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ABSTRACT

We present a novel approach, based on robust principal components analysis (RPCA) and
maximal information coefficient (MIC), to study the redshift dependence of halo baryonic
properties. Our data is composed by a set of different physical quantities for primordial mini-
haloes: dark-matter mass (Mdm), gas mass (Mgas), stellar mass, molecular fraction (xmol),
metallicity (Z), star formation rate (SFR) and temperature. We find thatMdm andMgas are
dominant factors for variance at high redshift. Nonetheless, with the emergence of the first
stars and subsequent feedback mechanisms,xmol, SFRandZ start to dominate the variance.
The RPCA gives three principal components (PCs) that are capable to explain more than 97
per cent of the data variance at any redshift, while 2 PCs usually account for more than 92 per
cent. Our MIC analysis suggests that all the gaseous properties have a stronger correlation with
Mgas than withMdm, whileMgas has a deeper correlation withxmol than withZ or SFR. This
indicates the crucial role of gas molecular content to initiate star formation and consequent
metal pollution from population III and population II/I regimes in primordial galaxies. Finally,
a comparison between MIC and Spearman correlation coefficient shows that the former is a
more reliable indicator when halo properties are weakly correlated.

Key words: cosmology: large-scale structure of Universe, early Universe; methods: statisti-
cal, N-body simulations

1 INTRODUCTION

The standard model of cosmology predicts a hierarchal struc-
ture formation driven by cold dark matter (e.g., Benson 2010),
where galaxies form from molecular gas cooling within grow-
ing dark-matter haloes. Hence, understanding the correlation be-
tween different properties of the dark-matter haloes is imperative
to build up a comprehensive picture of galaxy evolution. Many
authors have explored the correlation between dark-halo proper-
ties, such as mass, spin and shape, both in low- (e.g., Bett etal.
2007; Hahn et al. 2007; Macciò et al. 2007; Wang et al. 2011) and
high-redshift (e.g., Jang-Condell & Hernquist 2001; de Souza et al.
2013a) regimes. Estimating the strength of these correlations is
critical to support semi-analytical and halo occupation models,
which assume the mass as determinant factor of the halo proper-
ties (e.g., Mo & White 1996; Cooray & Sheth 2002; Berlind et al.
2003; Somerville et al. 2008). Nevertheles, alternative approaches,
based on principal components analysis (PCA), found that con-
centration is a key parameter, contrary to what expected before

⋆ e-mail: rafael.2706@gmail.com

(Jeeson-Daniel et al. 2011; Skibba & Macciò 2011), and stressed
the need for further investigations. PCA belongs to a familyof tech-
niques ideal to explore high-dimensional data. The method con-
sists in projecting the data into a low-dimensional form, retaining
as much information as possible (e.g., Jollife 2002). Hence, PCA
emerges as a natural technique to investigate correlation and tem-
poral evolution of halo properties. Due to its versatility,PCA has
been applied to a broad range of astronomical studies, such as stel-
lar, galaxy and quasar spectra (e.g., Chen et al. 2009; McGurk et al.
2010), galaxy properties (Conselice 2006; Scarlata et al. 2007),
Hubble parameter and cosmic star formation (SF) reconstruction
(e.g., Ishida et al. 2011; Ishida & de Souza 2011), and supernova
photometric classification (Ishida & de Souza 2013).

Despite its generality, PCA is not the only way to han-
dle huge data sets, and the growth in complexity of scien-
tific experimental data makes the ability to extract newswor-
thy and meaningful information an endeavorper se. The yearn-
ing for novel methodologies of data-intensive science gaverise
to the so-called fourth research paradigm (e.g., Bell et al.2009).
Data-mining methods have been used in many areas of knowl-
edge such as genetics (e.g., Venter et al. 2004) and financial
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2 Gas properties in dark matter mini-haloes

marketing decisions (e.g., Shaw et al. 2001), and their impor-
tance for astronomy has been recently highlighted as well (e.g.,
Ball & Brunner 2010; Graham et al. 2013; Krone-Martins et al.
2013; Martinez-Gomez et al. 2013). Likewise observations,cos-
mological simulations are continuously increasing in complexity,
lessening the distance between observed and synthetic data(e.g.,
Overzier et al. 2013; de Souza et al. 2013b). None the less, the ap-
plication of data-mining to cosmological simulations remains a
terra incognita.

