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ABSTRACT

We present 3D implicit large eddy simulations (ILES) of the turbulent convection in the envelope
of a 5 M⊙ red giant star and in the oxygen-burning shell of a 23 M⊙ supernova progenitor. The
numerical models are analyzed in the framework of 1D Reynolds-Averaged Navier-Stokes (RANS)
equations. The effects of pressure fluctuations are more important in the red giant model, owing to
larger stratification of the convective zone. We show how this impacts different terms in the mean-
field equations. We clarify the driving sources of kinetic energy, and show that the rate of turbulent
dissipation is comparable to the convective luminosity. Although our flows have low Mach number
and are nearly adiabatic, our analysis is general and can be applied to photospheric convection as
well. The robustness of our analysis of turbulent convection is supported by the insensitivity of the
mean-field balances to linear mesh resolution. We find robust results for the turbulent convection
zone and the stable layers in the oxygen-burning shell model, and robust results everywhere in the
red giant model, but the mean fields are not well converged in the narrow boundary regions (which
contain steep gradients) in the oxygen-burning shell model. This last result illustrates the importance
of unresolved physics at the convective boundary, which governs the mixing there.

1. INTRODUCTION

Since the original publication of the mixing length
theory (MLT) by Böhm-Vitense (1958), much ef-
fort has been devoted to the improvement of the
theory (Gough 1977; Stellingwerf 1982; Xiong 1986;
Kuhfuss 1986; Canuto & Mazzitelli 1991; Canuto 1992;
Gehmeyr & Winkler 1992; Wuchterl & Feuchtinger
1998; Deng et al. 2006). Nevertheless, MLT still remains
the standard choice in most state-of-the-art stellar
evolution codes.
With the wealth of data coming from asteroseismol-

ogy missions (CoRot, Kepler), and expected from future
observatories (Gaia, JWST), a new generation of stel-
lar models is needed. The modeling of solar-like oscilla-
tions requires reliable models for the Reynolds stresses
(Belkacem et al. 2006; Samadi et al. 2012). The inter-
action between convection and pulsations, which sets
the location of the red edge of the instability strip,
needs a better time-dependent theory of turbulent con-
vection (Buchler & Kolláth 2000). In the deep interior,
additional mixing is required at convective boundaries
across the Hertzprung-Russell diagram, above convective
cores (Maeder 1975; Matraka et al. 1982; Schroder et al.
1997), and below convective envelopes (Herwig 2000;
Pace et al. 2012). Lacking a physically consistent de-
scription of this process (Renzini 1987), extra-mixing is
currently included in stellar evolution codes with ad-hoc
parameterizations, so that predictive powers are ham-
pered by the use of free parameters. Next generation
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stellar evolution models should rely on a consistent de-
scription of convective boundary mixing, together with
the effect of internal waves induced by turbulence.
The road to a satisfying theory of turbulent convection

is difficult. Stellar convection is highly turbulent, with
Reynolds and Rayleigh numbers having “astronomical”
values (Re > 1010, Ra > 1020). The on-going develop-
ment of computational physics allows numerical model-
ing of turbulent systems having an increasing number
of degrees of freedom, but at present no direct simula-
tion of the problem is possible. Nevertheless, physical
insight provided by computer simulations is invaluable
in improving our understanding of stellar hydrodynam-
ical processes. The path starting from large 3D data
sets and ending with a recipe simple enough to be im-
plemented in stellar evolution codes is not straightfor-
ward. Ideally, a common framework should be used
both for the analysis of multi-D data and for stellar
evolution calculations, strengthening the underlying con-
nection and making the projection from 3D to 1D eas-
ier. Reynolds-Averaged Navier-Stokes (RANS) equa-
tions are a promising framework for this. Much effort
has been already devoted to RANS in the context of stel-
lar hydrodynamics, see e.g. Canuto (1997); Xiong et al.
(1997); Canuto & Dubovikov (1998); Deng et al. (2006);
Canuto (2011) and references therein. We adopt the
same methodology.
A theory of turbulent convection should have a broad

range of applicability: ideally to every type of star at all
stages of evolution. Therefore, it is important to iden-
tify fundamental properties of the physical process and
to understand what changes with different stellar condi-
tions. This is an ambitious project, which we start by
considering two very different astrophysical cases: the
convection in the envelope of a 5 M⊙ red giant star, and
the convection in the oxygen-burning shell of a 23 M⊙

supernova progenitor.
The paper is organized as follows: we present in Sect. 2

http://arxiv.org/abs/1212.6365v2
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Figure 1. Overview of the simulated region in the red giant model. Left panel: density (bottom curves) and temperature (top curves)
stratification in the initial (1D) and 3D model rg.3D.mr. Right panel: squared Brunt-Väisälä frequency in the initial (1D) and 3D model
rg.3D.mr.

an overview of our stellar models and numerical tools.
In Sect. 3, we develop a set of 1D RANS equations as
a framework to analyze our data. Results are presented
in Sect. 4. In Sect. 5, we summarize our findings and
conclude the paper.

2. STELLAR MODELS AND NUMERICAL METHODS

In this section we describe the stellar models and the
hydrodynamic codes, and summarize the properties of
the 3D models.

2.1. Red giant models

The red giant model was presented in Viallet et al.
(2011). The initial 1D structure was constructed by
integrating the stellar structure equations with the fol-
lowing input parameters: M = 5M⊙, Teff = 4500 K,
log(L/L⊙) = 3.1. In terms of stellar evolution phase,
such a model would correspond to a 5 M⊙ star at the
end of central He burning, finishing its blue loop and
evolving toward lower Teff and away from the red edge
of the Cepheid Instability Strip (see Alibert et al. 1999,
their Fig. 1 and Tab. 6). The stellar structure code is de-
scribed in Baraffe & El Eid (1991). It uses mixing-length
theory (with α = 1.7) to treat convection, and the extent
of the convective region is based on the Schwarzschild
criterion. The structure was integrated from the photo-
sphere down to 20 % of the stellar radius, stopping to
avoid the nuclear burning region. This initial stratifica-
tion is used as an input model for the multi-D hydro-
dynamic code. The initial stellar structure is shown in
Fig. 1. The left panel shows the temperature and den-
sity stratifications. The model is characterized by a total
density stratification log(ρbottom/ρtop) ∼ 4.4. The total
pressure stratification (not shown) is log(pbottom/ptop) ∼
6.2, or equivalently ∼ 14.3 pressure scale-heights. The
right panel shows the radial profile of N2, the Brunt-
Väisälä frequency squared. The convective region ex-
tends down to r ∼ 2.3 × 1012 cm, nearly half of the
star in radius. The surface layers are characterized by a
strong superadiabatic stratification.
As in Viallet et al. (2011), we use a proxy for the sur-

face layers. The surface layers are numerically difficult to
handle: the decrease in the pressure scale-height yields
small scale convective eddies which are difficult to resolve
when a single grid is used (see discussion in Viallet et al.

2011). To mimic surface cooling, we apply a Newtonian
cooling term in the last 5 % of the star:

q = ρcv
T − T0

τ
f(r), (1)

where f(r) is a spatially varying function that is equal
to 1 above a given radius rc with a smooth transition to
zero, τ is the cooling timescale and T0 is the forcing tem-
perature. We use the same parameters as in Viallet et al.
(2011): rc = 0.95R⋆, T0 = 32 750 K, and τ = 104 s.
About 4.5 pressure scale-heights of the initial 1D model
are absorbed into the Newtonian cooling region.
We solve the equations describing the evolution of den-

sity, momentum, and total energy for a single fluid, tak-
ing into account gravity, radiative diffusion, and surface
cooling:

∂

∂t
ρ=−~∇ · (ρ~u), (2)

∂

∂t
ρ~u=−~∇ · (ρ~u ⊗ ~u)− ~∇p+ ρ~g, (3)

∂

∂t
ρǫt=−~∇ · (ρǫt~u+ p~u) + ρ~u · ~g + ~∇ · (χ~∇T )− q,(4)

where ρ is the density, ~u the velocity, ǫt = ǫi + ǫk the
specific total energy (ǫi is the specific internal energy
and ǫk the specific kinetic energy), p the gas pressure,
T the temperature, ~g the gravitational acceleration, and
χ the thermal conductivity. For photons, the thermal
conductivity is given by

χ =
16σT 3

3κρ
, (5)

where κ is the Rosseland mean opacity, and σ the Stefan-
Boltzmann constant.
The 3D simulations were performed with the MU-

SIC code, as described in Viallet et al. (2011) and
Viallet et al. (2013) (submitted to A&A). The spatial
method is based on a finite volume discretization of a
spherical wedge (“box in a star” approach). The method
is based on staggered velocity components, and has been
extended to 3D for this work. The time-marching scheme
used for the models presented in this paper is based
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Figure 2. Left panel: evolution of the total kinetic energy in the red giant models. Right panel: space-time diagram of the specific kinetic
energy in model rg.3D.mr.

on the Minimum Residual Approximate Implicit Scheme
from Botchev et al. (1999). The MUSIC code is opti-
mized to run on parallel computers and it uses domain-
decomposition to distribute the computation over the
computational nodes. The Message Passing Interface
(MPI) is used to handle communications of boundary
data. We use periodic boundary conditions in horizontal
directions, and non-penetrative stress-free conditions at
the bottom and top of the domain. As the nuclear burn-
ing region is not included in the computational domain,
a radiative flux corresponding to the stellar luminosity is
imposed at the inner boundary.
We do not model viscosity explicitly in the equations.

The expected value of the molecular viscosity in stel-
lar interiors implies huge Reynolds numbers (larger than
1010). It is therefore impossible to model all scales of
the flow, from the stellar scale down to the dissipation
scale, on current generation of computers. We adopt
the Implicit Large Eddy Simulation paradigm (ILES
Grinstein et al. 2007) and solve the inviscid equations
to model the turbulent flow. The underlying motivation
of ILES is that monotonic, finite-volume based methods
have physical properties of the Navier-Stokes equations
“built-in” within the numerics (unlike spectral and fi-
nite difference methods). The conservation properties
of finite volumes schemes and the monotonicity preserv-
ing property enforce correct physical behavior at the grid
scale. As a result, the loss of information that takes place
at the grid scale mimics turbulent dissipation (see 4.1.2).
Models with two different resolutions were computed:

model rg.3D.lr with a 216 × 1282 resolution, and model
rg.3D.mr with a 432×2562 resolution. The main proper-
ties of these models are summarized in Table 1. We use
an opening angle of 45◦×45◦. Model rg.3D.lr was evolved
for 3100 days of model time (for∼ 3.6×104 CPU hours on
512 cores) and model rg.3D.mr was evolved for 1050 days
of model time (for ∼ 2× 105 CPU hours on 2048 cores),
starting from the solution at t = 2000 d of model rg.3D.lr.
The computations were performed on the IBM iDataPlex
supercomputer “Hydra” at the Rechen-zentrum Garch-
ing, and on the SGI Altix ICE 8200 supercomputer “Zen”
at the University of Exeter. At the beginning of the com-
putation, the Newtonian cooling term modifies the top
layers and this triggers the convective instability. Down-
drafts form and sink. They break up rapidly due to hy-
drodynamical instabilities, and the flow becomes turbu-

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
r (cm) ×1012

10−5

10−4

10−3

10−2

10−1

(q
′)
rm

s/
q

ρ

T

p

ρu′2/p

rg

Figure 3. Radial profiles of the rms fluctuations of density, tem-
perature, and pressure (continuous lines) in model rg.3D.mr. The
black dashed line shows ρu′2/p for comparison (see discussion in
Sect. 4.3).

