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A model approach is derived for estimates of cross sections and rate coefficients in low-energy inelastic
collisions of hydrogen atoms and negative ions with other atoms and positive ions, which are of astrophysical
interests. The approach is based on the asymptotic method for electronic molecular structure determination
and on the branching probability current method for a nonadiabatic nuclear dynamical treatment. The derived
approach is applied to low-energy Al + H and Al+ + H− inelastic collisions. It is shown that the processes
with the largest values of cross sections and rates are the excitation and de-excitation ones between the Al(3d)
and Al(4p) states in collisions with H, as well as the ion-pair formation and the mutual neutralization processes
between these states and the ionic state; the second largest cross sections correspond to the similar processes
involving the Al(4s) state. The mechanisms of the processes are discussed in detail.
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I. INTRODUCTION

Nonlocal thermodynamic equilibrium (non-LTE) effects
are important for many fundamental problems in modern
astrophysics; see, for example, [1–5], in particular, for stellar
atmosphere modeling, for relative and absolute stellar chem-
ical abundances, for the Galactic evolution, and so on. A
non-LTE study requires detailed and complete information
about the radiative and inelastic collision processes which
affect the statistical equilibrium for a given atomic species.
The most important inelastic collisions are ones with electrons
and with hydrogen atoms and negative ions. The latter are a
main source of uncertainty for non-LTE studies due to large
concentrations of hydrogen atoms [1,2,5].

Recently, the progress has been achieved in detailed
quantum treatments of inelastic processes in collisions of
different atoms with hydrogen atoms. The accurate quantum
cross sections were calculated for transitions between many
low-lying atomic and ionic states for Na, Li, Mg + H
collisions [6–10] based on accurate ab initio or pseudopotential
quantum-chemical data [6,9,11–14]. The following processes
in those collisions have been studied in details: the excitation
and de-excitation,

A(i) + H ⇀↽ A(f ) + H, (1)

the ion-pair formation,

A(i) + H → A+ + H−, (2)

and the mutual neutralization processes

A+ + H− → A(f ) + H, (3)

A being an atom of interest, and i, f labeling electronic
states of A. The quantum cross sections [6–10] were used for
computing the inelastic rates [15–17] and finally for non-LTE
astrophysical applications [15,18–20].

For many atoms of interest, however, quantum cross
sections for inelastic collisions with hydrogen atoms are
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still not available. For this reason, the so-called “Drawin
formula” [1,21], which is an extension [22] of a classical
Thomson model, is still widely employed for estimates of
inelastic cross sections for the processes (1)–(3). It has been
shown in Ref. [23] (see also references therein) that for
low-energy atomic collisions the Drawin formula does not
have a correct physical background; it overestimates inelastic
rates up to several orders of magnitude for optically allowed
atomic transitions and underestimates rates for optically
forbidden transitions. A use of scaling factors does not improve
estimates obtained by means of the Drawin formula. First of
all, fluctuations of scaling factors are huge: For example, for
inelastic Mg + H collision rates a scaling factor was varied
from 1 [24] until 0.001 [25] and even down to 3 × 10−10 [26].
What is more important is that the Drawin formula provides
wrong relative efficiencies for different transitions: Even if a
scaling factor is taken of a proper value for one transition, it
does not give reliable rates for other transitions. Obviously,
using the Drawin formula for low-energy inelastic atomic
collisions is inappropriate and leads to unreliable results.

For this reason, Ref. [23] emphasized the importance of
deriving an approximate model approach to inelastic atomic
collisions with hydrogen atoms, an approach which would be
physically reliable, but computationally not so expensive as a
complete quantum study. This is the goal of the present paper.
The model is demonstrated for the example of low-energy
inelastic Al + H and Al+ + H− collisions. These collisions
are of astrophysical interest [27–30]. For example, with the
Gaia-ESO survey the Al abundance is measured for almost
100 000 stars. In addition, Al is an interesting element from
the Galactic archeology perspective.

II. MODEL APPROACH

A. General remarks

The majority of theoretical treatments of inelastic collisions
involving atoms, ions, molecules, etc., is performed within
the standard adiabatic Born-Oppenheimer (BO) approach
(or simply “the BO approach”), which is described, e.g.,
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in [31,32]. The approach is based on the separation of the
electronic and nuclear motion. At first, the electronic fixed-
nuclei Hamiltonian is treated and the electronic molecular
states are determined, then the nuclear dynamics is studied.
Thus, within the BO approach a collision problem is attacked
in two steps: (i) evaluation of molecular potential energies and
nonadiabatic couplings, and (ii) a study of the nonadiabatic
nuclear dynamics. The proposed model is derived within
the BO approach and based on these two steps. The model
simplifies each of the steps in such a way as to avoid expensive
calculations, but to keep physical reliability. The proposed
model is derived at two levels. The simple model takes
into account only nonadiabatic regions formed by long-range
ionic-covalent interactions, while the extended model includes
some additional nonadiabatic regions in order to estimate
influence of these regions on transition probabilities, cross
sections, and rates.

As described in Ref. [10], there are several mechanisms
for inelastic processes (1)–(3). They correspond to two kinds
of nonadiabatic regions: (i) long-range nonadiabatic regions
due to ionic-covalent interactions, and (ii) (rather) short-range
regions. The previous quantum studies [6–10] show that
the largest values of inelastic cross sections are provided
by nonadiabatic transitions at long-range regions. In the
zero-order approximation, an inelastic cross section σif for
a transition i → f can be roughly estimated by the following
formula:

σif = pstat
i πR2

nonad P̄if , (4)

where pstat
i is a statistical probability for population of an

initial channel i, Rnonad is the internuclear distance at which
a center of a proper nonadiabatic region occurs, and P̄if is
a mean probability for this transition. In the simplest case,
P̄if is a mean transition probability in a nonadiabatic region
in a vicinity of Rnonad after a double traverse of the region.
Usually there are many nonadiabatic regions contributing in
a final transition probability, so Eq. (4) should be treated as
a rough upper-limit estimate for an inelastic cross section.
As seen from Eq. (4), large cross sections correspond to large
values of Rnonad, long-range nonadiabatic regions. On the other
hand, at large internuclear distances R, transition probabilities
P̄if are small. This can be seen within the Landau-Zener
(LZ) model [33] (see below). Finally, there is an optimal
window of atomic states, for which inelastic cross sections
have largest values, and this window corresponds to long-range
nonadiabatic regions created by ionic-covalent interactions.

