50 realisations of sky, between cluster catalogues, Ap filter and matched filter, with/withour
instrument noise

Mock MaxBCG MXXL Selected

v used in reference CMB CMB + Noise CMB CMB + Noise CMB CMB + Noise
AP Filter AP Filter

vhalo 1.028 ± 1.103 1.026 ± 1.106 0.963± 0.046 1.011 ± 0.096 0.977± 0.035 1.029± 0.075

vrec,rs=2.5 h−1Mpc 0.792 ± 0.933 0.788 ± 0.935 0.794± 0.038 0.837 ± 0.080 0.831± 0.030 0.875± 0.065

vrec,rs=5h−1Mpc 0.967 ± 1.131 0.964 ± 1.134 0.969± 0.046 1.018 ± 0.097 0.988± 0.036 1.040± 0.078

vrec,rs=10 h−1Mpc 1.040 ± 1.352 1.041 ± 1.356 1.072± 0.055 1.125 ± 0.115 1.082± 0.043 1.138± 0.092

vCIC,rs=2.5 h−1Mpc 1.039 ± 1.163 1.036 ± 1.166 1.021± 0.048 1.071 ± 0.100 1.029± 0.037 1.084± 0.080

vCIC,rs=5h−1Mpc 1.055 ± 1.261 1.054 ± 1.264 1.051± 0.051 1.101 ± 0.108 1.058± 0.040 1.114± 0.086

vCIC,rs=10 h−1Mpc 1.083 ± 1.428 1.086 ± 1.432 1.105± 0.058 1.161 ± 0.121 1.108± 0.045 1.168± 0.097

Table 3.Estimated meanα value with 50 realisations of considered mass scatter and miscentering effects.

Mock MaxBCG

v used in reference CMB + Noise CMB + Noise CMB + Noise CMB + Noise CMB + Noise CMB + Noise
+ velocity + Mass Scatter + Miscentering + Miscentering + Miscentering with correction

systematics without correction with correction + Mass Scatter

vhalo 0.959 ± 0.096 0.957 ± 0.097 0.970± 0.099 0.730± 0.097 0.955± 0.126 1.026± 0.130

vrec,rs=2.5 h−1Mpc 0.757 ± 0.080 0.757 ± 0.081 0.776± 0.083 0.588± 0.082 0.751± 0.105 0.793± 0.107

vrec,rs=5h−1Mpc 0.951 ± 0.097 0.949 ± 0.099 0.971± 0.101 0.734± 0.099 0.952± 0.128 1.014± 0.132

vrec,rs=10 h−1Mpc 1.111 ± 0.115 1.112 ± 0.117 1.137± 0.119 0.862± 0.117 1.127± 0.152 1.202± 0.156

vCIC,rs=2.5 h−1Mpc 1.014 ± 0.100 1.011 ± 0.102 1.029± 0.104 0.776± 0.102 1.011± 0.132 1.080± 0.136

vCIC,rs=5h−1Mpc 1.067 ± 0.108 1.066 ± 0.110 1.086± 0.112 0.821± 0.110 1.069± 0.142 1.142± 0.147

vCIC,rs=10 h−1Mpc 1.181 ± 0.121 1.183 ± 0.123 1.206± 0.126 0.915± 0.123 1.197± 0.160 1.279± 0.165

Note: The results are estimated with one particular realisation of CMB+Noise sky and 50 realisations of mass scatter andmiscentering effects. The
measurements without these two effects are listed in 2nd column, and results with velocity uncertainties are listed in 3rd column.

σlog10(M200) and cluster number densityn are given for various
richnessN200 bins. With these informations cluster mass distribu-
tion at each richness binpdf(M200) can be constructed, therefore
the cluster mass function is just summation over contributions from
all richness bins,

dn(M200)/dM200 =

Nbins
∑

i=1

nipdfi(M200), (16)

then this function is normalized by the total number of clusters in
our Mock MaxBCG catalogue. After that, we divide the clusters in
our into several different logarithmic mass bins. In each ofthese
bins, clusters are assigned a richness according to the probability
pdfi(M200).