lent. Left panel of Fig. 2 shows the evolution of the total
kinetic energy in the domain. The initial rise of the total
kinetic energy is strong, followed by a slow decay toward
a quasi steady state. The left panel of Fig. 1 shows the
temperature and density stratifications obtained in the
3D model when a quasi-steady state is reached. The ef-
fect of the Newtonian cooling is to drive an isothermal
region at the top. The right panel of Fig. 1 shows the
profile of N2 in the 3D model. The most striking fea-
ture is the modification of the radial profile of N2, which
shows a much steeper slope at the bottom boundary of
the convective zone in the 3D model than in the initial 1D
model. This is an evidence for overshooting, and will be
discussed in Sect. 4.6. In the 3Dmodel, the density strat-
ification is log(ρbottom/ρtop) ∼ 2.3 in the convective zone.
The pressure stratification is log(pbottom/ptop) ∼ 3.4 in
the convective zone, or equivalently ∼ 7.8 pressure scale-
heights. Clarifying the influence of such a large stratifi-
cation on the properties of the turbulent convection is an
important focus of this work. Figure 3 shows the radial
profiles of the rms values of the density, temperature, and
pressure fluctuations, normalized by their mean values.
In the bulk of the convective region, all fluctuations have
the same relative order of magnitude.
Computer animations and snapshots of the models

illustrate the strong asymmetry of the flow, with the
presence of plumes triggered by cooling at the sur-
face that sink in the convective zone within much
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Figure 4. Left panel: snapshots of the computational domain for model rg.3d.mr. The magnitude of the vorticity ||~ω|| is shown (two
perpendicular cuts in the vertical direction were taken and are plotted together). Right panel: Radial profiles of rms velocity components
for model rg.3d.mr : ur (thick solid line), uθ (thin solid line), and uφ (thin dashed line).

slower upflowing material. This is due to the de-
gree of stratification, as emphasized by previous 3D
simulations (Stein & Nordlund 1989; Cattaneo et al.
1991; Brummell et al. 1996; Porter & Woodward 2000;
Brummell et al. 2002). These plumes form a “network”
of downflows in strong interaction, and from time to time
plumes coalesce to form a strong downdraft which sinks
through the whole stratification. The right panel of Fig.
2 shows a space-time diagram of the specific kinetic en-
ergy, which shows the imprint of these sporadic events.
The left panel of Fig. 4 is a snapshot of the flow, as seen

in the magnitude of the vorticity vector field ~ω = ~∇× ~u
and emphasizes the prominence of small scale structures,
characteristic of 3D turbulence. The right panel of Fig.
4 shows the rms values of the velocity components ur,
uθ, uφ. The tangential and azimuthal components are
roughly equal as the angular directions are homogeneous.
Including rotation and/or magnetic fields would break
this symmetry. The corresponding Mach number goes
from ∼ 0.1 at the top of the convective zone to ∼ 0.01
at the bottom. As in Arnett et al. (2009), we define a
global rms velocity such as

1

2
MCZv

2
rms = Ek,CZ, (6)

where MCZ and Ek,CZ are the total mass and kinetic
energy in the convective zone (CZ), respectively. The
convective zone is taken as the region between rin = 2×
1012 cm and rin = 4×1012 cm, but we have checked that
results are not too sensitive to these values. We find
vrms = 2.34 × 105 cm/s for model rg.3D.mr. We define
the convective turn-over timescale as

τconv = 2
lCZ

vrms
, (7)

which yields τconv = 198 d for model rg.3D.mr.
Finally, Fig. 4 and the right panel of Fig. 2 hint at

the presence of g-modes in the underlying radiative zone.
The modes are excited at the convective boundary layer.
In this paper, we will focus on the dynamics in the con-

Table 1
Summary of the Red Giant Simulations.

Parameter rg.3D.lr rg.3D.mr

Grid zoning 216×1282 432×2562

rin, rout (1012 cm) 0.82, 4.09 0.82, 4.09
∆θ, ∆φ 45◦, 45◦ 45◦, 45◦

CZ stratification (Hp) 7.8 7.8
tav(∆tav) (days) 2650(800) 2650(800)
vrms (105 cm/s) 2.27 2.34
τconv (days) 204 198
L⋆ (1036 erg/s) 4.9 4.9
Ld (1036 erg/s) 7.33 7.39
ld (1011 cm) 7.0 7.7
τd (days) 18 19
Pe 4900 5200

Note. — vrms: global rms velocity, τconv :
convective turnover timescale, L⋆: luminosity of
the stellar model, Ld: rate of kinetic energy dis-
sipation, ld: dissipation length-scale, τd: dissipa-
tion time-scale, Pe: Péclet number.

vective region, and leave the study of wave excitation
and dynamics for future work.

2.2. Oxygen-burning shell models

We simulate the turbulent flow in a convective oxygen
burning shell using as initial conditions a 23 M⊙ stellar
model of solar composition that was previously evolved
with the TYCHO stellar evolution code (Arnett et al.
2009) up to a point where oxygen, neon, carbon, helium,
and hydrogen are burning in concentric shells about a
silicon-sulfur rich core. Additional details can be found in
Meakin & Arnett (2006, 2007). As in Meakin & Arnett
(2007), we study only the oxygen burning convection
zone and its stably stratified bounding layers.
Reactive-hydrodynamic evolution was simulated with

the PROMPI code (Meakin & Arnett 2007), a dis-
tributed memory adaptation of the PROMETHEUS
code (Fryxell et al. 1989), an Eulerian implementation
of the piecewise parabolic method (PPM) hydrodynam-
ics scheme (Colella & Woodward 1984) extended to treat
realistic equations of state (Colella & Glaz 1985), multi-
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Figure 5. Overview of the simulated region in the oxygen-burning shell model for the initial model (1D) and for the 3D model ob.3D.mr.
Left panel: density (continuous line) and temperature (dashed line) stratification. Right panel: squared Brunt-Väisälä frequency.

species advection, and a general nuclear reaction net-
work. The setup for these simulations are nearly identi-
cal to that described in Meakin & Arnett (2007), includ-
ing the 25 species followed to track nuclear evolution,
and differ only in terms of resolution and domain size.
As with the MUSIC code, PROMPI solves the inviscid
equations, and we rely on the ILES paradigm to model
sub-grid scale dissipation. The major differences between
the two is that PROMPI is multi-fluid, includes nuclear
burning, and that radiative diffusion is negligible in this
context (Arnett 1996). Figure 5 shows the initial den-
sity and temperature stratifications (left panel), and the
initial profile of N2 (right panel). The latter is charac-
terized by a narrow peak at the bottom boundary of the
convective zone, due to the sharp composition gradient
that characterizes the boundary of the nuclear burning
region. We refer the reader to Meakin & Arnett (2007)
for similar figures as those shown earlier for the red giant
model.
As with the red giant models, the oxygen shell burn-

ing models studied in this paper use a 45◦ × 45◦ open-
ing angle. Models with three different spatial resolu-
tions were computed: model ob.3D.lr with 192 × 1282

zones, model ob.3D.mr with 384×2562 zones, and model
ob.3D.hr with 768× 5122 zones. The main properties of
these models are summarized in Table 2. Models ob.3D.lr
and ob.3D.mr are used for comparison with the red giant
models, whereas model ob.3D.hr is used to further assess
the numerical convergence of our results with resolution
(see Sect. 4.7). All of the oxygen burning models were
computed on the University of Tennessee’s Kraken Cray
XT5. Model ob.3D.lrwas evolved for approximately 600 s
of model time (on 768 cores for ∼ 5 × 104 CPU-hours).
Model ob.3D.mr was evolved for approximately 280 s of
model time (on 12,288 cores for ∼ 3.5× 105 CPU-hours)
starting from the solution at t = 300 s of model ob.3D.lr.
Model ob.3D.hr was evolved for approximately 200 s of
model time (on 24,576 cores for ∼ 4 × 106 CPU-hours)
starting from the solution at t = 310 s of model ob.3D.mr.
At the beginning of the computation, the convective

instability is triggered by a band of random, small am-
plitude density perturbations (ρ′/ρ ∼ 10−4) imposed
within the convection zone. The flow rapidly becomes
turbulent as it fills the convectively unstable region. The
early transient evolution of the models is characterized
by a strong penetration of the flow in the top stable re-
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Figure 6. Same as Fig. 3, but for the oxygen-burning shell model
ob.3D.mr.

gion. After roughly 300 s, a quasi steady-state obtains
with a slow evolution resulting from a net heating due
to the imbalance between nuclear burning and neutrino
cooling (a common feature of neutrino-cooled stages of
stellar evolution which results in growth of the convec-
tive region). As a result, global characteristics of the
model (e.g., total nuclear burning, total kinetic energy,
etc.) increase slowly with time. The nuclear evolution
time scale for this phase is roughly 5 × 103 s. The
convective region is characterized by a density stratifi-
cation ρbottom/ρtop ∼ 6, and a pressure stratification
pbottom/ptop ∼ 7.5 or two pressure scale-heights. The
global rms velocity and turnover timescale are computed
as for the red giant (see previous section), and shown in
Table 2. Figure 6 shows the radial profiles of the rms
values of the density, temperature, and pressure fluctua-
tions, normalized by their averaged values. The largest
values in the relative magnitude of the fluctuations occur
at the boundaries, and are of the order of a percent.

3. HORIZONTALLY-AVERAGED MEAN-FIELD EQUATIONS

Using the RANS methodology, we develop in this sec-
tion a framework of mean-field equations which are con-
sistent with spherical geometry. A similar approach
has been applied to the kinetic energy equation; see
Hurlburt et al. (1986, 1994); Meakin & Arnett (2007).
We show here how this can be extended, as the ki-
netic energy is only one of the several mean-field equa-
tions that can be derived from the hydrodynamical equa-
tions. Although we refer to our equations as “Reynolds-
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Table 2
Summary of the Oxygen Burning Simulations.

Parameter ob.3D.lr ob.3D.mr ob.3D.hr

Grid zoning 192×1282 384×2562 786×5122

rin, rout (109 cm) 0.3, 1.0 0.3, 1.0 0.3, 1.0
∆θ, ∆φ 45◦, 45◦ 45◦, 45◦ 45◦, 45◦

CZ stratification (Hp) 2 2 2
tav(∆tav) (s) 494(230) 494(230) 429(165)
vrms (106 cm/s) 9.2 9.57 9.2
τconv (s) 96 92 96
Lnuc (1046 erg/s) 2.69 2.63 2.47
Ld (1046 erg/s) 0.30 0.29 0.30
ld (108 cm) 4.9 5.5 4.7
τd (s) 26 29 26

Note. — vrms: global rms velocity, τconv : convective
turnover timescale, Lnuc: total energy released by nuclear
burning, Ld: rate of kinetic energy dissipation, ld: dissipa-
tion length-scale, τd: dissipation time-scale.

Averaged Navier-Stokes” equations, we actually intro-
duce the effect of viscosity only through the kinetic en-
ergy dissipation rate ǫd (units: erg s−1 g−1). In the
large Reynolds number regime, the viscous dissipation is
the dominant contribution of viscosity in the mean-field
equations. This is the so-called “dissipation anomaly”
characteristic of 3D turbulence, see discussion in Sect.
4.7. Other terms, such as the viscous flux of kinetic en-
ergy, are neglected.
To obtain our set of 1D equations, we introduce two

types of averaging: 1) statistical averaging, denoted by
an overbar; 2) horizontal averaging, denoted by brack-
ets. Practically, statistical averages are computed by
performing a time average (the ergodic hypothesis). The
horizontal average of quantity q is defined as:

〈q〉 =
1

∆Ω

∫

∆Ω

q(r, θ, φ)dΩ, (8)

where dΩ = sin θdθdφ is the solid angle in spherical co-
ordinates.
We decompose the flow quantities into mean and fluc-

tuating components:

q = 〈q〉+ q′, (9)

so that 〈q′〉 = 0, by construction. We also introduce
Favre averaging, which is a density-weighted average:

〈̃q〉 =
〈ρq〉

〈ρ〉
, (10)

and which leads to the decomposition

q = 〈̃q〉+ q′′. (11)

We stress the difference between q′ and q′′: the first de-
notes the fluctuation around the Reynolds average 〈q〉,
the second denotes the fluctuation around the Favre av-
erage 〈̃q〉.
The density and energy equations lead to their av-

eraged counter-part. From the momentum equations,
the three mean-field equations which are consistent with

spherical geometry concern the mean radial velocity 〈̃ur〉,
the mean specific angular momentum along the z-axis

〈̃jz〉, and the mean specific kinetic energy 〈̃ǫk〉. By “con-
sistent with spherical geometry” we mean that the re-
sulting equations do not have terms which have an ex-
plicit angular dependance, as would for instance have the
mean-field equations for uθ or uφ. The energy equation
can be formulated either for the mean specific internal

energy 〈̃ǫi〉, the mean specific total energy 〈̃ǫt〉, or the

mean specific entropy 〈̃s〉. For completeness, we show
all forms. The resulting equations are summarized in

Table 3. We show the equation for 〈̃jz〉 although it is
“trivial” when rotation is not included; we will not dis-
cuss it further here. Note, however, that when rotation
is included, the horizontal average as introduced here
is not suited because the angular directions are not ho-
mogeneous anymore. In this case, similar 1D averaged
equations cannot be obtained.
We denote by ∇r the radial part of the divergence op-

erator in spherical coordinates, i.e. ∇rf = 1
r2 ∂r

(
r2f

)
.

