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Abstract. We present a generic inference method for inflation models from observational
data by the usage of higher-order statistics of the curvature perturbation on uniform density
hypersurfaces. This method is based on the calculation of the posterior for the primordial
non-Gaussianity parameters fNL and gNL, which in general depend on specific parameters of
inflation and reheating models, and enables to discriminate among the still viable inflation
models. To keep analyticity as far as possible to dispense with numerically expensive sampling
techniques a saddle-point approximation is introduced, whose precision is validated for a
numerical toy example. The mathematical formulation is done in a generic way so that
the approach remains applicable to cosmic microwave background data as well as to large
scale structure data. Additionally, we review a few currently interesting inflation models
and present numerical toy examples thereof in two and three dimensions to demonstrate the
efficiency of the higher-order statistics method. A second quantity of interest is the primordial
power spectrum. Here, we present two Bayesian methods to infer it from observational data,
the so called critical filter and an extension thereof with smoothness prior, both allowing
for a non-parametric spectrum reconstruction. These methods are able to reconstruct the
spectra of the observed perturbations and the primordial ones of curvature perturbation even
in case of non-Gaussianity and partial sky coverage. We argue that observables like T−
and B−modes permit to measure both spectra. This also allows to infer the level of non-
Gaussianity generated since inflation.
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1 Introduction

1.1 Motivation

By precision measurements of the cosmic microwave background (CMB) [1, 2] it has become
possible to determine the exact statistics of its temperature anisotropies. These anisotropies
are strongly connected to the curvature perturbations on uniform density hypersurfaces ζ,
predicted by inflationary models, with the result that the zoo of models can be constrained
by exploiting observational data, e.g., by the usage of Gaussian statistics [3–7]. The viable
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models that are compatible with current Planck constraints on primordial non-Gaussianity,
often represented by the fNL parameter, are given by −3.1 ≤ fNL ≤ 8.5 (68%C.L. statistical)
[8] for the local type of non-Gaussianity. In particular, a value of |fNL| ∝ O(1) is in agreement
with the data. Such a low value of non-Gaussianity opens the possibility to include the effect
of primordial non-Gaussianity when performing routine cosmological parameter estimates
in order to maximally exploit the data, since it permits approximations which prevent the
computations from becoming numerically too expensive. The contributions from higher-
order statistics can in many cases (see Sec. 3) be parametrized by the local non-Gaussianity
parameter fNL and gNL [9],

ζ = ζ1 +
3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O(ζ4

1 ), (1.1)

where ζ1 is the Gaussian curvature perturbation. fNL contributes to the bi- and trispectrum,
while gNL contributes only to the trispectrum of the curvature perturbation.

As things turned out, there are inflation models among the ones, which are favored by
current data, e.g., stated in Ref. [6] (AI, BI, ESI, HI, LI, MHI, RGI, SBI, SFI )1 or Ref. [7],
predicting values of |fNL| ∝ O(1) and distinctly deviate from gNL = 0 if the possibility of
non-Gaussianity is taken into account. It is crucial to realize that it is less likely for (at least)
two disjunct inflation models to predict the same combination (fNL, gNL) than only the same
value of fNL or gNL. In other words, if we would be able to infer these two non-Gaussianity
parameters simultaneously from CMB or large scale structure (LSS) data, we had a powerful
tool to distinguish between the remaining inflation models. This requires to derive a posterior
probability density function (pdf) for (fNL, gNL) within a Bayesian framework. How this can
be done analytically is presented in the first part of this paper. Additionally, we show how
this method can be recast to infer parameters specific to inflationary models, e.g., shape
parameters of inflationary potentials, or the presence of an additional bosonic field, directly
from data. We also provide a validation of our approach to show its precision despite using
an approximation.

The second quantity of interest here is the primordial power spectrum, Pζ(k) or Pζ1(k),
in particular due to its constraining character with respect to inflationary scenarios. The
Planck collaboration might have seen some features within the primordial power spectrum
which in turn would indicate non-linear physics and thus could point to inflation models
beyond single-field slow-roll inflation [7]. Additionally, these types of deviations are well
motivated by, e.g., implications of the recent BICEP2 data [10–12, 15], or special features
of the inflaton potential [13, 14]. However, for the detection of such features one has to
appropriately reconstruct the power spectrum from observational data. For this purpose we
suggest two non-parametric spectral inference methods in Sec. 5.

1.2 Previous Bayesian work

The majority of publications [16–22], which are dealing with Bayesian reconstructions of non-
Gaussian quantities from CMB have their focus only on estimators or the pdf of the fNL or
gNL parameter. They usually require computationally expensive calculations like Monte Carlo
sampling except for some, e.g. Refs. [23, 24], which derive analytic expressions by performing
approximations.

1Terminology according to Ref. [3]: AI = Arctan Inflation, BI = Brane Inflation, ESI = Exponential SUSY
Inflation, HI = Higgs Inflation, LI = Loop Inflation, MHI = Mutated Hilltop Inflation, RGI = Radiation
Gauge Inflation, SBI = Supergravity Brane Inflation, SFI = Small Field Inflation.
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High precision CMB measurements of the WMAP and Planck satellites have opened
a new window to the physics of the early Universe and have thus improved the constraints
on some parameters of non-Gaussianity [8] and on many inflation models [7] based on the
two-point function, but have not connected the inflationary parameters directly to higher-
order statistics. A way of direct inference of single-field slow-roll inflation models from CMB
data of the Planck satellite was recently presented by Refs. [4–6]. Here, the CMB power
spectrum was analyzed already ruling out a huge amount of inflation models. We, however,
go beyond Gaussian and three-point statistics to achieve tighter constraints on reasonable,
not necessarily single-field slow-roll inflation models given the Planck and future data.

An independent cross-check of CMB results is the analysis of the LSS data. Current
results for non-Gaussianity values, e.g. Refs. [25–31] and forwarding references thereof, are
consistent with CMB constraints. Thus, the LSS provides also a natural data set to infer
inflation models. The inference approach presented in this paper is in principle able to deal
with this type of data sets as well (see Sec. 4).

According to the reconstruction of the primordial power spectrum, there exist a huge
amount of approaches and an overview of the literature can be found in section 7 of Ref. [7]
and in Ref. [32]. Within this work we exclusively focus on the approach of Refs. [33] and
[34], which developed approximative, but inexpensive Bayesian inference schemes for spectra
within the framework of information field theory.

For a brief review on inferring primordial non-Gaussianities in the CMB beyond Bayesian
techniques (e.g., bi- and trispectrum estimators, Minkowski Functionals, wavelets, needlets,
etc.) we want to point to Ref. [35] and forwarding references thereof.

1.3 Structure of the work

The remainder of this work is organized as follows. In Sec. 2 we describe the considered data
model and introduce the generic method of inferring inflation models postulating fNL, gNL.
In Sec. 3 we review a few inflation models that are not ruled out by current Planck data and
quote corresponding expressions for fNL and gNL. Additionally, we show where the specific
models are localized in the fNL-gNL-plane. The Bayesian posterior for special inflationary
parameters is shown in Sec. 4 as well as a numerical implementation (toy case) of the also
pedagogically important curvaton scenario in the Sachs-Wolfe limit and its validation by the
Diagnostics of Insufficiencies of Posterior distribution (DIP) test [36]. In Sec. 5 we introduce
a method to reconstruct the primordial power spectrum of ζ and ζ1. We summarize our
findings in Sec. 6.

Being at the interface of statistical analysis and physical cosmology, it seems appropriate
to guide the reader by giving some reading instructions. For a reader who is rather interested
in the statistical analysis, i.e. how to infer (inflationary) parameters from CMB data and how
to reconstruct a power spectrum in a non-parametric way in general, paragraphs starting
with symbol I and ending with symbol J might be skipped. For a reader rather interested
in physical cosmology these symbols might mark paragraphs of special interest.

