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ABSTRACT
Several experiments are underway to detect the cosmic redshifted 21-cm signal from
neutral hydrogen from the Epoch of Reionization (EoR). Due to their very low signal-
to-noise ratio, these observations aim for a statistical detection of the signal by mea-
suring its power spectrum. We investigate the extraction of the variance of the signal
as a first step towards detecting and constraining the global history of the EoR. Sig-
nal variance is the integral of the signal’s power spectrum, and it is expected to be
measured with a high significance. We demonstrate this through results from a sim-
ulation and parameter estimation pipeline developed for the Low Frequency Array
(LOFAR)-EoR experiment. We show that LOFAR should be able to detect the EoR
in 600 hours of integration using the variance statistic. Additionally, the redshift (zr)
and duration (∆z) of reionization can be constrained assuming a parametrization. We
use an EoR simulation of zr = 7.68 and ∆z = 0.43 to test the pipeline. We are able
to detect the simulated signal with a significance of 4 standard deviations and extract
the EoR parameters as zr = 7.72+0.37

−0.18 and ∆z = 0.53+0.12
−0.23 in 600 hours, assuming that

systematic errors can be adequately controlled. We further show that the significance
of detection and constraints on EoR parameters can be improved by measuring the
cross-variance of the signal by cross-correlating consecutive redshift bins.

Key words: dark ages, reionization, first stars – techniques: interferometric – meth-
ods: statistical

1 INTRODUCTION

Advances in observational cosmology over the past century
have made it possible to look very far out into the Universe.

? E-mail: patil@astro.rug.nl

However, there still remains a big observational gap between
the Cosmic Microwave Background (CMB) (z ≈ 1100) and
the low-redshift Universe (z < 6). An important global tran-
sition is expected to have occurred towards the end of this
era, called the Epoch of Reionization (EoR). The first stars
and galaxies formed during this epoch, and hydrogen in
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the Universe was reionized from their radiation after hav-
ing been neutral for about 400 Myr.

Unfortunately, a dearth of observations makes the EoR
a poorly constrained epoch. Current constraints are based
on indirect observations of the high-redshift intergalactic
medium (IGM), namely, quasar spectra (Fan et al. 2003,
2006), CMB polarization anisotropy (e.g. Hinshaw et al.
2013), the kinetic Sunyaev-Zel’dovich effect (Zahn et al.
2012), IGM temperature measurements (Theuns et al. 2002;
Bolton et al. 2010), high-redshift galaxy surveys (e.g. Finkel-
stein et al. 2012), high redshift gamma ray bursts (Wang
2013) and Lyman break galaxies (Pentericci et al. 2011; Ono
et al. 2012; Schenker et al. 2012). However, redshifted 21-cm
emission from neutral hydrogen has the potential to directly
probe the IGM and hence the process of reionization. There-
fore, many ongoing experiments aim to observe the EoR with
low-frequency radio telescopes such as the Low Frequency
Array (LOFAR) (van Haarlem et al. 2013), the Murchison
Widefield Array (MWA) (Tingay et al. 2013), the Precision
Array to Probe the Epoch of Reionization (PAPER) (Par-
sons et al. 2010) and the Giant Meterwave Radio Telescope
(GMRT) (Pen et al. 2008).

Detection of the EoR signal, i.e. the redshifted 21-cm
signal from the era of reionization, is very challenging even
with the new generation of radio telescopes. This is be-
cause in the redshift range of 6 to 10, the expected signal
is only about 10 mK (at a resolution of 3 arcmin), whereas,
the Galactic and extragalactic foregrounds are about 1 K
(Bernardi et al. 2009, 2010). Moreover, even if the fore-
grounds would be perfectly removed, after hundreds of hours
of integration, the system noise would still be an order of
magnitude larger than the signal. Therefore, the current ex-
periments aim for a statistical detection of the EoR rather
than mapping the neutral hydrogen. This requires devel-
opment of the statistical techniques to estimate the reion-
ization parameters from noisy data. A commonly studied
technique is power spectrum analysis (e.g. Morales & He-
witt 2004; McQuinn et al. 2006; Bowman, Morales & Hewitt
2006; Harker et al. 2010; Beardsley et al. 2013). Another pos-
sible statistic is the signal variance, which is the integral of
signal’s power spectrum. The variance (or root mean square)
statistics of the EoR signal has been studied theoretically by
Iliev et al. (2008); Jelić et al. (2008); Thomas et al. (2009);
Harker et al. (2009); Bittner & Loeb (2011); Watkinson &
Pritchard (2013).

In this paper, we investigate the measurement of sig-
nal variance with LOFAR considering various instrumental
parameters. We use the variance as a quantitative measure
to constrain the global history of reionization in early stage
EoR experiments. We have developed a simulation pipeline
to test the variance statistic in the case of the LOFAR-EoR
experiment. The pipeline generates mock observations by
simulating the cosmic signal, foregrounds and noise. The
pipeline also incorporates measurement of the EoR param-
eters, namely, the redshift and duration of the EoR.

The paper is organized as follows: in Section 2, we dis-
cuss our parametrization of the variance of the EoR signal
as a function of redshift. In Section 3, we describe the simu-
lation pipeline we have developed. The measurement of the
signal variance and parameter estimation is discussed in Sec-
tion 4. Here we also discuss the advantages of measuring the
cross-variance of the signal by cross-correlation consecutive

frequency bins. We show the results and demonstrate that
LOFAR should be able to constrain the EoR in 600 h in
Section 5, before summarizing our conclusions in Section 6.

