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The ground and low-lying singly-excited states of the two-dimensional He and He-like atomic ions
have been studied by the full configuration interaction method focusing on the angular correlation
between the two electrons involved. For small values of the nuclear charge Zn the two-electron
angular-density distribution for the ground state strongly depends on the two-electron angle φ−

reaching a peak at φ− = 0. This strong dependence on φ− strongly decreases with increasing
Zn along with the decreasing electron-electron interaction. In contrast, the probability density
distribution for the singlet-triplet pair of states of the (1s)(2p) configuration becomes appreciable
with increasing Zn reaching peaks at φ− = 0,±π and at φ− = ±π/2 for the singlet and triplet states,
respectively. This indicates a preference of the two electrons to be on the same side of the nucleus
for the singlet (1s)(2p) 1P state and on opposite sides of the nucleus for the triplet (1s)(2p) 3P state.
The origin of these angular dependences is rationalized on the basis of the genuine and conjugate
Fermi hole concepts.

PACS numbers: 31.10.+z, 31.15.A-, 32.10.-f

I. INTRODUCTION

The helium atom represents the simplest fundamen-
tal system for the exploration of electron correlation ef-
fects. It has been extensively studied by both theoreti-
cians and experimentalists. A strong electron correlation
in doubly-excited states of He and He-like atomic ions
(referred to hereafter as He-like systems) has been ac-
tively studied ever since the experimental observations
of autoionizing levels of He [1, 2]. Herrick and Kell-
man provided a supermultiplet classification of the in-
trashell doubly-excited states of He-like systems based
on approximate O(4) symmetry and the analogy with ro-
vibrational levels of a linear triatomic molecule with the
two electrons undertaking a triatomic molecular motion
with the nucleus at their center [3–5]. This interpreta-
tion was consistent with conditional probabilities [6, 7]
obtained from accurate wave functions by Berry’s group
and the Kellman-Herrick model of collective rotational
and bending motions of electrons was later confirmed by
accurate results for conditional probability densities [8].
Berry’s group also studied the helium-isoelectronic series
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and showed that the collective behavior of electrons be-
comes less appreciable with the increasing nuclear charge
[9]. In the case of singly-excited states of He-like systems
the correlation energy is much smaller than in the doubly-
excited states since the former involve a tight 1s electron
and a diffuse outer electron. In view of the lesser role
of the correlation energy it might seem that the singly-
excited states of He-like systems are of lesser interest
than the doubly-excited ones. Yet, there still remains
an unsolved and interesting problem in the singly-excited
states with respect to their angular correlation which we
address in this paper.

The angular correlation in singly-excites states of He-
like systems has been thoroughly studied from the early
70th untill the late 80th by Boyd, Moiseyev, Katriel,
Thakkar, and others [10–17] focusing in particular on the
understanding of the origin of the first Hund rule [18–24].
These pioneering studies have revealed that (i) the corre-
lation energy ∆Ecorr. moderately increases with increas-
ing nuclear charge Zn, (ii) in the singly-excited states of
He-like systems the angular correlation dominates the ra-
dial correlation [12], and (iii) for the singlet-triplet pair
of states of the (1s)(2s) configuration the dependence of
the probability density distribution on the interelectronic
angle is very weak while for the (1s)(2p) configuration it
becomes appreciable and increases with Zn [13].

As implied by the result (i) listed above, the effec-
tive correlation energy for atomic systems as defined by
the correlation energy scaled by Z2

n, namely ∆Ecorr.

Z2
n

, ap-

proaches zero as Zn → ∞. For increasing Zn the wave
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function of singly-excited states of He-like systems should
approach therefore the wavefunction of the independent

particle model (IPM) based on the Hartree-Fock approx-
imation. This should then result in an isotropic proba-
bility density distribution that is independent of the in-
terelectronic angle since there should be little angular
correlation between the two electrons according to the
IPM.
Contrary to this conclusion the result (iii) by Thakkar

and Smith [13] considering the so-called angular correla-
tion coefficients implies that the probability density dis-
tribution for the (1s)(2p) singlet-triplet pair of states for
larger Zn becomes strongly dependent on the interelec-
tronic angle in spite of the fact that in the Zn → ∞ limit
the electron correlation vanishes in contrast to the IPM.
In order to elucidate the origin of this controversy, i.e.,