2 Generic inference of inflation models postulating fNL, gNL

In order to decide which inflation model is favored by current CMB or LSS data one should use
as much information as possible during the inference process without becoming numerically
too expensive. This implies, in particular, to aim for information sensitive to non-Gaussian
statistics. Usually, this leads to non-trivial phase space integrals which cannot be performed
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analytically and require numerically expensive techniques like Monte Carlo sampling. Within
this section, however, we show how to set up a fully analytic posterior for the scalar, local non-
Gaussianity parameters fNL(p) and gNL(p), which in general depend on inflation or reheating
model specific parameters, p = (p1, . . . , pu)T ∈ Ru, u ∈ N. In turn, this also enables
to calculate analytically the posterior pdf for the model specific parameters p, which encode,
e.g., the particular shape of an inflation model or the density fraction of an additional bosonic
field (see Sec. 3). To keep this analyticity and simultaneously avoid numerically expensive
sampling techniques we introduce a saddle-point approximation in the actual section, whose
sufficiency is validated in Sec. 4.2.3.

For reasons of clarity and comprehensibility we drop the p-dependency in our notation
within this section. For the same reason we focus on global values of fNL and gNL although
the formalism described below is generic and can deal with spatially varying non-Gaussianity
parameters as shown in Ref. [20].

2.1 Data model

To infer physical quantities from data we have to agree on a particular data model. Following
the logic of information field theory [20], a CMB observation is represented by a discrete
data tuple d = (d1, . . . , dm)T ∈ Rm, m ∈ N, composed of uncorrelated Gaussian noise
n = (n1, . . . , nm)T ∈ Rm and a linear response operation R acting on the, in general, non-
Gaussian comoving curvature perturbations ζ, a continuous physical field over the Riemannian
manifold U ,

d =
δT

TCMB
= Rζ + n = R

(
ζ1 +

3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O

(
ζ4

1

))
+ n, (2.1)

with the Gaussian curvature perturbations ζ1. The pdfs of ζ1 and n are given by P (ζ1) =

G(ζ1,Ξ) with covariance Ξ =
〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

, and P (n) = G(n,N) with covariance N , respec-

tively. Here, we use the notation

〈 . 〉P (a) = 〈 . 〉(a|A) ≡
∫
Da . P (a|A), (2.2)

and
G(a,A) ≡ |2πA|−1/2 exp

(
−1

2
a†A−1a

)
, (2.3)

where † denotes a transposition and complex conjugation, ∗, and a†b ≡
∫
U d

dx a∗(x)b(x)
with d ≡ dimU defining the inner product on the fields a, b. The comoving curvature
perturbation ζ on uniform density hypersurfaces, which is a conserved quantity outside the
horizon2 [39], is the seed of the structure growth during the evolution of the Universe and
its statistics are precisely predicted by inflation models. Therefore, ζ is directly related to
inflationary parameters, p. If the statistics of ζ, predicted by inflation scenarios, are non-
Gaussian, the dependence on p can often be absorbed in the non-Gaussianity parameters
fNL(p) and gNL(p). The linear response R in Eq. (2.1) transfers the curvature perturbations
into temperature deviations, δT , and contains all instrumental and measurement effects, i.e.
R represents the radiation transfer function. In this way the data is directly related to the

2Note that this is true in the standard ΛCDM model. However, if there are sources of anisotropic stress
before neutrino decoupling, such as, e.g., in the case of primordial magnetic fields, then ζ is no longer a
constant on superhorizon scales [37, 38].

– 4 –



initial Gaussian curvature perturbation ζ1 or to inflationary parameters p and we can set up
the inference scheme.

2.2 Posterior derivation

We derive the posterior by following Ref. [23], i.e. we first calculate the pdf for the Gaussian
curvature perturbation ζ1 given the non-Gaussianity parameters and data via Bayes theorem
[40],

P (ζ1|d, fNL, gNL) =
P (ζ1, d, fNL, gNL)

P (d, fNL, gNL)

=
P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)

P (d|fNL, gNL)
≡ 1

Z
e−H(ζ1,d|fNL,gNL),

(2.4)

whereH(ζ1, d|fNL, gNL) ≡ − ln[P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)] defines the information Hamil-
tonian and Z ≡ P (d|fNL, gNL) the partition function. Assuming Gaussian noise, G(n,N),
with N =

〈
nn†

〉
(n|N)

denoting the noise covariance matrix and that fNL and gNL are con-
stant scalars and that all quantities are real, the information Hamiltonian is given by

H(ζ1, d|fNL, gNL)

= − ln [P (d|ζ1, fNL, gNL)P (ζ1|fNL, gNL)] = − ln [G (d−Rζ,N)G (ζ1,Ξ)]

= H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1 −
3

5
fNLj

†ζ2
1 −

9

25
gNLj

†ζ3
1 +

3

5
fNLζ

†
1Mζ2

1

+
9

25
gNLζ

†
1Mζ3

1 +
9

50
f2
NL

(
ζ†1

)2
Mζ2

1 +
27

125
fNLgNL

(
ζ†1

)2
Mζ3

1 +
81

1250
g2
NL

(
ζ†1

)3
Mζ3

1 .

(2.5)

Note that some terms of order O(ζ5
1 ) have already been neglected because we did not state

the exact expression for the term proportional to O(ζ4
1 ) in Eq. (2.1). Eq. (2.5) contains the

abbreviations

D−1 = Ξ−1 +M, M = R†N−1R, j = R†N−1d,

and H0 =
1

2
ln |2πΞ|+ 1

2
ln |2πN |+ 1

2
d†N−1d.

(2.6)

Now, we are able to determine the posterior for the non-Gaussianity parameters fNL
and gNL, which can be calculated by combining Eqs. (2.4) and (2.5),

P (fNL, gNL|d) =
P (d|fNL, gNL)P (fNL, gNL)

P (d)
∝ P (fNL, gNL)

∫
Dζ1P (ζ1, d|fNL, gNL)

= P (fNL, gNL)

∫
Dζ1 exp [−H(ζ1, d|fNL, gNL)] .

(2.7)

Due to the fact that the Hamiltonian contains higher orders than ζ2
1 we cannot perform

the path-integration analytically. To circumvent this obstacle we conduct a saddle-point
approximation in ζ1 around ζ̄1 ≡ arg min [H(ζ1, d|fNL, gNL)] up to the second order in ζ1 to
be still able to perform the path-integration analytically, cf. [23]. This Taylor approximation
is justified by |ζ1| ∝ O

(
10−5

)
. For the expansion of the Hamiltonian we need the first and

second derivative with respect to ζ1, given by
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0 =
δH(ζ1, d|fNL, gNL)

δζ1

∣∣∣∣
ζ1=ζ̄1

=

(
D−1 − 6

5
fNL ĵ

)
ζ̄1 − j −

27

25
gNLĵζ̄1

2
+

3

5
fNL

(
Mζ̄1

2
+ 2ζ̄1 ? Mζ̄1

)
+

9

25
gNL

(
Mζ̄1

3
+ 3ζ̄1

2
? Mζ̄1

)
+

(
18

25
f2
NLζ̄1 ? Mζ̄1

2
)

+
27

125
fNLgNL

(
2ζ̄1 ? Mζ̄1

3
+ 3ζ̄1

2
? Mζ̄1

2
)

+

(
243

625
g2
NLζ̄1

2
? Mζ̄1

3
)
,

(2.8)

and

D−1
d,fNL,gNL

≡ δ2H(ζ1, d|fNL, gNL)

δζ2
1

∣∣∣∣
ζ1=ζ̄1

= D−1 − 6

5
fNLĵ −

54

25
gNL

̂̄ζ1 ? j +
6

5
fNL

(
2ζ̄1 ? M + M̂ ζ̄1

)
+

27

25
gNL

(
M̂ ζ̄1

2
+
(
ζ̄1

2
? M + 2 ̂̄ζ1M̂ ζ̄1

))
+

18

25
f2
NL

(
M̂ ζ̄1

2
+ 2ζ̄1 ? M ? ζ̄1

)
+

54

125
fNLgNL

(
3 ̂̄ζ1M̂ ζ̄1

2
+ M̂ ζ̄1

3
+ 6ζ̄1 ? M ? ζ̄1

2
)

+
243

625
g2
NL

(
2 ̂̄ζ1M̂ ζ̄1

3
+ 3ζ̄1

2
? M ? ζ̄1

2
)
,

(2.9)

where ? denotes a pixel-by-pixel multiplication, e.g., ζ2
x = (ζ ?ζ)x ≡ ζxζx and a hat over fields

denotes the transformation of a field to a diagonal matrix, ζx 7→ ζxδxy ≡ ζ̂xy.
With Eqs. (2.8) and (2.9) we are able to perform the saddle-point approximation of the

posterior yielding

P (fNL, gNL|d) ∝ P (fNL, gNL)

∫
Dζ1 exp [−H(d, ζ1|fNL, gNL)]

≈ P (fNL, gNL)

∫
D(ζ1 − ζ̄1)

∣∣∣∣δ(ζ1 − ζ̄1)

δζ1

∣∣∣∣−1

× exp

[
−H(d, ζ̄1|fNL, gNL)− 1

2
(ζ1 − ζ̄1)†D−1

d,fNL,gNL
(ζ1 − ζ̄1)

]
= |2πDd,fNL,gNL |

1
2 exp

[
−H(d, ζ̄1|fNL, gNL)

]
P (fNL, gNL).