The mean-field equations are characterized by second-
order correlations, which stem from the Reynolds/Favre
decompositions, as, e.g., the turbulent fluxes which are of

the form 〈̃q′′u′′
r 〉 or 〈q

′u′
r〉. The equations in Table 3 are

written in terms of the averaged Lagrangian derivative

〈̃Dt〉q = ∂tq + 〈̃ur〉∂rq. (12)

The connection with the Eulerian, conservative form is
immediate:

〈ρ〉〈̃Dt〉q = ∂t(〈ρ〉q) +∇r

(
q〈̃ur〉

)
, (13)

where we used the 1D averaged continuity equation.
Connection with the common form of the stellar evo-

lution equations can be made using:

∂r = 4πr2〈ρ〉∂m, (28)

〈̃Dt〉 = ∂t|m (29)

The first equation is the standard relation between
the Eulerian derivative at constant radius and the La-
grangian derivative at constant mass shell. The sec-

ond equation states that 〈̃Dt〉 is exactly the Lagrangian
derivative at constant mass. The resulting equations are
summarized in Table 4.

4. RESULTS

Unless stated otherwise, the results in this section are
based on models rg.3D.mr and ob.3D.mr. In Sect. 4.1, we
use the mean-field equations developed in Sect. 3 to ana-
lyze our 3D data. These 1D equations provide a powerful
framework to analyze the physical processes characteriz-
ing the numerical models, and to assess the consistency
of the models with the physical equations. Section 4.2 is
devoted to the analysis of the turbulent velocity field. We
motivate the distinction between “deep convection”, rel-
evant for the red giant models, and “shallow convection”,
relevant for the oxygen-burning shell models. We analyze
the anisotropy of the Reynolds stresses, which charac-
terizes the asymmetry of the flow, and which motivates
a decomposition of the velocity field into a large scale
component, characterizing the plumes, and an isotropic
component at small scales. We show that the isotropic
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Table 3
1D RANS equations in Lagrangian form.

〈̃Dt〉〈ρ〉 =− 〈ρ〉∇r 〈̃ur〉 (14)

〈ρ〉〈̃Dt〉〈̃ǫi〉 =−∇r〈ρ〉 ˜〈ǫ′′i u
′′
r 〉+∇r〈χ〉∂r〈T 〉 − 〈p〉∇r〈ur〉+∇r〈χ′∂rT ′〉 − 〈p′ ~∇ · ~u′〉+ 〈ρǫnuc〉 + 〈ρǫd〉 (15)

〈ρ〉〈̃Dt〉〈̃ǫt〉 =−∇r〈ρ〉 ˜〈h′′u′′
r 〉 − ∇r〈ρ〉 ˜〈ǫ′′

k
u′′
r 〉 − 〈p〉∇r 〈̃ur〉+∇r〈χ〉∂r〈T 〉+∇r〈χ′∂rT ′〉+ 〈ρǫnuc〉 (16)

〈ρ〉〈̃Dt〉〈̃s〉 =−∇r〈ρ〉 ˜〈s′′u′′
r 〉 − 〈

1

T
~∇ · ~Fr〉+ 〈ρ

ǫnuc + ǫd

T
〉 (17)

〈ρ〉〈̃Dt〉〈̃ǫk〉 =−∇r〈ρ〉 ˜〈ǫ′′
k
u′′
r 〉 − ∇r〈p′u′

r〉+ 〈p′ ~∇ · ~u′〉+ 〈ρ′~u′ · ~g〉 − 〈ρǫd〉 (18)

〈ρ〉〈̃Dt〉〈̃ur〉 =−∇r〈ρ〉〈̃u′′2
r 〉 − ∂r〈p〉 − 〈ρ〉〈̃g〉+

〈ρ〉

r

(
2〈̃ǫk〉 − 〈̃ur〉

2

− 〈̃u′′2
r 〉

)
(19)

〈ρ〉〈̃Dt〉〈̃jz〉 =−∇r〈ρ〉 ˜〈j′′z u
′′
r 〉 (20)

Note. — Definitions: density ρ, temperature T , pressure p, velocity ~u, radial velocity component ur , specific internal energy ǫi,
specific kinetic energy ǫk, specific total energy ǫt, specific entropy s, specific enthalpy h, z-component of the specific angular momentum

jz = r sin θuφ, thermal conductivity χ, radiative flux ~Fr, gravitational acceleration ~g, rate of nuclear energy production ǫnuc, rate of viscous

dissipation ǫd. Reynolds decomposition: q = 〈q〉 + q′, Favre decomposition: q = 〈̃q〉 + q′′.

Table 4
1D RANS equations in Lagrangian mass coordinate (same definitions as in Table 3).

∂tr|m =〈̃ur〉 (21)

∂t 〈̃ǫi〉|m =− ∂m
(
4πr2〈ρ〉 ˜〈ǫ′′i u

′′
r 〉

)
+ ∂m

(
4πr2〈χ〉∂r〈T 〉

)
− 〈p〉∂m(4πr2〈ur〉) + ∂m(4πr2〈χ′∂rT ′〉)−

〈p′ ~∇ · ~u′〉

〈ρ〉
+ 〈̃ǫnuc〉+ 〈̃ǫd〉 (22)

∂t 〈̃ǫt〉|m =− ∂m(4πr2〈ρ〉 ˜〈h′′u′′
r 〉)− ∂m(4πr2〈ρ〉 ˜〈ǫ′′

k
u′′
r 〉) + ∂m(4πr2〈χ〉∂r〈T 〉) + ∂m(4πr2〈χ′∂rT ′〉)− 〈p〉∂m

(
4πr2 〈̃ur〉

)
+ 〈̃ǫnuc〉 (23)

∂t 〈̃s〉|m =− ∂m(4πr2〈ρ〉 ˜〈s′′u′′
r 〉) +

1

〈ρ〉
〈
1

T
~∇ · ~Fr〉+

1

〈ρ〉
〈ρ

ǫnuc + ǫd

T
〉 (24)

∂t 〈̃ǫk〉|m =− ∂m(4πr2〈ρ〉 ˜〈ǫ′′
k
u′′
r 〉) − ∂m(4πr2〈p′u′

r〉) +
〈p′ ~∇ · ~u′〉

〈ρ〉
+

〈ρ′~u′ · ~g〉

〈ρ〉
− 〈̃ǫd〉 (25)

∂t 〈̃ur〉|m =− ∂m
(
4πr2〈ρ〉〈̃u′′2

r 〉
)
− 4πr2∂m〈p〉 − 〈̃g〉 +

1

r

(
2〈̃ǫk〉 − 〈̃ur〉

2

− 〈̃u′′2
r 〉

)
(26)

∂t 〈̃jz〉|m =− ∂m
(
4πr2〈ρ〉 ˜〈u′′

r j
′′
z 〉

)
(27)

component provides a natural interpretation of the ki-
netic energy damping in terms of a dissipation in a tur-
bulent cascade. In Sect. 4.3, we show how the magnitude
of pressure fluctuations is related to the stratification of
the convective zone, which explains the main differences
in the mean field analysis between the red giant model
and the oxygen-burning shell model. In Sect. 4.4, we an-
alyze the turbulent fluxes. These are the quantities that
should be modeled in a theory of turbulent convection.
In Sect. 4.5, we discuss the kinetic energy driving and the
turbulent dissipation. We show that in steady state the
rate of turbulent dissipation is of the order of the convec-
tive luminosity. Section 4.6 is devoted to the red giant
models, for which we discuss thermal effects and charac-
terize the overshooting at the bottom of the convective
region. Finally, we discuss in Sect. 4.7 the convergence of
our results with resolution, and consider the implications
regarding the global dynamics in the numerical models.

4.1. Mean-field analysis

We use the framework developed in Sect. 3 to ana-
lyze the data from our multi-D simulations, in terms of
the radial momentum, kinetic energy, and total energy
balances. The temporal averaging is performed on the

interval [tav − ∆tav/2, tav + ∆tav/2], with tav and ∆tav
given in Tables 1 and 2 for each model. In practice, we
find that averaging the data over more than two turn-
over timescales yields very similar results. In this section,
the models were averaged over the common time period
available at different resolutions, namely four turnover
timescales (800 d) for the red giant model, and roughly
2.5 turnover timescales (230 s) for the oxygen-burning
shell model.
Throughout the paper, we use the lower case letter f

to denote turbulent fluxes, f = 〈ρ〉〈̃u′′
r q

′′〉 or f = 〈u′
rq

′〉,
depending on the quantity q.

4.1.1. Radial momentum balance

Equation (19) can be written as:

〈ρ〉〈̃∂t〉〈̃ur〉 =−∇r〈ρ〉〈̃u′′2
r 〉 − ∂r〈p〉 − 〈ρ〉〈̃g〉

+ 〈ρ〉
〈̃v2h〉

r
. (30)

This equation is an equation for the mean radial compo-

nent of the mass flux since by definition 〈ρ〉〈̃ur〉 = 〈ρur〉.
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Figure 7. Mean-field analysis for model rg.3D.mr, time averaging is performed over 800 days. From top to bottom: radial expansion
velocity, kinetic energy, and total energy balance. Left panel: Radial profiles of the terms in the balance. For the sake of clarity, each
term is multiplied by 4πr2. As a result, the volume integral of a term is equal to the area below the corresponding curve, and it can be
appreciated visually. Right panel: Integral budget over the convective zone.

Table 5
Radial momentum balance for model rg.3D.mr - integral

budget over the convective zone (g.cm.s−2).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ur〉dV 3.85(28)

∫
〈ρ〉

˜〈v2

h
〉

r
dV 5.62(30)

−
∫
∇r〈ρ〉〈̃u′′2

r 〉dV 6.03(28) Residual -5.91(28)

−
∫ (

∂r〈p〉 − 〈ρ〉〈̃g〉
)
dV -5.66(30)

The right-hand side involves the divergence of the ra-
dial component of the Reynolds stress Rrr, the bal-
ance between the gradient of the mean pressure and the

Table 6
Radial momentum balance for model ob.3D.mr - integral

budget over the convective zone (g.cm.s−2).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ur〉dV -4.55(31)

∫
〈ρ〉

˜〈v2

h
〉

r
dV 1.88(38)

−
∫
∇r〈ρ〉〈̃u′′2

r 〉dV -2.13(36) Residual -4.39(37)

−
∫ (

∂r〈p〉 − 〈ρ〉〈̃g〉
)
dV -1.42(38)

mean gravity force, and a geometric term characteristic
of spherical geometry in which a horizontal velocity vh
induces a radial acceleration v2h/r due to inertia.
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Figure 8. Same as Fig. 7 for model ob.3D.mr, with time averaging performed over 230 s.

The top-left panels in Fig. 7 and Fig. 8 show the radial
profiles of these terms in models rg.3D.mr and ob.3D.mr.
In both cases, we find the Lagrangian time derivative to
be negligible, showing that the balance is in a statistically
steady state. The figures show that a slight hydrostatic
imbalance is due to the turbulent ram-pressure, with a
smaller, but not negligible, contribution from the inertial
acceleration due to horizontal motions. Defining

pturb = 〈ρ〉〈̃u′′2
r 〉, (31)

we find that the ratio pturb/p decreases from ∼ 2× 10−2

at the top of the CZ to ∼ 2 × 10−4 at the bottom in
the red giant model. In the oxygen burning-shell model,
pturb/p ∼ 10−3 in the bulk of the convective zone, and it
decreases rapidly at the boundaries.