Thus, the developed model in its simple version is addressed
to determination of long-range nonadiabatic regions with
further calculations of cross sections and rate coefficients for
inelastic processes with relatively large values. An extension
of the simple model allows one to estimate how short-range
nonadiabatic regions affect inelastic cross sections and rate
coefficients.

B. Molecular potential energy curves

Ground-state potential energy curves (PECs) are known
for many hydrides; see, e.g., Refs. [34,35]. They are impor-
tant for rovibrational molecular structure, but not of much
help for inelastic collisions. For a few hydrides, electronic

structure calculations have been also performed for a couple of
low-lying excited states, which allows one to compute ex-
citation cross sections between ground and a few low-lying
states. The number of complete sets of quantum-chemical
data, including higher-lying and ionic states, is very limited
[11,12,14]. So, one needs to evaluate PECs for many molecular
states, including ionic, in order to estimate cross sections for
the processes (1)–(3).

Within the proposed model, adiabatic molecular PECs
for the processes of interest are calculated by diagonalizing
the electronic (fixed-nuclei) Hamiltonian matrix at a grid of
the internuclear distance R for molecular symmetries, which
include ionic states. The basis set used consists of ionic
(A+ + H−) and covalent (A∗ + H) electronic wave functions.
In its simplest version, only one ionic and several covalent
states are taken into account though several ionic states can be
treated as well. Diagonal elements of the Hamiltonian matrix
Hjj , which represent diabatic potential energies, are taken as
a sum of long-range and short-range potentials,

Hjj (R) = U
long
j (R) + U short

j (R), (5)

j numbering a (diabatic) molecular state. Note that Eq. (5) is
used for calculations of diabatic PECs at any R. Long-range
potentials are constructed as a sum of their asymptotic values
Uj (∞) = E∞

j (obtained from atomic and ionic energies) and

potentials for long-range interactions V
long
j :

U
long
j (R) = E∞

j + V
long
j (R). (6)

For the ionic diabatic state, A+ + H−, V
long
j is determined by

the screened Coulomb potential:

V
long
j (R) = −1 − exp(−τR2)

R
, (7)

τ being a parameter of a molecular system, while for covalent
states the long-range interactions are neglected. The short-
range potentials are constructed from ones due to the exchange
interaction and the screened nuclear repulsion,

U short
j (R) = V exch

j (R) + V nucl(R). (8)

The exchange potentials are taken in the form [36],

V exch
j (R) = Aj exp(−γjR), (9)

where Aj and γj are parameters of the system; they are
different for ionic and covalent states. The screened nuclear
interaction potentials have the following form:

V nucl(R) = ZA

R
exp(−τR); (10)

they are the same for ionic and covalent states. ZA is a nuclear
charge of an atom A.

A semiempirical formula for one-electron charge exchange
given in Ref. [37] is used in the present work for off-diagonal
matrix elements Hjk (j �= k) between an ionic and a covalent
state. The formula yields

Hjk(R) = Cjk R exp(−αjkR), (11)
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where the parameters Cjk and αjk are defined as

Cjk = βjk

√
IA∗(k) IH− , (12)

αjk = 0.86 βjk, (13)

while the parameter βjk reads

βjk = (
√

IH− + √
IA∗(k))/

√
2, (14)

IH− and IA∗(k) being ionization potentials of corresponding
orbitals in H− and A∗(k), respectively. The index j corresponds
to an ionic diabatic molecular state A+ + H−, while the index
k labels a covalent diabatic molecular state A(k) + H. This
formula has been applied to a large number of one-electron
transfer systems, including various mutual neutralization
processes, and found to yield physically correct results [37].
Equation (11) provides a correct asymptotic behavior of
off-diagonal matrix elements for charge exchange processes
in agreement with the asymptotic theory; see, e.g., Ref. [38].
At short internuclear distances, Eq. (11) is expected to
underestimate off-diagonal matrix elements. The off-diagonal
matrix elements between covalent states are neglected in the
present model approach.

Thus, the described procedure provides the Hamiltonian
matrix in the arrow form (the only nonzero row, the only
nonzero column, and the nonzero diagonal). Diagonaliza-
tion of the so-obtained Hamiltonian matrix yields adiabatic
molecular potential energies. It is worth pointing out that
the formulas described above have several parameters, but
the long-range matrix elements are determined by uniquely
defined parameters (taken from atomic data), while short-range
matrix elements depend on some parameters which do not
come directly from atomic data. This leads to the fact that
distant adiabatic PECs are well defined, while there is some
freedom at short distances. Since the main interest is in
calculations of long-range nonadiabatic regions created by the
ionic-covalent configuration interaction, the described model
approach is expected to determine these long-range potentials
rather accurately and unambiguously. Some freedom at short
distances allows one to adjust obtained adiabatic PECs to
accurate ab initio calculations, which are available for ground
and a few low-lying states in some cases, and this adjustment
is expected not to affect nonadiabatic dynamics substantially.
The particular application of this approach to the AlH molecule
is described below.

The described approach was tested for a magnesium
hydride for which the nine lowest ab initio adiabatic 2
+ PECs
have been calculated [9,10,14]. The long-range adiabatic PECs
obtained by means of the model approach agree reasonably
well with the accurate ab initio PECs. This is the result of the
physically meaningful diabatic long-range PECs and reliable
asymptotic off-diagonal matrix elements [Eqs. (11)–(14)],
justified by various applications [37].

C. Nonadiabatic nuclear dynamics

In general, a known Hamiltonian matrix allows one to
calculate not only adiabatic potentials, but also nonadiabatic
couplings needed for quantum nuclear dynamical treatments.
The present model approach is based on an approximate

treatment of the nonadiabatic nuclear dynamics, which re-
quires adiabatic potential curves only.

