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ABSTRACT

X-ray observations of hot gas in galaxy clusters often show steeper temperature gradi-
ents across cold fronts – contact discontinuities, driven by the differential gas motions.
These sharp (few kpc wide) surface brightness/temperature discontinuities would be
quickly smeared out by the electron thermal conduction in unmagnetized plasma, sug-
gesting significant suppression of the heat flow across the discontinuities. In fact, the
character of the gas flow near cold fronts is favorable for suppression of conduction
by aligning magnetic field lines along the discontinuities. We argue that a similar
mechanism is operating in the bulk of the gas. Generic 3D random isotropic and in-
compressible motions increase the temperature gradients (in some places) and at the
same time suppress the conduction by aligning the magnetic field lines perpendicular
to the temperature gradient. We show that the suppression of the effective conduc-
tivity in the bulk of the gas can be linked to the increase of the frozen magnetic field
energy density. On average the rate of decay of the temperature fluctuations d〈δT 2〉/dt
decreases as 〈B2〉−1/5.

Key words: key words

1 INTRODUCTION

X-ray observations of galaxy clusters reveal significant spa-
tial fluctuations of the gas temperature in a range of spatial
scales (e.g., Markevitch et al. 2003). Given a temperature
map with prominent fluctuations, it is possible to calculate
an upper limit on the effective thermal conductivity, pro-
vided that the lifetime of the fluctuations can be estimated.
It turns out to be at least an order of magnitude lower than
the Spitzer conductivity for unmagnetized plasma (Ettori &
Fabian 2000; Markevitch et al. 2003).

Heat conduction in the intracluster medium (ICM) is
primarily along the field lines because the Larmor radius of
the particles is very small compared to the collisional mean
free path (Braginskii 1965). The ICM undergoes turbulent
motion in a range of spatial scales (Inogamov & Sunyaev
2003; Schuecker et al. 2004; Schekochihin & Cowley 2006;
Subramanian et al. 2006; Zhuravleva et al. 2011). As the
magnetic field is, to a good approximation, frozen into the
ICM, the field lines become tangled by gas motions and their
topology changes constantly. To study thermal conduction
in such tangled magnetic fields, some authors employed the
random-walk representation of the magnetic field lines (Trib-
ble 1989; Malyshkin 2001). Four main effects should be con-

sidered. Firstly, parallel thermal conduction along stochas-
tic magnetic field lines may be reduced because the heat-
conducting electrons become trapped and detrapped be-
tween regions of strong magnetic field (magnetic mirrors, see
Chandran & Cowley 1998; Chandran et al. 1999; Malyshkin
& Kulsrud 2001; Albright et al. 2001). Secondly, diffusion
in the transverse direction may be boosted due to spatial
divergence of the field lines (Skilling et al. 1974; Rechester
& Rosenbluth 1978; Chandran & Cowley 1998; Narayan &
Medvedev 2001; Chandran & Maron 2004). Thirdly, there is
effective diffusion due to temporal change in the magnetic
field (“field-line wandering”). Finally, if one is interested in
temperature fluctuations and their diffusion, one must be
mindful of the fact that the temporal evolution of the mag-
netic field is correlated with the evolution of the temper-
ature field because the field lines and the temperature are
advected by the same turbulent velocity field.

In this paper, we focus on the last effect. The more con-
ventional approach, often used to estimate the relaxation of
the temperature gradients, is to consider the temperature
distribution as given and study the effect of a tangled mag-
netic field on the heat conduction. However, the direction
and value of the fluctuating temperature gradients are not
statistically independent of the direction of the magnetic
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field lines because the latter are also correlated with the tur-
bulent motions of the medium. We argue that, dynamically,
the fluctuating gradients tend to be oriented perpendicular
to the field lines and so heat fluxes are the more heavily
suppressed the stronger the thermal gradients are. We also
establish the relationship between the average conductivity
and the growth of the magnetic energy density.

The structure of the paper is as follows. In § 2, we pro-
vide a qualitative explanation of the correlation between the
temperature gradients and the magnetic field direction, ac-
companied by a number of numerical examples. In § 3, a
theoretical framework for modelling this effect is presented
and the joint PDF of the thermal gradients, the angles be-
tween these gradients and the magnetic field lines and the
magnetic-field strength is derived in the solvable case of a
simple model velocity field. The connection between the ef-
fective conductivity and the increase of the magnetic energy
density is established. Analytical results are supplemented
by numerical calculations in § 3.4, which extrapolate our re-
sults to the case of a more general velocity field. In § 4, we
provide a general discussion (including of the limitations of
our treatment). Finally, in § 5, we sum up our findings.