(2.10)

Considering Eq. (2.10), we are able to calculate analytically the full posterior pdf of the
fNL and gNL parameter without using expensive Monte Carlo sampling techniques. These
techniques have been avoided by replacing the joint pdf for data and curvature perturbation,
P (ζ1, d|fNL, gNL), by the Gaussian distribution G(ζ1− ζ̄1, Dd,fNL,gNL), whose precision is vali-
dated for particular inflation models in Sec. 4 as well as in Ref. [23] by applying the DIP test
[36].

Note that the evaluation of Eq. (2.10) requires a priori knowledge about the primordial
power spectrum, Ξ (see Sec. 5 for a more detailed description). In the realistic case of small
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non-Gaussianity one might try, for instance, to see what consequences the power-law power
spectrum of the Planck cosmology [7] yields, Eq. (5.1), as long as Ξ =

〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

≈
〈
ζζ†
〉

(ζ|Ξ)

holds. In regimes of larger non-Gaussianity, where the last approximation is violated, the
primordial power spectrum and the reconstruction of ζ1 (wherefore we need a priori Ξ) have
to be inferred simultaneously from the data. For this purpose we introduce an Empirical
Bayes method in Sec. 5.

3 Special models of inflation

I There is a large number of different inflationary models, so what particular type should
one focus on? Fortunately, recently published papers given by Refs. [7] and [6] address this
question. The first by mainly pointing out parameter constraints to many representative
inflation models as well as a Bayesian model comparison thereof, the second by suggesting
to concentrate on nine specific types of single-field slow-roll inflation, which are favored by
current Planck data. To be more precise, the favors of Ref. [6] have been determined by
calculating the Bayesian evidence and complexity of the models.

The remaining nine models are all single-field slow-roll models and thus are characterized
by, e.g., two slow-roll parameters3, ε and η, which are given by

ε ≡ 1

2

(
MPlVφ
V

)2

and η ≡
M2

PlVφφ
V

, (3.1)

where V ≡ V (φ) denotes the potential of the inflaton φ,MPl the Planck mass, subscript letters
represent derivatives, and ε and η fulfill the bounds ε, |η| � 1. For these specific models the
non-Gaussianity parameters are usually much smaller than one and can often be written as a
function of ε and η, e.g., for single-field slow-roll inflation models with standard kinetic term
and Bunch-Davis vacuum as initial vacuum state the parameter fNL is proportional to O(ε, η)
(for details see [8, 41, 42]). In particular, the quantitative dependence of the non-Gaussianity
parameters on inflationary parameters p can be worked out for every inflation model by
conducting cosmological perturbation theory [43, 44] to desired order or by applying the so-
called δN -formalism [39, 45–47]. This means, by replacing the non-Gaussianity parameters
by (ε, η)-dependent functions, which again depend on inflation model specific parameters p
as clarified in Eq. (3.1), we are able to infer the slow-roll parameters as well as p directly
from data according to Eq. (2.10). Unfortunately, such a tiny amount of non-Gaussianity is
currently expected not to be observable due to other general relativistic effects (for details
see [8]).

The other case of inflation models with Lagrangians including non-standard kinetic
terms leads to non-Gaussianity of equilateral type depending on the so-called sound speed
of the inflaton, cs (= 1 for standard kinetic terms) [7]. This type of non-Gaussianity can
approximately be described by the parameter f eqNL ∝ (1 − c−2

s ). The sound speed of the
inflaton, again, depends on the particular inflation model and its parameters. Unfortunately,
this type of non-Gaussianity cannot be expressed in a form similar to Eq. (1.1) and one has
to go back, for instance, to templates.

There are also multi-field inflation models that are not ruled out yet [7]. In particular
models where initially isocurvature perturbations are (not necessarily completely) transformed
to adiabatic perturbations. Such a transformation requires at least two fields, e.g., as it

3Analogously one can use the HFF slow-roll parameter definition as done in Ref. [6].
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happens in the curvaton, axion, higgs inflation scenario, and indeed a slight favor to a non-
vanishing amount of isocurvature modes might have been seen by Planck [7]. In this section
we focus on such scenarios and review the calculations of the non-Gaussianity parameters for
a selection of realistic models without claiming that this selection is the most favored one.
We are picking only one representative single-parameter mechanism per inflation model for
minimal complexity and simplicity. Note, that the approach of Sec. 2 would also allow to
focus on the other inflation scenarios mentioned above. We choose the following scenarios for
illustration only. J

3.1 Simplest curvaton model

I Here, the simplest curvaton model, taking into account radiation and the curvaton, is
considered. Without interactions perfect fluids have conserved curvature perturbations [9, 48],

ζi = δN +
1

3

∫ ρi

ρ̄i

dρ̃i
ρ̃i + Pi(ρ̃i)

, i ∈ {r, χ}, (3.2)

with r denoting radiation, χ the curvaton, δN the perturbation of the number of e-folds
N during inflation, ρ the particle specific density, and P the respective pressure. Barred
quantities refer to homogeneous background values. Assuming the curvaton decays on a
uniform total density hypersurface determined by H = Γ, where H = ȧ

a is the Hubble
parameter, a the cosmological scale factor, and Γ the decay rate of the curvaton (assumed to
be constant). Then on this hypersurface

ρr(tdecay, ~x) + ρχ(tdecay, ~x) = ρ̄(tdecay). (3.3)

However, the local curvaton and radiation densities on this decay surface will be inhomoge-
neous, with ζ = δN ,

ζr = ζ +
1

4
ln

(
ρr
ρ̄r

)
⇒ ρr = ρ̄r e

4(ζr−ζ), (3.4)

ζχ = ζ +
1

3
ln

(
ρχ
ρ̄χ

)
⇒ ρχ = ρ̄χ e

3(ζχ−ζ). (3.5)

Here it was used that once the curvaton starts oscillating it effectively behaves as a non-
relativistic perfect fluid, ρχ ∝ a−3. Using Eqs. (3.4) and (3.5) in Eq. (3.3) leads to [9]

Ωχ,decay e
3(ζχ−ζ) + (1− Ωχ,decay) e4(ζr−ζ) = 1, (3.6)

where

Ωχ,decay ≡
ρ̄χ

ρ̄χ + ρ̄r
. (3.7)

This equation will now be expanded order by order in ζ. Following Ref. [9] the simplest case
is considered in which any perturbation in the radiation fluid is neglected, due to, say an
inflationary curvature perturbation. Hence ζr = 0.