2 PARAMETRIZATION

The observable quantity of the redshifted 21-cm emission is
the differential brightness temperature δTb i.e. the contrast
between the 21-cm brightness temperature and the back-
ground CMB temperature TCMB. At a given position in sky,
δTb is given by (Field 1959; Madau, Meiksin & Rees 1997;
Furlanetto, Oh & Briggs 2006)

δTb ≈ 9 xHI(1 + δ)(1 + z)
1
2

[
1− TCMB(z)

TS

]
×
[
H(z)/(1 + z)

dv‖/dr‖

]
mK, (1)

where δ is the cosmological mass density contrast, xHI is
the neutral hydrogen fraction, TS is the spin temperature,
H(z) is Hubble parameter and dv‖/dr‖ is gradient of the
proper velocity along the line of sight. Whenever we men-
tion the EoR signal, we refer to the differential brightness
temperature of the 21-cm radiation from reionization.

An interferometer can measure spatial fluctuations of
δTb as a function of frequency, or equivalently of cosmic
redshift. The spatial fluctuations at a given redshift can be
characterized by the power spectrum P [k ] as

P [k] = 〈δTb[k ]δT ∗b [k ]〉|k |=k (2)

where δTb is measured at discrete values of wavenumber k.
The variance of the signal is the average over k as given by

Var(δTb) = 〈P [k]〉. (3)

Our interest here lies in measuring the variance of the signal
and its evolution with redshift.

Fig. 1 shows the evolution of the signal variance as
predicted by the simulation code 21cmFAST (Mesinger,
Furlanetto & Cen 2011). At the highest redshifts, the Uni-
verse is mostly neutral (xHI ≈ 1), hence δTb is driven by the
cosmological density fluctuations δ. The density fluctuations
grow with time to form the first ionizing sources, which then
start to reionize their surrounding regions. This patchy na-
ture of reionization leads to a rise in the variance of δTb.
The variance reaches its peak when approximately half of
the Universe is ionized, but decreases thereafter. Eventu-
ally, it reaches zero as the entire Universe is reionized. The
different curves in Fig. 1 are for different spatial resolutions
and show that the observed variance depends on the resolu-
tion, or equivalently on the range of wavenumbers measured
in the observed volume. Also, the higher the resolution, the
earlier the variance peaks (Iliev et al. 2008). This is because
higher resolution data are sensitive to smaller scale struc-
tures.

In order to learn about the process of reionization from
variance measurements, we need a parametric model which
describes the variance of δTb in terms of the EoR model pa-
rameters. In this paper, we assume a model which enables
us to constrain two important EoR parameters: the redshift
of reionization zr, defined as the redshift at which the vari-
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Figure 1. Evolution of the variance of the epoch of reioniza-

tion signal i.e. the 21-cm differential brightness temperature (δTb)
with redshift, as predicted by a simulation with 21cmFAST. From

top to bottom the curves correspond to decreasing spatial reso-
lutions of 3 (resolution of the LOFAR core i.e. the central 2 km

of the array at 150 MHz, z ≈ 8.5), 7 and 12 arcmin. The resolu-

tion is expressed as the full width half maximum (FWHM) of the
Gaussian kernel that was used to smooth the simulation maps.

ance of δTb is maximum, and the duration of reionization
∆z. The model is given by

Var(δTb) = A f(z)
(
z

z0

)β
, (4)

where A is the scaling amplitude, β (< 0) is the index of the
(decaying) power law that the variance asymptotes to at
high redshift and z0 is the redshift which defines the regime
z � z0 in which the power law becomes dominant. The
model is inspired by the fact that at high redshift, δTb is
driven by (1 + δ), which linear perturbation theory predicts
to evolve as a power law. The function f(z) describes the
low-redshift behaviour of the signal and is defined as

f(z) = 1 + tanh
(
z − z0

∆z

)
. (5)

The redshift of reionization zr is the redshift at which
the variance reaches its maximum. Therefore, it is computed
using the condition

dVar(δTb)

dz

∣∣∣
zr

= 0. (6)

We translate the parameter z0 to zr by computing the dif-
ference zbias between the two and then correcting for it as

zr = z0 + zbias. (7)

Fig. 2 shows a model fit to the signal variance from a
simulation. It can be seen that the model describes the simu-
lation results well, except for the dip in the variance at high
redshifts (z ≈ 10). Such a decrease in the variance is ex-
pected to occur at the beginning of reionization (Iliev et al.
2012). The first objects form in density peaks and reionize
their surrounding regions, which appear as holes in neutral
hydrogen maps. These holes reduce the signal variance con-
tributed by the corresponding density peaks. However, when
many ionizing objects start to form, the variance is driven
by the distribution of xHI rather than by the density fluc-
tuations. Therefore, the variance increases after the initial
dip.
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Figure 2. Fit of the model described by equations (4) and (5)
to the signal variance predicted by the simulation at 12 arcmin

resolution. The model describes the curve well except at z > 9.

The small decrease in the variance at the beginning of
reionization is not described by our parametrization. How-
ever, the LOFAR system noise increases rapidly at lower fre-
quencies (higher redshifts), making the fitting performance
by models which would incorporate this feature indistin-
guishable.

3 SIMULATION AND SIGNAL EXTRACTION
PIPELINE

We generated mock observational data sets by adding simu-
lations of the cosmological signal, foregrounds and noise. A
data cube consisted of 170 frequency maps between 115 and
199.5 MHz (i.e. z = 6 to 11.4) at an interval of 0.5 MHz.
Each frequency map initially represented a 10◦× 10◦window
with 1.17 arcmin resolution but was later corrected for the
LOFAR field of view as will be discussed in Section 3.3. The
important blocks of the simulation and signal extraction
pipeline are described in the following subsections (please
see Fig. 3 for a block diagram of the pipeline.)