In the red giant model, the hydrostatic imbalance cor-
responds to an inward acceleration of ∼ 3.5 % g at the
top of the convective zone, and an upward acceleration of
∼ 0.05 % at the bottom. For the oxygen-burning shell,
the results are similar, with values within ±0.2 % of g
throughout the convective zone. Thus, as expected for
the deep interior, hydrostatic equilibrium holds, typically
to the order of a percent or less. In the photospheric re-
gions the turbulent pressure can significantly affect the
hydrostatic balance (Stein & Nordlund 1989).
The top-right panels in Fig. 7 and Fig. 8 (see also

Tables 5 and 6) show the balance upon integration over
the convective zone. The residual is very small in the red
giant models, showing good consistency with the phys-
ical equations. The oxygen-burning shell models show
spurious oscillations at the inner boundary, which are
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Table 7
Kinetic energy balance for model rg.3D.mr - integral

budget over the convective zone (erg s−1).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ǫk〉dV -3.47(33)

∫
WpdV 2.48(36)

−
∫
∇rfkdV -1.61(32)

∫
WbdV 4.94(36)

−
∫
∇rfpdV -2.68(34) −

∫
〈ρǫd〉dV -7.39(36)

Table 8
Kinetic energy balance for model ob.3D.mr - integral

budget over the convective zone (erg s−1).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ǫk〉dV -1.91(44)

∫
WpdV -1.45(44)

−
∫
∇rfkdV -1.96(41)

∫
WbdV 3.27(45)

−
∫
∇rfpdV -1.04(42) −

∫
〈ρǫd〉dV -2.93(45)

responsible for the non-zero residual seen in the figure.
This is due to the steep gradients at this boundary (see
Sect. 4.7), and we have checked that the consistency is
very good everywhere else. Progress has been made in
dealing with multi-fluids in PPM (Plewa & Müller 1999;
Woodward et al. 2008), which may help.

4.1.2. Kinetic energy balance

At the first sight, the temporal behavior of the kinetic
energy (KE) shows a high level of complexity (see Fig-
ure 2 for the red giant model). The mean kinetic en-
ergy balance, Eq. (18), allows insight in the dynamics
of the turbulent convection (Hurlburt et al. 1986, 1994;
Meakin & Arnett 2007). The KE equation involves two

turbulent fluxes: the KE turbulent flux fk = 〈ρ〉〈̃u′′
r ǫ

′′
k〉

and the acoustic flux fp = 〈p′u′
r〉. These transport

terms characterize the non-locality of turbulent convec-
tion. Source terms for KE are the gravitational work
due to density fluctuations Wb = 〈ρ′~u′ · ~g〉, and the work

done by pressure fluctuations Wp = 〈p′~∇ · ~u′〉, also called
“pressure-dilatation”. There is some freedom in the for-
mulation of the kinetic energy equation, especially in the
expression/splitting of the driving terms, see e.g. dis-
cussions in Nordlund et al. (2009) and Arnett & Meakin
(2011). Here we choose to split the driving into Wp and
Wb as these are thermodynamically the most fundamen-
tal quantities: Wb measures the reversible exchange be-
tween kinetic energy and potential energy, Wp measures
the reversible exchange between kinetic energy and in-
ternal energy. Furthermore, this splitting will highlight
the differences between the red giant and oxygen-burning
shell models. Wb is often called the buoyancy work, an
appellation inherited from the Boussinesq literature. In
Sect. 4.5 we present another expression which empha-
sizes the underlying physical origin of the driving.
As discussed in Sect. 2, in the ILES paradigm we rely

on the numerical dissipation at the grid scale to mimic
the effect of viscosity. As a result, kinetic energy is dis-
sipated at the grid scale, and a sink term −ρǫd is in-
troduced in the analysis. We compute each term in the
balance equation, and identify the residual with the dis-
sipation. This is valid for conservative methods of ad-
vection.

Table 9
Total energy balance for model rg.3D.mr - integral budget

over the convective zone (erg s−1).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ǫt〉dV 2.18(36) −

∫
〈p〉∇r 〈̃ur〉dV -2.13(36)

−
∫
∇rfhdV -1.01(35) −

∫
qdV -5.45(36)

−
∫
∇rfkdV -1.61(32) Residual 6.30(35)

−
∫
∇r〈Fr〉dV 4.88(36)

The middle-left panels of Fig. 7 and Fig. 8 show
the radial profiles of the different terms in the KE bal-
ance for models rg.3D.mr and ob.3D.mr. The inferred
dissipation is shown as a black dashed line. The ki-
netic energy balance is in a statistically steady state, as
the contribution from the time derivative is negligible.
In the red giant model, we find that both Wb and Wp

drive (i.e. positive contribution) turbulent motion within
the convective zone. Wb dominates the driving but the
pressure-dilatation term is significant and cannot be ne-
glected. This contrasts with the oxygen-burning shell
models where driving is largely dominated by Wb, with
no significant contribution from pressure-dilatation. We
attribute the importance of Wp in the red giant model
to the degree of stratification, which is larger than in
oxygen-burning model (see Sects. 4.3 and 4.5). The con-
vective region is bounded by regions where Wb < 0. The
KE dissipation profile has a large amplitude and is rather
evenly distributed over the convective region. There is
no local balance between the driving and the dissipa-
tion, due to transport by the turbulent fluxes. In the
red giant model, the net effect of the turbulent KE flux
is to transport energy downward in the convective zone,
whereas in the oxygen-burning shell model KE is trans-
ported upward. In the red giant model, the acoustic flux
has an opposite effect to the KE flux as it transports
KE upwards. It has a more complex behavior close to
the boundaries, due to an important contribution from
waves. In the oxygen-burning shell model the acoustic
flux is important close to the boundaries, but it has a
negligible effect in the bulk of the convective zone.
The middle-right panel of Fig. 7 and Fig. 8 (see also

Tables 7 and 8) show the KE integral budget over the
convective zone. Upon integration on the convective
zone, we are left with a balance between driving and
dissipation:

∫
WbdV +

∫
WpdV ≈

∫
〈ρǫd〉dV. (32)

To obtain the balance described by Eq. (32), we have
integrated over the unstable region and the convective
boundary layers, where dissipation is taking place. The
rough balance between driving and dissipation obtained
over this region implies that only a small amount of ki-
netic energy in transmitted to the stable zones in form
of internal waves, so that the dissipation of waves energy
in these regions is small.

4.1.3. Total energy balance

We now discuss the total energy balance, Eq. (16).
The fluxes that appear in this equation are the radiative
flux, the enthalpy flux, and the kinetic energy flux:
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Figure 9. Radial profiles of different luminosities in rg.3D.mr (left panel) and in ob.3D.mr (right panel).

Table 10
Total energy balance for model ob.3d.mr - integral budget

over the convective zone (erg s−1).

Term Value Term Value

−
∫
〈ρ〉Dt 〈̃ǫt〉dV -1.92(46) −

∫
〈p〉∇r 〈̃ur〉dV -8.20(45)

−
∫
∇rfhdV 4.26(43) −

∫
〈ρǫnuc〉dV 2.73(46)

−
∫
∇rfkdV -1.96(41) Residual 1.20(44)

Fr = −〈χ〉∂r〈T 〉, (33)

fh = 〈ρ〉〈̃h′′u′′
r 〉, (34)

fk = 〈ρ〉〈̃ǫ′′ku
′′
r 〉. (35)

We discuss this form of the energy equation because
of its relevance for stellar evolution calculations. For in-
stance, let us consider the simplest case by assuming a

steady state and 〈̃ur〉 = 0. Multiplying Eq. (16) by 4πr2

and integrating over radius, one obtains:

4πr2
(
fh + fk + Fr) = L(r), (36)

where L(r) =
∫ r

0
〈ρǫnuc〉dV . Stellar evolution codes use

the mixing-length theory to compute fh and ignore fk.
Figure 9 illustrates the different terms in Eq. (36) for
models rg.3D.mr and ob.3D.mr. The radiative flux is neg-
ligible in the oxygen-burning shell models and is there-
fore ignored. In the red giant model, the radiative lu-
minosity is equal to the stellar luminosity in the radia-
tive zone, and it decreases in the convective zone where
a large and outward directed enthalpy flux takes over.
Furthermore, the red giant model is characterized by a
downward directed kinetic energy flux reaching an am-
plitude of roughly 35 % of the maximum enthalpy flux.
The convective boundary is characterized by a negative,
i.e. downward directed, enthalpy flux. This is somewhat
counterbalanced by a bump in the radiative luminosity at
the same location. The total luminosity is not constant,
which means that the model is not in thermal equilib-
rium. The oxygen-burning shell model is characterized
by an upward kinetic energy flux, with a maximum am-
plitude roughly equal to 5 % of the maximum enthalpy
flux. Neutrino cooling is responsible for the shallow re-
gion of negative luminosity. Nuclear burning is more im-

portant and dominates Lnuc. A net heating results and
the system is in thermal imbalance (Eq. 36 is not valid
in this case).
The bottom-left panels in Fig. 7 and Fig. 8 show

the different terms of Eq. (16) for models rg.3D.mr and
ob.3D.mr. In the red giant case, we introduced in the
r.h.s. the Newtonian cooling term q, see Eq. (1). This
last term is only important at the top of the CZ, where it
mimics the radiative cooling that would take place if we
had a realistic photosphere. This convection is driven by
cooling at the top. At the bottom of the convective zone,
there is a rough balance between the radiative and the
enthalpy flux. Radiation cools the gas in a shallow layer
below the convective zone, and heats it at the bottom of
the convective zone. The radiative cooling in a shallow
layer below the convective zone is a different manifesta-
tion of the bump seen in the radiative luminosity, this is
discussed further in Sect. 4.6. The discussion of kinetic
energy flux remains the same as in the previous section:
kinetic energy is transported downward in the convective
zone. The oxygen-burning shell model shows a rough bal-
ance between nuclear heating and the divergence of the
enthalpy flux: convection is driven by a heating from be-
low. It should be noticed that the time derivative of the
total energy contributes significantly to the balance, as a
result from the thermal imbalance. Spurious oscillations
are also present at the location of the steep gradients (at
the convective boundaries), but we have checked that the
consistency was good everywhere else.
The bottom-right panels in Fig. 7 and Fig. 8 show the

budget integrals over the convective zone for each model.
In both case, a net heating term is present, in the red
giant due to radiation, in the oxygen-burning shell due
to nuclear burning. In the latter, this is counterbalanced
by the evolution of the background state, through the

change in time of the total energy and the −〈p〉∇r 〈̃ur〉
term which is the rate of work by the mean pressure due
to a global expansion/contraction of the star. In the red
giant model, the radiative heating is mostly balanced by
the cooling at the surface. The terms describing a global
evolution of the background roughly balance each others,
and describe how the background state is slowly evolving
toward thermal equilibrium (see discussion in Sect. 4.6)

4.2. The turbulent velocity field
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Figure 10. Vertical correlation length-scales for the radial velocity, density and pressure fluctuations in model rg.3D.mr (left panel) and
model ob.3D.mr (right panel). The dashed and dotted lines show the pressure and density scale-heights (respectively).

In this section, we analyze the properties of the veloc-
ity field, and consider relevant approximations for this
field. We analyze in some detail the anisotropy of the
Reynolds stresses. Our results motivate a two compo-
nent decomposition to the flow, with plumes at large
scales and isotropic turbulence at small scales. We show
how the isotropic component is related to the observed ki-
netic energy dissipation, consistent with the Kolmogorov
cascade.