Once each cluster has a richness value, we use the mean mass-
richness relation to assign an estimate for the cluster mass. Then,
we construct the corresponding filters and repeat our analysis. The
results are shown in the 4th column of Table3. We find that the
averageα and its uncertainty both vary by less than5%. This is in
agreement with previous works that showed that the scatter in mass
does not have a significant impact on filter-recovered tSZ signal
(Biesiadzinski et al. 2012; Planck Collaboration et al. 2013a). This
is a consequence of the shape of the matched filter being weakly
dependent on cluster mass as a result the concentration and cluster
size depend weakly on halo mass. Moreover, the uncertainty on
mass estimation is subdominant compared to the other sources of
uncertainties related to the CMB maps.

5.2.2 The cluster miscentering

Another effect that may seriously hamper our efforts to get an
accurate value ofα is the offset between the center of mass of
a cluster and the center estimated using its optical properties. A
BCG misidentification and astrophysical processes may bothcause
this so-called miscenteringJohnston et al.(2007); Hilbert & White
(2010).

We estimate the impact of this effect by randomly selecting a
fraction of clusters,pc, to be miscentered: from 40% for the lowest
richness bin down to 20% for the highest richness bin, and then
perturb their center according to:

pdf(Roff ) =
Roff

σ2
off

exp

(

− R2
off

2σ2
off

)

(17)

whereσoff = 0.42 h−1Mpc (Hilbert & White 2010). This expres-
sion describes the distribution of projected distances between the
identified center and the center of mass of a clusters.

We repeat our analysis for the new centers. We find a strong
decrease in the estimated value ofα of about20%. The reason for
this is that the incorrect cluster convolved with the matched filter
results in a heavy under estimation of the clusters mass and kSZ
signal. One way to reduce the problem is to modify the matched
filter with an effective kSZ signal profile that correctly describes
the presence of a set of miscentered clusters.

The kSZ signal of clusters in a given mass can be described as
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a weighted average of the profile of correctly and incorrectly cen-
tered objects. Correctly centered clusters have a mean kSZ profile
given by Eq.3. The signal of miscentered clusters is a convolution
with azimuthal angle of the offset distribution with the correctly
centered profile:

τi(R|Roff) =
1

2π

∫ 2π

0

dθ τi

(

√

R2 +R2
off + 2R Roff cos(θ)

)

,

(18)
Assuming that the offset distribution is given by Eq.17, the

mean kSZ profile of miscentered cluster can be written as a average
over the distribution:

τmis
i (R) =

∫

dRoff pdf(Roff) τi(R|Roff). (19)

Finally the mean kSZ profile for clusters in a given mass bini
is:

τ tot
i (R) = (1− pc) τi + pc τ

mis
i . (20)

The new profile has a core, which compensates the total inte-
grated kSZ flux signal with a statistically correct answer. We have
repeated our analysis with the new matched filters, and show the re-
sults in the 6th column of Table3. Indeed, after this correction, we
recover a statistically unbiased estimation ofα. This is a dramatic
improvement compared to the results without considering the mis-
centering problem. The price for this in an increment of about 25%
in the uncertainty with which we measure the kSZ effect. We note,
however, that this effect also needs to be considered in any other
interpretation of the correlation between galaxies and thekSZ sig-
nal, and in any other quantity estimated from template fitting (e.g.
the SZ decrement).

5.3 Peculiar velocities

When dealing with observations the velocity of clusters is un-
known, and one needs to resort to indirect estimations. In order to
assess the impact of this we repeat our measurements, but nowem-
ploying different estimations for the velocity of clusters, as listed
in §3.4. The results are provided in the2 − 4th rows and in the
5 − 7th rows for velocities estimated using linear theory and CIC
interpolation, respectively.

In the case of CIC velocities,vCIC, we see that the
2.5 h−1Mpc smoothing provides an unbiased estimate ofα,
whereas the5 and 10h−1Mpc smoothing overestimate its value
(i.e. underestimate the clusters velocity) by roughly1σ and2σ.

In the case where reconstructed velocities,vrec are considered,
we see that the smallest smoothing scale returns a value forα be-
tween20−25% smaller than the unity. For larger smoothing scales,
the underestimation decreases and for the10 h−1Mpc smoothing,
we recover a (biased) value consistent with that in the case of CIC.
However, uncertainties are about 30% larger in the latter case.

Now we explore further these results. In Fig.5 we show one-
to-one comparisons between clusters true line-of-sight velocity, and
i) the CIC smoothed velocities (top panels) and ii) reconstructed
velocities based on linear theory (bottom panels). As stated before,
we consider three smoothing scales,rs = 2.5 h−1Mpc, 5h−1Mpc
and10h−1Mpc.