3.1 The signal

Cosmological simulations of size larger than 600 comov-
ing Mpc are required to simulate the field of view of LO-
FAR. Full radiative transfer simulations on such large scales
are computationally expensive. Instead, we used the semi-
analytic code 21cmFAST (Mesinger, Furlanetto & Cen
2011; Mesinger & Furlanetto 2007) to simulate the EoR
signal. 21cmFAST treats physical processes with approx-
imate methods, but on scales larger than 1 Mpc its re-
sults are in good agreement with hydrodynamical simula-
tions (Mesinger, Furlanetto & Cen 2011). The cosmological
simulation used here is the same as in Chapman et al. (2012).
The simulation was initialized with 18003 dark matter par-
ticles at z = 300. The code evolves the initial density and
velocity fields to the redshifts of the EoR using linear pertur-
bation theory. The velocity field used to perturb the initial
conditions and the evolved simulation boxes were formed
on a coarser grid of 4503 and then interpolated up to 5123.
21cmFAST uses the excursion set formalism to form dark
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Figure 3. Block diagram of the end-to-end simulation and anal-

ysis pipeline.

matter haloes. We define the threshold for haloes contribut-
ing ionizing photons to be 109M�. Once the evolved density,
velocity and ionization fields have been obtained, the code
computes the δTb box at each redshift based on equation
(1). Redshift space distortions were taken into account in
our run, but we neglected spin temperature fluctuations by
assuming TS � TCMB, i.e. the neutral gas has been heated
well above the CMB for redshifts 6 to 12 (Pritchard & Loeb
2008). We combined the δTb boxes at different redshifts us-
ing the method described by Thomas et al. (2009) to form
an observational cube. An observational cube represents the
2D position on the sky and the third dimension corresponds
to observation frequency or redshift.

3.2 Foregrounds

We used the simulations by Jelić et al. (2008, 2010) to model
the foreground contamination. These simulations consider
the following contributions:

(i) Galactic diffuse synchrotron emission (GDSE) due to the
interaction of cosmic ray electrons with the galactic mag-
netic field. The GDSE is modelled as a power law as a func-
tion of frequency with a spectral index of −2.55±0.1 (Shaver
et al. 1999). The intensity and the spectral power law index
of the GDSE are spatially modelled as Gaussian random
fields. The power spectrum of these fields is assumed to be a
power law with 2D index of −2.7. The mean brightness tem-
perature at 120 MHz is 253 K, with a standard deviation of
1.3 K.
(ii) Galactic localized synchrotron emission from supernova
remnants (SNRs). Eight SNRs are placed randomly in the
10◦× 10◦observational window. In order to model the ex-
tended nature of SNRs, they are modelled to be extended
discs. Their angular size, flux density and spectral index are
randomly chosen from the Green (2006) catalogue of the
observed radio SNRs.

The combined Galactic diffuse and localized synchrotron
emission is the dominant component (∼70 per cent) of the
foregrounds at 100-200 MHz.
(iii) Galactic diffuse free-free emission due to
bremsstrahlung radiation from diffuse ionized gas. It
is modelled in a similar manner as the GDSE but the
frequency spectral index is fixed to -2.15 across the map. It
contributes ∼1 per cent of the total foreground emission.
(iv) Unresolved extragalactic sources such as radio galaxies
and clusters, contributing ∼27 per cent of the foreground
emission. The simulated radio galaxies have power law spec-
tra and random walk based clustering. The radio clusters
have spectral indices of about -3 and are based on the clus-
ter catalogue from the Virgo Consortium1.

We assume that calibration would remove the point
sources brighter than 0.1 mJy, hence these sources are not
included in the foreground simulations (Jelić et al. 2008).

3.3 Instrumental response and noise

Unlike the EoR and foreground simulations, an interferom-
eter does not directly map the surface brightness distribu-
tion in the sky. Instead, it measures correlations of electric
fields between pairs of interferometric elements (LOFAR sta-
tions). These correlations are called visibilities. A visibility
V (uk, vk) probes a certain spatial scale of the sky bright-
ness distribution corresponding to the baseline (uk, vk) be-
tween a pair of stations. Therefore, the brightness distribu-
tion I(l,m) on the sky can be mapped by taking the Fourier
transform of the visibilities (Taylor, Carilli & Perley 1999)
as given by

Iν(l,m)Aν(l,m) =
∑
k

Vν(uk, vk) ei2π(ukl+vkm), (8)

where Aν(l,m) is the primary beam response of the tele-
scope, l and m are the direction cosines and the subscript
ν indicates the frequency of the measurement. Addition-
ally, each visibility contains a noise component Nν(uk, vk).
Therefore, the noise realization in the image plane nν(l,m)
is given by

nν(l,m) =
∑
k

Nν(uk, vk)ei2π(ukl+vkm). (9)

The sampling function Sν(u, v) reflects the baseline dis-
tribution, and is given by

Sν(u, v) =
∑
k

δ2D(u− uk, v − vk), (10)

where, δ2D is the 2-dimensional Dirac delta function. We
used uniform weighting after gridding visibilities on to the
uv plane, i.e. all visibilities within a uv cell were averaged.
Therefore, the root-mean-square (RMS) noise in the gridded

uv plane is inversely proportional to
√
S(u, v).

In order to obtain realistic simulations of the noise,
we filled the real and imaginary parts of the visibilities
Nν(uk, vk) with Gaussian random numbers. Visibilities were
then Fourier transformed to the image space to obtain noise
maps nν(l,m). By simulating the noise in this manner, we

1 http://www.mpa-garching.mpg.de/galform/virgo/hubble/
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Figure 4. Root Mean Square (RMS) system noise as a func-

tion of frequency after 600 h and 0.5 MHz integration, used for

normalizing the noise simulations.

incorporated the realistic power spectrum of the noise into
our simulations. The noise maps were normalized to have
the appropriate RMS values. Based on the theoretical cal-
culations of the system equivalent flux density (Labropoulos
et al. 2009), we expect the RMS noise to be about 120 mK
at the resolution of 3 arcmin (i.e. the full resolution offered
by the LOFAR core), at 150 MHz, after 600 h and 0.5 MHz
of integration for uniformly weighted data. Fig. 4 shows the
RMS noise used for normalizing the simulations as a func-
tion of frequency. The adopted noise values are indicative
only, and they may change in the actual observations.