4.2.1. Approximations for deep and shallow convection

Figures 3 and 6 show that the thermodynamical fluc-
tuations in both stellar models are small relative to the
background values. Therefore, for the purpose of analy-
sis, we will often use simplified equations resulting from
a linearization around the background state. In such a
case, we shall use ρ0, P0, etc, instead of the notation
〈ρ〉, 〈P 〉, etc, to emphasize that we are considering the
linearized equations.
The linearized continuity equation reads

∂tρ
′ + ~∇ · (ρ0~u

′) = 0. (37)

Both the red giant and oxygen-burning shell models
are characterized by low Mach flows. Low Mach turbu-
lence is an inefficient producer of sound (Lighthill 1952).
Therefore, we can neglect ∂tρ

′ in the above equation and
focus on fluctuations having a time scale longer than the
acoustic time scale (Gough 1969; Dutton & Fichtl 1969).
Furthermore,

~∇ · (ρ0~u
′) = ρ0~∇h · ~u′

h + ρ0∇ru
′
r + u′

r∂rρ0, (38)

where we have separated the horizontal flow (subscript
h) from the vertical flow. The order of magnitude of the
ratio of the third term to the second is:

|u′
r∂rρ0|

|ρ0∇ru′
r|

∼
Lu

Hρ
, (39)

where Lu is the characteristic vertical length-scale of ra-
dial velocity perturbations, and Hρ = −dr/d ln ρ0 is the
density scale-height. For “shallow” convection, this ratio
is small and the following approximation is justified:

~∇ · ~u′ = 0, (40)

i.e., the turbulent velocity field is solenoidal. Otherwise,
for “deep” convection, where Lu & Hρ, the appropriate
approximation is:

~∇ ·
(
ρ0~u

′
)
= 0. (41)

From this relation, we can deduce that

~∇ · ~u′ =
u′
r

Hρ
. (42)

The dilatation of the velocity field is due to the vertical
motion of parcels in the background stratification.
Meakin & Arnett (2007) compute the two-point corre-

lation function of the radial velocity fluctuations:

CV (r, δr) =
〈u′

r(t; r, θ, φ)u
′
r(t; r + δr, θ, φ)〉

urms(r)urms(r + δr)
, (43)

where u2
rms = 〈u′2

r 〉. The vertical correlation length-
scale is defined as the width at half maximum of the
two-point correlation function CV . Figure 10 shows
the vertical correlation length-scale of the radial veloc-
ity fluctuations (among others) computed at each radii
in models rg.3D.mr and ob.3D.mr. The figure empha-
sizes an important difference between the models: in
the oxygen-burning shell model, the vertical correlation
length-scale is everywhere smaller than the density scale-
height, whereas in the red giant model it is larger in
most of the convective zone. This suggests that the flow
in the oxygen-burning shell model is much less affected
by the stratification than the red giant model. There-
fore, we will adopt the shallow convection approximation
Eq. (40) to describe the turbulent velocity field in the
oxygen-burning shell models. For the red giant models,
the appropriate approximation is the one given by Eq.
(41).
Equations (40) and (41) are the basis for the Boussi-

nesq and anelastic approximations. We stress that for
both the oxygen-burning shell and the red giant models,
these approximate models of the hydrodynamical equa-
tions should not be used to model the flow. For instance,
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Figure 11. Eigenvalue analysis of the anisotropy tensor bij for model rg.3D.mr (left panel) and model ob.3d.mr (right panel). The figures
show the radial profiles of the eigenvalues. The continuous line corresponds to the radial eigenvalue, the dashed lines correspond to the
horizontal eigenvalues (see text). The two horizontal dashed lines indicate the range [−2/3, 2/3].

the computational domain in the oxygen-burning shell
models is not “shallow”, i.e. (rout − rin)/Hp > 1, and
in the red giant models the Mach numbers are too large
near the surface. However, these approximations provide
a useful theoretical framework for the analysis of the re-
sults.

4.2.2. Anisotropy of the Reynolds stresses

We decompose the Reynolds stresses as

〈̃u′′
i u

′′
j 〉 =

2

3
〈̃k〉δij + 〈̃k〉bij , (44)

where 〈̃k〉 = 1
2 〈̃u

′′
i u

′′
i 〉 is the specific turbulent kinetic

energy and bij is a trace-less and symmetric tensor that
characterizes the anisotropy of the Reynolds stresses. We
extract the three eigenvalues (λr, λθ, λφ) and eigenvec-
tors of bij at each radii. It can be shown that, for any
two eigenvalues α, β, one has α ≥ −2/3, β ≥ −2/3, and
α+ β ≤ 2/3.
At each radius, one of the eigenvalue is unambigu-

ously associated with a purely radial eigenvector, and the
two other eigenvalues are roughly equal and associated
with two purely horizontal eigenvectors. Therefore, the
Reynolds stresses are axisymmetric, which is expected as
the angular directions are homogeneous in the absence of
rotation or magnetic field. The orientation of the hori-
zontal eigenvectors is therefore not physically relevant.
The radial profiles of the radial eigenvalue λr and of the
horizontal eigenvalues λθ and λφ are shown in Fig. 11 for
models rg.3D.mr and ob.3D.mr. These quantities describe
the shape of the Reynolds stress tensor. In the bulk of
the convective zone, where λr > 0 and λθ = λφ < 0, the
shape is “rod-like” as the stress is maximum in the radial
direction. Otherwise, when λr < 0 and λθ = λφ > 0, the
shape is “disc-like”. The radii at which the transition
between the two shapes occurs (and where all eigenval-
ues cancel) are rin ∼ 2.2×1012 cm and rout ∼ 3.75×1012

cm in the red giant model, and rin = 0.45× 109 cm and
rout ∼ 0.85× 109 cm in the oxygen-burning shell model.
At these radii, the vertical motions are deflected hori-
zontally as they approach the convective boundaries. A
second transition radius is seen at r = 2 × 1012 cm in
the red giant model and at r = 0.41 × 109 cm in the
oxygen-burning shell model, below this radius the flow is

dominated by waves rather than turbulence.
The anisotropy of the Reynolds stresses is another

manifestation of the two components character of the
flow, with convective plumes at large scales that dom-
inate the vertical motion and an isotropic component
at small scales. It is essential for the design of turbu-
lence models to better understand the role of the different
scales of the flow, for instance in terms of the transport
of energy (Cattaneo et al. 1991; Bessolaz & Brun 2011).
We leave a detailed analysis for a future publication.
Here, we outline an approach for decomposing the ve-

locity field. We write:

ui = 〈̃ui〉+ v′′i + w′′
i , (45)

where we have split the velocity fluctuation (u′′
i in our

usual notation) into a large scale, coherent structures
component v′′i , and an isotropic component w′′

i charac-
terizing the small scales. We then assume that both com-
ponents have zero averages and are not correlated:

〈̃v′′i 〉 = 0, ∀i, (46)

〈̃w′′
j 〉 = 0, ∀j, (47)

˜〈v′′i w
′′
j 〉 = 0, ∀(i, j). (48)

With these assumptions, the velocity components cor-
relation tensor can be split into two contributions:

〈̃u′′
i u

′′
j 〉 = 〈̃v′′i v

′′
j 〉+

˜〈w′′
i w

′′
j 〉. (49)

Furthermore, we have

〈̃v′′i v
′′
i 〉 = 2k̃plumes, (50)

˜〈w′′
i w

′′
j 〉 =

2

3
k̃isoδij , (51)

with 〈̃k〉 = k̃plumes + k̃iso, where k̃plumes and k̃iso are
the specific kinetic energy of the plumes and of the
isotropic turbulence (respectively). The above hypoth-
esis are not sufficient to determine uniquely the decom-
position. Here, it will be enough for our purpose to
adopt the approach of Meakin & Arnett (2007): far from



14 M. Viallet et al.

the boundaries, we identify the horizontal flow with the
isotropic component. Therefore, as a proxy, we can de-
fine k̃iso by

2k̃iso =
3

2

(
˜〈u′′

θ
2〉+ ˜〈u′′

φ
2〉
)
. (52)

Furthermore, since ˜〈u′′
θ
2〉 ≈ ˜〈u′′

φ
2〉, one has

〈̃v′′i v
′′
j 〉 ≈ 2k̃plumesδi1δj1, (53)

with

2k̃plumes = 〈̃u′′
r
2〉 −

˜〈u′′
θ
2〉+ ˜〈u′′

φ
2〉

2
. (54)

4.2.3. Kinetic energy damping

The total kinetic energy dissipated per unit time is
Ld =

∫
〈ρǫd〉dV , see Tables 1 and 2. The rate of dissipa-

tion is not constant in time, but evolves with the flow. In
the red giant model, we see a decrease in time of Ld to-
ward the value quoted in the table as the model relaxes
toward a quasi-steady state (see left panel of Fig. 2).
In the oxygen burning-shell model, Ld increases slowly
with time as a result from the global heating due to the
imbalance between nuclear heating and neutrino cooling.
As in Arnett et al. (2009), we compute a dissipation

length-scale ld and timescale τd as:

∫
〈ρǫd〉dV = MCZ

v3rms

ld
, (55)

τd =
EK,CZ∫
〈ρǫd〉dV

=
1

2

ld
vrms

, (56)

where vrms is computed from the isotropic kinetic energy
defined in the previous section, i.e. vrms = (2k̃iso)

1/2.
This yields ld = 7.7 × 1011 cm in the red giant model,
and ld ∼ 0.4lCZ ; and ld = 5.5 × 108 cm in the oxygen
burning-shell model, so ld ∼ lCZ. Furthermore, τd ∼ 19 d
in the red giant model and τd ∼ 29 s in the oxygen-
burning shell model. In both cases this is much shorter
than the convective turnover timescale. As discussed in
Arnett et al. (2009), this illustrates the strong dissipative
character of turbulent convection.
We now relate the kinetic energy dissipation inferred

from the numerical simulations with global properties of
the flow. The simplest approach is to use the formula
for the rate of dissipation in isotropic and homogeneous
incompressible turbulence (Pope 2000):

ǫd =
u′3

Λ
, (57)

where u′ and Λ are the rms velocity and length-scale
of the most energetic eddies. Arnett et al. (2009) fit
the dissipation in their oxygen-burning shell data with
u′ = (2k̃iso)

1/2 and by setting Λ to the dissipation length-
scale ld derived above, see the right panel in their Fig. 2.
In Fig. 12, we show that the same approach gives fairly
good results for the red giant model as well. The am-
plitude of the dissipation is slightly overestimated, but
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Figure 12. Comparison of the dissipation described by a ǫk =
u′3/Λ law (dashed line) with the dissipation inferred from the data
in model rg.3D.mr (continuous line). The dotted line shows the
residual.

the overall shape of the profiles agree very well. This
suggests that a somewhat larger value of ld would give
a better fit. The largest discrepancies are found close to
the convective boundaries, where k̃iso is affected by the
horizontal flow due to the interaction with the bound-
aries.
It should be emphasized that this approach works well

in our case because we are in a statistically steady state.
In situations where the kinetic energy changes rapidly,
the dissipation rate lags behind the cascade rate given by
u′3/Λ due to the time needed to redistribute the kinetic
energy over the inertial range (Livescu et al. 2009).

4.3. Magnitude of pressure fluctuations

A comparison of Fig. 3 and Fig. 6 shows that p′/p0 ∼
ρ′/ρ0 in the red giant model, whereas the oxygen-burning
shell model is characterized by p′/p0 < ρ′/ρ0. This is
related to the background stratification.
Within the framework of the approximations presented

in Sect. 4.2.1, it is possible to obtain an elliptic equation
for the pressure fluctuations (see Appendix A):

∆p′ = −~∇ :
(
ρ0~u

′ ⊗ ~u′
)
− g

∂ρ′

∂r
. (58)

The first term on the r.h.s. describes the generation of
pressure fluctuations by the Reynolds stresses, also called
the “pseudo-sound”. The second term describes the gen-
eration of pressure fluctuations by buoyancy effects. The
relative orders of magnitude of the different terms can be
written as:

|p′|

p0
:
(Lp

Lu

)2 ρ0|u
′|2

p0
:

L2
p

HpLρ

|ρ′|

ρ0
, (59)

where Lp, Lu, and Lρ are typical length-scales for vari-
ation of the pressure, velocity, and density fluctuations.
We use the vertical correlation length-scales for u′

r, ρ′

and p′ shown in Fig. 10 to estimate the relative mag-
nitude of these effects. We estimate that L2

p/L
2
u ∼ 0.2,

L2
p/(HpLρ) ∼ 2 in the red giant model, and L2

p/L
2
u ∼ 0.1,

L2
p/(HpLρ) ∼ 0.4 in the oxygen-burning shell model. Al-

though these estimates are only qualitative, they suggest
that the pseudo-sound term is not the dominant source of
pressure fluctuations in the convective zone (the dashed
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Figure 13. Top panels: decomposition of the average mass flux (see text). Bottom panels: Splitting of the kinetic energy (thick lines)
and acoustic (thin lines) fluxes into up-flow and down-flow components (the fluxes have been multiplied by 4πr2 and normalized by the
luminosity). The continuous lines are the total fluxes. Left panels: model rg.3D.mr, right panels: model ob.3D.mr.

line in Figs. 3 and 6 falls below the pressure curve after
multiplication by L2

p/L
2
u). Therefore, pressure fluctua-

tions are mainly due to buoyancy, and the order of mag-
nitude analysis above shows that magnitude is related
to the background stratification. If we loosely assume
Lρ ∼ Lp (which is not quite correct in the red giant
models), we have

|p′|

P0
∼

Lp

Hp

|ρ′|

ρ0
, (60)

which is in qualitative agreement with the numerical
models.
Although the order of magnitude estimates we carried

out in this section have no predictive power, they suggest
that Eq. (58) provides a valuable framework to analyse
pressure fluctuations (Chassaing et al. 2002). We plan
to push the analysis based on this equation further, with
the aim of obtaining more quantitive predictions.