As is well known, hydride adiabatic PECs of a proper
symmetry exhibit a series of avoided crossings at large inter-
nuclear distances formed by the ionic-covalent configuration
interaction; see, for example, [7–12,14,34,35]. The model
approach reported above clearly describes this kind of series.
There is no simple general quantum solution for estimating a
nonadiabatic transition probability Pif (for a transition i → f )
in case of several nonadiabatic regions, but using the Demkov-
Osherov approach [39] one can approximately evaluate Pif

via a sequence of single traverses of nonadiabatic regions with
nonadiabatic transition probabilities pjk in each region along
different paths on the way in and out. Using this approximation,
to account for several channels, the multichannel models
have been proposed [40–42] in which nonadiabatic regions
are passed in a particular order, that is, a single initial
diabatic PEC crosses several noninteracting final diabatic
PECs. These models are well suited for mutual neutralization
processes (3), as well as for their inverse processes, the ion-pair
formation ones (2), when all channels are open and there are
no additional short-range transitions. The analytic formulas
of Refs. [41,42] have been generalized in Ref. [7] for the
excitation processes (1) also assuming that all channels are
open. In particular, for the mutual neutralization processes,
the probability P F

if for a transition from an initial (ionic) state
i to a final (covalent) state f in the presence of F final channels
after a double passage of all nonadiabatic regions is written as
a product of three factors:

P F
if = P

f −1
i Pif P F

f +1, (15)

where P
f −1
i represents a probability for a system to survive

in the initial diabatic state i after a traverse of first f − 1
nonadiabatic regions; Pif = 2pif (1 − pif ) is a probability of
a transition i → f in a two-channel approximation, pif being a
transition probability after a single traverse of the nonadiabatic
region created by the initial i and the final f diabatic states;
P F

f +1 takes into account the presence of channels lying below
channel f , that is, starting from f + 1; see Refs. [41,42]
for details. The advantage of Eq. (15) is that it gives the
transition probability P F

if in the analytic form, which simplifies
calculations substantially, but the expression (15) is valid only
for a particular order of nonadiabatic regions and only when
all treated channels are energetically open, which is not always
the case.

In practical applications, incoming and outgoing currents
are distributed among many channels after traversing many
nonadiabatic regions without any particular order. The ap-
proach which takes this into account has been recently
proposed in Ref. [43], the so-called branching classical
trajectory method: All nonadiabatic regions are accounted for
by classical trajectories in any order that they appear during a
collision. The basis of the method is twofold: branching of a
classical trajectory and the novel formulas for LZ nonadiabatic
transition probabilities adapted for classical trajectories [43].

The present model approach is based on the same ideas,
but no classical trajectories are calculated. Instead of them,
branching probability currents, both incoming and outgoing,
are computed along effective adiabatic PECs as a function of
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the internuclear distance R. A collision process is treated as a
probability current evolution with varying R. A given collision
energy E and a given total angular momentum quantum
number J generate a unit incoming probability current in
the initial channel at sufficiently large R (in an asymptotic
region). The code runs over R downwards to classical turning
points and then back upwards to an asymptotic region for each
possible pathway. After each traverse of a nonadiabatic region,
each probability current branches into two currents keeping the
old path along the old adiabatic PEC and creating a new path
along a new adiabatic PEC coupled in this nonadiabatic region
with the old state; each of these currents is determined by the
old current and the nonadiabatic transition probability in this
nonadiabatic region. This approach is similar to the splitting of
quantum probability currents taking place in rigorous quantum
treatments of inelastic atomic collisions [6,36]. Thus, the
code starts with a single incoming current and then generates
new currents after traversing nonadiabatic regions according
to all possible pathways. If a current for a new path is
smaller than a critical value, a new current is not created;
if a remaining current after passing a nonadiabatic region is
smaller than the critical value, the old current is stopped, and
the remaining current is transported into a new path. A final
transition probability Pif is calculated as a sum of all outgoing
probability currents for a final state f in the asymptotic region
(R → ∞) over all pathways created from an initial-channel
incoming probability current by branching currents into all
nonadiabatic regions in any order that they appear during a
collision. The present approach can be called “the branching
probability current method.”

The important feature of the branching probability cur-
rent method (as well as any surface-hopping approach) is
a way of calculating nonadiabatic transition probabilities,
which distinguishes different methods [44,45]. In the present
branching probability current method, transition probabilities
are calculated within the LZ model by the formula obtained
in Ref. [43] that does not require a diabatization procedure;
see below. Within the LZ model, the center of a nonadiabatic
region corresponds to a minimum of an adiabatic splitting
Zjk = |Uj − Uk|, Uj,k(R) being (effective) adiabatic poten-
tials for states j and k. This fact is used for determination
of nonadiabatic regions: The code calculates splitting Zjk

between adjacent adiabatic potentials as a function of R; if the
function Zjk(R) attains a local minimum, this distance is taken
as a center of a nonadiabatic region. The main assumption
of the approach, the applicability of LZ estimates, is valid
when there is physical evidence for avoided crossings, such
as ionic-covalent crossings or a clear structure of adiabatic
potentials. Obviously, the LZ model does not cover the
whole variety of nonadiabatic effects, as stated in Ref. [44]:
As with any mixed quantal-classical dynamics approach, a
method cannot succeed in all situations, e.g., in cases of
quantum interference. Nevertheless, in the present case, the
method is expected to provide reliable estimates: There are
avoided-crossing evidences and the LZ model works better
for narrow nonadiabatic regions which provide large inelastic
cross sections, which are, in turn, of the main interest in
astrophysical applications. In addition, the proposed method
allows one to calculate incoming and outgoing currents and to
determine a mechanism of a process.

As mentioned above, the way of incorporating nonadiabatic
transitions is crucial. Since the LZ model [33] is the most
applicable one, it is used in the present approach. Within
this two-state model, the probability pLZ

if for the nonadiabatic
transition i → f after a single traverse of a nonadiabatic region
is expressed by the conventional analytical formula,

pLZ
if = exp

(
−ξif

v

)
, (16)

ξif being a parameter of the LZ model. In a diabatic
representation it is defined as follows:

ξif = 2πH 2
if

h̄|H ′
ii − H ′

ff | . (17)

Hif is a constant off-diagonal matrix element, Hii and Hff

are linear R-dependent diagonal matrix elements, v is a radial
velocity of colliding atoms, which can be expressed in terms of
a collision energy E and a total angular momentum quantum
number J ,

v =
√

2

μ

(
Etotal − Uc − J (J + 1)h̄2

2μR2

)
, (18)

μ being the reduced mass of colliding particles, and Etotal =
E + Ui(∞) being a total energy. All values are evaluated at the
center of the nonadiabatic region Rc, where diabatic potentials
cross Hii(Rc) = Hff (Rc) = Uc. Primed quantities are referred
to derivatives with respect to the internuclear distance R.