the strong dependence of the probability density distri-
bution for the (1s)(2p) singlet-triplet pair of states in
the Zn → ∞ limit we examine in the present study the
details of the nodal structure of the relevant wave func-
tions in the internal space of a two-dimensional model of
the studied systems. We also examine the physical na-
ture of the IPM, as represented by a single-determinant
Hartree-Fock wave function, with respect to the angular
correlation.
The paper is organized as follows: Sec.II describes our

theoretical model and computation methodology. Sec.III
presents our results and their discussion. Its first subsec-
tion IIIA starts with the results for the ground state
that show a ‘normal’ behavior for the Zn-dependence
of angular correlation, i.e., a larger angular correlation
for smaller nuclear charges. The next subsection III B
presents the results for the singly excited (1s)(2s) and
(1s)(2p) singlet-triplet pair of states displaying a counter-
intuitive trend in the Zn-dependence of angular corre-
lation, namely, a larger angular correlation for larger
nuclear charges, when the wave function of the system
approaches the IPM wave function. The next subsec-
tion III C introduces the concepts of the so-called gen-
uine and conjugate Fermi holes in the internal space
and the final subsection IIID rationalizes the observed
Zn-dependences for the singly-excited states in a uni-
fied way on the basis of the Fermi and conjugate Fermi
holes concept. Sec.IV then summarizes all the results of
the present study and points out an observability of the
strange angular correlation for the (1s)(2p) configuration
as observed in actual experiments.

II. THEORETICAL MODEL AND

COMPUTATIONAL METHOD

In the present study the spatial degrees of freedom
of each of the two electrons in the helium atom are con-
fined to a two-dimensional xy plane. In case of the three-
dimensional helium atom this xy plane, as defined by the
position of the two electrons and the nucleus, can freely
rotate about the three principal axes of inertia by the Eu-

ler angles (α, β, γ). In the two-dimensional helium atom
this rotation is limited to the axis normal to the xy plane.
Although this two-dimensional helium atom represents
a simplified model, it has all the characteristic features
of the energy spectrum of the three-dimensional helium
atom as was shown in our previous studies [23, 24]. This
similarity in the energy-level structure of the 2D and 3D
helium atom is due to the fact that the dimension of the
internal space, given by the internal degrees of freedom of
the electrons as defined below, is 3 in either case. This co-
incidence happens only for two-electron systems so that
the following reasoning that is based on a 2D model may
not be appropriate for systems involving more than two
electrons. By reducing the number of degrees of freedom
the internal part of the wave functions can be easily vi-
sualized permitting us to draw unambiguous conclusions
concerning the nature of the angular correlation.
The electronic Hamiltonian for two-dimensional

helium-like systems, HZ , has the following form

HZ/Z
2
n = −1

2

2∑

i=1

∇2
s,i −

2∑

i=1

1

|~si|
+

1

Zn

1

|~s1 − ~s2|
, (1)

where Zn designates the nuclear charge. The coordinates
~si (i=1,2) are the Zn-scaled coordinates ~si≡Zn~ri (i =
1, 2) where ~ri is the position vector of the i-th electron
in the standard length unit with respect to the nucleus.
In the standard Hamiltonian for the three-dimensional
helium atom ~ri = (xi, yi, zi) while in the present two-
dimensional model ~ri = (xi, yi).
The Zn-scaled coordinates ~si are of advantage over the

standard coordinates ~ri (i = 1, 2). For large Zn values the
electron cloud is strongly compressed towards the nucleus
due to the strong nuclear attraction potential. Therefore,
the relevant length scale is very different from that asso-
ciated with systems of small Zn values. By multiplying
~ri by Zn so as to enlarge the length unit the wave func-
tions for different values of Zn can be compared in the
same length scale. Indeed, as shown by Eq. (1) the one-
electron part of the Hamiltonian becomes independent of
Zn on condition that the energy is normalized by divid-
ing it by Z2

n. In this way the effect of electron-electron
interaction becomes readily apparent.
The energies and wave functions corresponding to the

solutions of the Schrödinger equation for the Hamilto-
nian (1) have been obtained by solving the full configu-
ration interaction (FCI) matrix using a large [20s10p7d]
Gaussian basis set [23, 24]. The probability density in the
internal space, hereafter called the internal probability

density , was extracted from the resultant FCI wave func-
tion Ψ(~s1, ~s2) by integrating over the angular coordinate
φ+ that is associated with an overall rotation.
Briefly, expressing the Cartesian coordinates (sxi, syi)