In all cases we see a strong correlation between the true and
estimated velocities. The scatter increases as we considerlarger
smoothing scales, and also the scatter for reconstructed velocities is

larger than for CIC velocities. Also, and for both estimation meth-
ods, we see that the velocities are systematically underestimated
for large smoothing scales. This can be seen more clearly by com-
paring the 1:1 relation (red line) with the blue diagonal line, which
shows the median value of velocity estimated in bins ofvhalo. Note
that the slope of the relation for the case of reconstructed velocities
is always steeper than the CIC counterparts, which is a consequence
of linear perturbation theory breaking down and overestimating the
divergence of the velocity field and thus of its line-of-sight compo-
nent (Kitaura et al. 2012b, see also Fig. 7 of).

Overall, we appreciate that the estimated velocity field is a
balance between two competing effects: i) the accuracy of linear
perturbation theory and ii) how well a smoothed field approximates
the actual velocity of the cluster. On small scales, we approximate
better the velocity of cluster, however, linear theory breaks down
overestimating the velocity field. On large scales, the performance
of linear theory improves, however, the recovered smoothedveloc-
ity field underestimates the velocity at the clusters position. In other
words, while the velocity field shows a high coherence, the velocity
structure of regions as small as2.5 h−1Mpc can affect systemati-
cally high precision measurements of the kSZ effect.

5.3.1 The systematics from velocity reconstruction

An additional source of uncertainty is introduced by the estima-
tion of the dark matter density field from a distribution of galax-
ies. In particular, effects such as survey mask, selection function,
shot noise, redshift space distortions will all add extra uncertainties
in the recovered velocity field. One example of recovering a con-
tinuous and smooth 3D density field from a group of galaxies is
presented inJasche et al.(2010b), who applied a Hamiltonian den-
sity algorithmHADES to SDSS data (Release 7) and returned a set
of 40000 possible realisations of the density field given the data
and observational setup. An additional complication comesfrom
the fact that we observe the galaxy field in redshift space, thus one
needs to assume a value ofβ to estimate the corresponding velocity
field. This, however, can be coupled with the kSZ measurements to
sample different values ofβ in a self-consistent manner as we mea-
sureα.

The total error associated to the reconstructed velocity can be
modelled as the sum of two independent terms:

σ2
rec = σ2

obs + σ2
meth. (21)

σobs refers to an uncertainty that depends on the particular observa-
tional setup propagated through the density reconstruction method.
This term varies as a function of position and distance to theob-
server, and slightly depends on velocity. The second term,σmeth,
is velocity-independent term and it accounts for the uncertainties in
the method itself (i.e. the scatter shown in Fig.5), which is around
100 km/s.

In practice it is difficult to estimate each of these two termsin-
dependently due to their correlation. However, the total error bud-
get,σrec, can be determined. As studied in AppendixA, a typical
value of σrec is about350 km/s, for a SDSS-like survey. With
more accurate reconstruction methods the uncertainty inσmeth can
be reduced to20km/s (Kitaura et al. 2012b), which clearly indi-
cates that the current limitation is in the quality of the data of a
target galaxy survey, and the method to infer the DM density field.

Therefore,σrec would be mainly determined byσobs, which is
position and distance dependent. In order to approximatelyaccount
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Figure 5. Top panels: One-to-one comparison between the true radial velocities of clustersvhalo and cluster velocitiesvCIC from CIC assignment. Bottom
panels: One-to-one comparison between the true radial velocities of clustersvhalo and cluster velocitiesvrec from reconstruction method. The red solid line
in each panel is the 1:1 line. The blue solid lines show the mean relation binned byvhalo. The dashed blue lines indicate the region containing the central 68
percent scatter of the mean relation. Left panels on smooth scales of2.5h−1Mpc, middle panels5h−1Mpc and right panels10h−1Mpc.

for this, our Mock-MaxBCG clusters are assigned an uncertainty in
their line-of-sight velocity by interpolating the velocities and un-
certainties reconstructed by HADES (shown in AppendixA) to the
position of out clusters. The total uncertainty can be incorporated in
our approach by using the full form of the weights shown in Eq.12.