Although Eq. (17) looks straightforward for computing an
LZ parameter ξif in a particular nonadiabatic region of interest,
there are some difficulties in its practical applications. First
of all, in many cases quantum-chemical data are known in
an adiabatic representation, moreover, only adiabatic PECs
are known, but not nonadiabatic couplings. Since diabatic
states are not uniquely defined, there is some ambiguity in
calculations of diabatic matrix elements required in Eq. (17)
from adiabatic PECs. Secondly, if quantum-chemical data are
given in a diabatic representation, they are usually multichan-
nel, while the LZ model is formulated in a two-state diabatic
representation. As is well known (see, e.g., Ref. [8]), diabatic
PECs and off-diagonal matrix elements in a multistate diabatic
representation may deviate substantially from those in a two-
state diabatic representation, and an additional transformation
is required from a multistate diabatic representation to a
two-state one. The novel procedure derived in Ref. [43] for
calculations of LZ parameters from adiabatic PECs is free
from these problems. The procedure is the following.

A diabatic representation allows one to calculate adiabatic
potentials Ui(R) and Uf (R), as well as the splitting Zif (R). In
a two-state case, it can be done analytically,

Zif (R) =
√

(Hii − Hff )2 + 4H 2
if . (19)

Within the LZ model, this leads to

Hif = Zif (Rc)/2, (20)

and, hence, to a relation between |Hii − Hff | and Zif (R),

|Hii − Hff | =
√

Z2
if (R) − Z2

if (Rc), (21)
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which gives a slope difference derived via the splitting,

|H ′
ii − H ′

ff | =
√

Zif Z′′
if (22)

at Rc. It turns out that the LZ parameter is written by means
of the following formula:

ξif = π

2h̄

√√√√Z3
if

Z′′
if

∣∣∣∣∣∣
R=Rc

, (23)

which expresses the LZ parameter only in terms of the
adiabatic splitting Zif and its second distance derivative at
Rc. Finally, within the LZ model the nonadiabatic transition
probability is given by Eq. (16) with the parameter ξif written
in the form (23). Equations (16) and (23) can be called the
adiabatic-potential-based transition probability formulas.

Having transition probabilities known, inelastic cross sec-
tions are calculated as a sum over a total angular momentum
quantum number J ,

σif (E) = πh̄2pstat
i

2 μE

∞∑
J=0

Pif (J,E) (2J + 1). (24)

Rate coefficients Kif (T ) = 〈σif v〉 are then obtained by inte-
grating over a collision energy E assuming the Maxwellian
distribution valid,

Kif (T ) =
√

8

πμ(kBT )3

∫ ∞

0
σif (E) E exp

(
− E

kBT

)
dE,

(25)

T being a temperature, and kB the Boltzmann constant.
The similar approach, the branching classical trajectory

method, has been derived in Ref. [43] and applied to nona-
diabatic nuclear dynamics in inelastic low-energy Na + H
collisions. It was verified [43] that the method provides
good agreement with complete quantum calculations [8],
except for quantum interference (see also comparison in
Fig. 1 for the ion-pair formation processes in Na(4s,3d) + H
collisions). The difference between the branching classical
trajectory method [43] and the present branching probability
current method is the following. Within the framework of the
branching classical trajectory method, nonadiabatic transition
probabilities are calculated via adiabatic splittings (and its
second time derivative) as a function of time along classical
trajectories by means of the following formula [43]:

pif = exp

⎛
⎝− π

2h̄

√
Z3

if

Z̈if

⎞
⎠ . (26)

In the present method the LZ parameters and the probabilities
are calculated via splittings as a function of the internuclear
distance [Eqs. (16) and (23)], that is, by means of varying R

without calculating any classical trajectories. Equation (26)
has an advantage in multidimensional cases, when a sys-
tem passes the same nonadiabatic region along different
trajectories and with different potential-energy profiles. In
one-dimensional cases, a profile is the same for different
trajectories, so within the present method the LZ parameters
can be calculated only once by means of Eq. (23) and then
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FIG. 1. (Color online) Comparison of cross sections for the
ion-pair formation processes calculated by different methods:
(a) Na(4s) + H → Na+ + H−; (b) Na(3d) + H → Na+ + H−.
Dashed (green) lines, quantum calculations [8]; dotted (blue) lines,
the branching classical trajectory method; solid (black) lines, the
branching probability current method.

used for all dynamical calculations (with different J and
E). This simplifies a nonadiabatic nuclear dynamical study
and increases an accuracy. The comparison of the branch-
ing probability current method with the branching classical
trajectory method and the complete quantum calculations is
shown in Fig. 1 for the ion-pair formation processes with
the largest cross sections in Na∗ + H collisions. It is seen
that when the main nonadiabatic region for a given process
is rather broad, Na(4s) + H collisions, the agreement of two
branching methods is perfect. When the main nonadiabatic
region is rather narrow, Na(3d) + H collisions, the branching
classical trajectory method exhibits some dispersion related to
a finite time step for classical trajectories, while the branching
probability current method provides smooth cross sections.
Decreasing a time step for classical trajectories should solve
this problem, but increases computational time. Figure 1 also
shows a reasonable agreement between the results obtained by
the present method and the quantum one. This allows one to
apply the proposed approach to the processes (1)–(3) in other
collisions.

Thus, the branching probability current approach described
above is used in the present study of nonadiabatic nuclear
dynamics for computing multichannel nonadiabatic transition
probabilities and inelastic cross sections. The approach is
based on (i) branching of incoming and outgoing probability
currents in each of the nonadiabatic regions along all possible
pathways during a collision, and (ii) the novel formula
[43] for the LZ parameters expressed in terms of adiabatic
PECs [Eq. (23)], the parameters needed for calculations of
nonadiabatic transition probabilities.