In this work, we investigate the statistical properties of
baryons inside high-z haloes, including detailed chemistry, gas
physics and stellar feedback. We make use of Robust PCA (RPCA)
and maximal information coefficient (MIC) to study a set of vari-
ous halo parameters. While RPCA represents a generalization of
the standard PCA, whose advantage is its resilience to outliers
and skewed data, MIC is expected to be the correlation analysis
of the 21st century (Speed 2011), in particular due to MIC ability
in quantifying general associations between variables. Therefore,
this project represents the first application of MIC to N-body/hydro
simulations, and the first use of PCA to explore the low-mass end
of the halo mass function and the birth of the first galaxies.

The outline of this paper is as follows. In Section 2, we de-
scribe the cosmological simulations. In Section 3, we introduce the
statistical methods. In Section 4, we present our analysis and main
results. Finally, in Section 5, we present our conclusions.

2 SIMULATIONS

We analyzed the results of a cosmological N-body, hydro, chem-
istry simulation (Maio et al. 2010, 2011; Maio & Iannuzzi 2011),
that was run by means of a modified version of the smoothed-
particle hydrodynamics codeGADGET2 (Springel 2005). The mod-
ifications include relevant chemical network to self-consistently
follow the evolution of e−, H, H+, H−, He, He+, He++, H2,
H+

2 , D, D+, HD, HeH+ (e.g., Yoshida et al. 2003; Maio et al. 2006,
2007, 2009), ultraviolet background radiation, metal pollution ac-
cording to proper stellar yields (He, C, O, Si, Fe, Mg, S, etc.),
lifetimes, and stellar population for Pop III and Pop II/I regimes
(Tornatore et al. 2007), radiative gas cooling from molecular, reso-
nant and fine-structure transitions (e.g. Maio et al. 2007, and ref-
erences therein) and stellar feedback (Springel & Hernquist 2003).
The transition from the Pop III to the Pop II/I regime is determined
by the value of the gas metallicity (Z) compared to the critical
valueZcrit (e.g., Omukai 2000; Bromm et al. 2001), assumed to
be10−4Z⊙

1. The cosmic field is sampled at redshiftz = 100, with
dark-matter and baryonic-matter species in the cosmological stan-
dard framework. We considered snapshots in the range9 . z . 19,
within a cubic volume of comoving side 0.7 Mpc, and2 × 3203

particles per gas and dark-matter species corresponding toparticle
masses of42 M⊙h

−1 and275 M⊙h
−1 , respectively. The identi-

fication of the simulated objects is done by applying a Friends of
Friends (FoF) technique and substructures are identified byusing a
SubFind algorithm (Dolag et al. 2009), which discriminatesamong
bound and non-bound particles. In order to avoid numerical arti-
facts, we selected only those structures in which the gas content is
resolved with at least300 gas particles. This usually corresponds

1 Although uncertain (Bromm & Loeb 2003; Schneider et al. 2003, 2006),
results are usually not very sensitive to the precise value adopted
(Maio et al. 2010).

to selecting only objects with a total number of particles ofat least
∼ 103.