3.4 uv-mask or PSF convolution

An interferometer can only sample the spatial scales corre-
sponding to its uv coverage. The effect of the uv coverage
is equivalent to convolution with the point spread function
(PSF) in the image plane. In order to mimic the effect of
the PSF convolution, the simulated EoR, foreground and
noise maps were Fourier transformed to the uv plane, mul-
tiplied by the uv coverage and Fourier transformed back to
the image plane.

The uv coverage of an interferometer is frequency de-
pendent because u and v are expressed in wavelengths. If
a uv point is only sampled in a part of the bandwidth, it
could introduce discontinuities in the foregrounds and noise
properties along the frequency dimension. This would af-
fect the performance of the foreground removal algorithms
which are based on the assumption that the foregrounds are
spectrally smooth. In order to avoid such discontinuities,
we maintained the same uv coverage throughout the band-
width. This can be achieved by masking the intersections of
the uv coverages at all frequencies (Jelić et al. 2008; Bow-
man, Morales & Hewitt 2009). In other words, the uv points
that were only partially covered in the bandwidth were dis-
carded. Our uv mask allowed baselines between 40 and 800
wavelengths, assuming a complete uv coverage in this range.
We only considered stations within the central core of LO-
FAR because these densely sample the corresponding part
of the uv plane. Stations outside the core provide longer
baselines and are used in actual observations to remove the
point sources during the calibration. They would then be
discarded in the subsequent analysis. The noise maps were

simulated in the uv plane and already contain the uv cover-
age. However, they were also multiplied by the uv mask to
maintain the same uv coverage at all frequencies.

In the case of real observations, independent gridding
of visibilities at different frequencies can change the PSF by
a small fraction at different frequencies. A chromatic PSF
mixes the angular structures of foregrounds into the fre-
quency direction, which has been dubbed as “mode-mixing”
in the literature (Bowman, Morales & Hewitt 2009; Datta,
Bowman & Carilli 2010; Vedantham, Udaya Shankar & Sub-
rahmanyan 2012; Morales et al. 2012; Hazelton, Morales &
Sullivan 2013). Effects of uv gridding are not included in our
simulations.

3.5 Primary beam correction

The image formed by an interferometer is the sky bright-
ness distribution multiplied with its primary beam response
as described by equation (8). Due to the primary beam re-
sponse of the telescope, the strength of any observed signal
from the sky (EoR and foregrounds) decreases away from
the pointing direction. But noise, being uncorrelated among
the visibilities, remains unaffected by the primary beam
response. Hence the signal-to-noise (SNR) decreases away
from the direction of pointing.

The primary beam response scales with wavelength. In
the case of LOFAR, the Full Width Half Maximum (FWHM)
of the primary beam changes from 4.75 degrees at 120 MHz
to 2.85 degrees at 200 MHz (van Haarlem et al. 2013). We
find that the performance of the foreground removal suffers
severely due to this frequency dependence, as shown further
in Section 3.7. The primary beam correction reconstructs
the frequency coherence of the foregrounds and hence im-
proves the foreground removal. As a result of the correction,
the EoR signal and the foregrounds have the same strength
throughout the image but the noise increases towards the
edges. Our simulations do not contain the primary beam
response. Therefore, for a simple treatment of the primary
beam, we consider as if the EoR and foreground simulations
were already beam corrected, and we multiply only the noise
maps by the reciprocal of the primary beam 1/Aν(l,m) in
the image space. We assume a Gaussian primary beam with
the same FWHM as that of the measured response in van
Haarlem et al. (2013).

In reality, the primary beam response resembles the
sinc2 function and its correction requires division by zero
around the nulls. However, a Gaussian is a good approxi-
mation of the primary beam within the first null and we
restrict the image size to be well within the first null. One
way to avoid the primary beam correction and still get de-
sirable foreground removal, could be to maintain the same
primary beam shape throughout the bandwidth. This could
be achieved by convolving the visibilities with an appropri-
ate kernel. However, it would restrict the field of view to
the smallest possible case i.e. that obtained at the high-
est observation frequency. A better alternative would be to
incorporate the beam model in the foreground removal al-
gorithm. Our current efforts are focused on this front and
we leave this topic for a future paper.

We would like to note that some realistic issues are
sidestepped due to our preliminary treatment of the pri-
mary beam. For instance, our simulations do not contain

c© RAS, MNRAS 000,
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Figure 5. Radially averaged 2-dimensional power spectrum of

the noise at 150 MHz as a function of wavenumber k = 2π/θ,
where θ is the angular scale. Most of the noise power is concen-

trated at large k values due to the lower sampling density of the
outer part of uv plane.

foreground sources in sidelobes of the primary beam, which
may be an important source of the foreground contamina-
tion (Yatawatta et al. 2013; Dillon et al. 2014). We have also
not considered the time and station-to-station variations of
the beam. More detailed modelling of the primary beam is
required to study these effects, which we consider to be out
of the scope of this paper.