4.4. The turbulent fluxes

4.4.1. The turbulent mass flux

The turbulent mass flux is defined as

fm = 〈ρ′u′
r〉. (61)

By definition, we have

〈ρ〉〈̃ur〉 = 〈ρur〉 = 〈ρ〉 〈ur〉+ 〈ρ′u′
r〉. (62)

The top panels of Figure 13 illustrate this relation in
models rg.3D.mr and ob.3D.mr. In the red giant model,

one has 〈̃ur〉 ≈ 0 as the model is close to equilibrium.

In this case, Eq. (62) implies that the mean flow 〈ur〉
counter-balances the mass displaced by turbulence. The
oxygen burning-shell model shows a quite significant ex-

pansion of the background, i.e. 〈̃ur〉 > 0, driven by the
imbalance between nuclear burning and neutrino cooling.
There is still a mean flow which tends to counter-act the
effect of the turbulent mass flux.
In the gravity field, the mass displaced by the turbu-

lence induces a work which is one of the kinetic energy
driving term introduced in Sect. 4.1.2:

Wb = 〈ρ′~u′ · ~g〉 = −gfm, (63)

where we took g outside of the averaging operator (the
Cowling approximation). Note that energetically, Eq.

(62) implies that when 〈̃ur〉 ≈ 0, the gravitational work
done by the turbulence is canceled by the gravitational
work done by the mean flow, so that the total work done
by gravity is zero. This is a direct consequence of mass
conservation.

4.4.2. Acoustic and kinetic energy fluxes

Assuming that 〈ρ〉〈̃Dt〉〈̃ǫk〉 = 0, which is justified by
the analysis in Sect. 4.1.2, the integral version of the
kinetic energy balance, Eq. (18), reads
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Figure 14. Comparison between the acoustic flux fp = 〈p′u′
r〉 and pressure-dilatation Wp = 〈p′ ~∇ · ~u′〉 multiplied by the density scale-

height Hρ. Both terms were multiplied by 4πr2 and normalized by the stellar luminosity. Left panel: model rg.3D.mr, right panel: model
ob.3D.mr.

4πr2(fk + fp) =

∫ r

0

(
Wb +Wp − 〈ρǫd〉

)
dV, (64)

which simply says that transport by combined kinetic
energy and acoustic fluxes is the residual between driv-
ing and dissipation. It is not an explicit formula for
the fluxes since the velocity field also enters in the r.h.s,
both in the driving and in the dissipation. When fp and
Wp are negligible, the equation simplifies to Eq. (4) of
Meakin & Arnett (2010).
The bottom-left panel in Fig. 13 shows the radial pro-

files of fk and fp in model rg.3D.mr. As discussed in Sect.
4.1.3, the kinetic energy flux fk is large and downward
directed. The figure shows that fp is smaller, but not
negligible, and upward directed. Furthermore, we show
in the figure the splitting of fk and fp into the down-
flow (u′

r < 0) and upflow components (u′
r > 0). In both

cases, the contribution from the downdrafts dominates
significantly. This emphasizes the strong asymmetry of
the flow which results from the large stratification. The
figure shows that both components of the acoustic flux
are positive, i.e. down-flows have p′ < 0 and up-flows
have p′ > 0. Since fp is not negligible and is upward di-
rected (opposite to the kinetic energy flux), a better un-
derstanding of fp is necessary to understand what is set-
ting the amplitude of the kinetic energy flux. The right
panel in Fig. 13 shows the kinetic energy and acoustic
flux in model ob.3D.mr, which are both small compared
to the enthalpy flux. The acoustic flux shows a more
complex behavior than in the red giant models. The ki-
netic energy flux is upward directed, and shows a large
cancelation due to the approximate symmetry between
upflows and downflows. Meakin & Arnett (2010) exper-
imented with the oxygen burning shell models by chang-
ing from a heating from below to a cooling from above,
and found that the kinetic energy flux reversed direction
(see their c1 model). Qualitatively, this change of behav-
ior is explained by the different direction of propagation
of plumes, which propagate downward when triggered by
cooling at the top, as in the red giant model.
Finally, multiplying Eq. (42) by p′ and taking the av-

erage one obtains:

fp = 〈p′u′
r〉 = Hρ〈p′~∇ · ~u′〉 = HρWp. (65)

The left panel of Fig. 14 shows that this relation holds
to a very good degree in the red giant model, validat-
ing a posteriori the use of the anelastic approximation
(Sect. 4.2.1). Equation (65) is very similar to Eq. (63):
they both connect a flux, fm and fp, to a kinetic energy
source term, Wb and Wp. For fp and Wp this is true
only within the anelastic approximation. We will come
back to this in Sect. 4.5. For the oxygen-burning shell

model, consistently with the approximation ~∇·~u′ = 0 in-
troduced in Sect. 4.2.1, we consider that Wp ≈ 0 which
is a good approximation. fp is more complex than in the
red giant model, where it is dominated by stratification
effects. The right panel of Fig. 14 shows that the effects
of stratification, as described by the anelastic approxima-
tion, reproduce the gross features of fp, but that other
effects contribute. This could be due to pressure pertur-
bations related to boundary effects, or to the background
expansion, and requires further investigation.
Note that we have the following relation:

〈
p′

ρ0
~∇ · (ρ0~u′)〉 = Wp −

fp
Hρ

, (66)

which characterizes the deviation from the anelastic ap-
proximation.

4.4.3. Splitting of the enthalpy flux

The enthalpy flux describes the transport of heat by
convection and is therefore important for stellar interior
modeling. In this section, we use thermodynamical rela-
tionships to study its relation to other turbulent fluxes.
As two state variables are sufficient to determine the
thermodynamic state, different expressions for the en-
thalpy flux can be derived. We choose the pressure as
one of the variables, as pressure fluctuations play a dif-
ferent role in the two stellar models presented here. For
the other variable, we will consider density, entropy, and
temperature, respectively. For the oxygen-burning shell
model, we describe composition effects in terms of the
average number of nucleons A and free electrons Z per
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Figure 15. Splitting of the enthalpy flux in models rg.3D.mr (left) and ob.3D.mr (right). Top panels: decomposition with Eq. (68).
Middle panels: decomposition with Eq. (70). Bottom panels: decomposition with Eq. (71). fh(Y

′) represents the sum of the composition
terms due to A′ and Z′. The different terms are multiplied by 4πr2, and normalized to the model luminosity.

nucleus6. For the red giant model, these terms are zero
because the composition was uniform.
Formally, the turbulent enthalpy flux is defined as

fh = 〈ρ〉〈̃h′′u′′
r 〉, but we have checked that it is iden-

tical to fh = 〈ρ〉 〈h′u′
r〉 (the same holds for the other

turbulent fluxes). Based on this second form, we first
split the enthalpy flux in terms of density, pressure, and
composition fluctuations. Assuming that fluctuations of
these variables are small,

6 If the composition variables Y = 1/A and Ye = Z/A are used,
most of the effect is concentrated in the single variable Y . Ye is
almost constant in the oxygen-burning shell.

h′ =
∂h

∂ρ

∣∣∣
p,A,Z

ρ′ +
∂h

∂p

∣∣∣
ρ,A,Z

p′

+
∂h

∂A

∣∣∣
ρ,p,Z

A′ +
∂h

∂Z

∣∣∣
ρ,p,A

Z ′, (67)

which leads to the following expression:

fh =−
P

ρ

Γ1

Γ3 − 1
〈ρ′u′

r〉+
Γ3

Γ3 − 1
〈p′u′

r〉

+ ρ
∂e

∂A

∣∣∣
ρ,p,Z

〈A′u′
r〉+ ρ

∂e

∂Z

∣∣∣
ρ,p,A

〈Z ′u′
r〉, (68)
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where the coefficients are evaluated using the background
state. This relation illustrates how the enthalpy flux
can be decomposed into separate contributions from the
turbulent mass flux, the acoustic flux, and composition
fluxes. The top panels in Figure 15 show how this de-
composition compares with the numerical data. We find
that decomposition (68) holds to an excellent degree of
approximation. In the red giant model, both the terms
related to density and pressure fluctuations contributes,
whereas in the oxygen-burning shell model, the term re-
lated to density fluctuations provides the main contribu-
tion.
A second way to split the enthalpy flux is by introduc-

ing the entropy flux in place of the turbulent mass flux.
In this approach, we start from

h′ =Ts′ +
1

ρ
p′ +

∂h

∂A

∣∣∣
s,p,Z

A′ +
∂h

∂Z

∣∣∣
s,p,A

Z ′, (69)

which, by the same arguments as above, leads to

fh =Tfs + fp

+ ρ
∂h

∂A

∣∣∣
s,p,Z

〈A′u′
r〉+ ρ

∂h

∂Z

∣∣∣
s,p,A

〈Z ′u′
r〉. (70)

The middle panels in Fig. 15 shows how this relation
compares with the numerical data. In both models, the
agreement is very good. In the red giant model, the
enthalpy flux mainly results from the entropy flux, with
a non-negligible contribution from the acoustic flux. In
the oxygen-burning shell models, the contributions from
both the entropy and composition fluxes are important.
Comparing this with the first splitting, it illustrates that
density fluctuations are here both due to thermal effects
(i.e. entropy fluctuations) and composition effects.
Finally, it is useful to write the decomposition of the

enthalpy flux by introducing temperature fluctuations,
one obtains:

fh = ρcp〈T ′u′
r〉+ (1 − δ)fp

+ ρ
∂h

∂A

∣∣∣
T,p,Z

〈A′u′
r〉+ ρ

∂h

∂Z

∣∣∣
T,p,A

〈Z ′u′
r〉. (71)

where δ = αT , with α the coefficient of thermal expan-
sion at constant pressure. In the literature, ρcp〈T ′u′

r〉 is
often considered as the enthalpy flux. Formally this is
correct only when δ = 1 (e.g. polytropic gas) or fp = 0,
and when composition effects are neglected. The left-

bottom panel in Fig. 15 shows that ρcp〈T ′u′
r〉 yields a

very good approximation of fh in the red giant model.
The right-bottom panel illustrates that in the oxygen-
burning shell model, composition effects are significant
in this decomposition.