052704-5



ANDREY K. BELYAEV PHYSICAL REVIEW A 88, 052704 (2013)

III. APPLICATION TO AL + H AND AL+ + H−

COLLISIONS

A. Simple model

The model approach described above is applied to inelastic
Al + H and Al+ + H− collisions. First, the adiabatic PECs
are estimated. Since the ground ionic Al+ + H− diabatic
molecular state has the 1
+ symmetry and the approach is
based on nonrelativistic treatment (probabilities for transitions
between states of different symmetries are negligible as
compared to probabilities for transitions within the same
symmetry), only molecular states of this symmetry are taken
into account. In the simple version of the model the only
ground ionic state and 15 lowest covalent states yielding the
1
+ molecular symmetry are treated. Note that the atomic state
Al(3s3p2 4P ) does not provide a AlH(1
+) molecular state and
is not included into the present consideration, as it should have
negligible cross sections for the processes treated. The atomic
data are taken from [46]. The short-range parameters, Aion = 9
a.u., γion = 1.7 a.u., Acov = 7 a.u., γcov = 2.0 a.u., τ = 2.1
a.u., are determined by adjusting the ground adiabatic PEC to
the accurate ab initio AlH(X1
+) data [47]. The calculated
10 lowest adiabatic PECs, which have the asymptotic limits
below or equal to the ionic limit, are shown in Fig. 2. Three
uppermost PECs have avoided crossings with the ionic PEC
at distances larger than 100 a.u., and the adiabatic splittings
at these distances are so small that the system passes these
nonadiabatic regions completely diabatically. For this reason
only the seven lowest molecular states, six covalent and one
ionic, are taken into account for the nuclear dynamical study.
These states are collected in Table I. The long-range potential
for the ionic channel, the state j = 7, is continued diabatically
as ionic (1/R behavior going to the ionic limit) at R > 100
a.u.

A series of long-range avoided crossings due to the ionic-
covalent interaction is clearly seen in Fig. 2. The calculated
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FIG. 2. (Color online) The adiabatic PECs for the lowest
AlH(1
+) states (lines). The solid lines plot PECs for the states which
are taken into account in the dynamical treatment. The dotted lines
show PECs for the states which are below the ionic limit, but their
avoided crossings with the ionic PECs take place at distances larger
than R = 100 a.u. The symbols are the accurate ab initio data [47].

TABLE I. The AlH molecular channels, the corresponding
asymptotic atomic states, and the asymptotic energies with respect to
the ground state.

Molecular Asymptotic Asymptotic
j states interactions energies E∞

j (eV)a

1 11
+ Al(3p2P ) + H 0.0
2 21
+ Al(4s2S) + H 3.1427
3 31
+ Al(3d2D) + H 4.0216
4 41
+ Al(4p2P ) + H 4.0860
5 51
+ Al(5s2S) + H 4.6729
6 61
+ Al(nd2D) + H 4.8270
7 81
+ Al+(1S) + H− 5.2358

aNIST [46] J -weighted average values.

adiabatic splittings allow one to compute the LZ parameters
by means of Eq. (23). It should be emphasized that the
covalent states, Al(3d2D) + H and Al(4p2P ) + H, j = 3 and
4, are energetically so close that the corresponding long-range
nonadiabatic regions (created by interactions with the ionic
state) are overlapping. It can be shown analytically, that in
case of K (nearly) degenerate states interacting with another
(ionic) state the present model gives a minimum of the splitting
Zj,j+K between utmost adiabatic potentials Uj and Uj+K ,
which is equal to

Zj,j+K = 2

√√√√ K∑
k=1

H 2
j,j+k. (27)

It results in the following expression for the LZ parameters:

ξj,j+K =
K∑

k=1

ξj+k−1,j+k, (28)

where the LZ parameter ξj,j+K is evaluated by means of
Eq. (23) using the adiabatic potentials Uj and Uj+K , while
ξj+k−1,j+k are the conventional LZ parameters for adjacent
states. In the present case of two nearly degenerate covalent
states interacting with the ionic state, the off-diagonal matrix
elements and the nonadiabatic regions are determined by their
asymptotic energies only [see Eqs. (11)–(14)], and, hence,
the LZ parameters for adjacent states are equal and can be
evaluated by ξ34 = ξ45 = ξ35/2, where the latter is calculated
by means of Eq. (23) based on the potentials U3 and U5.

At short distances the model PECs and splittings are under-
estimated and deviate from the accurate ab initio calculations
[47]. For this reason, the LZ parameter ξ12 is evaluated by
means of Eq. (23) based on the ab initio data [47]. In fact,
the splitting between the two lowest PECs is so large that
nonadiabatic transitions between these states have negligible
probabilities, as confirmed by the dynamical calculations (see
below). Some additional ab initio calculations have been
performed by Lane [48] for the 21
+ and 31
+ states,
which are in agreement with the present model PECs even
providing better agreement with the model 21
+ PEC in
the avoided crossing region around R ≈ 14 a.u. than the
PEC from [47]. These additional calculations provide the LZ
parameter ξ23 close to the parameter from the model PECs.
To the best of our knowledge, no ab initio calculations for
higher-lying PECs have been performed, but splittings at larger
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FIG. 3. (Color online) The cross sections σ7k(E) for the mutual
neutralization process in low-energy Al+ + H− collisions (transi-
tions from the initial state j = 7). The solid lines are the results of the
simple model, while symbols are those of the extended model (see
text). The key for the final states k is given by color and the same
for all figures with the cross sections and the rates. The statistical
population probabilities are included in the cross sections.

internuclear distances calculated by means of the asymptotic
formulas (11)–(14) are expected to have higher accuracy than
at shorter distances.

The calculated LZ parameters allow one to compute
multichannel nonadiabatic transition probabilities, inelastic
cross sections, and rate coefficients by means of the branching
probability current method described in the previous section.
As mentioned above, the branching probability current method
allows one to treat both open and closed channels, as well as
cases when there are several nonadiabatic regions between a
pair of adjacent adiabatic PECs, the cases treated below.
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FIG. 4. (Color online) The inelastic cross sections σ1k(E) in low-
energy Al(3p) + H collisions (transitions from the initial state j =
1). The solid lines are the results of the simple model, while symbols
are those of the extended model (see text). The key for the final
states k is given by color and the same for all figures with the cross
sections. The statistical population probabilities are included in the
cross sections.
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FIG. 5. (Color online) The same as in Fig. 4, but for Al(4s) + H
collisions, i.e., for transitions from the initial state j = 2.

The calculated inelastic cross sections for the processes (1)–
(3) in Al + H and Al+ + H− collisions are shown in Figs. 3–
9 for the collision energies from the thresholds and up to
100 eV. Each figure shows the cross sections (both upwards
and downwards) for a particular initial state and all final states.