We have repeated our analysis with this extra source of uncer-
tainty. However, the estimated value ofα remained almost identical
to our previous case. This is becauseσrec plays a minor role inwi

compared toσkSZ, which is dominated by the primary CMB fluctu-
ations and instrumental noise and is at the level of a few thousands
km/s. Hence, the quality of the reconstructed velocity field does
not affect significantly the estimatedα, but mainly theαi value for
each clusters.

5.4 Cluster catalogue selection

A central part of our method is the existence of an appropriate clus-
ter catalogue, and the accuracy of our method depends on its prop-
erties. Therefore, in this subsection and in Fig.6 we explore how
the selection criteria affect the accuracy with which we measureα.
In particular, we consider different cuts in mass, in angular size and
in redshift. For each threshold, we consider a simple case where we
include only the CMB as a source of noise (top panel) and another

in which we consider further sources of uncertainty (bottompanel).
For clarity, we use the measured center of mass velocity of each
cluster. The results are shown in Fig.6 and we discuss them next.

5.4.1 Mass/Richness

We recall that so far we have shown results for two different cata-
logues: i) "MXXL Selected", which contains all clusters in aSDSS-
like volume with mass above1.5 × 1013h−1M⊙, and ii) Mock-
MaxBCG, which is a sub-sample of previous catalogue with a
higher mass threshold5× 1013h−1M⊙. The latter corresponds to
a threshold of optical richnessN200 = 10 in the real MaxBCG
catalogue. Systems above that richness are identified at high sig-
nificance and suffer little contamination, however, below that limit
there is still information about overdensities in the universe. Thus,
we explore whether these can increase the quality of our kSZ mea-
surements.

In the leftmost panels of Fig.6 we show the SNR as a function
of the minimum cluster mass considered in the catalogue. Thenum-
ber of objects that this implies is displayed in the top axis.Firstly,
we note that the estimated value forα converges after roughly few
thousands objects are included, noting no difference between the
Mock MaxBCG and the MXXL Selected catalogues. Secondly, the
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Figure 6. Top row set: Top panels show the weighted estimationα (Eq. 10) as a function of mass cut (left column), angular size cut (middle column) and
redshift cut (right column) which are used to test cluster selection criteria from our catalogues. The corresponding stacked number is shown on top axis of
mass cut case. Bottom panels show the corresponding signal-to-noise ratio (SNR) ofα following the same way. The two cluster catalogues are used and shown
as blue (MXXL Selected) and black (Mock MaxBCG) curves. The analysis is based on map of kSZ+CMB andα usingvhalo are shown as example. Bottom
row set: The same as top row set plots, butα is analysed based on map of kSZ+CMB+Noise. Results of Mock MaxBCG when considering mass scatter and
miscentering problems are also presented with red curves.

SNR is roughly proportional to the number of clusters used, but the
change is not as dramatic as one would have expected. There isa
factor of 5 difference in the number of clusters among catalogues,
so if we simply consider the number of systems, then one would
have expected a reduction of a factor of

√
5 = 2.23. The actual

SNR improvement is about25%. This is because, the newly added

systems will be much less massive, so their associated signal and
angular extent on the sky are also smaller.
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The bars, boxes and whiskers show the median and the 1, 16, 84 and 99 percentiles of theα distribution. For each set of data points, measurements with
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The black solid lines at left side of each panel present the bias level computed by taking median ofvhalo/vrec or vhalo/vCIC at the three smoothing scales,
from bottom to top2.5h−1Mpc, 5h−1Mpc, 10 h−1Mpc respectively.

5.4.2 Angular size

We now consider the effect of varying the minimum angular size
of clusters included in the catalogue. We show the results inthe
middle panels of Fig.6 and, as in the previous case, top and bot-
tom pales show two cases where we consider different sourcesof
uncertainty. Black and blue lines indicate the results for the "Mock
BCG" and "MXXL Selected" catalogues, respectively.

We see that the value forα quickly converges after we include
objects with an apparent size of the sky larger than 10 arcmin. The
SNR also increases rapidly as we include smaller and smallerob-
jects, however, there is a clear saturation at4− 5 arcmin, coincid-
ing with the beam size in our simulatedPlanck-like CMB skies (5
arcmin). The plateau in the SNR seems to appear more smoothly
in the bottom panel, which is because clusters comparable to, but
larger than, the beam size are already being affected by the instru-
mental noise (which becomes dominant at aroundℓ ∼ 1600). Nev-
ertheless, it is important to note that the value ofα is not affected
and is largely insensitive to the threshold angular size we employ.
This supports again the robustness of our approach.