4.5. Kinetic energy driving in compressible fluids and
turbulent dissipation in the convective zone

In Section 4.1.2, we expressed the driving of kinetic en-
ergy in terms of Wb, related to density fluctuations, and
Wp, related to pressure fluctuations. However, both den-
sity and pressure fluctuations arise from different physi-
cal processes: thermal effects (i.e. entropy fluctuations),
dynamical effects (e.g. compressibility), and composition

effects. This leads to a different expression of kinetic en-
ergy driving, as shown below.
In the linearized velocity equation, the acceleration on

the r.h.s. is

~a = −
1

ρ0
~∇p′ +

ρ′

ρ0
~g, (72)

see Appendix A. It can be also written as

~a = −~∇
p′

ρ0
+
( ρ′

ρ0
−

Hp

Hρ

p′

P0

)
~g, (73)

(Braginsky & Roberts 1995). The physical meaning of
the first term can be elucidated by computing its work:

−ρ0~u
′ · ~∇

p′

ρ0
= −~∇ · (p′~u′) +

p′

ρ0
~∇ · (ρ0~u

′) (74)

This term gives rise to the transport by the acoustic
flux and to a source term which is related to the deviation
from the anelastic approximation (see Eq. 66). This
last term will contribute only when compressible effects
become important, i.e. for Ms & 1.
We identify the second term in Eq. (73) with the buoy-

ancy force, written in terms of density and pressure fluc-
tuations. It can be written as:

ρ′

ρ0
−

Hp

Hρ

p′

P0
=

( ρ′

ρ0
−

1

Γ1

p′

P0

)
−

δ

ρ0cpg

ds0
dz

p′, (75)

where we used

1

Hρ
−

1

Γ1Hp
=

δ

cp

ds0
dz

. (76)

This term characterizes the deviation from adiabaticity
of the background. We can make the connection with
entropy and composition fluctuations, since we have the
thermodynamical relationship

ρ′

ρ0
−

1

Γ1

p′

p0
= −

δ

cp
s′ +

δ

cp

∂s

∂yi

∣∣∣
ρ,p

y′i, (77)

with y′i ≡ A,Z (with an implicit summation, y1 = A,
y2 = Z).
Using these relations, the total kinetic energy driving

Wb +Wp can be written as

Wp +Wb =
∇ad

Hp
Tfs Thermal effects

−
∇ad

Hp
T

∂s

∂yi

∣∣∣
P,ρ

fyi
Composition effects

+
δ

cp

d〈s〉

dz
fp Background effects

+
(
Wp −

fp
Hρ

)
, Compressibility effects

(78)

where we used δg
cpT

= ∇ad

Hp
. The first two contributions

in Eq. (78) can be also written in terms of the turbu-
lent mass flux and acoustic flux thanks to Eq. (77). The
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Figure 16. Splitting of the kinetic energy driving for model rg.3D.mr and ob.3d.mr.

first three terms are related to buoyancy, which contrasts
which the usual designation of Wb as the “buoyancy”
driving. Figure 16 illustrates this splitting of the driving
for the numerical models. In our cases, both the devia-
tion from adiabaticity and the compressibility effects are
negligible. In the red giant model, there is no composi-
tional effects and the above formulation is the most con-
venient as it expresses the driving only in terms of the en-
tropy flux. In the oxygen-burning shell model, composi-
tion effects are important. However, since p′/P0 < ρ′/ρ0,
the driving can be expressed in terms of density fluctua-
tions mainly. This is similar to the comment made with
the right panels in Fig. 15.
Finally, we can relate the enthalpy flux to the kinetic

energy driving. In the oxygen-burning shell case, we have
from Eq. (68):

fh ≈ −
P

ρ

Γ1

Γ3 − 1
〈ρ′u′

r〉 =
Hp

∇ad
Wb, (79)

which connects kinetic energy driving (since Wp is negli-
gible) with the enthalpy flux. For the red giant case, we
have from Eq. (78):

Wb +Wp =
∇ad

Hp
Tfs, (80)

which we use Eq. (70) to obtain:

fh =
Hp

∇ad

(
Wb + Γ3Wp

)
. (81)

When Wp is negligible, this gives Eq. (79).
In a quasi-steady state, we have Ld =

∫
(Wb +Wp)dV ,

see Eq. (32). Therefore, we can estimate Ld from

Ld ≈

∫
∇ad

Hp
fhdV

≈ ∇̄adL̄c

∫

CZ

dr

Hp

≈ ∇̄adL̄cnHp
, (82)

where ∇̄ad is the average value of the adiabatic gradi-
ent, L̄c is the average value of the enthalpy luminosity
(4πr2fh) over the convective zone, and nHp

is the num-
ber of pressure scale-heights in the convective zone. This

overestimates Ld when Wp is not negligible, because of
the factor Γ3 > 1 in Eq. (81). Nevertheless, it shows
that the turbulent dissipation is of the same order as
the convective luminosity. This result was suggested by
Hewitt et al. (1975). For instance, in the red giant mod-
els, we have: L̄c ∼ 4×1036 erg/s, ∇ad ∼ 0.35, nHp

∼ 7.8,

which gives Ld ∼ 11× 1036 erg/s. In the oxygen-burning
shell model, we have: L̄c ∼ 5× 1045 erg/s, ∇ad ∼ 0.245,
nHp

∼ 2, which gives Ld ∼ 2.45× 1045 erg/s. Both val-
ues agree well with the inferred values (see Tables 1 and
2). As expected, the value obtained for the red giant is
overestimated.

4.6. Thermal effects and overshooting in the red giant
model

The Kelvin-Helmholtz timescale is defined as the ratio
between the thermal energy and the luminosity of the
star:

τKH =
Eint

L⋆
, (83)

whereEint =
∫
ρǫidV is the total thermal energy. For the

red giant the Kelvin-Helmholtz timescale is 2.1× 103 yr.
This is much longer than our simulations, which span
roughly 8 years of model time. In fact we are not able to
simulate over several thermal timescales, as it would be
necessary to ensure that the models have reached ther-
mal equilibrium. This is a common limitation to all nu-
merical simulations of deep convective envelopes which
include radiative cooling. One possible way to overcome
this problem is to boost the luminosity, thereby bring-
ing the dynamical and thermal timescales closer to each
other; e.g., Dobler et al. (2006). A consequence is that
the characteristic Mach number of the flow increases.
The physical character of turbulent convection becomes
very different, with properties closer to photospheric con-
vection, as compressibility and superadiabatic effects be-
come important. Furthermore, increasing the luminosity
implies an increase in the thermal diffusivity7, so that for
a given Reynolds number, the Péclet number decreases.
As discussed below, this will change the behavior at the
convective boundaries. For these reasons, we prefer to

7 This assumes a given temperature stratification characterizing
a stellar structure.
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Figure 17. Left panel: Dimensionless temperature gradients in model rg.3D.mr, the vertical dotted lines show the bottom convective
boundary layer (see text). Right panel: entropy balance in model rg.3D.mr.

use a realistic value of the luminosity. As shown in Sect.
4.1, out of thermal equilibrium behavior can be taken
into account in the framework of the mean-field equa-
tions.
We characterize our red giant models with a global

Péclet number, defined as

Pe =
vrmslCZ

χ
, (84)

where χ is the average value of the radiative diffusivity
over the convective zone, typically χ = 9 × 1013 cm2/s.
We find Pe ∼ 5200 in model rg.3D.mr. This large value
characterizes a very efficient transport of heat, and thus
a very efficient convection.
In stellar evolution calculations, the locations of the

convective zone boundaries are based on linear criteria
for dynamical stability, namely the Schwarzschild or the
Ledoux criteria (the latter takes composition gradients
into account). However, due to inertia, fluid parcels
can cross this limit. Zahn (1991) presents an analyti-
cal investigation of the problem (see also Schmitt et al.
1984; Rempel 2004). Zahn describes as “penetrative con-
vection” the process in which the superadiabatic region,
grows in size due to an efficient thermodynamical mixing
at the convective boundary. This is the case on the earth,
where the planetary boundary layer grows in size during
the day. Regarding the connection of the unstable region
to the stable interior, Zahn (1991) distinguishes between
“overshooting”, in which the transition is made directly
in a shallow thermal boundary layer, and “subadiabatic
penetration”, in which the penetrative flow first estab-
lishes a nearly adiabatic, yet stable, region below the
convective zone. Zahn (1991) suggests that in stellar in-
teriors, owing to large values of the Péclet number, the
conditions for subadiabatic penetration are fulfilled.
Pioneering numerical studies of the problem are pre-

sented in Hurlburt et al. (1986, 1994). Hurlburt et al.
(1994) study how subadiabatic penetration/overshooting
changes depending on the “stiffness” of the interface,
a free parameter of their models. Their models show
subadiabatic penetration for low values of the stiffness,
whereas for large stiffness they only have an overshoot-
ing layer. More recent 2D work by Rogers & Glatzmaier
(2005) arrive to a similar conclusion. Brummell et al.
(2002) revisit the problem in 3D, using a similar ap-

proach as Hurlburt et al. (1994). None of their 3D mod-
els show evidence for a subadiabatic region. The authors
argue the reason is the lower filling factor of plumes in
3D turbulent convection, resulting in lower local Péclet
numbers. Surprisingly, their numerical models have a
smaller convective region than in the initial model.
How do the red giant models compare with these stud-

ies ? We discuss here only the bottom boundary, as the
analysis of the top boundary is undermined by our arti-
ficial treatment of the surface cooling. The left panel of
Fig. 17 shows the dimensionless temperature gradients
in model rg.3D.mr. The stratification is very close to
adiabatic in the bulk of the convective zone, owing to ef-
ficient convection. Note that the structure is taken from
the averaged model, and that it does not evolve over the
time of the simulation. We show with two dotted lines
the region where the enthalpy flux has a negative bump
(see left panel of Fig. 9). We identify this region with
the convective boundary layer. It has a radial extent of
60% of the local pressure-scale height. The change in
sign of the enthalpy flux marks the start of the stably
stratified (subadiabatic) region. The radius at which it
happens is only slightly smaller than the location of the
convective boundary in the initial model: our models do
not show evidence for strong convective penetration. Do
our models show evidence for subadiabatic penetration?
Based on an inspection of the left panel in Fig. 17 and
of the profile of N2, see right panel in Fig. 1, we can
see a shallow, nearly adiabatic region, which occupies
roughly 30% of the convective boundary region. The
thermal boundary layer, where the temperature gradi-
ent connects smoothly to the radiative value, occupies
the remaining 70%. Therefore, we obtain a similar result
to Brummell et al. (2002): this model is characterized
by overshooting. The size of our convective boundary
layer is on the low side of the range of values result-
ing from the parameter study of Brummell et al. (2002).
This suggests that our boundary is rather “stiff”. Note
that this stiffness is a natural outcome of our models,
and not an input parameter as in the above mentioned
studies. Furthermore, we have a realistic thermal con-
ductivity profile, depending on density and temperature
rather than only on depth.
Following Zahn (1991), Brummell et al. (2002) suggest

that they would obtain subadiabatic penetration by mod-
eling higher Péclet number flows. The oxygen-burning
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Figure 18. Comparison of the kinetic energy balance for different resolutions. Top panels: models rg.3D.lr and rg.3D.mr. Bottom panels:
models ob.3D.mr and ob.3D.hr.

shell models have a formally infinite Péclet number8,
as thermal diffusion is negligible, and give an insight
into the large Péclet number limit. As discussed in de-
tail in Meakin & Arnett (2007), the oxygen-burning shell
models show evidence for “turbulent entrainment”. The
physical process is one in which the turbulent kinetic
energy present at the boundary is converted to poten-
tial energy as it draws material into the convection zone,
mainly through shear instabilities and wave breaking. As
a result, the stratification is weakened, and this leads a
steady increase in the size of the convective zone, see
Fig. 4 in Meakin & Arnett (2007). As such, this is
the same effect as the convective penetration discussed
above. However, convective penetration seems to be usu-
ally thought as being due to the combined effect of large
scale plumes, whereas turbulent entrainment describes
the continuous erosion by the small scale turbulence at
the interface. Both effects have the same signature: a
negative buoyancy work (Wb < 0). In the first case, it
results from buoyancy braking of the plumes; in the sec-
ond case, it results from the work the flow is doing against
gravity in the process of mixing the stable layer material.
These effects are not easy to distinguish in numerical sim-
ulations, and both may contribute. Meakin & Arnett
(2007) characterize the entrainment rate at convective
boundaries based on the bulk Richardson number RiB,
which measures the stiffness of the interface by taking
turbulence into account. This elucidates the behavior of

8 Being negligible, radiative diffusion was removed from the code
for increased efficiency.

the convective boundary at very large Péclet numbers.
At lower Péclet numbers, how do non-adiabatic effects

modify this process? The convective boundary layer in
the red giant models is characterized by Wb < 0 and
Wp < 0; see the middle-left panel of Fig. 7. The figure
shows that Wb is dominant: kinetic energy is mostly con-
verted into potential energy. Furthermore, the bottom-
left panel of Fig. 7 shows that the divergence of the en-
thalpy flux leads to heating in the convective boundary
layer. This is better analyzed in the framework of the en-
tropy balance, Eq. (17), which is shown in the right panel
of Fig. 17. In the overshooting layer, the divergence
of the entropy flux heats (note that in the overshoot-
ing layer fh ≈ Tfs, see middle-left panel in Fig. 15).
However, it is compensated by cooling from radiation.
As a consequence, a quasi-steady state in which non-
adiabatic processes counter-balance the effects of turbu-
lent entrainment is possible: the convective region does
not increase in size as it does in the oxygen burning case
where radiative effects are negligible. The bump in the
radiative luminosity is another manifestation of this pro-
cess. This can be seen also on the left panel in Fig.
17, where the convective boundary is characterized by
a temperature gradient that is subadiabatic yet super-
radiative:

∇rad < ∇ < ∇ad. (85)

Zhang et al. (2012) show how taking this effect into
account improves the agreement of solar models with he-
lioseismology data (see also Christensen-Dalsgaard et al.
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Figure 19. Instantaneous snapshots of the radial velocity field in an horizontal plane in the middle of convective zone for models ob.3D.lr,
ob.3D.mr, ob.3D.hr (from left to right). Light tones indicate upflows, dark tones indicate downflows. Each subfigures shows the full angular
domain 45◦ × 45◦.