2 QUALITATIVE DISCUSSION

We consider a volume of plasma with high electric conduc-
tivity and frozen-in magnetic field tangled on a scale much
greater than the mean free path of the particles. We also
assume the plasma motions to be incompressible, which is a
good approximation for subsonic dynamics. Across the pa-
per we treat the temperature as a passive scalar.

2.1 Illustrative example: conduction between

converging layers of magnetised plasma

Consider two parallel layers of an incompressible medium
vertically separated by distance h with temperatures T1 6=
T2. This is illustrated in Fig. 1: the direction of the field line
is shown with the inclined solid line, making an angle θ with
the vertical, so cos θ = h/

√
h2 + l2, where l is the horizontal

distance between the footpoints of the field line anchored
in the two layers. An incompressible flow with ∂yuy < 0
reduces h and increases l so that l × h is conserved (in the
absence of tangential shear). Here we are interested in the
heat exchange between the layers, i.e., only the component
of the heat flux along the temperature gradient Q∇T has to
be calculated:

Q∇T = χ(b · ∇T ) cos θ = χ
T2 − T1√
h2 + l2

h√
h2 + l2

. (1)

Let h(t) = h0f(t) and l(t) = l0/f(t). Then

Q∇T = χ
T2 − T1

h0

f

f2 + (l0/h0)
2f−2 , (2)

where χ is the parallel thermal diffusivity coefficient (Bra-
ginskii 1965), which is assumed constant across the volume
for simplicity. Therefore, in the limit of f → 0, Q∇T → 0 if
l0 6= 0. Similarly, when f → ∞, Q∇T → 0. The decrease of
the heat flux at f > 1 is simply due to the increase of the
distance between the plates and corresponding decrease of
the temperature gradient. The decrease at f < 1 is due to
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Figure 1. Correlated changes of the temperature gradients and
the inclination of the magnetic field lines in the case of a converg-
ing incompressible flow: plane parallel layers at different temper-
atures. Converging flow with ∂yuy < 0 reduces h and increases
the temperature gradient (T2 − T1)/h, but suppresses heat flux
(Fig. 2). The solid line represents the direction of the magnetic
field. If the medium is incompressible then l× h is conserved (in
the absence of tangential shears).
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Figure 2. Suppression of the heat flux along the temperature
gradient between two approaching/receding plates as a function
of distance f between the plates, when the medium between the
plates is threaded by tangled magnetic field [see equation (3)].
At the initial moment (f = 1), all angles between the magnetic
field direction and the plates are equally probable. The decrease
of the heat flux at f > 1 is simply due to the increase of the
distance between the plates and corresponding decrease of the
temperature gradient. The decrease at f < 1 is due to systematic
increase of the angle between the field lines and the direction of
the temperature gradient.

c© 0000 RAS, MNRAS 000, 000–000



Local heat flux in an intracluster medium 3

systematic increase of the angle between the field lines and
the direction of the temperature gradient.

If at some moment the field lines are tangled in such a
way that all angles θ are equally probable, then parametriz-
ing compression/stretching along y by the same factor f and
averaging over θ gives us the suppressed heat flux along the
temperature gradient:

Q∇T = χ
T2 − T1

h0

2f

f2 + 1
(see Fig. 2). (3)

Thus, increasing the temperature gradient by squeezing the
layers of the gas does not boost the heat exchange between
them but rather makes it smaller. A qualitatively similar
situation might occur at the cold fronts – contact discon-
tinuities formed by differential gas motions, a very simple
model of which is discussed in the next subsection.

2.2 Astrophysical example: model of a cold front

Chandra observations of galaxy clusters often show sharp
discontinuities in the surface brightness of the ICM emis-
sion (see review by Markevitch & Vikhlinin 2007). Most of
these structures have lower-temperature gas on the brighter
(higher-density) side of the discontinuity, suggesting that
they are contact discontinuities rather than shocks. In the
literature, these structures are called “cold fronts”. Because
of the sharp temperature gradients, the limits on the thermal
conduction derived for the observed cold fronts are strong
(see, e.g., Ettori & Fabian 2000; Vikhlinin et al. 2001; Xiang
et al. 2007).