The simulation outcomes investigated here consist of seven
parameters: dark-matter mass (Mdm), gas mass (Mgas), stel-
lar mass (Mstar), star formation rate (SFR), Z, gas tempera-
ture (T), and gas molecular fraction(xmol). We refer the reader
to previous works, where more details and additional analyses
about halo spin and shape distribution (de Souza et al. 2013a),
feedback mechanisms (Maio et al. 2011; Petkova & Maio 2012;
Maio et al. 2013), primordial streaming motions (Maio et al.2011),
non-standard cosmologies (Maio et al. 2006; Maio & Iannuzzi
2011; Maio 2011; de Souza et al. 2013c), high-z luminosity func-
tion (Salvaterra et al. 2013; Dayal et al. 2013), early gamma
ray bursts- (Campisi et al. 2011; de Souza et al. 2011a, 2012;
Maio et al. 2012) supernovae-host properties (de Souza & Ishida
2010; de Souza et al. 2011b; Johnson et al. 2013; Whalen et al.
2013a,b), Lyα emitters (Jeeson-Daniel et al. 2012) and DLA-
system chemical content (Maio et al. 2013) are presented anddis-
cussed.

3 STATISTICAL ANALYSIS

Robust Principal Components Analysis.The ultimate goal of
PCA is to reduce the dimensionality of a multivariate data2, while
explaining the data variance with as few principal components
(PCs) as possible. PCA belongs to a class of Projection-Pursuit (PP)
methods, whose aim is to detect structures in multidimensional data
by projecting them into a lower-dimensional subspace (LDS). The
LDS is selected by maximizing a projection index (PI), wherePI
represents aninteresting featurein the data (trends, clusters, hyper-
surfaces, anomalies, etc.). The particular case where variance (S2)
is taken as a PI leads to the classical version of PCA3.

Givenn measurementsx1, · · · , xn, all of them column vec-
tors of dimensionΓ, the first PC is obtained by finding a unit vector
a which maximizes the variance of the data projected on it:

a1 = argmax
||a||=1

S2(atx1, · · · ,a
txn), (1)

wheret is the transpose operation anda1 is the direction of the first
PC4. Once we have computed the(k−1)th PC, the direction of the
kth component, for1 < k 6 Γ, is given by

ak = argmax
||a||=1,a⊥a1,··· ,a⊥ak−1

S2(atx1, · · · ,a
txn), (2)

where the condition of each PC to be orthogonal to all previous
ones, ensures a new uncorrelated basis. In spite of these attractive
properties, PCA has some critical drawbacks as the sensitivity to
outliers (e.g., Hampel et al. 2005) and inability to deal with miss-
ing data (e.g., Xu et al. 2010). In order to overcome this limitation
several robust versions were created based on the PP principle (e.g.,

2 A set of measurements on each of two or more variables.
3 The PCs are computed by diagonalization of the data covariance matrix
(Σ2), with the resulting eigenvectors corresponding to PCs andthe resulting
eigenvalues to the varianceexplainedby the PCs.
The eigenvector corresponding to the largest eigenvalue gives the direction
of greatest variance (PC1), the second largest eigenvalue gives the direction
of the next highest variance (PC2), and so on. Since covariance matrices
are symmetric positive semidefinite, the eigenbasis is orthonormal (spectral
theorem).
4 argmax

x
f(x) is the set of values ofx for which the functionf(x)

attains its largest value.

c© 2013 RAS, MNRAS000, 1–7
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Croux et al. 2007). Instead of taking the variance as a PI in Eq. (1),
a robust5 measure of variance is taken. Two common measures of
robust variance are: the median absolute deviation (MAD),

MAD(κ1, · · · , κn) = 1.48med
j

|κj −med
i

κi|, (3)

and the first quartile of the pairwise differences between all data
points (Q),

Q(κ1, · · · , κn) = 2.22 {|κi − κj |; 1 6 i < j 6 n}(2
n
)/4 , (4)

where{κ1, · · · , κn} is a given univariate dataset and the square
root of MAD or Q gives a robust variance6. Hereafter all calcula-
tions of the PCs are performed using the grid search base algorithm
(Croux et al. 2007) withMAD as a variance estimator, but usingQ
has no influence on our results.