To first order Eq. (3.6) reads [9]

4 (1− Ωχ,decay) ζ1 = 3 Ωχ,decay (ζχ1 − ζ1) , (3.8)
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where subscript 1 denotes the first order expansion so that

ζ1 = rζχ1 , (3.9)

where

r ≡
3Ωχ,decay

4− Ωχ,decay
=

3ρ̄χ
3ρ̄χ + 4ρ̄r

∣∣∣∣
tdecay

∈ [0, 1]. (3.10)

For r ≈ 1, i.e. the curvaton is highly dominant, the curvature perturbations are purely
adiabatic whereas for r � 1 not all isocurvature modes have converted to adiabatic ones.
Assuming that the curvaton energy density is determined by a simple quadratic potential,

ρχ =
1

2
m2χ2, (3.11)

and assuming it is a weakly coupled field during inflation so that its quantum fluctuations
induce a classical Gaussian random field after horizon exit on superhorizon scales, then

χ∗ = χ̄∗ + δ1χ∗, (3.12)

where the * indicates the time of horizon exit and 1 in the perturbation emphasizes the linear
perturbation. Moreover, δ1χ∗ is a Gaussian random field with 2-point correlation function in
k-space,

〈δ1χ∗,~k δ1χ
†
∗,~k′
〉 =

2π2

k3

(
H

2π

)2

δ~k~k′ , (3.13)

where H ' const. during inflation. Now there could be a nonlinear evolution of χ on su-
perhorizon scales after horizon exit up to the beginning of the curvaton oscillations and
subsequent decay during the radiation dominated era. In Ref. [9] this is taken into account
by introducing a function g(χ) such that during the curvaton oscillations the value of the
curvaton field is given by

χ = g(χ∗). (3.14)

Hence ρ̄χ = 1
2m

2ḡ2 and [9]

ζχ1 =
2

3

δ1χ

χ̄
=

2

3

g′

g

∣∣∣∣
χ=χ∗

δ1χ∗. (3.15)

In real space the nonlinearity parameters fNL and gNL are defined by (e.g. [9])

ζ(t, ~x) = ζ1(t, ~x) +
3

5
fNLζ1(t, ~x)2 +

9

25
gNLζ1(t, ~x)3 +O(ζ4

1 ). (3.16)

The Bardeen potential Φmd on large scales in the matter dominated era is related to ζ1 by
Φmd = 3

5ζ1 so that

3

5
ζ = Φmd + fNLΦ2

md + gNLΦ3
md. (3.17)
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In Ref. [9] fNL and gNL are calculated by expanding Eq. (3.8) respectively up to second and
third order, e.g.,

fNL =
5

4r

(
1 +

gg′′

g′2

)
− 5

3
− 5r

6
, (3.18)

and gNL can be found in Ref. [9].
Now considering the simplest model and neglecting any nonlinear evolution of χ between

Hubble exit and the start of curvaton oscillations, so that g′′ = 0 = g′′′. In this case we obtain

fNL =
5

4
κ− 5

3
− 5

6κ
,

gNL =
25

54

(
−9κ+

1

2
+

10

κ
+

3

κ2

)
,

(3.19)

with
κ ≡ 1

r
=

4ρ̄r
3ρ̄χ

+ 1 ∈ [1,∞), (3.20)

where the parameter κ was introduced for reasons that become clear in Sec. 5. Eq. (3.19) is
illustrated in Fig. 1. Currently, an upper bound on the isocurvature contribution was given
by the Planck collaboration corresponding to fNL = −1.23±0.02. Note that this constraining
interval for fNL was found by a power spectrum fit including adiabatic and isocurvature modes
[7] and thus is independent of the limit (fNL = 2.7 ± 5.8) found in Ref. [8] and is only valid
for the here considered curvaton scenario. On the other hand this corresponds to the interval
gNL = 1.97 ± 0.11. A gNL outside this interval would put some pressure on this simplest
curvaton model. J

3.2 Modulated Higgs inflation

I Next, we consider the Standard Model Higgs field h in addition4 to the inflaton field φ
with related potential V (φ) as pointed out in Ref. [49] and as representative mechanism of
the Higgs inflation (HI) class. The Higgs field is responsible for modulating the efficiency of
reheating, whereby primordial curvature perturbations are generated by converting isocurva-
ture perturbations (produced by h during inflation) to adiabatic ones [51]. In particular we
assume a simple Higgs potential during the energy scale of inflation µ,

V (h) =
λ

4
h4, (3.21)

with λ ≡ λ(µ) ≈ O(10−2) the Higgs self coupling with logarithmic dependence on the energy
scale.

Within this model we can write the total decay rate of the inflaton, Γ(h), as a sum of a
Higgs dependent and independent term,

Γ(h) = ΓI + ΓD(h). (3.22)

Then the curvature perturbation is given by [49, 52]

ζ =
1

M2
Pl

V (φ)

Vφ(φ)
δφ∗ +Qhδh∗ +

1

2
Qhhδh

2
∗ +

1

6
Qhhhδh

3
∗ +O(δh4

∗), (3.23)

4It is well known that the Standard Model Higgs field cannot serve as an inflaton field [49, 50].
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Figure 1. Simplest curvaton model: Possible values of fNL and gNL within current Planck constraints
parametrized by the curvaton parameter κ = 4ρ̄r/(3ρ̄χ) + 1. The current constraints on isocurvature
modes (red squares) narrow down the allowed region significantly.

with Q ≈ a0 log
(

Γ
Hc

)
. ∗ denotes the horizon exit, Hc is the Hubble constant at tc (a time

before the decay of the inflaton, for details cf. [49]), and subscript letters represent derivatives.
a0 is a model dependent constant of the order of O(10−1).

Assuming the Higgs dependent decay rate to be of polynomial form in h, ΓD(h) ∝ hn,
the non-Gaussianity parameters can be calculated from the statistics of ζ, which yields [49]
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fNL =− 5

6

β2

a0

(
1− ΓΓhh

Γ2
h

)
≈ −5

6

β2

a0

(
1− 1

Bh

n− 1

n

)
,

gNL =− 25β3

54a2
0

(
2− 3

ΓΓhh
Γ2
h

+
Γ2Γhhh

Γ3
h

)
≈ 2(n− 2)

3(n− 1)β
f2
NL −

5

3

β

a0
fNL,

(3.24)

with Bh = ΓD/Γ ≤ O(10−3−10−2) and β ≈ O(10−2−1). Eq. (3.24) is illustrated in Fig. 2. J

4 Posterior for special inflationary parameters

4.1 Generic procedure

For all models discussed in Sec. 3 an expression for the posterior of a model specific quantity
can be derived by replacing fNL and gNL by their corresponding model dependent parameters
p, which are pointed out in the stated section. This is, of course, also true for all other
inflation models postulating these two non-Gaussianity parameters. Thereby one obtains p-

dependent equations for δH(ζ1,d|p)
δζ1

∣∣∣∣
ζ1=ζ̄1

= 0 and D−1
d,p ≡

δ2H(ζ1,d|p)
δζ21

∣∣∣∣
ζ1=ζ̄1

, which allow to derive

the posterior analytically, Eq. (2.10).
Eventually, the response R has to be replaced by its respective, corresponding expression,

depending on whether one uses the CMB data, LSS data, or something else. The resulting
posterior can then be implemented and evaluated numerically. With its help one might
obtain a single point (e.g. mean of p or maximum of the posterior) within the fNL(p) −
gNL(p)−plane with corresponding error interval being a sub-area of the plane or it just maps
out the parameter posterior.

4.2 Simplest curvaton model

4.2.1 Posterior derivation

To demonstrate the applicability of the inference approach we study the simplest curvaton
inflation scenario. We follow Secs. 2 and 4.1 to derive the posterior. The replacement of fNL
and gNL by their corresponding κ expressions leads to the information Hamiltonian,

H(ζ1, d|κ) = H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1 −
(

3

4
κ− 1− 1

2κ

)
j†ζ2

1 −
(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)
j†ζ3

1

+

(
3

4
κ− 1− 1

2κ

)
ζ†1Mζ2

1 +

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)
ζ†1Mζ3

1

+
1

2

(
3

4
κ− 1− 1

2κ

)2 (
ζ2

1

)†
Mζ2

1 +

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)(
3

4
κ− 1− 1

2κ

)(
ζ2

1

)†
Mζ3

1

+
1

2

(
−3

2
κ+

1

12
+

5

3κ
+

1

2κ2

)2 (
ζ3

1

)†
Mζ3

1 .