In the majority of theoretical models, the formation of
a cold front involves relative motion of cold and hot gases.
Here we consider the case of a hot gas flowing around a
colder, gravitationally bound gas cloud, which is a proto-
typical model of a cold front. For simplicity, we assume that
the velocity field can be approximated with a 2D potential
flow past a cylinder, while the initial temperature is sym-
metric around the cylinder. The initial temperature distri-
bution and stream lines of the flow are shown in the left
panel of Fig. 3. The middle panel shows the field lines of a
random magnetic field superimposed on the initial temper-
ature distribution. The evolved temperature and magnetic
field are shown in the right panel of Fig. 3. Stretching of
the fluid elements near the stagnation point along the front
leads to the contraction of the same elements in the direc-
tion perpendicular to the front. This configuration has been
considered in a number of studies of the cold fronts (see, e.g.,
Asai et al. 2007; Churazov & Inogamov 2004; Roediger et al.
2011). Qualitatively, it corresponds to the situation sketched
in § 2.1 and Fig. 1, which naturally leads to the field lines
orthogonal to the temperature gradient at the front.

2.3 Local correlation between the magnetic field

strength and the heat flux

Let us now discuss the suppression of the local heat flux in
more general terms. Consider the induction equation for an
incompressible medium and the advection equation for the
temperature:

dB

dt
= B · ∇u, (4)

Figure 3. Alignment of the field lines perpendicular to the tem-
perature gradient for the velocity field characteristic of a cold
front. A potential flow past a cylinder is used in this example.
The left panel shows the initial temperature distribution (color
image) and stream lines of the velocity field. The middle panel

shows a random tangled magnetic field superposed on this initial
situation. The right panel shows the time-evolved temperature
map and magnetic field lines (superposed contours) in such a flow.
The flow boosts the temperature gradient at the cold front and
at the same time stretches the field lines along the lines of con-
stant temperature. In the resulting configuration, the field lines
are essentially perpendicular to the sharp temperature gradient
at the front.

dT

dt
= 0, (5)

where B is the magnetic field, u the velocity field, T tem-
perature and d/dt = ∂/∂t+u·∇. We have neglected thermal
and magnetic diffusivities. Let g be the unit vector in the di-
rection of the temperature gradient, b the unit vector in the
direction of the field line, B the magnetic field magnitude
and G the temperature gradient magnitude, so B = Bb,
∇T = Gg. The above equations imply:

dG

dt
= −Gg · (∇u) · g, (6)

dB

dt
= Bb · (∇u) · b, (7)

dµ

dt
= µ[g · (∇u) · g − b · (∇u) · b], (8)

where µ = b · g, the cosine of the angle between B and
∇T . From these equations, we can immediately infer the
following equation for b ·∇T = µG, a quantity proportional
to the parallel heat flux:

d ln (µG)

dt
= −d lnB

dt
. (9)

Thus, locally, the heat flux decreases as the field strength
grows.

2.4 Numerical example: a random 2D velocity

field

In this example, we consider a random temperature distribu-
tion and a random magnetic field in a random δ-correlated
Gaussian incompressible 2D velocity field (Fig. 4). The tem-
perature T (x, y), the magnetic field B(x, y) and the velocity
field u(x, y) (assumed incompressible, ∇ · u = 0) are mod-
eled as superpositions of Fourier harmonics with random
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phases and amplitudes. The temperature and the magnetic
field are advected according to equations (4) and (5). The
velocity field is varied at each time step as a δ-correlated
in time field. The initial conditions are shown in the top
panel of Fig. 4; there is no initial correlation between the
temperature gradients and the orientation of the field lines.
With time, preferential stretching/squeezing of the fluid el-
ements leads to alignment of the field lines along the iso-
temperature lines (see bottom panel in Fig. 4). This happens
in all regions where the stretching/squeezing is sufficiently
strong. As a result, the field lines are mostly perpendicular
to the direction of the temperature gradient in all regions
where the gradient is large. Intuitively, one expects this ten-
dency of local alignment between the magnetic filed and the
isotherms to manifest itself statistically, in a turbulent con-
ducting medium. In the next section, we work out a simple
statistical model of this process.