Finally, the MXXL catalogue returns a higher SNR than the
Mock MaxBCG, at all angular thresholds. Combining this infor-
mation with that in the previous subsection, we see that the gain in
SNR from reducing the threshold mass, largely originates from the
small but nearby systems which are well resolved above the beam
size.

5.4.3 Redshift

To end this section, in the rightmost panel of Fig.6 we show the
results we obtain as we vary the maximum redshift of clustersin-
cluded in our analysis. We see that the bulk of the signal originates
from clusters below redshift 0.2. This is partially becauseof the se-
lection function applied to our catalogues, but mainly because high
redshift clusters have small angular extents, despite the enhanced

volume covered. Finally, as expected, there is a roughly constant
offset between the two cluster catalogues we consider, due to the
higher number of objects in the MXXL Selected catalogue, at all
redshifts.

From this section we can conclude that current cluster cat-
alogues would capture almost all the signal available in a CMB
experiment likePlanck. Reducing the mass threshold does not in-
crease significantly the SNR of the measurement because the extra
systems will be less massive and thus contribute less to the total
signal, and also because a considerable fraction of them will be be-
low the beam size of the experiment. Moreover, the small systems
usually have inaccurate measurement of cluster properties(rich-
ness, positions and so on), which may affect the definition ofthe
matched filer and related signal. In the light of this, it seems that
much more gain can be found in extending the sky coverage of sur-
vey within which the cluster population is well characterised rather
than in employing lower mass systems.

5.5 Summary of results

In this section we have explored different sources of uncertainties in
our proposed procedure. These findings are summarized in Fig. 7,
where we plot our results grouped by the velocity estimationused
and the respective smoothing scales. For each set, we show mea-
surements progressively including four noise terms, as indicated by
the legend. For each case filled and open symbols show the result
of a single measurement with error bars given by the matched fil-
ter formalism, whereas open symbols show the mean value overan
ensemble of50 realisations and the error bars show the dispersion
over these measurements.

In the following we summarise the most relevant findings:

1) The main sources of statistical errors are: CMB primary fluc-
tuations, instrumental noise, mass estimation, and cluster miscen-
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tering, each of which contributes about 13%, 42%, 5%, and 40%of
the total error variance.

2) The main source of systematic errors is the estimation of ve-
locity fields. There is a compromise between a smoothing scale
small enough, such that it captures accurately the featuresof the
velocity field, and a scale large enough such that perturbation the-
ory is accurate. Additionally, if the miscentering is not properly
accounted for, then there is a bias in the measurements of about
20%.

3) Currently, the velocity field can be reconstructed to high
accuracy using linear or higher order perturbation theory
(Kitaura & Angulo 2012a). However, a source of uncertainty that
remains dominant is the transformation from galaxy to dark matter
overdensities.

4) A MaxBCG-like cluster catalogue includes most of the avail-
able signal. Smaller systems do not increase the SNR substantially,
due to their small angular sizes and weak intrinsic signals.How-
ever, broader sky coverage would lead to a considerable gainin the
SNR.

5) For aPlanck-like experiment and a MaxBCG-like cluster cat-
alogue, we forecast a7.7σ measurement of the kSZ, assuming an
estimate for the velocity field using linear theory and a5h−1Mpc
smoothing scale. Alternatively, this measurement can be interpreted
as13% constraint on the value ofβ.

Despite the uncertainties related to the cluster catalogues, we
have shown the potential that exists in the kSZ effect to measure
cosmic velocity fields and thus to place constraints that comple-
ment those from other cosmological probes.

6 CONCLUSIONS

In this paper, we have proposed and investigated a scheme to mea-
sure the kSZ effect with relatively high signal-to-noise. The method
combines the matched filter approach, an independent catalogue of
clusters, and the velocity field predicted by perturbation theory ap-
plied to a galaxy redshift survey. The results can be used to explore
the properties of ionized gas in clusters or to constrain thevalue of
β = f(Ωm)/b. The latter, in turn, can be used to place constraints
on the gravity law that connects the cosmic density and velocity
fields.