(4.1)

Analogously, by replacing fNL and gNL by their corresponding κ expressions in Eqs. (2.8) and

(2.9), one obtains expressions for δH(ζ1,d|κ)
δζ1

∣∣∣∣
ζ1=ζ̄1

= 0 and D−1
d,κ ≡

δ2H(ζ1,d|κ)
δζ21

∣∣∣∣
ζ1=ζ̄1

, whereby
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Figure 2. Modulated Higgs inflation: Possible values of fNL and gNL for some model-typical values
of a0 = 0.1, β = 0.5, and Bh = 0.01 within the Planck constraints parametrized by the decay rate
index n from ΓD(h) ∝ hn.

we are able to perform the saddle-point approximation of the posterior, which yields (see Eq.
(2.10))

P (κ|d) ∝ P (κ)

∫
Dζ1 exp [−H(d, ζ1|κ)] ≈ |2πDd,κ|

1
2 exp

[
−H(d, ζ̄1|κ)

]
P (κ). (4.2)
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For numerical reasons D−1
d,κ is split into a diagonal part, D−1

d,κ,diag, and a non-diagonal one,
D−1
d,κ,non-diag, which leads to (cf. [23])

ln [P (κ|d)] = −H(κ|d) ≈ −1

2
tr
[
ln

(
1

2π
D−1
d,κ,diag

)]
+

1

2
tr

[ ∞∑
n=1

(−1)n

n

(
Dd,κ,diagD

−1
d,κ,non-diag

)n]
−H(d, ζ̄1|κ) + ln [P (κ)] + const..

(4.3)

The series expansion of the logarithm in Eq. (4.3) can be truncated if the terms become
sufficiently small.

4.2.2 Numerical implementation

For a numerical implementation of Eq. (4.3) we have to choose a prior pdf for κ, P (κ). A
naive choice, for instance, according to Eq. (3.20) would be

P (κ) =
1

κ0 − 1
Θ(κ− 1)Θ(κ0 − κ), (4.4)

with Θ the Heaviside step function and κ0 a large but finite number to normalize the dis-
tribution. However, at this point we do not want to open a discussion of how to choose
an appropriate prior pdf for the curvaton parameter. Thus we focus on the likelihood pdf,
P (d|κ) ∝ P (κ|d)

P (κ) , given by subtracting ln [P (κ)] from Eq. (4.3).
In order to implement the likelihood we study the inference from CMB data in the

Sachs-Wolfe limit [53] within a toy example in two and three dimensions. Here the data are
given by

d = Rζ + n = RCMBΦmd + n = RCMB
3

5
ζ + n

= RCMB
3

5

(
ζ1 +

3

5
fNLζ

2
1 +

9

25
gNLζ

3
1 +O(ζ4

1 )

)
+ n,

(4.5)

with Φmd the Bardeen potential in the matter dominated era. In this limit the response
becomes local5 [54],

R(x, y) = −3

5

1

3
δ(x− y), (4.6)

with x, y two positions on the two-(three-) dimensional sky. Additionally, we assume white
noise, Nxy = σ2

nδxy. For the inference process the so-called free information propagator D is
required, which depends in particular on the power spectrum of ζ1. For this we assume

Ξ =
〈
ζ1ζ
†
1

〉
(ζ1|Ξ)

≡ Pζ1(k)δkk′ = As

(
k

k∗

)ns−1

δkk′ , (4.7)

which is diagonal in Fourier space with related modes k, k′. This power spectrum is parametrized
by the scalar amplitude As, the spectral index ns, and the pivot scale k∗. A detailed discussion
about this power spectrum and its parameters can be found in Sec. 5 and Ref. [7].

The numerical implementation is done in NIFTy [55], where possible calculations of
traces of operators are determined by operator probing. The NIFTy package uses implicit

5The treatment of non-local responses was shown in [23] for a similar case.
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operators and therefore avoids to store matrices explicitely. Thus, highly resolved data sets
like the CMB map of the Planck satellite should be treatable in principle. However, to
show the efficiency of the derived inference method we use a data set in two (three) flat
dimensions with best fit parameters (for scalar amplitude and spectral index from Planck [7])
As = 2.2× 10−9, ns = 0.9603, k∗ = 1, Npix = 10000 (10648), and σ2

n = 10−14, where ζ1 and
n are sampled from Ξ and N , respectively.
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Figure 3. (Color online) Normalized likelihood distributions for κ in a two-(three-)dimensional test
case with data generated from κgen = 5 [(a), (b)] (κgen = 19.8 [(c), (d)]).

An implementation of the likelihood (posterior6 with constant prior) in two (three)
dimensions with a true underlying value of κgen = 5 (κgen = 19.8) is shown in Fig. 3. The
numerical result coincides [perfectly, (a)] with a Gaussian fit and would deviate from this shape
only for unrealistically high values of κ. A slight deviation from Gaussianity, however, can
even be observed in the three-dimensional realization with κ = 19.8 (likelihood is negatively
skewed) [16–22]. As we will show in Sec. 5.3, even this slight deviation (and even smaller
ones) can affect the reconstruction of the primordial power spectrum, Pζ(k), significantly.
Note, however, that this statement is only true for the likelihood of κ and has to be taken

6For a prior choice according to Eq. (4.4), Fig. 3 shows the posterior of κ.
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into account case by case. Significant non-Gaussianity in the likelihood and posterior pdf
might be induced by the p dependent determinant of Eq. (2.10) or by a specific prior choice.
A brief discussion about the comparison of a skewed posterior of p can be found in App. A.

4.2.3 Posterior validation

To validate the implementation of Eq. (4.3) we consider the two-dimensional test case of Sec.
4.2.2 and apply the DIP test [36] by following Refs. [23, 56], i.e. conducting the following
steps:

1. Sample uniformly a value of κgen from an interval I = [κini, κfin], i.e. from a prior7

P (κ) =

{
1

κfin−κini if κ ∈ I
0 else

. (4.8)

2. Generate data d for κgen according to Eq. (2.1).

3. Calculate a posterior curve for given data by determining P (κ|d) for κ ∈ I according
to Eq. (4.3).

4. Calculate the posterior probability for κ ≤ κgen according to

x ≡
∫ κgen

κini

dκ P (κ|d) ∈ [0, 1] . (4.9)

5. If the calculation of the posterior was correct, the distribution for x, P (x), should be
uniform between 0 and 1.

The result of this posterior validation test is shown by Fig. 4. Here, the histogram
represents the distribution of 500 x-values within eight bins. The uniformity of the distribution
verifies the numeric and analytic (due to the saddle-point approximation) sufficiency of the
posterior. In particular, this means that the shape of the posterior (and therefore the error-
bars around the posterior mean) are calculated correctly. Otherwise the histogram of the DIP
test would have exhibited a characteristic deviation from uniformity, e.g., a dip in the case of
an underestimation of the variance.

4.3 Modulated Higgs inflation

Next, we consider the scenario of modulated Higgs inflation discussed in Sec. 3.2. By following
again Secs. 2 and 4.1, i.e. by replacing fNL and gNL by their corresponding n dependent

7Note that for validating both, the sufficiency of numerical implementation of the posterior distribution
and analytic approximations including its derivation, it is not necessary to choose a physical prior. Thus this
kind of prior with appropriate values κini, fin has been chosen for simplicity only. Here, appropriate means
that the interval I is sufficiently large to take care of the shape of the posterior.