3.6 Gaussian smoothing

The noise RMS depends on the resolution. The expected
EoR signal RMS at the full resolution offered by the LO-
FAR core (∼3 arcmin) is about 6 mK at 150 MHz, whereas
the noise RMS is 120 mK after 600 h, 0.5 MHz integration.
Therefore, the SNR at 3 arcmin resolution is very low. Not
only may the signal detection be extremely difficult with
such poor SNR, but the foreground removal may also be in-
effective with such noisy data. The reason for poor SNR is
the higher noise contribution at small spatial scales, which
correspond to few long baselines. Even within the LOFAR
core, the longer baselines are fewer in number, causing lower
sampling density in the outer part of the uv coverage. There-
fore the noise power is mostly concentrated on small spatial
scales, as shown in Fig.5. We took advantage of this fact to
reduce the noise significantly by smoothing the images with
a Gaussian kernel, which is equivalent to multiplying the
visibilities with a Gaussian. Therefore, by smoothing the im-
ages, we effectively down-weighted the longer baselines and
reduced the noise. As shown in Fig. 6, the noise deceases
rapidly with increasing smoothing scales up to few arcmin.
For larger smoothing scales, the corresponding part of the
uv plane is well sampled and therefore the rate of noise sup-
pression decreases. The signal strength also decreases due to
smoothing, but not as significantly as the noise (see Fig. 1).
We find that the best SNR in the case of LOFAR is achieved
when images are smoothed on a scale of 12 arcmin FWHM.
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Figure 6. RMS noise as a function of smoothing scale at 150

MHz after 600 h and 0.5 MHz integration. The smoothing scale

of zero means no smoothing. The noise initially decreases rapidly
with smoothing as we effectively down-weight the long baselines.

3.7 Foreground removal

The success of EoR experiments depends strongly on the
accuracy of the foreground removal. As the foregrounds are
2 to 3 orders of magnitude larger than the EoR signal,
even small errors in their removal can severely affect the ex-
traction of the underlying EoR signal. Foreground removal
schemes are based on the assumption that the foregrounds
are smooth along the frequency dimension, whereas the sig-
nal and noise are not (Shaver et al. 1999; Di Matteo et al.
2002; Oh & Mack 2003; Zaldarriaga, Furlanetto & Hernquist
2004). The signal is not expected to be smooth in frequency
because it varies in space. Below we briefly describe the three
foreground removal methods used in this paper.

(i) Generalized Morphological Component Analysis
(GMCA): GMCA is a general source separation technique
which utilizes morphological diversity and sparsity to
identify different components in the data. The GMCA
implementation of Chapman et al. (2013) finds a basis set
in which spectrally smooth foreground components are
sparsely represented and can hence be distinguished from
the EoR signal and noise.
(ii) Wp smoothing: Wp smoothing (Mächler 1995) was used
by Harker et al. (2009) as an EoR foreground removal algo-
rithm. It minimizes the sum of the squared difference be-
tween the foregrounds and the data, subject to a penalty on
relative changes of curvature.
(iii) FASTICA: FASTICA is an independent component
analysis technique and it was implemented by Chapman
et al. (2012) as a foreground removal algorithm in the con-
text of the EoR. It separates statistically independent com-
ponents of the foregrounds by maximizing non-gaussianity
of their mixture.

In Fig. 7, we compare the variance of the foreground fit-
ting errors Var(f − f̂) for the three removal methods, where
f and f̂ are the originally simulated and reconstructed fore-
grounds, respectively. GMCA performs best among the three
methods. We would like to note that further optimization
might be possible for each of these methods. For the purpose
of this paper, however, we choose GMCA to demonstrate the
results.
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fitting errors with and without primary beam correction for 600

h and 0.5 MHz integration. The beam correction reconstructs the
frequency coherence of the foregrounds and hence improves the

foreground fitting.

We find that the primary beam correction improves the
performance of the foreground removal. Fig. 8 shows that
the foreground residuals are significantly reduced when the
beam correction is applied. The EoR and foreground sim-
ulations were multiplied with the primary beam in the im-
age space in the case of no correction. The GMCA was run
to find two independent components (see Chapman et al.
(2013) for details). Due to the frequency dependent primary
beam response, GMCA fails to capture the frequency co-
herence of the foregrounds when the beam correction is not
applied. Instead, it tries to optimize the foreground residu-
als in two localized parts of the bandwidth as shown in Fig.
8.

We have not considered removal of the polarized fore-
grounds separately, because the total intensity of the polar-
ized foregrounds is smooth in frequency, these should be re-
moved by the above algorithms. However, imperfect calibra-
tion of the instrumental polarization would lead to leakage of
the polarized foregrounds into the total intensity. Such leak-
age would have frequency-dependent structure (Jelić et al.

2010) and therefore it may not be removed by the above
algorithms. We assume that the instrumental polarization
will be well calibrated.

4 VARIANCE MEASUREMENT AND
PARAMETER ESTIMATION

Our interest lies in extracting from the data the variance of
the signal as a function of frequency. The variance of the
data can be measured in the image plane as 〈(X − X̄)2〉
where X is the flux density measured at a pixel, and X̄
is the average flux density in the image. We measure the
variance of the simulated data at every spectral channel in
the image plane because the EoR signal and the foregrounds
are simulated in the image plane. However, it is preferable
to measure it in the uv plane for the actual observations
because they are measured as visibilities.

The foreground extracted data d contain the EoR signal
s, the noise n and foreground fitting errors r. The variance
estimator can be expressed as

Var(dν) = 〈d2ν〉 = 〈(sν + nν + rν)2〉, (11)

where the subscript ν indicates the spectral channel. We
have assumed in the above equation that the mean value of
the data is zero, as is the case in interferometric images made
with no zero spacing. The above equation can be further
expanded as

Var(d) = 〈s2 + n2 + r2 + 2sr + 2nr〉
= Var(s) + Var(n) + Var(r) + 2〈rs+ rn〉, (12)

where the first equality follows because the signal and the
noise are uncorrelated so their cross-correlation 〈sn〉 is zero.
The subscript ν has been dropped for convenience but all
quantities are measured for each spectral channel.