The ion-pair formation and the mutual neutralization
processes (2) and (3) are typically of the main interest in
astrophysical applications, as described in the Introduction.
The mutual neutralization cross sections in Al+ + H− col-
lisions are plotted in Fig. 3, while the cross sections for
the ion-pair formation in Al(nl) + H collisions are shown
in Figs. 4–9 (by orange lines). It is seen from this figure that
the mutual neutralization leads mainly to population of the
3d and 4p states of Al. These states are energetically close to
each other and have nonadiabatic regions due to ionic-covalent
interaction at relatively large distances, R ≈ 23 a.u. (see
Fig. 2), with moderate splittings which result in the largest
values of the cross sections [see Eq. (4)]. The next largest
mutual neutralization low-energy cross section corresponds to
population of the Al(4s) state. The corresponding nonadiabatic
region is also due to the ionic-covalent interaction and takes
place at R ≈ 14 a.u., also with a moderate splitting. The mutual
neutralization cross sections for formation of the 5s and nd

states are several orders of magnitude smaller than those for the
3d and 4p states. This fact has the clear physical explanation:
The corresponding nonadiabatic regions for the 5s and nd

states are located at large internuclear distances R > 48 a.u.
(see Fig. 2), and this results in small adiabatic splittings,
and finally small cross sections [Eq. (4)]. The nonadiabatic
regions for the 5p, 4f , and 6s states, the states with the
PECs plotted by dashed line in Fig. 2, are located at so large
distances (R > 100 a.u.) that the population of these states due
to ionic-covalent interactions is negligible. The formation of
the ground state 3p has negligible low-energy cross sections
due to the large adiabatic splitting, which has a minimum at
around 7.8 a.u. This cross section becomes noticeable only at
high collision energies, close to 100 eV.

The inelastic cross sections for the processes in Al(nl) + H
collisions, including the excitation and de-excitation ones,
have similar features (see Figs. 4–9). Typically, the largest
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FIG. 6. (Color online) The same as in Fig. 4, but for Al(3d) + H
collisions, i.e., for transitions from the initial state j = 3.

cross sections correspond to the Al+ + H− formation, when
the collision energy is high enough and the ionic channel is
energetically open. If the ionic channel is closed, the proba-
bility currents perform oscillations between classical turning
points on the left and on the right among different adiabatic
PECs including the ionic one; during these oscillations a
probability current decays into energetically open channels
on each oscillation. In this case, the multichannel formula
Eq. (15) is not valid any more, but the branching probability
current method can handle these situations. For these low
energies, the largest cross sections correspond mainly to
transitions between the 3d and 4p states (excitation and
de-excitation); the transitions involving the 4s state also have
rather large cross sections. Increasing the collision energy
above the energy thresholds for the ionic channel leads to
steps down in energy dependence of excitation (de-excitation)
cross sections. The physical background of these steps is the
following. Outgoing currents in the ionic channel are typically
significant. When a total energy is below the asymptotic
PEC for this channel, these outgoing currents return back
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FIG. 7. (Color online) The same as in Fig. 4, but for Al(4p) + H
collisions, i.e., for transitions from the initial state j = 4.
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FIG. 8. (Color online) The same as in Fig. 4, but for Al(5s) + H
collisions, i.e. for transitions from the initial state j = 5.

providing substantial populations (and, finally, cross sections)
of open channels due to above-mentioned oscillations between
classical turning points. As soon as the ionic channel gets open,
these outgoing currents populate the ionic channel resulting in
significant drops down of both covalent-channel populations
and excitation cross sections.

It is worth noticing that the largest cross sections in
Al(nl) + H collisions are of the values of 10–20 Å

2
, mainly

for the ion-pair formation and also for transitions (excitation
and de-excitation) between the 3d and 4p states with the small
energy threshold (see Figs. 6 and 7). The latter results in large
rate coefficients (see below). All cross sections for collisions
from the ground state Al(3p) have very small values due to
large energy gap (see Fig. 4).

The rate coefficients Kjk(T ) for the excitation and the ion-
pair formations processes, that is, for the upwards transitions
j → k, k > j , are plotted in Figs. 10–15 as a function
of a temperature T . The rates for the inverse processes,
the downwards transitions k → j (de-excitation and mutual
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FIG. 9. (Color online) The same as in Fig. 4, but for Al(nd) + H
collisions, i.e., for transitions from the initial state j = 6.
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FIG. 10. (Color online) The inelastic rate coefficients K1k(T ) for
Al(3p) + H collisions, i.e., for transitions from the initial state j = 1,
as a function of a temperature T . The key for the final states k is given
by color and the same for all figures with the rates.

neutralization), can be calculated by using detailed balance,

Kkj (T ) = Kjk(T )
pstat

k

pstat
j

exp

(
�Ekj

kBT

)
, (29)

�Ekj = Ek − Ej being the energy defect. As expected
from the calculated cross sections, the largest rates (up to
10−9 cm3/s) correspond to the excitation process between the
two energetically close states, 3d and 4p, and to the ion-pair
formation process from these states (Figs. 12 and 13). The next
largest rates, roughly by one-two orders of magnitude smaller
(depending on a temperature), correspond to the 4s → 3d,
4s → 4p excitation and the ion-pair formation from the 4s

and 5s states (Figs. 11 and 14). Other processes have smaller
rate coefficients.
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FIG. 11. (Color online) The inelastic rate coefficients K2k(T ) for
Al(4s) + H collisions, i.e., for transitions from the initial state j = 2,
as a function of a temperature T . The solid lines are the results of the
simple model, while symbols are those of the extended model (see
text). The key for the final states k is given by color and the same for
all figures with the rates.
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FIG. 12. (Color online) The same as in Fig. 11, but for
Al(3d) + H collisions.

For the inverse processes, the largest rates correspond to
the mutual neutralization into the 3d and 4p states (both rates
of the order of 5 × 10−8 cm3/s), as well as into the 4s state
(of the order of 6 × 10−9 cm3/s), all due to the large upwards
rates Kjk and the large energy defects �Ekj [see Eq. (29)]. The
next largest rate is for the 4p → 3d de-excitation with a value
of 10−9 cm3/s. The rates for the mutual neutralization process
are shown in Fig. 16 (the rates into the 3p and 4p states nearly
coincide within the figure scale). It is seen that the largest rates
are nearly constant over a wide range of temperature.