in terms of the polar coordinates (si, φi) (i = 1, 2) al-
lows us to define two angular coordinates, namely, the
φ+ coordinate φ+ = (φ1 + φ2)/2 that is responsible
for an overall rotation and is conjugate to the total or-
bital angular momentum, and the complementary φ−
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coordinate φ− = (φ1 − φ2)/2. A set of three coordi-
nates s1≡|~s1|, s2≡|~s2|, and φ− defines then the internal
space of the two-electron systems having circular sym-
metry. The probability density integrated over φ+ and
multiplied by the radial surface element s1s2, namely
|Ψ(s1, s2, φ−)|2s1s2, represents the internal probability
density and is hereafter designated by ρint. The relation-
ship between the internal angle φ− and the commonly
used interelectronic angle ∠(e−α−e), denoted by θ12, is
as follows. The individual polar angles φ1 and φ2 associ-
ated, respectively, with electrons 1 and 2, vary from 0 to
2π. Thus, the φ− angle ranges between −π and π. On
the other hand, θ12 is defined as the interior angle of the
triangle e−α−e with α as its vertex and ranges between
0 and π. Consequently, some values of φ− correspond to
the same value of θ12 and we can write θ12 = 2|φ−| for
|φ−| ≤ π/2 and θ12 = 2(π − |φ−|) for π/2 < |φ−| ≤ π.
The computational procedure has been described in de-
tail in our previous papers [23, 24].

III. RESULTS AND DISCUSSION

A. Statistical and ground-state distributions

The probability density distribution with respect
to the two-electron angle φ−, namely the two-
electron angular-density distribution σ(φ−), has been
obtained by integrating the internal probability density
ρint(s1, s2, φ−) over the two radial coordinates (s1, s2).
The result for the (1s)2 1S ground state together with
the statistical distribution are displayed in Fig. 1. The
statistical distribution, indicated in Fig. 1 by a dotted
triangle, is given analytically by (π− |φ−|) (cf. [23, 24]).
It reflects directly the volume element 2(π−|φ−|) for φ+
which enters the internal probability density by the in-
tegration of |Ψ(~s1, ~s2)|2 over φ+. The statistical triangle
represents a special distribution in which the probability
for the two electrons to take a particular value of the in-
terelectronic angle θ12 is the same for all values of θ12.
This corresponds to the situation where both electrons
vary their polar angles independently over the interval
[0, 2π], i.e., the two electrons rotate freely around the
nucleus without correlation between them. This is con-
firmed by a simple geometrical analysis of the statistical
triangular distribution. Since the set of internal angles
±φ− and ±(π − φ−) for 0 ≤ φ− ≤ π/2 gives the same
value of θ12. Summing the probability distribution of
Fig. 1 over the four internal angles gives the same value
of 2/π for any θ12.
There are two characteristic sets of angles for σ(φ−)

namely φ− = 0,±π and φ− = ±π/2. The former
set {0,±π} is associated with a spatial configuration in
which both electrons are located on the same side of the
nucleus. On the other hand, the set of angles {±π/2}
corresponds to the situation where the electrons are on
opposite sides of the nucleus. Thus, if an actual density
distribution for some state has a larger value than the tri-
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FIG. 1: (Color online) Two-electron angular-density distribu-
tions for the (1s)2 ground state of He-like systems for different
nuclear charge Zn: (a), (b), (c) and (d) correspond, respec-
tively, to the cases with Zn = 20, 10, 4 and 2. The statistical
distribution, defined by (π − |φ−|)/π

2, corresponding to the
mutually independent rotation of the two electrons around
the nucleus is plotted as dotted line in (a) - (d). The arrows
in (d) indicate the special angles φ− = 0 and ±π/2 which cor-
respond, respectively, to the distinct spatial configurations of
the two electrons where they align parallel on the same side
of the nucleus and where they align anti-parallel on opposite
sides of the nucleus.

angular statistical density at these angles, the electrons
in such a state prefer to be on the same side of the nu-
cleus for φ− = 0,±π and on opposite sides of the nucleus
for φ− = ±π/2. These angles are indicated by arrows in
Fig. 1(d). Since the density at φ− = ±π always vanishes
because of the volume element 2(π − |φ−|) the angles
φ− = ±π are not indicated by arrows in the figure.