3 HEAT CONDUCTION IN A STOCHASTIC

VELOCITY FIELD

Here we treat the suppression of the heat conduction using
an analytically solvable model that allows us to predict the
statistical distribution of the cosine of the angle between the
thermal gradient and the field line (µ), the magnitude of the
thermal gradient (G) and the magnetic-field strength (B).
After the joint probability distribution function (PDF) of µ,
G and B is derived (§ 3.5), we will be in a position to assess
how statistically prevalent the behaviour discussed in § 2.4
is, but we will preface this detailed calculation with some
simpler arguments to quantify the suppression of the heat
flux.

3.1 Relaxation of temperature fluctuations

Let us restore heat conduction in equation (5):

dT

dt
= ∇ · (χbb · ∇T ), (10)

where χ is the parallel thermal diffusivity coefficient (Bra-
ginskii 1965). Then the volume-averaged rate of change of
the rms temperature fluctuations is

d〈δT 2〉
dt

= −2χ〈|b · ∇δT |2〉 = −2χ〈µ2G2〉. (11)

Thus, the average value of µ2G2 characterizes the rate at
which local temperature variations are wiped out by the
thermal conduction.

3.2 Kazantsev-Kraichnan model

We consider the magnetic field to be so weak that it does
not affect the velocity field. This condition is only satisfied if
the magnetic energy density is much lower than the kinetic
energy density of the plasma motions. This means that our
model does not describe the saturated state, when these
energy densities become comparable. The non-saturated
regime could be a common transient situation in the ICM,
at least locally, in the sense that at any given time, the mag-
netic field is amplified up to the saturation value only in a
small fraction of the volume.

Figure 4. Alignment of the field lines perpendicular to the tem-
perature gradient for a stochastic δ-correlated Gaussian incom-
pressible velocity field, modeled as a superposition of Fourier har-
monics with random phases and amplitudes. The top panel shows
the initial random temperature distribution (color) with the field
lines of a random magnetic field superposed (they are uncorre-
lated with temperature). The bottom panel shows the same fields
later on in the evolution. In the evolved image, field lines fol-
low the lines of constant temperature in the regions where the
temperature gradient is large.

We will wish to calculate the joint PDF p(µ,G,B; t),
where µ and G are defined in § 2, and investigate the evo-
lution of the relevant correlations, viz., 〈µ2G2〉 (see § 3.1).
To do that, we need to average the dynamical equations for
g, b, G and B over all realizations of the stochastic velocity
field. The equations are:

dgk

dt
= −(δkm − gkgm)gi∂mui,

dbk

dt
= (δki − bkbi)bm∂mui,

dG

dt
= −Ggigm∂mui,

dB

dt
= Bbibm∂mui, (12)
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where summation over repeated indices is implied.
This problem is solvable analytically for a Gaussian

white-in-time velocity field (Kazantsev 1968):

〈ui(t,x)uj(t′,x′)〉 = δ(t− t′)κij(x− x
′), (13)

where κij is the correlation tensor, whose form can be deter-
mined from symmetry and incompressibility considerations.
We may assume the medium to be isotropic and homoge-
neous. Consider a spatial scale much smaller than that of
the stochastic velocity field. Then, at any arbitrary point,
the velocity can be expanded in linear approximation:

ui(t,x) = σi
m(t)xm, (14)

where σi
m(t) = ∂mui and we have assumed ui(t, 0) = 0 with-

out loss of generality (otherwise change the reference frame).
Then the velocity gradients satisfy

〈

∂ui

∂xm
(t,x)

∂uj

∂x′n
(t′,x′)

〉

∣

∣

∣

∣

∣

x=x′

= 〈σi
m(t)σj

n(t
′)〉

= δ(t− t′)κij
mn, (15)

where

κij
mn = −∂2κij(y)

∂ym∂yn

∣

∣

∣

∣

∣

y=0

≡ κT ij
mn,

where κ = 1/τeddy , τeddy is the turn-over time of the turbu-
lent eddies and

T ij
mn = δijδmn − 1

d+ 1

(

δimδjn + δinδ
j
m

)

(16)

is the inevitable tensor form of κij
mn for an isotropic incom-

pressible medium of dimension d (= 2, 3). This is the so-
called Kazantsev-Kraichnan model, which has been a pop-
ular tool for modelling the properties of small-scale dy-
namo and passive-scalar advection in turbulent media (e.g.,
Chertkov et al. 1999; Balkovsky & Fouxon 1999; Boldyrev &
Schekochihin 2000; Schekochihin et al. 2002, 2004; Boldyrev
& Cattaneo 2004, and references therein).