– 16 –



0.0 0.2 0.4 0.6 0.8 1.0
x

0

10

20

30

40

50

60

70

80

a
b
u
n
d
a
n
ce

expectation value
1σ interval

Figure 4. (Color online) DIP distributions of calculated x values for the two-dimensional test case.
The histogram shows the unnormalized distribution of 500 x values within eight bins. The standard
deviation interval (1σ, blue solid line) around the expectation value (red dashed line) as calculated
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expressions8, we obtain

H(ζ1, d|fNL(n))

= − ln [P (d|ζ1, fNL(n))P (ζ1|fNL(n))] = − ln [G (d−Rζ,N)G(ζ1,Ξ)]

= H0 +
1

2
ζ†1D

−1ζ1 − j†ζ1 −
3

5
fNLj

†ζ2
1 −

(
6(n− 2)

25(n− 1)β
f2
NL −

3

5

β

a0
fNL

)
j†ζ3

1 +
3

5
fNLζ

†
1Mζ2

1

+

(
6(n− 2)

25(n− 1)β
f2
NL −

3

5

β

a0
fNL

)
ζ†1Mζ3

1 +
9

50
f2
NL

(
ζ†1

)2
Mζ2

1

+

(
18(n− 2)

125(n− 1)β
f3
NL −

81

625

β

a0
f2
NL

)(
ζ†1

)2
Mζ3

1

+

(
27(n− 2)

625(n− 1)β
f2
NL −

27

250

β

a0
fNL

)2 (
ζ†1

)3
Mζ3

1 ,

(4.10)

with fNL(n) given by

fNL(n) ≈ −5

6

β2

a0

(
1− 1

Bh

n− 1

n

)
. (4.11)

In Eq. (4.10) we dropped the explicit dependency of fNL on n in our notation for reasons of
clarity. To derive the posterior pdf for the n parameter of the Higgs inflation model, we again

8As a reminder: the model is parametrized by the decay rate index n, ΓD(h) ∝ hn (see Sec. 3.2 for details).
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conduct the saddle-point approximation introduced in Sec. 2. This yields

ln[P (n|d)] = −H(n|d) ≈ −1

2
tr
[
ln

(
1

2π
D−1
d,n,diag

)]
+

1

2
tr

[ ∞∑
m=1

(−1)m

m

(
Dd,n,diagD

−1
d,n,non-diag

)m]
−H(d, ζ̄1|n) + ln[P (n)] + const.,

(4.12)

where ζ̄1 and Dd,n are defined in Eqs. (2.8) and (2.9) and the labels diag and non-diag refer to
the diagonal and non-diagonal part of D−1

d,n. As before, the series expansion of the logarithm
can be truncated if the terms become sufficiently small.

The numerical implementation of Eq. (4.12) and its validation is completely analogous
to the one of the curvaton scenario. Therefore we do not present it here.

5 Primordial power spectrum reconstruction

5.1 Motivation

I An essential quantity that allows to discriminate between inflationary scenarios is the
primordial power spectrum. It is commonly parametrized by [7]

ln [PR(k)] = ln(As) +

(
ns − 1 +

1

2

dns
d(ln k)

ln

(
k

k∗

)
+ . . .

)
ln

(
k

k∗

)
,

ln [Pt(k)] = ln(At) +

(
nt +

1

2

dnt
d(ln k)

ln

(
k

k∗

)
+ . . .

)
ln

(
k

k∗

)
,

(5.1)

where As (At) denotes the scalar (tensor) amplitude, ns (nt) the scalar (tensor) spectral index,
k∗ the mode k crossing the Hubble radius, and R the comoving curvature perturbation,
which is approximately equal to the comoving curvature perturbation on uniform density
hypersurfaces, ζ, on large scales. Henceforth we will focus on the scalar part of the power
spectrum. For considering the pure power-law form of Eq. (5.1), PR(k) = As (k/k∗)

ns−1,
the Planck collaboration [7] recently found the best fit values As = 2.2 × 10−9 and ns =
0.9603 (±0.0073) for k∗ = 0.05 Mpc−1, which constrain all inflationary scenarios. However,
also an extension to this simple power-law shape is currently investigated taking into account
bumps, sharp features, or wiggles. These types of deviations are well motivated by, e.g.,
implications of the recent BICEP2 data [10–12, 15], or special features of the inflaton potential
[13, 14]. Such features, in turn, might indicate non-linear physics and thus correspond to non-
vanishing non-Gaussianity parameters [7]. These features would therefore be an indicator for
inflation models beyond single-field slow-roll scenarios. J

The primordial power spectrum is a valuable quantity since it depends on the physics
of the early Universe. Its inference process is highly non-trivial. Therefore we would like to
present two Bayesian, non-parametric reconstruction schemes in the framework of information
field theory, which, however, are related to each other. To reconstruct the primordial power
spectrum we have to know the inferred field ζ and its variance. This means we are interested
in the posterior pdf of ζ. Following Sec. 2 the Hamiltonian is given by

H(d, ζ) = − ln [G(d−Rζ,N)P (ζ)] . (5.2)

In general, Eq. (5.2) cannot be evaluated further because the shape of P (ζ) is unknown.
Fortunately, a Gaussian is a very good approximation for P (ζ) as argued in Sec. 2.2 and
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motivated by the actual constraints on fNL [8] that becomes exact if fNL = gNL = 0. This
enormously simplifies the derivation and under this approximation the posterior is given by

P (ζ|d) = G(ζ −mw, D), (5.3)

with mw ≡ Dj =
(
Ξ−1 +M

)−1
R†N−1d the Wiener filter solution.

One may also be interested in the case9 where |fNL| ∝ O(1) and gNL 6= 0. Here,
the quantity of interest is the power spectrum of the primordial Gaussian perturbation ζ1,
Pζ1(k). The approach of reconstructing ζ1 for fixed non-Gaussianity parameters is already
described in Sec. 2.2 and determined by Eqs. (2.8) and (2.9). Therefore the posterior is
given by G(ζ1 − ζ̄1, Dd,fNL,gNL), which implicitly depends on parameters of non-Gaussianity
or alternatively on parameters of inflation.

Given a reconstructed map of ζ or ζ1 and its uncertainty D or Dd,fNL,gNL , the challenge
is now to appropriately infer the power spectrum Pζ(k) or Pζ1(k) under consideration of the
uncertainty. For this purpose we suggest the two following approaches (Eqs. (5.8) and (5.11)),
which have already successfull applications in cosmology and astrophysics, e.g., Refs. [57–60].
We will show that these methods are able to reconstruct the spectrum of the primordial
curvature perturbations even in case of significant non-Gaussianity and partial sky coverage.

5.2 Filter formulae

Critical filter. The first filter captures the concepts of the well known Karhunen-Loève
[61, 62] and Feldman-Kaiser-Peacock [63] estimators and has been derived in Ref. [33]. The
aim here is to reconstruct the power spectrum for Gaussian signals, which determines the
statistics completely under the cosmological assumption of translationally and rotationally
invariance. This implies the existence of an orthonormal basis O in which Ξ become diagonal,
e.g., the Fourier space with elements ~k = (k1, . . . , k3) ∈ R3 of length k ≡ |~k| (Fourier mode)
for signals defined in Euclidean space, or the spherical harmonics space for signals defined on
the sphere. Following Ref. [33], the signal covariance, here Ξkk′ , and its inverse are linearly
parametrized by non-overlapping basis functions fi(k), commonly denoted as spectral bands,
and coefficients p̃,

Pζ(k) =
∑
i

p̃ifi(k), (5.4)

where (Ξi)xy = O∗xkfi(k)Oky, and therefore

Ξp̃ =
∑
i

p̃i Ξi and Ξ−1
p̃ =

∑
i

p̃−1
i Ξ−1

i . (5.5)

Ξ−1
i denotes the pseudo-inverse of the band-variances, given by

(
Ξ−1
i

)
xy

= O∗xkgi(k)Oky with
gi(k) = 1/fi(k) if fi(k) > 0 and gi(k) = 0 if fi(k) = 0 [33]. In all cases addressed in this
paper the non-overlapping basis functions fi(k) are projections from the vectors ~k onto the
Fourier modes k = |~k| =

√
k2

1 + k2
2 + k2

3. This way, the primordial power spectrum can be
parametrized as in Eq. (4.7).

9We declare the case of |fNL| ∝ O(1) to be interesting due to the current constraints on fNL. The discussion
that follows, however, is generic and therefore valid for arbitrary values of fNL and gNL still satisfying the
saddle-point approximation, Eq. (2.10).
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The priors of p̃ are assumed to be mutually independent, P (p̃) =
∏
i P (p̃i), and obey an

inverse Gamma distribution,

P (p̃i) = I(p̃i;αi, qi) ≡
1

qiΓ(αi − 1)

(
p̃i
αi

)−αi
exp

(
− qi
p̃i

)
, (5.6)

with Γ the Gamma function. Constructed in this way one obtains an informative prior by
αi � 1 and a non-informative prior, e.g. Jeffreys prior, by αi = 1, qi = 0.