We have shown the efficiency and accuracy of our approach
by applying it to mock CMB maps, which contain a realistic kSZ
signal as predicted by a large cosmological N-body simulation. Us-
ing a cluster catalogue similar to those extracted from the SDSS
data, Planck-like CMB maps, and an estimate for the velocityfield
based on linear theory, we forecast a7.7σ detection of the kSZ
effect. This result includes the effect of several sources of uncer-
tainty: primary CMB fluctuations, instrumental noise, massscatter,
and cluster miscentering. Each of these effects is responsible for
13%, 42%, 5%, 40% of the total error variance, respectively.In ad-
dition, we highlighted that if the potential miscentering of clusters
is not taken into account properly, a bias of about 20% is induced
in the recovered signal. Similarly, if the scale on which theveloc-
ity field is reconstructed is too small, then perturbation theory is
inaccurate, whereas if it is too large, then the features of the veloc-
ity field are not properly resolved. Unless corrected, both effects
introduce systematic errors in kSZ estimates.

We also explored how the accuracy of our method depends on
details of the cluster catalogue. For the cases we considered, the
typical angular size of clusters corresponds to the scale onwhich
the effect of instrumental noise and beam size become important for

a Planck-like CMB experiment. This implies that the kSZ signal of
clusters with small angular sizes will be smeared out, reducing their
contribution to the total accuracy of the detection. A similar effect
is present when we varied the range of redshift and mass of clusters
included in our catalogue. It appears that current cluster catalogues
would capture most of the signal available, since lower masssys-
tems do not significantly increase the SNR of the measurement.
On the other hand, broader sky-coverage would lead to improved
constraints.

Despite the realism of the mock skies adopted throughout this
work, there are several effects which we have neglected. Most no-
table is the impact of hydrodynamical interactions on the kSZ sig-
nal. For instance, feedback from supermassive black holes at the
center of massive galaxies can alter the distribution of mass inside
clusters and, potentially, even expel gas from the cluster altogether.
However, these effects are still highly uncertain and it is unclear
that they would be large enough to significantly alter the kSZsig-
nal. Once understood such effects could easily be incorporated in
our formalism through a modified model for the signal profile.By
dividing the kSZ measurements according to cluster mass, such
systematic effects could be detected through an apparent depen-
dence of the cosmological signal on cluster mass.
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APPENDIX A: BEHAVIOUR OF VELOCITY
UNCERTAINTIES WITH TRUE DATA AT POSITIONS OF
MAXBCG CLUSTERS

In this work we use a sub-sample of 4000 density field realizations
previously generated by theHADES (HAmiltonian Density Esti-
mation and Sampling) algorithm (Jasche et al. 2010b). TheHADES
algorithm is a full scale Bayesian inference framework providing
detailed reconstructions of the 3D density field from galaxyred-
shift surveys and corresponding uncertainty quantification by ex-
ploring a highly non-Gaussian and non-linear lognormal Poisso-
nian posterior via efficient implementations of a Hybrid Monte
Carlo method (Jasche & Kitaura 2010a). As a result this algorithm
provides a numerical representation of the target posterior distri-
bution, in terms of density field realizations constrained by obser-
vations, permitting to thoroughly propagate uncertainties to any
finally inferred quantity. In the following we build upon there-
sults obtained byJasche et al.(2010b), which provide realizations
of constrained density fields in a cubic Cartesian box of sidelength
547.5 h−1Mpc and2563 voxels inferred from the SDSS DR7 main
sample (Abazajian et al. 2009). The lower left corner of the vol-
ume locates at[−547.5,−273.75, 14.6] h−1Mpc and the observer
is placed at[0, 0, 0]. To compute linear velocity fields we smooth
these density fields on length scales of5h−1Mpc and apply Eq.7.

Subsequently, we project the ensemble of resulting 3D velocity
fields at each voxel on the observers line of sight. Given thisensem-
ble, mean and standard deviation of radial velocities are calculated
for each voxel.