2011).
Overshooting and subadiabatic penetration corre-

spond to “thermally inhibited” turbulent entrain-
ment/penetrative convection. Subadiabatic penetration
requires large Péclet numbers. The estimate given by Eq.
(84) maybe misleading, as the scales which are involved
in the subadiabatic penetration process can be much
smaller, and characterized by lower “turbulent” Péclet
numbers. Furthermore, the bulk Richardson number
might be relevant for subadiabatic penetration as well.
A better understanding of the relative effects of the spo-
radic plumes (Meakin & Arnett 2007; Arnett et al. 2009)
that hit the convective boundary and of the continuous
erosion by the turbulence is necessary. We suspect these
concepts could shed new light on the results obtained in
Brummell et al. (2002).

4.7. Comparison of different resolutions

We have performed the various analysis presented in
the previous sections for different resolutions and found
good agreement, as shown for instance by the various
quantities summarized in Tables 1 and 2. We have not
found any significant deviation in the physical results
that could stem from resolution issues. The oxygen-
burning shell models at the lowest resolution (ob.3D.lr)
shows spurious oscillations in some averaged quantities.
This seems to be related with difficulties Riemann based
solvers have with stratification at low resolution. Even
in this case, both the profiles and amplitudes of these
quantities are actually in good agreement with the re-
sults obtained from higher resolutions which are free of
these problems. However, we do not have convergence
in the mean fields in the narrow region of steep gradi-
ents at the base of the oxygen-burning shell, which are
unresolved in the models considered here. There, the
dissipation and compositional mixing are affected at the
grid scale by the numerical algorithm, which undermines
the RANS analysis. The Riemann solver replaces a steep
gradient by a contact discontinuity while the RANS anal-
ysis requires continuity; this issue requires further study,
although the general behavior is relatively sane and the
discrepancy localized.
Within the convective region, the mean-field analysis

shows robust behavior regarding resolution. The most
resolution sensitive diagnostic might be the kinetic en-
ergy dissipation, which in our models is purely due to
numerics at the grid scale. Figure 18 compares the ki-
netic energy balance in models rg.3D.lr and rg.3D.mr, and

models ob.3D.mr and ob.3D.hr. The balance looks nearly
the same at different resolutions. The kinetic energy dis-
sipation profiles are very similar, although the resolutions
differ by a factor of two. This suggests that the kinetic
energy dissipation is set by the large scale properties of
the flow, and does not depends on the physics at small
scales (here the grid scale). We interpret this as an in-
dication that the dynamics in the turbulent convective
zone is governed by the large scale dynamics, charac-
terized by the coherent plumes which are well resolved
even at our lowest resolution. This is consistent with
the picture of the turbulent cascade (Richardson 1922;
Kolmogorov 1941): at large Reynolds numbers the rate
of dissipation is set by the energy injection at large scale,
and is independent of the value of the viscosity. This is
the so-called “dissipation anomaly”. The viscosity sets
the scale at which dissipation occurs, here the grid scale.
The turbulent regime obtained in numerical simula-

tions (ours and others) is characterized by coherent
plumes which propagate (upward or downward) over a
significant fraction of the convective region, if not the
whole region. They govern the large scale dynamics and
are key in guiding the modeling of the highly non-local
and non-isotropic transport properties of the flow (see
e.g. Rempel 2004; Lesaffre et al. 2005; Belkacem et al.
2006; Kupka & Robinson 2007; Meakin & Arnett 2007).
However, one should bear in mind that our numerical
simulations have non-dimensional numbers (e.g., Re, Pr,
Ra) which are orders of magnitude different from the val-
ues relevant to stellar hydrodynamics. Figure 19 shows
snapshots of the flow in the oxygen-burning shell model
for three different resolutions. Although the flow is char-
acterized by structures at smaller and smaller scales, we
do not see any evidence for a different global behavior of
the flow. Whether a transition to a different regime oc-
curs at (much) larger resolution is an outstanding prob-
lem. A similar question arises in the study of the simpler,
but not less fundamental, Rayleigh-Bénard convection
problem. The quest for an understanding and charac-
terization of the “ultimate” state of turbulent Rayleigh-
Bénard convection is the focus of much experimental and
theoretical work (see reviews by Siggia 1994; Ahlers et al.
2009). Although there are significant physical differences
with the stellar case, e.g., stemming from the different
nature of boundaries, the extremely low values of the
Prandtl number, or the effects of compressibility, it can
be expected that a better understanding of turbulent
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Rayleigh-Bénard convection will provide valuable insight
into the turbulent regime at which stellar convection op-
erates (see e.g. discussion in Spruit 1997). Theoretical
studies support the existence of these plumes in stellar
convective zones (Simon & Weiss 1991; Rieutord & Zahn
1995). Numerical models of the propagation of a plume
through the adiabatic stratification show the develop-
ment of secondary instabilities (Rast 1998; Clyne et al.
2007), but they deal with an idealized situation as the
interaction between plumes clearly dominates in our nu-
merical models. Observationally, these plumes are too
deep and too small to be detected by current helioseis-
mology measurements; see (Hanasoge et al. 2012) and
references therein.

5. CONCLUSION

This paper presented 3D models of the turbulent con-
vection in the envelope of a red giant star and in the
oxygen-burning shell of a supernova progenitor. The two
models differ significantly in their physical properties:
they have radically different equations of state, the effects
of thermal diffusion is negligible in one but important in
the other, one model is multi-fluid and includes nuclear
burning, whereas the other is mono-fluid and has cooling
at the surface. Their common point, which is the focus
of this work, is the presence of a turbulent convective
zone which dynamics is controlled by the hydrodynami-
cal equations. Finally, two different numerical methods
and codes were used to produce the data. To deal with
such a heterogenous set of data, we developed in Sect. 3
a set of 1D horizontally-averaged equations that provides
a framework for a systematic analysis of hydrodynamical
simulations. We showed in Sect. 4.1 that our numerical
models show good consistency with the physical equa-
tions, although we identified spurious effects localized in
the region of the steep, unresolved gradients present in
the oxygen-burning model.
Both our models are characterized by low Mach flows,

so that compressible effects are negligible. Similarly,
both models have large Péclet number (formally infinite
in the oxygen-burning shell case) so that the deviation
from adiabaticity is small in the convective zone, and has
no effect on the dynamics9. However, our analysis is gen-
eral and applies also to flows with larger Mach number
and superadiabatic stratifications, two conditions which
are found in photospheric convective regions. We plan to
apply a similar analysis to photospheric convection. Our
mean-field analysis emphasized very similar behavior in
both stellar models, without noticeable dependance on
the numerical resolution. Both the radial expansion ve-
locity and kinetic energy balances are in a statistically
steady state, whereas the total energy balance shows an
evolution of the background on a longer timescale. This
is due to the clear separation between the dynamical
timescale of the system (the turnover timescale) and the
nuclear/thermal timescale of the models. The kinetic en-
ergy dynamics can be understood as a balance between
driving at large scales and dissipation at small scales,
connected by the turbulent cascade. Understanding the
spatial distribution of the driving and of the dissipation is
important for insight into the non-locality of convection.

9 In the red giant model, this would not be the case near the
surface if it was modeled realistically.
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Figure 20. Global energy balance in turbulent convection. The
arrow directions are consistent with the labels, i.e. for positive val-
ues the energy flows along the arrows. Continuous lines emphasize
the reversible character of the processes, whereas the dashed line
denotes the irreversible character of kinetic energy dissipation.

We have shown that the differences between the red gi-
ant and oxygen-burning shell models stem mainly from
the degree of stratification. This led us to introduce the
distinction between “shallow” convection, in which the
velocity correlation length-scales are less than the den-
sity scale-height, and “deep” convection in which they
are of the same order, or larger. As shown in Sect. 4.3,
the effect of stratification on the dynamics can be under-
stood in terms of the magnitude of pressure fluctuations.
We discussed how this impacts the mean-field balances:
for deep convection pressure-dilatation becomes a non-
negligible source of kinetic energy, and the acoustic flux
contributes to the transport of kinetic energy and en-
thalpy. We showed in Sect. 4.5 the connection between
the transport of enthalpy, the rate of production of tur-
bulent kinetic energy, and finally the rate of turbulent
dissipation at small scales. This should not be surprising:
large scale transport of enthalpy needs motion, motion
becomes turbulent, and turbulence dissipates kinetic en-
ergy at small scales. As a consequence, we find that in
a quasi-steady state the rate of dissipation of turbulent
kinetic energy is of the order of the convective luminos-
ity. This is consistent with the rate of damping of ki-
netic energy inferred from our models. How turbulent
dissipation affects stellar evolution is an open question.
Figure 20 puts the role of turbulent dissipation in per-
spective regarding the global conservation of energy. The
convective instability taps energy of the unstable stratifi-
cation and converts potential energy into kinetic energy,

the work done by the background flow 〈ur〉 on the mean

background 〈p〉 converts internal energy into potential
energy, and turbulent dissipation closes the loop by con-
verting kinetic energy into internal energy. In a statis-
tically steady state, the amount energy per unit time
which is “flowing” in these channels is Wb (see Eqs. 32
and 62).
We have discussed in Sect. 4.6 the overshooting pro-

cess which is observed in the red giant models. Compar-
ing with the oxygen-burning models, we discussed how
turbulent entrainment relates to the more classical con-
cepts of overshooting and subadiabatic penetration used
in the stellar context. Further investigations on the rel-
ative effect of the plumes and turbulent entrainment is
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desirable.
A turbulent model for stellar convection should be able

to reproduce the behavior of the mean-field equations
without the need to resort to expensive 3D simulations.
In the RANS framework, evolution equations can be de-
rived for the turbulent fluxes. The resulting equations
involve higher order terms, for which additional evolu-
tion equations can be derived. This leads to a hierarchy
of equations which have to be closed with appropriate
relations. Future work will apply the same systematic
study to higher order equations, aiming at identifying
the most important terms to guide the closure strategy
(Mocák et al., in preparation). We intend to release pub-
licly10 our RANS analyzed data and provide analysis and
plotting subroutines as open source materials.
We plan to extend this work by including rotation and

magnetic field. As mentioned in Sect. 3, the formulation
of suitable 1D mean-field equations is not possible when
rotation or magnetic field are included. Nevertheless,
if non-axisymmetric instabilities are not important, it
is possible to average the equations over the azimuthal
direction, resulting in a set of 2D mean-field equations.
This opens the possibility of performing stellar evolution
in 2D, with an appropriate treatment of these effects (in
the limit of low rotation rate due to spherical geometry),
see e.g. Deupree (1990, 2001); Li et al. (2006, 2009). The
MUSIC code, which is based on time-implicit methods,
provides the ideal framework for that.
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10 http://stellarmodels.org
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APPENDIX

ELLIPTIC EQUATION FOR THE PRESSURE

We start from the momentum equation:

ρ0

(
∂t~u+ ~u · ~∇~u

)
= −~∇p′ + ρ′~g, (A1)

where we have neglected density fluctuations in front of the Lagrangian derivative, and we have subtracted the
hydrostatic background. Taking the divergence of this equation removes the time derivative both in the Boussinesq

(~∇ · ~u=0) and in the anelastic (~∇ · (ρ0~u)=0) approximations:

~∇ ·
(
ρ0~u · ~∇~u

)
= −∆p′ − g

∂ρ′

∂r
, (A2)

where we considered that g was constant. We write this equation as

∆p′ = −~∇ :
(
ρ0~u

′ ⊗ ~u′
)
− g

∂ρ′

∂r
. (A3)
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Böhm-Vitense, E. 1958, ZA, 46, 108
Botchev, M. A., Sleijpen, G. L., & van der Vorst, H. A. 1999,

ApNM, 31, 239
Braginsky, S. I., & Roberts, P. H. 1995, GApFD, 79, 1
Brummell, N. H., Clune, T. L., & Toomre, J. 2002, ApJ, 570, 825
Brummell, N. H., Hurlburt, N. E., & Toomre, J. 1996, ApJ, 473,

494
Buchler, J. R., & Kolláth, Z. 2000, in , 39
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