It should be emphasized that all processes discussed in this
subsection are based on the ionic-covalent interaction at large
distances taken into account in the simple model. An influence
of nonadiabatic regions at shorter internuclear distances is
treated in the next subsection.

B. Extended model

The extension of the simple model discussed above is
performed by taking into account nonadiabatic regions at short
and intermediate distances. Physical evidence and analysis of
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FIG. 13. (Color online) The same as in Fig. 11, but for
Al(4p) + H collisions.
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FIG. 14. (Color online) The same as in Fig. 11, but for
Al(5s) + H collisions.

accurate quantum-chemical data for excited molecular states of
the similar systems, e.g., MgH [9,14], NaH [12], and LiH [11],
show that nonadiabatic regions between excited molecular
states exist not only at large, but also at intermediate and short
internuclear distances. They are due to interactions between
covalent states, as well as due to interactions with other ionic
states asymptotically corresponding to excited positive ions.
The shape of the 2 1
+ ab initio PEC [47] shown in Fig. 2
clearly indicates an additional avoided crossing between the
2 1
+ and the 3 1
+ adiabatic PECs around R ≈ 2.7 a.u.
The quantal treatments of nonadiabatic nuclear dynamics in
inelastic Li, Na, Mg + H collisions [7,8,10] show that there
are several mechanisms of inelastic processes in collisions
with H; some of them correspond to nonadiabatic transitions
at short and intermediate internuclear distances. In order to
estimate an influence of these nonadiabatic regions on inelastic
cross sections and rate coefficients, the simple model described
above is extended in this subsection by increasing a number
of nonadiabatic regions by several additional nonadiabatic
regions between adjacent excited molecular states at distances
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FIG. 15. (Color online) The same as in Fig. 11, but for
Al(nd) + H collisions.
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FIG. 16. (Color online) The inelastic rate coefficients for
Al+ + H− collisions, that is, for the mutual neutralization process.
The key for the final states is the same as in Fig. 11.

R < 10 a.u. The additional nonadiabatic region between the
2 1
+ and the 3 1
+ states was determined from the data
of Ref. [48]. The locations of other additional regions were
estimated from a diabatic PEC for excited ionic state and on an
analogy with MgH [9,14]. Finally, six additional nonadiabatic
regions in the internuclear distance region between 2.7 and
6.0 a.u. have been added. It is worth noticing that although
the additional regions are not specified explicitly by the
model, their existence is justified by physical arguments.
Moreover, as shown below, they give some corrections only
for inelastic cross sections with moderate and small values.
Thus, the inclusion of the additional nonadiabatic regions into
the nuclear dynamics improves the results.

The inelastic cross sections calculated by means of the
extended model are shown in Figs. 3–9 by symbols. The color
of the symbols corresponds to the final states of the treated
processes and is the same for the cross sections obtained by
means of the simple model. It is seen that the cross sections
with large values, roughly larger 1 Å2, for the transitions
between the 4s, 3d, 4p, and ionic states, practically are not
affected by inclusion of short-range nonadiabatic regions. This
is a consequence of the fact that these processes are based
on nonadiabatic transitions with large probabilities in the
long-range regions formed by the ionic-covalent interaction
and, hence, the cross sections are mainly determined by large
J [see Eq. (24)]. The long-range nonadiabatic regions are well
described by the simple model, and the presence of short-range
nonadiabatic regions, which may contribute in partial waves
only with small J , does not change noticeably the inelastic
cross sections.

The next finding of the extended model is that some
cross sections, for which the simple model provides rather
small values, are increased substantially by the inclusion
of short-range nonadiabatic regions, up to several orders of
magnitude. This takes place for transitions, for which the
long-range avoided crossings with small splittings yield small
probabilities P̄if [see Eq. (4)]. In this case, transitions at short
distances increase the probabilities P̄if substantially finally
increasing cross sections, but since Rnonad are rather small,
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FIG. 17. (Color online) The incoming (a) and outgoing (b) prob-
ability currents in different adiabatic molecular states for Al(nl) + H
collisions at E = 3 eV and J = 0 as a function of the internuclear
distance. The key for the states is given by color and the same as
in Fig. 2. The currents for the ionic adiabatic state are depicted by
dashed (orange) lines.

the inelastic cross sections have only moderate values [see
Eq. (4)]. As an example, let us consider collisions Al(nd) + H,
j = 6. The long-range avoided crossing between the 61
+
and 71
+ states is located at R ≈ 67 a.u. with the minimum
of the adiabatic splitting of 3.4 × 10−7 a.u., providing the
small value for the LZ parameter ξ = 8.1 × 10−10 a.u. The
system passes this region nearly diabatically, and the simple
model yields small inelastic cross sections for all transitions,
not exceeding 10−4 Å2 (see Fig. 9). The distribution of the
probability current changes with the inclusion of the short-
range nonadiabatic regions, that is, within the extended model.
The incoming and outgoing probability currents calculated by
means of the branching current method are shown in Fig. 17
for the collision energy E = 3 eV and J = 0 within the
extended model. Within this model, after diabatical passing
the long-range avoided crossing on the way in (the incoming
current transfers practically entirely from the 61
+ into the
71
+ adiabatic state), the incoming current splits at short
distances (at R ≈ 2.8 a.u. in the present case) populating
different molecular states (in the present case, the 61
+ and
71
+ states) [see Fig. 17(a)]. Note that in the case treated,
the probability currents in other states (due to the long-range
transitions) have small values, not exceeding 10−7, while the
currents due to short-range transitions have rather large values,
of order of unity [see Fig. 17(a)]. On the way out, Fig. 17(b),
the short-range nonadiabatic regions distribute the outgoing
currents populating practically all adiabatic states with the
noticeable probability currents, larger than 10−2, and then the
system passes the long-range avoided crossings (in different
states) nearly diabatically again, providing noticeable outgoing
probability currents in different channels, including ionic.
Thus, the inclusion of the short-range nonadiabatic regions (the
extended model) substantially increases some transition prob-
abilities and, finally, some inelastic cross sections (see Figs. 3
and 5–9. For the ion-pair formation process (2), the extended
model describes a population of the ionic channel by means

of the so-called loop mechanism, which was found in the
quantum treatment (see Ref. [10]). This mechanism involves
short-range transitions. Ultimately, short-range transitions for
both (de-)excitation and ion-pair formation processes yield
inelastic cross sections typically not exceeding 10−3–1 Å2

according to Eq. (4). It should be emphasized that although
the increase of cross sections due to applying of the extended
model is noticeable, the largest cross sections are still due
the ionic-covalent interaction when the corresponding avoided
crossings have optimal LZ parameters.