The signal variance Var(s) can be estimated by measur-
ing the variance of data Var(d) and subtracting from it the
expected noise variance Var(n), foreground fitting error vari-
ance Var(r) and the cross-correlation between the noise and
the foreground fitting errors 2〈rn〉. (see equation (12)). The
noise and the foreground fitting errors are correlated due to
the part of the noise that is removed by the foreground re-
moval algorithm. We do not correct for the cross-correlation
between the signal and the foreground fitting errors 2〈rs〉
because it will not be possible to estimate it in the case
of actual observations from the data. However, we believe
it would not be very significant because we find from the
simulations that the term 2〈rs〉 is much smaller than other
terms in equation (12). For the purpose of our simulations,
variances of the noise, the foreground fitting errors and their
cross-correlation are estimated from many Monte Carlo re-
alizations of the noise and the foregrounds. In the case of
actual observations, such noise realizations will be obtained
from the data by differencing consecutive spectral channels
of very narrow bandwidths (12 kHz). The foregrounds and
the EoR signal, being smooth on these scales, are expected
to get subtracted. However, since the noise is uncorrelated in
different spectral channels, channel differencing is expected
to yield good estimates of the noise. Estimating the fore-
ground fitting errors from the data might be difficult in the
case of actual observations and we may have to rely on fore-
ground simulations for this purpose. However, one possible
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way might be to split the data into two equal integration
time intervals, run the foreground removal on the two data
sets separately and then subtract the residuals of one from
another. The signal will get subtracted in this operation and
the noise estimate can be subtracted from the variance of the
remaining maps to obtain the estimate of the fitting errors.

The statistical error in the variance estimation can be
obtained by computing the variance of the variance estima-
tor. For Gaussian noise, it is given by (Casella & Berger
2002)

V ar(σ̂2) =
2σ4

N
, (13)

where σ̂2 is the variance estimator, σ is the true noise RMS
and N is the number of measurement samples. Here, σ is
the noise RMS after the primary beam correction has been
applied. As the noise increases away from the centre of the
image, a larger image size implies a higher σ and therefore a
larger error. On the other hand, the larger the image size, the
larger the number of independent samples N for the variance
measurement. Considering these two counteracting effects,
we determine the image size for variance measurement that
minimizes the error. This leads to a frequency dependent
image dimension, but takes advantage of the larger field of
view at lower frequencies.

4.1 Cross-variance measurement

An alternative way to measure the variance is to cross-
correlate consecutive spectral channels. We will refer to
such measurement as ‘cross-variance’. We measure the cross-
variance as 〈XiXi+1〉 where Xi and Xi+1 are flux densities
at the same pixel in ith and (i + 1)th spectral channels, re-
spectively. Measuring the cross-correlation of channels sep-
arated in frequency by ∆ν is equivalent to measuring the
power spectrum at a single scale parallel to the line of sight
k‖ = 2π/∆ν. Therefore, the cross-variance gives the vari-
ance in the frequency direction on a single k‖ mode.

The cross-variance estimator can be expressed as

〈didi+1〉 = 〈(si + ni + ri)(si+1 + ni+1 + ri+1)〉
= 〈sisi+1 + riri+1〉+ 2〈siri+1 + rini+1〉, (14)

where we have assumed the pairs of cross terms such as
〈siri+1〉 and 〈risi+1〉 to be equal. The advantage of esti-
mating the cross-variance as compared to the variance is
that since noise is uncorrelated between different spectral
channels, the cross term 〈nini+1〉 averages to zero. Simi-
lar to variance estimation, the signal and noise are uncor-
related, so their cross-correlation 〈sini+1〉 is zero. And the
cross-correlation between the signal and the foreground fit-
ting errors 〈siri+1〉 is not corrected for. Therefore, the sig-
nal cross-variance 〈sisi+1〉 is estimated by measuring the
cross-variance of the data 〈didi+1〉 and subtracting from it
the foreground fitting error cross-variance 〈riri+1〉 and the
cross-variance of the noise and the foreground fitting errors
2〈rini+1〉.

Unlike for variance estimation, the noise variance does
not need to be subtracted by hand in the case of cross-
variance estimation, reducing the chance for systematic er-
rors. Additionally, the statistical error in the measurement
reduces by a factor of 2 in variance as we will show in equa-

tions (15) and (16). The variance of the cross-variance esti-
mator σ̂c

2 is given by

Var(σ̂c
2) = Var[E(XiXi+1)] = E[Var(XiXi+1)]

= E
{

E
[
(XiXi+1)2

]
− [E(XiXi+1)]2

}
= E

{
E
[
(XiXi+1)2

]}
, (15)

where the last equality follows because the noise in two dif-
ferent spectral channels i.e. Xi and Xi+1 is uncorrelated. For
the same reason, equation (15) can be further simplified as

Var(σ̂c
2) = E

[
E(X2

i )E(X2
i+1)

]
=
σi

2σi+1
2

N
, (16)

where σi and σi+1 are the RMS noise in the ith and (i+1)th

spectral channels respectively.
The cross-variance of the signal is slightly lower than its

variance at 12 arcmin (FWHM), 0.5 MHz resolution scale.
This is because small-scale structures which are coherent on
scales smaller than 1 MHz do not contribute to the cross-
variance measurement. However, the aforementioned advan-
tages of cross-variance estimation supersede this disadvan-
tage, as we will show in Section 5. Cross-correlation of two
sub-epochs of the observation period has similar advantages,
and it has been considered by Harker et al. (2010) in the
context of power spectrum estimation.

We realized in hindsight that the cross-correlation of
two frequency channels in order to detect the EoR signal has
been previously proposed by Bharadwaj & Sethi (2001).