3.3 Relation between magnetic field amplification

and suppression of conduction for the

white-in-time velocity field

Before presenting the full statistical calculation, we wish to
give a relatively simple one that establishes the connection
between the relaxation rate of the temperature fluctuations
and the magnetic energy density. The heat flux along the
field line µG is inversly proportional to the length of a field-
line segment s. Therefore, one can relate the change of the
mean square heat flux 〈µ2G2〉, which is also the decay rate
of the temperature fluctuations (see §3.1), to the growth of
the magnetic-energy density as follows:

〈B2〉 ∝ 〈s2〉, 〈µ2G2〉 ∝ 〈1/s2〉. (17)

As explained in § 3.2, we assume an isotropic linear
random velocity field. Let it be piecewise constant in time
over intervals τc and completely uncorrelated for ∆t > τc.
Assume further that the amount of stretching of any fluid
element over individual time intervals of duration ∼ τc is
small compared to the size of the element, which amounts
to a model of white-noise field. Under these assumptions,

it is easy to obtain the PDF of s as a function of time t
in the limit t/τc ≫ 1. The evolution of each component of
the separation vector x of any two locations frozen into a
velocity field constant over time interval τc is

xi(τc) ≈ xi(0) + τcσ
i
jx

j(0) +
1

2
τ 2
c σ

i
jσ

j
kx

k(0) +O(τ 3
c ), (18)

where σi
j is the velocity gradients matrix [see equation (14)].

Since we are dealing with a random isotropic field, we can
set x(0) = (1, 0, 0) at t = 0. Then

x1(τc) ≈ 1 + τcσ
1
1 +

1

2
τ 2
c σ

1
jσ

j
1 +O(τ 3

c ),

xi6=1(τc) = τcσ
i
1 +O(τ 2

c ). (19)

We are interested in the time evolution of the “stretching
factor” s2 = |x|2. For one “act of stretching”, equation (19)
implies

ln s2(τc) = 2τcσ
1
1 −2τ 2

c (σ
1
1)

2+τ 2
c σ

j
1σ

j
1+τ 2

c σ
1
jσ

j
1+O(τ 3

c ).(20)

For t ≫ τc, the calculation of s2(t) reduces to summation of
N = t/τc ≫ 1 such independent stretching episodes:

ln s2(t) =
∑

ln s2(τc). (21)

After applying the central limit theorem to
(1/N)

∑

ln s2(τc), one readily gets the PDF of s2:

P (s2) =
1

s2
1√
2πσ2

s

e
−
(ln s

2
−ms)2

2σ2
s , (22)

where

σs = 2

√

T 11
11

t

τeddy
,

ms =

[

−2T 11
11 +

d
∑

i=1

(

T ii
11 + T i1

1i

)

]

t

τeddy
, (23)

where τeddy and T ij
mn are defined at the end of § 3.2. We have

taken δ(0) = 1/τc in equation (15). Using equation (17), we
get

〈B2〉 ∝ ems+σ2

s
/2, 〈µ2G2〉 ∝ e−ms+σ2

s
/2. (24)

This leads to a simple relation between the growing
magnetic-energy density and the evolution of the mean
square heat flux:

〈µ2G2〉 ∝ 〈B2〉p, where p =
−ms + σ2

s/2

ms + σ2
s/2

. (25)

For an incompressible velocity field in 3D, using equa-
tion (16), we get p = −1/5. This is a statistical version
of the dynamical equation (9). It implies that on average, as
the magnetic-energy density grows, the rate of decay of the
temperature fluctuations is reduced, although the efficiency
of this reduction is modest (p is low). This is because 〈µ2G2〉
is dominated by regions of low stretching while 〈B2〉 by re-
gions of high stretching [equation (17)] and the distribution
of these is highly intermittent.

3.4 Finite-time correlated velocity field

How sensitive is this result to the obviously unphysical as-
sumption of zero correlation time? Here, we numerically cal-
culate the PDF of s in a random incompressible 3D velocity

c© 0000 RAS, MNRAS 000, 000–000



6 S. V. Komarov, E. M. Churazov and A. A. Schekochihin

field evolving according to a Langevin equation with a finite
correlation time. This is a generalization of the δ-correlated
case considered in § 3.3.