To derive the critical filter formula we calculate the minimum of the ζ marginalized
Hamiltonian,

H(d, p̃) =
1

2
tr (ln Ξ)− 1

2
tr (lnD)− 1

2
j†Dj +

∑
i

(αi − 1)τi + qie
−τi , (5.7)

with respect to τ ≡ ln(p̃), thereby maximizing the posterior probability for the logarithmic
power spectrum yielding the coupled system of equations [33]

mp̃min = Dp̃minj,

p̃i,min =
qi + 1

2tr
(
mp̃minm

†
p̃min

+Dp̃min

)
Ξ−1
i

αi − 1 + 1
2tr
(
Ξ−1
i Ξi

) .
(5.8)

For the parameter choice according to Jefferys prior, αi = 1, qi = 0, Eq. (5.8) is called critical
filter. To solve this coupled system iteratively, we need a boundary condition, e.g., for the
power spectrum (remember that Dp̃min depends on the spectral coefficients p̃i,min). A well
motivated initial guess might be the primordial power spectrum from Planck [7], which is a
pure power law, Eq. (5.1).

Critical filter with smoothness prior. For some physical reasons [7], e.g., that
physics do not change suddenly during inflation, one may want to enforce the reconstructed
power spectrum to be smooth. This can be incorporated by an extension of the prior [34],
given by

P (τ) = Psm(τ)
∏
i

P (τi), (5.9)

with the smoothness prior

Psm(τ) ∝ exp

(
− 1

2σ2
τ

∫
d(ln k)

(
∂2 ln p̃(τk)

∂(ln k)2

)2
)
≡ exp

(
−1

2
τ †Tτ

)
, (5.10)

which punishes any deviation from a power-law power spectrum with a strength στ . This
means in the limit of στ →∞ we recover Eq. (5.8) whereas for a finite decreasing, especially
small value of στ the smoothness increases. Here we introduced the linear operator T whose
explicit form can be found in Ref. [34]. T includes the integral as well as the scaling constant
στ . An analogous derivation to the critical filter case then yields

p̃i,min =
qi + 1

2tr
(
mp̃minm

†
p̃min

+Dp̃min

)
Ξ−1
i

αi − 1 + 1
2tr
(
Ξ−1
i Ξi

)
+ (Tτ)i

. (5.11)

In comparison to Eq. (5.8) the result exhibits the additional term (Tτ)i in the denominator
that enforces smoothness. By appropriately choosing the scale parameter στ one is able to
permit the reconstruction of features on specific scales. However, for a detailed discussion of
the critical filter with smoothness prior including the choice of στ see Ref. [34].
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5.3 Numerical toy example

5.3.1 Inferring a power spectrum of approximately Gaussian curvature pertur-
bations

To demonstrate the performance of the filter formulae, Eqs. (5.8) and (5.11), according to the
inference of a power spectrum of approximately Gaussian curvature perturbations ζ we use
the two dimensional test case of Sec. 4.2.2, but with Npix = 106, and fNL, gNL ≈ 0 to satisfy
the condition of negligible non-Gaussianity. Additionally, we adopt the parameter choice
according to Jefferys prior, i.e. αi = 1, qi = 0, and a scaling constant of σ2

τ = 0.1. Figure 5 (a)
shows the result and confirms the properness of the reconstruction, which exhibits typical
deviations from the true underlying spectrum for low k modes due to the effect of cosmic
variance. Reconstruction errors are not included in the figure but could be incorporated by
evaluating the inverse Hessian of the Hamiltonian H(d, p̃) for real scenarios, as done in Ref.
[34].

100 101 102 103

k

1

2

3

10
9
P
ζ
(k

)

critical filter
critical filter with smoothness prior
original

100 101 102 103

k

1

2

3
10

9
P
ζ(
k
)

critical filter
critical filter with smoothness prior
original

(a) (b)

100 101 102 103

k

1

2

3

10
9
P
ζ(
k
)

critical filter
critical filter with smoothness prior
original

(c)

Figure 5. (Color online) Primordial power spectrum reconstruction of approximately Gaussian cur-
vature perturbations without (a) and with [(b), (c)] features by a critical filter solely (red dotted line)
and including a smoothness prior (green dashed line) according to Eqs. (5.8) and (5.11) and compared
to the original power spectrum (blue solid line).
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The ability of a non-parametric reconstruction of features on the power spectrum like
bumps and cutoffs as well as dealing with a partial sky coverage is also illustrated by Figs.
5 [(b),(c)] and 6. For the latter case we consider a mask in addition to the response, Rmask,
so that the sky is observed by 50% only. In all cases the critical filter with and without
smoothness prior works well, i.e., it is able to reconstruct the primordial power spectrum
including possible features.
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Figure 6. (Color online) Primordial power spectrum reconstruction of approximately Gaussian cur-
vature perturbations [see (b)] at a sky coverage of 50% [see (a)] by a critical filter solely (red dotted
line) and including a smoothness prior (green dashed line) according to Eqs. (5.8) and (5.11) and
compared to the original power spectrum (blue solid line).

We want to emphasize, however, that for a proper reconstruction the condition of Gaus-
sianity has to be fulfilled because the approach introduced is very sensitive to deviations from
this restriction. To illustrate this we consider again the curvaton scenario where fNL and gNL
are parametrized as a function of κ, cf. Eq. (3.19). This means that for large values of κ the
curvature perturbation ζ is now falsely assumed to be Gaussian with deviations according to
Eq. (3.19). Fig. 7 shows the performance of the critical filter with smoothness prior for this
case. Panel (a) shows how the reconstructed power spectrum deviates from the true underly-
ing one as a function of the level of non-Gaussianity, parametrized by κ. For a small level of
non-Gaussianity there is no observable effect on the spectral index ns whereas the scalar am-
plitude As depends strongly on κ as shown by panel (c) and (d). The quadratic fits appearing
within this panels obey the formula 109As(κ) = aqκ

2+bqκ+cq with aq = 0.0036, bq = −0.044
and cq = 2.3 for κ ≥ 1, which can be reformulated analytically into a fNL dependency, if we
neglect contributions of the trispectrum (see App. B).

For a higher level of non-Gaussianity also ns becomes affected [Fig. 7 (b)]. The two
linear fits in panel (b) are generated independently, because the region of κ < 1 is unphysical.
The physically relevant fit for κ ≥ 1 obeys the formula ns(κ)−1 = alκ+ bl with al = 8×10−4

and bl = −0.04. The latter formula can also be reformulated into a dependency on fNL.
Additionally one can derive a quadratic relation between the spectral index and the scalar
amplitude, cf. App. B.

Note that these particular dependencies on the level of non-Gaussianity (or alternatively
on inflationary parameters) is not a generic statement, but valid for the critical filter with and
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without smoothness prior, which were not informed here about the presence of non-linearities,
and that the magnitude of the deviations depends additionally on the number of pixels used.

100 101 102 103

k

1

2

3

1
09
P
ζ
(k

)

approx. Gaussian: =1.5 
=7.2 
=13.5 
=19.8

original

40 20 0 20 40 60
0.06

0.05

0.04

0.03

0.02

0.01

0.00

n
s
−

1

numeric
correct value
linear fit

=1

(a) (b)

10 5 0 5 10 15 20
2.0

2.2

2.4

2.6

2.8

3.0

10
9
A
s

correct value
numeric
quadratic fit

=1

40 20 0 20 40 60

2

4

6

8

10

12

14

10
9
A
s

correct value
numeric
quadratic fit

=1

(c) (d)

Figure 7. (Color online) Primordial power spectrum reconstruction of non-Gaussian curvature per-
turbations, which are falsely assumed to be Gaussian, in the curvaton scenario for various choices of
κ by a critical filter solely and including a smoothness prior according to Eqs. (5.8) and (5.11). Panel
(a) shows the comparison to the original power spectrum. The dependence of As [(c), (d)] and ns− 1
[(b)] on κ has been determined by conducting a linear fit to the reconstructed power spectrum for
k & 100.