The two-electron angular-density distributions for the
(1s)2 ground state displayed in Figs. 1(a)-(d) show that
for Zn = 20, corresponding to the large Zn regime, the
density distribution closely follows the statistical distri-
bution. This implies that in the regime of large Zn

both electrons tend to move independently of one an-
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other around the nucleus. On the other hand, as Zn de-
creases, the actual distribution deviates more and more
strongly from the statistical distribution. Indeed, at Zn

= 2, corresponding to the helium atom, the density is
significantly smaller than the statistical value at φ− =
0 and larger at φ− = ±π/2. It indicates that the two
electrons tend to be on mutually opposite sides of the
nucleus and is consistent with recent results by Koga et
al. [25, 26].
This observation can be rationalized by considering the

relative importance of the electron-electron interaction
with respect to the one-electron component of the Hamil-
tonian as follows. In the regime of large Zn the role of the
electron-electron interaction is very small relative to the
one-electron component as implied by Eq. (1). There-
fore, each of the two electrons can rotate freely around
the nucleus. Their correlation is negligible even though
both electrons occupy the same (1s) orbital. With de-
creasing Zn, however, the effect of the electron-electron
interaction increases, forcing the electrons to be on op-
posite sides of the nucleus in order to avoid an energy
increase due to the electron repulsion. The observed Zn-
dependence for the ground state of He-like systems, i.e.,
smaller Zn being associated with a larger angular cor-
relation, is in accord with earlier studies for the doubly-
excited states [9, 27]. In the next section we shall see a
counter-intuitive trend for the singlet and triplet singly-
excited states of the (1s)(2p) configuration, namely, a
large angular correlation even for larger Zn values.

B. Distributions for the (1s)(2s) and (1s)(2p)
configurations

The two-electron angular-density distributions for the
singlet-triplet pair of states of the (1s)(2s) and (1s)(2p)
configurations for different Zn values are displayed in
Figs. 2 and 3, respectively. The results for the (1s)(2s)
configuration (Fig. 2) show that the density distribution
closely follows the triangular statistical distribution ir-
respective of the nuclear charge Zn for both the singlet
(1s)(2s) 1S and the triplet (1s)(2s) 3S states. Therefore,
the distribution of the two electrons around the nucleus
in either the singlet or the triplet pair of states of the
(1s)(2s) configuration is only very weakly correlated.
The situation is different for the (1s)(2p) singlet-triplet

pair of states (Fig. 3). For small values of Zn, such as Zn

= 2 [Fig. 3(d)], the two-electron angular-density distri-
bution for both singlet and triplet states roughly follows
the statistical triangle with only small deviations like in
the (1s)(2s) case. However, as Zn increases, the distribu-
tions deviate more and more strongly from the statistical
distribution. Further, the distribution of the singlet state
has a larger density at φ− = 0 but a smaller density at
φ− = ±π/2 than the statistical distribution, while an
opposite trend is observed for the triplet state. We recall
that for increasing Zn the singlet and triplet wave func-
tions approach those of the corresponding IPM based on
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FIG. 2: (Color online) Two-electron angular-density distribu-
tions for the (1s)(2s) singlet-triplet pair of states of He-like
systems for different nuclear charge Zn: (a), (b), (c) and (d)
correspond, respectively, to the cases of Zn = 20, 10, 4 and
2. The singlet and triplet distributions are displayed by green
and red (light- and dark-grey in the black-and-white version),
respectively. Both the singlet and the triplet distributions
follow closely the statistical distribution for all Zn values and
thus could not be properly resolved on the scale used in the
figure. See the caption to Fig.1 for further details.

the Hartree-Fock approximation as implied by Eq. (1)
showing a decreasing role of the electron-electron inter-
action for increasing Zn. Nonetheless, our results for the
large Zn regime indicate that the electrons in the singlet
(1s)(2p) 1P state tend to be on the same side of the nu-
cleus while those in the triplet (1s)(2p) 3P state tend to
be on the opposite sides of the nucleus. These results are
consistent with those of the study by Thakkar et al. [13]
who showed that the modulus of the angular correlation
coefficients for the (1s)(2s) pair of states is small irre-
spective of Zn while that for the (1s)(2p) pair of states
becomes increasingly larger for increasing Zn with mu-
tually opposite signs between the singlet and the triplet
states.

In the following section we shall rationalize the ob-
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FIG. 3: (Color online) Two-electron angular-density distribu-
tions for the (1s)(2p) singlet-triplet pair of states of He-like
systems for different nuclear charge Zn: (a), (b), (c) and (d)
correspond, respectively, to the cases of Zn = 20, 10, 4 and
2. The singlet and triplet distributions are displayed by green
and red (light- and dark-grey in the black-and-white version),
respectively. See the caption to Fig.1 for further details.

served trends by invoking the concepts of the conjugate

Fermi holes as well as of the standard or genuine Fermi
holes.