The cross sections involved the ground molecular state
and calculated within the simple and the extended models
practically coincide, as the ground-state PEC is energetically
well separated from other PECs. These cross sections have
negligibly small values, so the processes with participation
of the ground atomic state Al(3p) can be neglected in
astrophysical applications. This is typical for collisions of H
with other atoms, see, e.g., [7,8,10].

The increase of inelastic cross sections by inclusion of
short-range nonadiabatic regions takes place at relatively high
collision energies, typically higher than 1 eV (see Figs. 3–9.
Since the rate coefficients of interest are at relatively low
temperatures, 1000–10 000 K, the rates are determined by
low collision energies, usually near energy thresholds, where
deviations of the cross sections obtained by the simple and the
extended models are small, so the rate coefficients calculated
within the simple and the extended models are expected to
differ not much. The calculated rates obtained within the
simple and the extended models are compared in Figs. 10–16.
The comparison shows that indeed the rates with large values
are obtained with high accuracy. For transitions with moderate
and small values for the rate coefficients, except for those
involving Al(3p) for which all rates coincide, the extended
model provides larger rates than the simple model, especially
at higher temperatures.

IV. DISCUSSION AND CONCLUSION

A model approach is derived for estimating cross sections
and rate coefficients of inelastic processes (excitation, de-
excitation, ion-pair formation, mutual neutralization) in low-
energy collisions of hydrogen atoms and its negative ions
with other atoms and their positive ions. In the present
paper, the approach is applied to Al + H and Al+ + H−
collisions, which are of astrophysical interest. The analysis
of the calculated cross sections and rates allows one to divide
the processes treated into three groups.

The first group consists of the processes with large values
for cross sections and rates, roughly with cross sections
larger than 1 Å2. These inelastic processes are based on
nonadiabatic transitions due to the ionic-covalent interaction
at large internuclear distances. For these processes a presence
of additional nonadiabatic regions at short to intermediate
internuclear distances (roughly, shorter than 10 a.u.) practi-
cally does not affect the cross sections obtained by means
of the simple model based on long-range regions only. The
parameters of these long-range nonadiabatic regions are well
defined by the derived model, so the calculated estimates for
the corresponding cross sections and rates are expected to be
accurate within a factor of 2 or 3. The main feature of processes

052704-11



ANDREY K. BELYAEV PHYSICAL REVIEW A 88, 052704 (2013)

in this group is that the long-range nonadiabatic parameters are
optimal for transitions, and this selects covalent states (and,
hence, atomic states) in the optimal window. The interaction
of these optimal-window covalent states with the ionic state
provides large values of cross sections and rates for excitation
and de-excitation processes between these states, as well as
for ion-pair formation and mutual neutralization processes
between these states and the ionic state. The optimal window
is typically determined by nonadiabatic regions located at
internuclear distances of 15–30 a.u. For the AlH system, the
optimal window selects the Al(3d) and Al(4p) states, so the
excitation and de-excitation processes between these states,
as well as the ion-pair formation and mutual neutralization
processes involving these states have the largest cross sections.
The state Al(4s) is at the border of the optimal window, so the
corresponding processes involving this state have relatively
large cross sections as well, but smaller than the maximal
ones (up to 20 Å2 for endothermic processes). The inelastic
processes involving the states from this group are expected to
be important for astrophysical applications.

The second group includes processes with small to
moderate cross sections and rates. Long-range nonadiabatic
regions formed by the ionic-covalent interaction are beyond
the optimal window, so the system traverses these regions
nearly diabatically for states above the optimal window or
adiabatically for states below the optimal window, any case
resulting in rather small nonadiabatic transition probabilities
at large internuclear distances. A presence of short-range
nonadiabatic regions between covalent states increases cross
sections up to several orders of magnitude, but short-range
transitions can provide only moderate values for inelastic
cross sections, typically not exceeding 10−3 to 1 Å2, and
increase is more significant at high collision energies while
the main astrophysical interest is in low energies. Although
short-range nonadiabatic regions are not well specified by the
present model, their presence is justified by physical reasons.
In addition, short-range transitions could take places between
molecular states of symmetries different from the ionic one
(1
+ in the present case), so this fact also verifies the inclusion
of short-range nonadiabatic regions. The presence of short-
range nonadiabatic regions provides substantial values for
cross sections either via a direct covalent-transition mechanism
for excitation and de-excitation processes involving these

states, or via the loop mechanism (see Ref. [10] and the
discussion above) for the processes involving the ionic state.
For the AlH system, the second group includes processes
involving the Al(5s) and Al(nd) states, as well as higher-lying
states. The obtained estimates for this group are expected to
be reliable within a factor of 2–10. These processes may have
some effects in astrophysical applications.

The third group consists of the processes with negligible
values of cross sections and rates. Low-lying states (including
the ground state) are typically in this group. Adiabatic
potentials for low-lying states usually have large energy gaps,
so nonadiabatic transition probabilities are very small. The
inclusion of additional nonadiabatic regions or additional
mechanisms (see Ref. [10] for different reaction mechanisms)
can increase them by several orders of magnitude, but they are
still negligible.

It is worth mentioning that the limits of the optimal window
are ambiguous and energy dependent; increasing a collision
energy shifts the window down. For low collision energies,
the optimal window limits are not so sensitive and determined
mainly by collision energies near thresholds. For each atom
of interest, the optimal window selects atomic states with
large inelastic cross sections and rates, and this selection is
determined by an atomic energy-level structure.

The derived model approach explains the results of
quantum calculations for the mutual neutralization processes
in low-energy collisions Li + H [11,49], Na + H [8], and
Mg + H [10]: The most populated states, Li(3s), Na(4s), and
Mg(3s4s1S), as well as the neighboring states with significant
populations are located in the optimal window.

It should be emphasized that although the present finding
is based on the results of the particular case of Al + H and
Al+ + H− collisions, the derived model and the conclusions
are general.
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