Maximal information coefficient. The maximal information-
based non-parametric exploration (MINE) statistics represent a
novel family of techniques to identify and characterize general rela-
tionships in data sets (Reshef et al. 2011). MINE introduce MIC as
a new measure of dependence between two-variables, which pos-
sesses two desired properties for data exploration: (i) generality,
the ability to capture a broad range of associations and functional
relationships7; (ii) equitability, the ability to give similar scores to
equally noisy relationships of different types8.
MIC measures the strength of general associations, based onthe
mutual information9 (MI) between two random variables10,A and
B:

MI(A,B) =
∑

a∈A

∑

b∈B

p(a, b) log

(

p(a, b)

p(a)p(b)

)

, (5)

wherep(a) andp(b) are the marginal probability distribution func-
tions (PDF) ofA andB, andp(a, b) is the joint PDF.
Consider D a finite set of ordered pairs,{(ai, bi), i = 1, . . . , n},
partitioned into ax-by-y grid of variable size,G, such that there
arex-bins spanninga andy-bins coveringb, respectively.
The PDF of a particular grid cell is proportional to the number of
data points inside that cell. We can define a characteristic matrix
M(D) of a setD as

M(D)x,y =
max(MI)

logmin{x, y}
, (6)

5 Robust statistics commonly use inter-quantile range or median absolute
deviation instead of mean and standard deviation, in order to be resistant
against outliers.
6 When the PI is the standard variance, the first PC is the eigenvector of
the data covariance matrix corresponding to the largest eigenvalue. But this
does not hold for general choices of variance and approximative algorithms
are necessary.
7 For comparison, Pearson coefficient measures the linear correlation be-
tween two variables, while Spearman coefficient (Rs) measures the strength
of monotonicity between paired data.
8 In benchmark tests MIC equitability behaves better than other methods
such as e.g., mutual information estimation, distance correlation andRs. A
lack of equitability introduces a strong bias and entire classes of relation-
ships may be missed (Reshef et al. 2013).
9 Mutual information measures the general interdependence between two
variables, while the correlation function measures the linear dependence
between them (e.g., Li 1990).
10 MIC tends to 1 for all never-constant noiseless functional relationships
and to 0 for statistically independent variables.

representing the highest normalized mutual informations of D. The
MIC of a setD is then defined as

MIC(D) = max
0<xy<B(n)

{

M(D)x,y

}

, (7)

representing the maximum value ofM subject to0 < xy < B(n),
where the functionB(n) ≡ n0.6 was empirically determined by
Reshef et al. 201111.

4 RESULTS

Hereafter we discuss the relations between halo propertiesand their
relative importance. Our matrix is composed of≈ 1500 haloes,
spanning the redshift range9 . z . 19, each containing at least
∼ 103 particles. Each row of the matrix represents a halo and
each column represents one of the halo properties. RPCA probes
the entire matrix at once12. On the other hand, MIC is a pair-
variable comparison, therefore requiringN(N − 1)/2 operations,
with N being the number of halo properties. It is worth to highlight
here that each approach has its own advantages and disadvantages.
RPCA is suitable for high-dimensional data, when a pair compari-
son becomes unfeasible, however the method only searches for lin-
ear relationships. MIC, instead, finds general associations in data
structures, but may be impractical to deal with a large amount of
parameters.

PCA. Figure 1 shows the contribution of the first three PCs toS2,
as a function of redshift. While 3 PCs account for more than97
per cent ofS2 at any redshift, 2 PCs explain more than92 per cent
except atz ≃ 14, when the contribution drops to85 per cent. The
sharp variation of the PCs aroundz ≃ 14 − 16 acts as a smoking
gun for a global cosmological event. Indeed, this is a directconse-
quence of firstSFepisodes and the interplay between chemical and
mechanical feedback from the first stars, that takes place around
z ≃ 15 − 20 (Maio et al. 2010, 2011; Maio & Iannuzzi 2011). As
molecules are produced over time, they lead to gas collapse,stellar
formation and metal pollution, with consequent back reaction on
the thermal behavior of the surrounding gas (see e.g., Maio et al.
2011; Maio & Iannuzzi 2011) This redshift range represents an
epoch of fast and turbulent growth of the metal filling factor, from
∼ 10−18 at z ≃ 15 to ≈ 10−12 at z ≃ 14 (see Fig. 1 from
Maio et al. 2011). At the beginning, only the gas at high densities
is affected by metal enrichment, due toSF concentration in these
regions. AsSF and metal spreading proceed, the surrounding
lower-density environments are affected as well. Supernova heats
high-density gas within star-forming sites and, consequently, hot
low-density gas is ejected from star-forming regions by supernova
winds.