C. Structure of the genuine and conjugate Fermi

holes in the internal space

In the limit of Zn→∞ the orbital part of the two-
electron wave functions for a pair of singlet and triplet
states can be described exactly by single-determinantal
Hartree-Fock wave functions of the form,

Ψ+(~s1, ~s2) =
1√
2
[ψa(~s1)ψb(~s2) + ψb(~s1)ψa(~s2)] , (2)

Ψ−(~s1, ~s2) =
1√
2
[ψa(~s1)ψb(~s2)− ψb(~s1)ψa(~s2)] , (3)

where the symmetric and antisymmetric functions, Ψ+

and Ψ−, are the singlet and triplet wave functions, re-
spectively. The subscripts a and b may refer either to
the 1s and 2s orbitals, or to the 1s and 2p orbitals, re-
spectively, in the case of the (1s)(2s) or (1s)(2p) singlet-
triplet pair of states. Since these wave functions are
independent particle wave functions there is no correla-
tion between the two electrons except for the well-known
Fermi correlation in the triplet wave function, in which
case the two electrons cannot occupy the same spatial
position due to the fact that the antisymmetric triplet
wave function vanishes at ~s1 = ~s2. On the other hand,
as displayed in Fig. 3, we observe a strong angular cor-
relation for the (1s)(2p) pair of states in the regime of
large Zn even for the singlet state. In contrast, we ob-
serve only weak correlation for the (1s)(2s) pair in both
the singlet and the triplet states.

In order to rationalize these trends we focus particu-
larly on the (1s)(2p) singlet state showing a strong angu-
lar correlation for large Zn and consider the difference in
the probability-density distributions in the internal space
between the singlet and the corresponding triplet states,
i.e., the quantity ρ+int(s1, s2, φ−)− ρ−int(s1, s2, φ−), in the
limit of Zn→∞. These values are displayed in Fig. 4(a)
for the (1s)(2s) configuration and in Fig. 4(b) for the
(1s)(2p) configuration. The three axes, X, Y , and Z,
defining this internal space, correspond, respectively, to
s1, s2, and φ−. By definition the domain for the angular
coordinate φ− is the interval [−π, π], but the correspond-
ing Z axis is labeled numerically in radians rather than
in the units of π.

The blue and red (light and dark grey in the black-and-
white version) surfaces in these figures represent, respec-
tively, the regions where the singlet probability density
is larger than the triplet density and vice versa. In the
limit of Zn → ∞ the blue regions represent the stan-
dard or genuine Fermi holes where the triplet state has
a smaller density than the singlet state (cf. Fig. 4). In
the internal space these regions appear in the vicinity
of the Z-axis at ~s1 = ~s2. We note that the singlet and
the triplet wave functions, as represented by Eqs. (2)
and (3), give exactly the same electron density distribu-
tion as |ψa(~s)|2 + |ψb(~s)|2. Therefore, when there is a
hole in the triplet wave function, namely the Fermi hole,
there must also be a hole somewhere in the corresponding
singlet wave function in order for their electron densities
to be balanced. The red regions displayed in Figs. 4(a)
and 4(b) represent this hole in the singlet wave function
and correspond to the so-called conjugate Fermi holes

representing regions with a small density for the singlet
state and a large density for the triplet states.

The mechanism that leads to the appearance of these
conjugate Fermi holes has been explained in detail else-
where [23, 24] and is only briefly described here. There
are two key conditions that are required for the appear-
ance of conjugate Fermi holes. First, the two one-electron
orbitals, ψa and ψb in Eqs. (2) and (3), must possess some
spatially overlapping region since otherwise there would
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FIG. 4: (Color online) Difference in the probability density distributions between the singlet-triplet pair of states of He-like
systems in the limit of Zn = ∞. (a): the (1s)(2s) configuration and (b): the (1s)(2p) configuration. (a’) and (b’) represent
the same distributions of (a) and (b), respectively, from a different viewpoint. The X, Y , and Z axes represent, respectively,
the s1, s2, and φ− coordinates (see the text). The square norm of the displayed surface is 0.005. The blue (light grey) and
red (dark grey in the black-and-white version) surfaces correspond, respectively, to the regions where the probability density of
the singlet wave function is larger than that of the triplet wave function (genuine Fermi hole) and vice versa (conjugate Fermi

hole).

be no singlet-triplet difference in the probability densities
as well as in the energy of these states. Second, one of
the orbitals, ψa or ψb, has to have at least one node in
this overlapping region. This second condition is auto-
matically satisfied if ψa and ψb are orthogonal. Assuming
that we choose coordinates ~s1 and ~s2 to be close to the
nodal point ~s0 of, say, the orbital ψb, in such a way that
this ψb orbital has opposite signs at ~s1 and ~s2, namely
that sgn [ψa(~s1)·ψb(~s2)] = −1, then the first and the sec-
ond terms in the bracket on the right-hand side of the
symmetric singlet wave function in Eq. (2) have different
signs due to the change of the sign of ψb thus canceling
one another. On the other hand, in the case of the an-
tisymmetric triplet wave function the corresponding first
and second term have equal signs since the sign change
of the ψb orbital is cancelled by the minus sign in front
of the second term.