5.3.2 Inferring a power spectrum of non-Gaussian curvature perturbations

Now we show that the critical filter with and without smoothness prior in combination with
results of Sec. 2 is able to reconstruct the spectrum of the Gaussian, primordial curvature
perturbations ζ1 even in case of significant non-Gaussianity. For this case (of inferring a
power spectrum of non-Gaussian curvature perturbations ζ) we leave all numerical speci-
fications in place, but use Npix = 1.6 × 105, Pζ1(k)δkk′ according to Eq. (5.1), and use
κ = 7.2 (=̂ fNL, gNL = 7.2,−29), 13.5 (=̂ fNL, gNL = 15,−56) to seed a non-vanishing level
of non-Gaussianity. The reconstructed map of ζ1, from which we infer the power spectrum, is
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calculated according to Eq. (2.8) and its uncertainty according to Eq. (2.9). Note that these
quantities now depend on fNL(p) and gNL(p) and thus on a specific inflation model. Figure
8 shows the result both for critical filter and its extension including a smoothness prior. Re-
construction errors are also not included. Compared with the improper reconstructed power
spectra of Fig. 7 (a) (compare in particular the case of κ = 13.5), the advanced method used
here yields adequate results. This comparison also suggests that one could infer the level of
non-Gaussianity by measuring both, non-Gaussian and Gaussian power spectrum. I These
spectra might be inferred from, e.g., T− and B−modes due to the fact that B−modes might
be less non-Gaussian than T− modes [64]. Afterwards the level of non-Gaussianity could be
determined by the difference between the respective spectral amplitudes. J

Once the power spectrum of the Gaussian curvature perturbation ζ1 is determined the
power spectrum of the non-Gaussian curvature perturbation,

〈
ζζ†
〉
P (ζ)

, can also be calculated
from Pζ1(k). The distribution P (ζ) required for this calculation can be calculated approxi-
mately and is pointed out, e.g., in Ref. [65].
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Figure 8. (Color online) Primordial power spectrum reconstruction of non-Gaussian curvature per-
turbations with non-vanishing [(a) κgen = 7.2, (b) κgen = 13.5] non-Gaussianity by a critical filter
solely (red dotted line) and including a smoothness prior (green dashed line) according to Eqs. (5.8)
and (5.11) and compared to the original power spectrum (blue solid line).

6 Conclusion

We have presented a novel and generic method to infer inflation models from observations
by the non-Gaussianity parameters fNL and gNL and how to reformulate this method to
infer specific parameters of inflation models, p, directly (see especially Secs. 2 and 3). This
approach, i.e. the analytical derivation of a posterior for fNL and gNL as well as for p can
be used to further distinguish between the already restricted amount of inflation models. It
is formulated in a generic manner in the framework of information field theory, so that it is
applicable to CMB data as well as to LSS data (see especially the three dimensional example
of Sec. 4.2) by tuning the response appropriately. The analyticity of the method, achieved
by a saddle-point approximation, allows to dispense with numerically expensive sampling

– 24 –



techniques like the commonly used Monte Carlo method. The analytic approximation we
introduced has been validated successfully by the DIP test [36].

The second quantity of interest here is the primordial power spectrum due to its far-
reaching implications for inflationary cosmology. We have presented two computationally
inexpensive, approximative Bayesian methods to infer the primordial power spectrum from
CMB data, the so called critical filter, Eq. (5.8), and an extension thereof with smoothness
prior, Eq. (5.11). Both methods allow a non-parametric reconstruction of the power spec-
trum including the reconstruction of possible features on specific scales. Additionally, both
methods are able to perform this inference process even in the case of partial sky coverage
and non-Gaussianity. We have argued that this property would allow to infer the level of non-
Gaussianity of a field if one could measure both, the power spectrum of the non-Gaussian
and Gaussian curvature perturbations. These spectra might be inferred from, e.g., T− and
B−modes due to the fact that B− modes might be less non-Gaussian than T− modes [64].
A fully quantitative analysis thereof, however, is left for future work.

Acknowledgments

We gratefully acknowledge Eiichiro Komatsu and Vanessa Böhm for useful discussions and
comments on the manuscript. We also want to thank Marco Selig and Maksim Greiner
for numerical support and discussions hereof. KEK would like to thank the Max-Planck-
Institute for Astrophysics for hospitality where this work was initiated and acknowledges
financial support by Spanish Science Ministry grants FIS2012- 30926 and CSD2007-00042.
The work of SH was supported by the DFG cluster of excellence Origin and Structure of the
Universe and by TRR 33 The Dark Universe. Calculations were realized using the NIFTy
[55] package10.

A Shape of posterior and estimator of inflationary parameters p

In general, the posterior distribution for p does not have to be Gaussian. If so, one should
be very careful if one compares the posterior pdf for p with an estimator pdf, P (p̂), because
they can exhibit different types of deviations from Gaussianity. This means in particular that
in some cases an unbiased constructed estimator might exhibit a skewness behavior different
from the posteriors one. For instance, compare the posterior pdf in Ref. [23] with the estimator
pdf in Ref. [17], where the pdf is negatively skewed in one case and positively in another. The
reason for this apparent contradiction is illustrated in Fig. 9, where the joint probability of p
and d is shown. To determine the posterior pdf we consider a varying p given d, which is a
one-dimensional hypersurface, parallel to the horizontal axis. If one wants to obtain the pdf
for the estimator, one has to vary d given p corresponding to a one-dimensional hypersurface
parallel to the vertical axis. If the probability distribution is symmetric, e.g. Gaussian, the
shapes of estimator pdf and posterior pdf coincide. However, if the distribution is asymmetric
the shapes do not have to coincide as sketched in Fig. 9 for a one-dimensional parameter p.
In turn, this means that the shapes of posterior and the distribution of an estimator of a
quantity do not have to exhibit the same skewness. Hence there is no real contradiction. A
discussion about other advantages and disadvantages of the usage of posterior distributions
can be found, e.g., in Ref. [24].

10http://www.mpa-garching.mpg.de/ift/nifty/
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Figure 9. (Color online) Sketch of posterior (blue) and estimator (red) pdf with different skewness
behaviors drawn from an asymmetric joint probability (black).

B Dependency of the scalar amplitude and spectral index on fNL under
usage of the critical filter

In Sec. 5.3 a relation between the scalar amplitude As (spectral index ns) of the primordial
power spectrum and the non-Gaussianity parameter fNL was mentioned, if one uses the critical
filter with or without smoothness prior to reconstruct the power spectrum from a field that is
(in some cases) falsely assumed to be Gaussian. In turn, that means by applying these filter
formulae, Eqs. (5.8) and (5.11), one could infer the level of non-Gaussianity of a field.

Within Sec. 5.3 we did this calculation for the curvaton scenario. However, we can
transform the dependency of As, ns on κ into a dependency on fNL by neglecting contributions
of the trispectrum. Solving Eq. (3.19) for κ and substituting it within the quadratic and linear
fitting formula, pointed out in Sec. 5.3, yields

109As(fNL) =
aq
125

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)2

+
bq
15

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)
+ cq,

(B.1)

and
ns(fNL)− 1 =

al

15

(
10 + 6fNL +

√
2
√

18f2
NL + 60fNL + 125

)
+ bl, (B.2)

for
fNL ≥ −

5

4
, (B.3)
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with aq, bq, cq, al, bl fitting parameters (see Sec. 5.3) that might depend on the number of
pixels used. Note that relations between the spectral index and the scalar amplitude of the
primordial power spectrum can also be derived for other inflation models, e.g., the modulated
Higgs inflation scenario of Sec. 3.2.

Analogously one could solve the linear fitting formula of the spectral index for κ and
substitute the latter within the quadratic fitting formula to derive a relation between As and
ns. This yields

109As(ns) =
aq
a2

l

(ns − 1− bl)2 +
bq
al

(ns − 1− bl) + cq, (B.4)

whereby we have not neglected the contributions of the trispectrum.
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