4.2 Parameter estimation

Once the signal variance has been extracted, we fit the model
described in Section 2 to it and estimate the best-fitting pa-
rameters. We used the Markov Chain Monte Carlo (MCMC)
technique to explore our 4D parameter space - zr,∆z, β,A.
MCMC maps the posterior probability distribution P (θ|D)
of the model parameters θ given the observed (here simu-
lated) data D. The best-fitting parameters are obtained at
the point in parameter space where the posterior is max-
imized. The posterior can be obtained from the likelihood
P (D|θ) and the prior P (D) by Bayes’ theorem:

P (θ|D) ∝ P (D|θ)P (D). (17)

We assume uniform priors and therefore mapping the poste-
rior is the same as sampling the likelihood. We used the code
emcee (Foreman-Mackey et al. 2013) to map the likelihood
and ultimately find the maxima. The code uses multiple ran-
dom walkers to sample the likelihood function. At each step,
the likelihood is computed assuming Gaussian noise as

P (D|θ) =
∏
i

1√
2πσ2

n,i

exp
−(Di −Mi(θ))

2

2σ2
n,i

, (18)

where Di, Mi(θ) are the measured and predicted (by model)
variance values for the ith spectral channel, and σ2

n,i is the
variance of the error in measurement as given by equation
(13) or (16).

In order to sample the parameter space, emcee itera-
tively draws samples for each random walker using a pro-
posal distribution based on the current positions of other
walkers. If the likelihood at the proposed position is higher
than the current one, the step is accepted. If it is lower than
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the current likelihood, it is accepted with a certain prob-
ability. Over time, the chain explores the parameter space
and maps the likelihood function. To obtain the posterior
distribution of reionization parameters, we marginalize over
the remaining model parameters i.e. the scaling amplitude
A and the power law index β as

P (zr,∆z|D) =

∫
P (zr,∆z,A, β|D) dA dβ. (19)

In principle, we should use the chi-squared distribution
for the likelihood function, because the error on the variance
measurement of a Gaussian noise follows a chi-square distri-
bution. However, we get almost the same results for both
Gaussian and chi-squared distributions. This is the case be-
cause a chi-square distribution with large degrees of free-
dom converges to a Gaussian distribution, suggesting that
the number of samples in our measurement suffices for the
central limit theorem to hold.

5 RESULTS

The simulation pipeline described in Section 3 generates the
mock observational data sets. We estimate the signal vari-
ance from the mock data and fit the model described in
Section 2 to it. Fig. 9 shows results of the model fitting and
parameter estimation for a realization of the data. The top
panel shows the actual and estimated signal variance and
the best model fit to the data for 600 h of integration. Fore-
ground removal and variance measurement are performed at
0.5 MHz resolution but the variance measurements are then
averaged to 5 MHz. Such re-binning of the data is done only
for the convenience of showing the results but it does not af-
fect the model fitting. The horizontal dotted line of zero vari-
ance is drawn to illustrate the significance of the detection.
The bottom panel shows the obtained marginalized poste-
rior probability densities of the reionization parameters. The
actual values of the used EoR simulation parameters were
zr = 7.68 and ∆z = 0.43. The extracted parameter values
are zr = 7.72+0.37

−0.18 and ∆z = 0.53+0.12
−0.23. The errors are given

at 68 per cent confidence.
Fig. 10 shows the marginalized probability density func-

tions (PDF) for the scaling amplitude A and the power law
index β. Assuming the null hypothesis to be A = 0, A rises
to a significance of 4 standard deviations in 600 hours. We
would call such measurement as the detection of the signal
with a significance of 4 standard deviations. However, we
would like to note that A could rise to a high significance
level due to systematic errors in the case of actual observa-
tions. Therefore, it is important to be able to extract not
only A, but also zr and ∆z within desirable ranges in order
to claim a detection of the signal.

It is clear from Fig. 10 that the power law index β is not
constrained well with 600 h of integration. This is due to the
poor sensitivity and the limitation of the model at high red-
shifts. However, the uncertainty in β does not significantly
affect the variance during the peak of reionization and hence
it does not affect the estimation of the EoR parameters zr
and ∆z.

The results of the cross-variance extraction are shown
in Fig. 11. Posterior probability distributions of all model
parameters and their pairs are shown in Fig. 12. The statis-
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Figure 10. Marginalized probability densities for the scaling am-

plitude A and the power-law index β. A rises to a significance of
4 standard deviations above the null hypothesis in 600 h of inte-

gration.

tical uncertainty in the cross-variance measurement is lower
than that of the variance, as shown in equations (15) and
(16). Therefore, the significance of detection and constraints
on the model parameters improve in the case of the cross-
variance. The scaling amplitude A rises to a significance of
7 standard deviations, and the extracted values of the EoR
parameters improve as: zr = 7.73+0.20

−0.16 and ∆z = 0.44+0.10
−0.09.

However, we would like to note that the results in this pa-
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conventions are same as in Fig. 9 except that the error bars are
calculated from equation (16). The constraints on all model pa-

rameters are show in Fig. 12. The cross-variance measurement

improves the results because noise is uncorrelated in different fre-
quency channels.

per are based on the assumption that many systematic er-
rors would remain under control. These include calibration
errors, foreground contamination due to sources in the side-
lobes of the primary beam, effects of uv gridding, ionosphere,
etc.

A measurement of the variance of the signal can start
to give some insights about the physics of reionization. The
signal variance can be used to distinguish between inside-
out and outside-in models of reionization (Watkinson &
Pritchard 2013). Measuring the redshift and duration of
reionization will provide important constraints for the simu-
lations and theoretical models, which then can improve our
understanding of the EoR and the first objects in the Uni-
verse.

5.1 A different reionization history

The results shown in Fig. 9, 11 and 12 indicate that LO-
FAR can in principle detect and constrain the EoR for a
particular history of reionization. However, the exact red-
shift of reionization is unknown. Therefore, it is necessary
to test whether it would be possible to constrain the EoR
parameters for a different history of reionization. In par-
ticular, the signal detection may become more difficult if
reionization was completed at higher redshifts because the
system noise increases at lower frequencies. We therefore
perform the same exercise of parameter estimation for an-
other simulation with zr = 9.30 and ∆z = 0.61. The results
are shown in Fig. 13. The extracted values of the parame-
ters are: zr = 9.60+0.41

−0.37 and ∆z = 0.55+0.21
−0.13. Although the

amplitude A remains at a significance of 4 standard devia-
tions, for the same quality of the data (i.e. 600 h and 0.5
MHz integration), we obtain weaker constraints on the EoR
parameters.