In case of the (1s)(2s) configuration the 1s orbital has
no node while the 2s orbital has one node along the radial

coordinate s≡|~s|. Due to the orthogonality between the
1s and 2s orbitals this node of the 2s orbital is located in
the range of the s coordinate where the densities |ψ1s|2
and |ψ2s|2 have a nonzero overlap. Therefore, choosing
two radial coordinates sA and sB so as to satisfy the con-
dition sA < s0 < sB, where s0 is the location of the radial
node of the 2s orbital, the first and the second terms on
the right-hand side of Eq. (2) cancel one another yielding
the conjugate Fermi holes along the radial coordinates of
s1 and s2 as displayed in Fig. 4(a). In the case of the
(1s)(2p) configuration, on the other hand, the 2p orbital
has no radial node but an angular node. The ψ2p orbital
changes its phase at φ = π when its angular coordinate
φ varies over the interval [0, 2π]. Therefore, recalling the
factor ‘2’ in the definition of the internal φ− angle, i.e.,
φ− = (φ1 − φ2)/2, the wave function Ψ− of Eq. (2) has
two conjugate Fermi holes located along the angular Z
axis at φ− = ±π/2 as is apparent from Fig. 4(b).
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D. Interpretation

The observed trend of the φ−-dependence of the prob-
ability density distribution (cf. Figs. 2 and 3), i.e., the
strong dependence for the (1s)(2p) singlet-triplet pair of
states in the large Zn regime and the very weak depen-
dence for the (1s)(2s) pair of states for all Zn values can
be rationalized by using the concept of the genuine and
conjugate Fermi holes as outlined in the preceding sec-
tion. For this purpose we have computed the difference
in the probability density between the (1s)(2s) singlet-
triplet pair of states and between the (1s)(2p) pair of
states for the nuclear charges Zn = 20, 10, 4, and 2,
displayed in Figs. 5 and 6, respectively. In these figures
we also plotted the electron-electron interaction poten-
tial of the scaled Hamiltonian, i.e., the third term on the
right-hand side of Eq. (1), as an isoenergy surface for the
corresponding values of Zn. As displayed in these figures
the electron-electron interaction potential manifests it-
self in the internal space as three striking ‘poles’ peaked
at φ− = 0,±π. Since the electron-electron repulsion is
very strong around these poles the probability densities
of both singlet and triplet states tend to avoid the regions
in the vicinity of these poles.

For the large nuclear charge Zn = 20 the structure
of the blue and red (light- and dark-grey in the black-
and-white version) surfaces for the (1s)(2s) configuration
and for the (1s)(2p) configuration [Figs. 5(a) and 6(a)]
is similar to that of the corresponding genuine and con-
jugate Fermi holes displayed in Figs. 4(a) and (b), re-
spectively. This similarity is due to the fact that in this
large Zn regime the electron-electron interaction is very
weak as confirmed by the isoenergy surface of Figs. 5(a’)
and 6(a’). Therefore, the wave functions of the singlet
and triplet states are close to those of the independent
particle model of Eqs. (2) and (3).

In case of the (1s)(2s) configuration the genuine and
conjugate Fermi holes are located along the X and Y
axes representing the radial s1 and s2 coordinates and
no structure is observed along the Z axis representing
the angular φ− coordinate. This is due to the fact that
the ψ2s orbital that is responsible for the appearance of
conjugate Fermi holes has a radial node instead of an
angular node. This is also confirmed by the fact that
in the Zn → ∞ limit the singlet and triplet wave func-
tions for the (1s)(2s) configuration do not depend on
angular variables since the 1s and 2s orbitals have zero
angular momentum. Therefore, the two-electron angular
density distributions for the (1s)(2s) pair of states for
large Zn, such as Zn = 20, closely follow the statistical
distribution as observed in Fig. 2(a). As Zn decreases
the poles of the electron-electron interaction potential
become stronger, as shown in Figs. 5(a’)-(d’), and affect
the probability density distributions of the (1s)(2s) pair
of states. Indeed, the singlet probability density asso-
ciated with the blue (light-grey) surface located around
φ− = 0 in Fig. 5(a) decreases significantly with decreas-
ing Zn [Figs. 5(b)-(d)] due to the strong potential pole of