Results of these calculations as well as a slice through the cor-
responding completeness function of the underlying SDSS survey
are presented in Fig.A1. As can be seen, close to the observer,
structures are more clearly visible, while for poorly observed re-
gions at large distances, the ensemble mean of the density contrast
drops to cosmic mean. This reflects, the signal to noise properties of
the underlying survey, as uncertainties increase with distance to the
observer due to selection effects. This effect is clearly represented
by the slices through estimated ensemble means and standarddevi-
ations as shown Fig.A1. Slices through estimated ensemble means
and standard deviations for radial velocities are presented in the
bottom row of Fig.A1. For the mean velocity field, large speed re-
gions coincide with high density regions, being least affected by
observational noise. On the contrary, ensemble standard deviation
maps are more complicated to interpret. As can be seen, even at
central regions where the observational completeness is atmedian
level, ensemble standard deviations ranges around400 km/s. The
reason for this may resort in the fact, that velocities, as estimated
by Eq.7, are most sensitive to the largest scales of the cosmic mat-
ter distributions, which are only poorly constrained by underlying
galaxy observations, due to survey geometries. Observational un-
certainties on these large scales are nevertheless correctly treated by
the statistical nature of our approach. Additionally one may worry
about periodic boundary conditions, assumed implicitely when es-
timating velocities via Fourier methods, which may influence the
inference of velocities. This can be overcome by carrying out Fast
Fourier Transforms over a much larger volume, zero-paddingthe
unobserved region.

The statistical study of the full volume is useful for the general
analysis of the reconstruction method and the goodness of density
fields. As a finall step, we interpolate the reconstructed 3D veloc-
ities to positions of MaxBCG clusters (4044 clusters residein our
reconstruction volume) and estimate ensemble means and standard
deviations of radial velocities. This addresses the issue of velocity
uncertainties inherent to such reconstructions. We check the de-
pendence of standard deviations on velocities and distances to the
observer as demonstrated in Fig.A3. As can be seen, the standard
deviation depends weakly on ensemble mean ofvLIN

r . Typically,
the difference is less then100 km/s. The dependence on distance
to the observer is essentially strong, and standard deviation peaks
at around480 h−1Mpc and780 h−1Mpc. The former peak shows
the same complex behaviour. As shown in Fig.A1, the latter one is
mainly due to the fact of low completeness at such distances,and
periodic boundary effects may also contribute. In general,veloc-
ity uncertainties are caused by the completeness function,indicat-
ing how much information the data provides. For the analysisin
Sec.5.3.1, we choose a constant velocity standard deviation to be
350 km/s for all clusters in our mock catalogue.
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Figure A1. Slices for ensemble (4000 realisations) mean (left column)and standard deviation (middle column) of density contrastδ (top panels) and radial
velocity vLIN

r (bottom panels). The right column shows a slice through the completeness function along y-axes and x-axes respectively. The white solid line
indicates the x-axes position of all other slices.
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Figure A2. Same as Fig.A1 but density contrastδ (top panels) and radial velocityvLIN
r (bottom panels) are shown along the y-axes. The right columnshows

a slice through the completeness function along z-axes and y-axes respectively. The white solid line indicates the y-axes position of all other slices.

© 2014 RAS, MNRAS000, 1–14



Matched filter optimization of kSZ measurements17

-500 0 500
0

200

400

600

800

   
 

   
 

 

 

 

 

 
 

 

 

 

 

 

 
300 400 500 600 700 800
 

 

 

 

 

      
 

 

 

 

 

 

 
 

 

 

 

 

 

0.15 0.20 0.25

〈vLIN
r

〉 [km/s]

S
td
(v

L
I
N

r
)
[k
m
/
s]

R [Mpc/h]

z

Figure A3. Ensemble (4000 realisations) standard deviation of radialvelocitiesStd(vLIN
r ) at positions of MaxBCG clusters as a function of their ensemble

(4000 realisations) mean radial velocities〈vLIN
r 〉 (left panel) and radial distances to the observerR (right panel). The intensity of background 2D-histogram

is proportional to the number of clusters that reside in corresponding region of the plot. The blue solid line is the mean relation binned by〈vLIN
r 〉 andR.

© 2014 RAS, MNRAS000, 1–14


	1 Introduction
	2 Optimal measurement of the kSZ effect
	2.1 Matched Filter
	2.2 The velocity field

	3 Mock observations
	3.1 The MXXL simulation
	3.2 Light-cone and the kSZ effect
	3.3 Cluster Catalogue
	3.4 Reconstructed velocity field

	4 kSZ and  Measurements
	5 Results
	5.1 CMB primary anisotropies and instrument noise
	5.2 The uncertainties in the cluster catalogue
	5.3 Peculiar velocities
	5.4 Cluster catalogue selection
	5.5 Summary of results

	6 Conclusions
	A Behaviour of velocity uncertainties with true data at positions of MaxBCG clusters