5.2 Better quality data

The LOFAR-EoR project plans to acquire a few thousand
hours of data over the coming years in order to constrain
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Figure 13. Cross-variance extraction for a different history of

the EoR, where reionization was completed earlier. Due to the

higher system noise at low frequencies, the errors on the esti-
mated parameters become larger if reionization were to occur at

higher redshifts. The bottom panel shows the marginalized pos-
terior probability densities of parameters A and β.

and understand the process of reionization. Therefore, it
is important to check whether the proposed model for the
variance statistic with its limitations would work for bet-
ter quality (higher SNR) data in the future with LOFAR or
the Square Kilometer Array (SKA) (Mellema et al. 2013).
For this purpose, we simulated observational data sets for
1200 h of integration, keeping all other parameters same the
as before. Fig. 14 shows the results of the variance mea-
surement for such a data set. The extracted values of the
parameters are: zr = 7.71+0.13

−0.11 and ∆z = 0.44+0.07
−0.09. As ex-

pected, the constraints on the reionization parameters are
improved because of the reduced noise. However, some of
the systematic errors become significant, which we other-
wise neglected for the 600-hour case. The signal variance is
under-estimated. This is due to the part of the signal that is
removed by the foreground removal algorithm. We ignored
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the correlation between the signal and the foreground fitting
errors, but with 1200 h of integration, the error bars become
small enough for the effect of this correlation to become no-
ticeable. The systematic errors introduced do not bias the
estimates of the reionization parameters, as shown in the
bottom panel of Fig. 13. However, the underestimation of
the signal variance biases the scaling amplitude A to lower
values. The degeneracy between A and the foreground re-
moval can partially be broken by using multiple foreground
removal methods. The bias in estimation of A is a minor
issue, but it can not be completely solved as any currently
available foreground removal method would remove a small
fraction of the EoR signal. Therefore, for a precise extrac-
tion of the signal, the foreground removal algorithms would
need to be improved.

The statistical errors at higher redshifts, where the
model does not describe the signal well, remain too large
to affect the fitting. But it can be seen that with ∼2000 h of
integration, the mismatch between the model and the signal
at the beginning of reionization would become a source of
systematic errors. We hope that the development in theory
and simulations over the coming years will enable us to use
improved models to describe the history of reionization.

6 CONCLUSIONS

We have investigated the extraction of the variance of the
redshifted 21-cm emission as a tool to detect and constrain

the global history of reionization. We have used simulations
of the LOFAR-EoR case to demonstrate that the variance
measurement is a promising tool for EoR experiments.

We parametrized the evolution of the EoR signal vari-
ance with redshift in terms of four model parameters in-
cluding a characteristic redshift and duration of reionza-
tion. We then generated mock observations using a simu-
lation pipeline to test the variance statistics. This study has
helped us to realise the implications of instrumental charac-
teristics such as uv coverage and primary beam response on
the observations, and to investigate different strategies for
data analysis. For instance, we have quantified the impact
of the chromatic primary beam on the foreground removal
to a first order.

We have shown that LOFAR should be able to detect
the EoR signal with a significance of 4 standard deviations
in 600 h of integration on a single field, assuming that the
calibration errors are small and the point sources can be
adequately removed. Additionally, it should be able to con-
strain the redshift zr and duration ∆z of reionization. We
used a simulation with zr = 7.68 and ∆z = 0.43 to test our
parameter estimation pipeline, and have been able to ex-
tract the parameters as zr = 7.72+0.37

−0.18 and ∆z = 0.53+0.12
−0.23,

where the error bars are given at 68 per cent confidence.
For the same quality of the data, we should be able to get
better constraints by measuring the cross-variance i.e. the
cross-correlation between consecutive spectral channels. The
cross-variance improves the results because the noise in dif-
ferent spectral channels is uncorrelated. The cross-variance
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Figure 14. Variance extraction and parameter estimation results

for 1200 h of integration. The constraints on reionization parame-
ters improve with better signal-to-noise ratio, but the systematic

error due to the part of the signal that is removed by foreground

removal starts to become significant in the model fitting.

measurement can enable us to detect the signal with a sig-
nificance of 7 standard deviations, and extract the EoR pa-
rameters as zr = 7.73+0.20

−0.16 and ∆z = 0.44+0.10
−0.09 for the same

600 hours of data.
If reionization was completed at higher redshifts where

the sensitivity of LOFAR decreases, the constraints on the
EoR parameters would be poorer. For a simulation with
zr = 9.30 and ∆z = 0.61, we have been able to con-
strain the reionization parameters as zr = 9.60+0.41

−0.37 and
∆z = 0.55+0.21

−0.13.
The constraints on the EoR parameters will improve

with more hours of integration. For 1200 h of integration
and a simulation with zr = 7.68 and ∆z = 0.43, we have
been able to constrain the EoR parameters as zr = 7.71+0.13

−0.11

and ∆z = 0.44+0.07
−0.09. However, the systematic errors due to

the part of the signal that is removed by the foreground re-
moval algorithm will become significant with better quality
data. Therefore, the foreground removal algorithms and the
models of reionization would then need improvements for an
accurate extraction of the EoR signal.

Many realistic effects are not included in our analysis
due to limitations of our simulations. These include cali-
bration errors, foreground contamination due to sources in
sidelobes of the primary beam, effects of uv gridding, iono-
sphere, RFI flagging and the polarization leakage. Our re-
sults are based on the assumption that these issues can be
adequately controlled. The future work could focus on ad-

dressing these issues in order to optimize the data analysis
strategy. Eventually, the goal is to apply the variance statis-
tic to LOFAR-EoR observations.
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