the electron-electron interaction. The singlet probability
density that migrated from this region is now located,
however, in regions with larger s1 or s2 but at almost the
same value of φ−. Due to the zero angular momentum
of the 1s and 2s electrons they avoid the strong poten-
tial pole by simply increasing the interelectron distance
while hardly changing their angle. This is the reason
why the two-electron angular density distributions of the
singlet-triplet pair of states for the (1s)(2s) configuration
depend only very weakly on φ− even for small Zn where
the electron-electron interaction is strong.

In contrast to the (1s)(2s) case the genuine and con-
jugate Fermi holes that are associated with the (1s)(2p)
configuration are located along the Z axis (representing
the angular coordinate φ−) showing an angular align-
ment of these holes. Further, an inspection of Fig. 4(b)
shows that the genuine Fermi holes are in this case lo-
cated at φ− = 0,±π, whereas the conjugate Fermi holes
are located at φ− = ±π/2. Recalling that the triplet den-
sity is smaller than the singlet density in genuine Fermi
holes and larger than the singlet density in conjugate
Fermi holes, we see that the observed φ−-dependence
of the two-electron angular density distribution for the
(1s)(2p) triplet state is in accord with the existence of
the genuine and conjugate Fermi holes. Similarly, the
singlet probability density being smaller and larger than
the triplet probability in the conjugate and in the gen-
uine Fermi holes, respectively, the two-electron angular-
density distribution for the (1s)(2p) singlet state shows
smaller and larger densities at the location of the conju-
gate and genuine Fermi holes, respectively. These coinci-
dences indicate that the observed strong φ−-dependence
of the probability density distributions for the (1s)(2p)
singlet-triplet pair of states in the large Zn regime can be
rationalized by the appearance of the genuine and conju-
gate Fermi holes due to the decreasing electron-electron
interaction.

As the nuclear charge Zn decreases the electron-
electron interaction becomes stronger as displayed in
Figs. 6(a’)-(d’). It is noted that by definition the genuine
Fermi holes exist in the vicinity of the regions satisfy-
ing ~s1 = ~s2. The electron-electron interaction potential
1

Zn

1

|~s1−~s2|
diverges to infinity in the same region. Con-

sequently, the three ‘poles’ of the electron-electron inter-
action penetrate exactly into the three blue surfaces of
the genuine Fermi holes as displayed in Fig. 4(b). As Zn

decreases the singlet probability density located in these
genuine Fermi holes is forced by the strong poles of the
electron-electron interaction to migrate away from the Z
axis, as displayed in Fig. 6(b)-(d). Since, unlike the 2s
electron, the 2p electron has a nonzero angular momen-
tum, the singlet probability density that migrates from
the Fermi holes is located in regions with different values
of φ−. This levels out the probability density along the
φ−-axis and explains the observed weak φ−-dependence
of the probability density for the small nuclear charge Zn

= 2.
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(a)

(c)

(d)

Z
n
 = 20

Z
n
 = 4

Z
n
 = 2

(b) Z
n
 = 10

X

Z

Y

FIG. 5: (Color online) Difference in the probability density distributions between the (1s)(2s) 1S singlet state and the
(1s)(2s) 3S triplet state of He-like systems in the internal space: Figures (a), (b), (c), and (d) correspond, respectively,
to the cases with Zn = 20, 10, 4, and 2. The X, Y , and Z axes represent, respectively, the s1, s2, and φ− coordinates. The
square norm of the displayed surface is 0.001. The blue (light grey) and red (dark grey in the black-and-white version) surfaces
correspond, respectively, to regions in which the probability density of the singlet wave function is larger than that of the
triplet wave function and vice versa. Figures (a’) - (d’) indicate the Zn-adjusted electron repulsion potential [cf. Eq. (1)] for the
corresponding cases. The displayed surfaces represent the area where the electron repulsion potential energy becomes larger
than 0.5 au.

IV. SUMMARY

In the present study the angular correlation in the
ground and singly-excited states of the two-dimensional
He and He-like atomic ions has been studied by relying
on highly accurate full configuration interaction (FCI)
wave functions. The two-electron angular-density distri-
butions have been calculated by integrating the square
modulus of the FCI wave functions over all coordinates

other than the two-electron angle φ− defined by the dif-
ference between the two polar angles φ1 and φ2 for the
respective electrons 1 and 2.