Figure 2 shows the relative contribution of each parameter to
PC1 and PC2. Atz = 19, Mdm andMgas dominate PC1, followed
by a small contribution ofT . Nevertheless, as gas collapses into

11 The0.6 exponent value represents a compromise since high values of
B(n) lead to non-zero scores even for random data, as each point gets its
own cell, while low values only probe simple patterns.
12 Before applying the RPCA, we standardize the halo properties by sub-
tracting the means and dividing by the standard deviation. Therefore we
are formally using the correlation matrix that can be seen asthe covariance
matrix of standardized variables.
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Figure 1.Fraction of variance explained by the first 3 principal components
as a function of redshift. Symbols represent the actual estimate values for
each snapshot, while the curves represent a smooth fitting with 95 per cent
confidence level limited by the shadow areas.

potential wells, the relative contribution fromMgas increases sur-
passingMdm atz ≈ 15. The dominant contribution ofZ andxmol

to PC1 atz ≈ 14 indicates a critical epoch for the cosmic chemical
enrichment (see also discussion above), triggered by a rapid varia-
tion of xmol, followed by a wide metal pollution atz ≈ 13. After a
decline in the chemical enrichment rate, a second peak inZ occurs
atz ≈ 10. This self-regulated, oscillatory behavior is caused by the
simultaneous coexistence of cold pristine-gas inflows and hot metal
enriched outflows that create hydro instabilities and turbulent pat-
terns with Reynolds numbers∼ 108 − 1010 (see e.g. Fig. 2 from
Maio et al. 2011). Finally atz = 9, Mdm andMgas have become
almost subdominant, since PC1 is mainly led byT andZ, as a re-
sult of the ongoing cosmic heating fromSFand thermal feedback.
An inspection in PC2 (right panel of Fig. 2) reveals thesupporting
roles during the galaxy formation process. The PC1 peak inZ at
redshift 13 is preceded by a strong contribution ofSFRand halo
masses to PC2. While the second PC1 peak inZ, aroundz ≃ 10,
is anticipated by an increasing contribution to PC2 from theformed
stars, which later explode as supernovae and enrich the Universe.

MIC. Figures 3 and 4 show the correlation between the halo prop-
erties atz= 10 and 17, respectively13. The main diagonal shows the
distribution of each variable14, with the left vertical axis displaying
the number of haloes per bin.
The lower triangular part of the panel shows scatter plots for
each variable combination superimposed by density contours. This
should facilitate a visual interpretation of the corresponding MIC
and Spearman (Rs) coefficients quoted in the upper triangular part
of the panel. At high redshift, due to the poor statistics, most vari-
ables are uncorrelated, receiving a low score by bothRs and MIC.
As expectedMgas, Mdm andT are strongly correlated, receiving
higher scores. Closely behind appearsxmol, which is directly de-
pendent on the local gas density andT, showing a moderate corre-
lation with the 3 former quantities. An unexpected difference be-
tween the two approaches appears when comparingZ, Mstar and
the SFR. While Rs suggests a perfect correlation betweenZ and

13 We do not display results forz > 17, since here there are too many
zeros in the matrix and the variance measurements are unreliable.
14 The variables are standardized by subtracting the mean, dividing by the
standard deviation and transforming bylog(1 + x) for better visualization.
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Figure 2. Variable contribution for PC1 and PC2 as a function of redshift.