The resultant distribution for the (1s)2 ground state
in the regime of large nuclear charges Zn shows a very
weak φ− dependence while the dependence increases for
small Zn values like for Zn = 2 of the helium atom.
This dependence is in accord with the variation of the
electron correlation in units of the Zn-adjusted correla-
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(a)

(c)

(d)

Z
n
 = 20

Z
n
 = 4

Z
n
 = 2

(b) Z
n
 = 10

X Y

Z

FIG. 6: (Color online) Difference in the probability density distributions between the (1s)(2p) 1P singlet state and the
(1s)(2p) 3P triplet state of He-like systems in the internal space: Figures (a), (b), (c), and (d) correspond, respectively,
to the cases with Zn = 20, 10, 4, and 2. See caption to Fig. 5 for further details.

tion energy ∆Ecorr.

Z2
n

. In contrast, the two-electron angular

density distributions for the singly-excited states of the
(1s)(2s) and (1s)(2p) configurations have a different char-
acter than those for the (1s)2 ground state: In the case
of the (1s)(2s) configuration the singlet and the triplet
states show only a very weak dependence on φ− irrespec-
tive of Zn while in the case of the (1s)(2p) configuration
both the singlet and the triplet states show a weak de-
pendence for small Zn yet a strong dependence for large
Zn in spite of the fact that the electron correlation de-
creases towards zero for increasing Zn. Further, in the
large Zn regime the singlet state of the (1s)(2p) config-
uration shows a peak in probability density at φ− = 0,

indicating a tendency of the two electrons to be on the
same side of the nucleus. On the other hand, in the case
of the corresponding triplet state, the probability den-
sity is peaked at φ− = ±π/2 indicating a tendency of the
two electrons to be on opposite sides of the nucleus. We
would like to emphasize that this counter-intuitive trend
that we find for the (1s)(2p) configuration is not limited
to the present 2D model. Thakkar and Smith have al-
ready identified a similar behavior for the same states in
their evaluation of the angular correlation coefficients for
regular 3D He-like systems [13].

In order to rationalize the observed trends of the an-
gular φ− dependence of the probability density, focus-
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ing particularly on the unexpected trend found for the
(1s)(2p) singlet-triplet pair of states with respect to the
variation of Zn, we have examined in detail the proba-
bility density distributions of the relevant states in the
internal space defined by the Zn-adjusted radial coor-
dinates si (i = 1,2) and the two-electron angle φ−. The
difference in the probability densities between the singlet-
triplet pair of states in the internal space in the Zn → ∞
limit defines, respectively, the genuine and the conjugate
Fermi holes in which the singlet probability density is
larger than the triplet density, and vice versa. The gen-
uine and conjugate Fermi holes for the (1s)(2s) singlet-
triplet pair show no structure along the angular φ− co-
ordinate. This is consistent with the two-electron angu-
lar density distributions for the (1s)(2s) pair of states
showing a very weak φ− dependence irrespective of the
nuclear charge Zn. In contrast, the genuine and conju-
gate Fermi holes for the (1s)(2p) singlet-triplet pair of
states align alternately along the φ− axis. They are cen-
tered at φ− = 0,±π for the genuine Fermi holes and
at φ− = ±π/2 for the conjugate Fermi holes. Since
the triplet density is smaller than the singlet density
in genuine Fermi holes and larger than the singlet den-
sity in conjugate Fermi holes, the observed strong φ−-
dependence for the (1s)(2p) singlet-triplet pair of states
in the large Zn regime is supported by the appearance of
these holes due to the decreasing electron-electron inter-
action for increasing Zn.
Recent advances in high-power free-electron lasers for

extreme ultraviolet (EUV) and X-ray wavelength regions
have enabled us to study nonlinear multi-photon pro-

cesses in simple atoms [28, 29]. We note that these
pioneering experiments have succeeded in generating
Rabi oscillations between the (1s)2 ground state and the
(1s)(2p) singlet state in the helium atom [30] indicating
a possibility of transferring the whole probability density
from the ground state to the (1s)(2s) excited state at a
certain time. Combining it with the (e,2e)-type of ex-
periments [31] that measure the correlated two electrons
instantaneously ejected from the target atom it should be
feasible to design an ambitious experiment which would
enable to directly observe the anisotropic distribution of
the two electrons that have been explored in the present
study. This would thus verify experimentally the exis-
tence of the conjugate Fermi holes as well as of the stan-
dard Fermi holes.
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