Mstar, MIC found no significant association atz = 17. This high-
lights the robustness of MIC with skewed and sparse data (in this
redshift range,z & 17, there are very few haloes with non-null
Z andMstar values). Therefore, the highRs value for these two
quantities is misleading, as confirmed by a visual inspection of the
corresponding distributions in the lower triangular part in Figure
3. During the course of cosmic evolution though, the correlations
between the properties of the haloes tighten and bothRs and MIC
converge for most of them atz = 10 (with Rs slightly overesti-
mating the strength of correlation compared to MIC), as shown in
Figure 4.

5 CONCLUSIONS

We investigate the redshift evolution of the gas propertiesof pri-
mordial galaxies using robust PCA and MIC statistics.
This is the first attempt to probe the baryon properties of early
mini-haloes and the effects of feedback processes by means of a
statistically solid approach. We explore the correlation of different
baryonic properties as expected from numerical N-body, hydrody-
namical, chemistry simulations including gas molecular and atomic
cooling,SF, stellar evolution, metal spreading and feedback effects.
We find that two PCs are usually capable to explain more than 92
per cent of the data variance in the entire redshift range. The wide
range of redshifts analyzed here (9 . z . 19) allowed us to study
the temporal evolution of the relative contribution of eachPC to the
total variance. FirstSFepisodes and feedback mechanisms cause a
drop of PC1 atz ∼ 14, when a sharp variation in the PCs behavior
marks the onset of cosmic metal enrichment. Atz > 14 the halo
properties are basically dictated by the halo mass.

c© 2013 RAS, MNRAS000, 1–7
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Figure 3. Correlations between different halo properties at redshift 10. The MIC and Spearman rank correlation coefficient are shown in the top half matrix.
Values below 0.3 (weak correlation) are printed in black, between 0.3-0.7 (moderate correlation) are printed blue, while values> 0.7 (strong correlation)
are printed in red. The panels on the diagonal show histograms of the parameter values. The bottom half matrix shows a scatter plot for each pair-variable
combination. While the coefficients are estimated in the original parameters, the figures show the standardized variables transformed bylog(1 + x) for better
visualization.

Overall Rs agrees reasonably with MIC, but MIC seems to
be more robust to study highly sparse data regimes (like at early
epochs). All gas properties, asideMgas, Mdm andT , are weakly
correlated at high redshift. Nevertheless, due to the interplay be-
tween chemical and mechanical feedback from the ongoing stellar
formation and the consequent back reaction on the thermal behav-
ior of the surrounding medium, baryonic quantities start topresent
a moderate to high level of correlation as redshift decreases. In par-
ticular,xmol shows the highest level of correlation withMgas, fol-
lowed byT , SFR, Mstar andZ respectively. In general, structure
formation processes depend not only on the dark-matter haloprop-
erties, but also on the local thermodynamical state of the gas, which

is, in turn, affected by cooling,SFand feedback. Moreover, a com-
bined inspection in the first and second PCs reveals some interest-
ing facts. The PC1 peak inZ at redshift 13 is preceded by a strong
contribution ofSFRand halo masses to PC2. While the second PC1
peak inZ, aroundz ≃ 10, is anticipated by an increasing contribu-
tion to PC2 by the formed stars, which later explode as supernovae
and enrich the Universe. Therefore stressing the importance of stel-
lar evolution modeling in leading baryon properties in primordial
haloes.
This work represents a leap forward in the statistical analysis of N-
body/hydro simulations, performed by means of RPCA and MIC
in a cosmological context. We therefore stress that the use of di-

c© 2013 RAS, MNRAS000, 1–7
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Figure 4. Same as in Fig. 3, but at redshift 17.

mensionality reduction algorithms and mutual informationbased
techniques in numerical simulations might be a precious instrument
for future investigations, thanks to its potential to unveil non-trivial
relationships, which may go undetected by standard methods.
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