We consider a large number of independent field-line
segments, each one placed in its own stochastic incompress-
ible velocity field, given by equation (14), where the velocity
gradient satisfies

dσi
m

dt
= − 1

τc
σi
m + ∂mai, (26)

where τc is the correlation time and the gradient of the
stochastic acceleration ai satisfies

〈∂mai(t)∂na
j(t′)〉 = δ(t− t′)A2T ij

mn. (27)

Here A2 is the noise amplitude and the dimensionless tensor
T ij
mn is fixed by isotropy and incompressibility as given by

equation (16). It is possible to define the effective turn-over
time of turbulent eddies τeddy in much the same way as we
we did for the δ-correlated case:
∫ ∞

0

〈σi
m(0)σj

n(t)〉dt =
1

2
A2τ 2

c T
ij
mn ≡ 1

2τeddy
, (28)

where the exact solution of the Langevin equation (26) has
been substituted. Thus, τeddy = 1/(τcA)2.

In view of equation (17), the evolution of 〈µ2G2〉 and
〈B2〉 can be easily calculated from the distribution of the
segment lengths. Here we do this for a range of values of
the ratio η = τc/τeddy . In § 3.3, we treated the case η →
0 analitically, whereas for a physically sound case, η ≈ 1
because typically turbulent velocities decorrelate over their
eddy turn-over times and fluid elements are stretched by
order-unity amounts over the same time scales. The results
are shown in Fig. 5. Even though the growth/decay rates
of 〈B2〉 and 〈µ2G2〉 do change with correlation time, their
relative behaviour appears to be invariant, viz.,

〈µ2G2〉 ∝ 〈B2〉−1/5, (29)

practically the same as for the δ-correlated regime [cf. equa-
tion (25)]

Thus, finite correlation times do not change the form
of the effective conduction-magnetic-energy-density relation,
only modifying the time dependence. This result gives us
some confidence in the Kazantsev-Kraichan velocity as a
credible modelling choice.

3.5 Statistics of the heat flux

In this section we will finally derive the full joint statistical
distribution of the magnetic field and the temperature gra-
dient and hence the detailed correlations between the heat
flux, the field strength and the relative direction of the mag-
netic field and the temperature gradient.

For a velocity field given by equation (14), we can write
equations (12) for g, b, G and B as follows:

∂tg
k = −(δkm − gkgm)giσi

m,

∂tb
k = (δki − bkbi)bmσi

m,

∂tG = −Ggigmσi
m,

∂tB = Bbibmσi
m. (30)

There are no advection terms here due to the homogeneity
of the gas (so we can consider equation (12) at x = 0).

The details of the derivation of the equation for the joint
PDF p(µ,G,B; t) are presented in Appendix A. The result
is

∂tp =
κ

2(d+ 1)

[

2d(1− µ2)(µ∂µµ∂µ − ∂GGµ∂µ − ∂BBµ∂µ)

+(d− 1)(∂GG∂GG+ ∂BB∂BB) + 2(1− µ2d)∂GG∂BB

+d(d+ 1− 2dµ2)(2µ∂µ − ∂GG− ∂BB)

+2d2(1− dµ2)

]

p, (31)

where d is the dimension of space. From now on, we only
consider d = 3.

Multiplying both sides of equation (31) by µ2G2 and
integrating, we find

∂t〈µ2G2〉 = −κ

2
〈µ2G2〉, (32)

so the mean square heat flux decays exponentially in time.
Then, recalling equation (11) for the rate of smoothing of
the temperature fluctuations,

d〈δT 2〉
dt

∝ −e−κt/2 → 0. (33)

We observe that the relaxation rate of the temperature fluc-
tuations decreases significantly on time scales of the order
of the turn-over time of the turbulent eddies (κ = 1/τeddy).

It is also possible to reproduce the relation for the mean
square heat flux as a function of the magnetic energy den-
sity [equation (25)]. Multiplying equation (31) by B2 and
integrating, we obtain the evolution of the magnetic energy
density:

∂t〈B2〉 = 5

2
κ〈B2〉. (34)

This result, combined with equation (32), leads to the rela-
tion established in § 3.3:

〈µ2G2〉 = 〈B2〉−1/5. (35)

We expect that the temperature gradients and the mag-
netic field lines will become perpendicular to each other. Let
us then first investigate the limit of µ → 0, in which equa-
tion (31) can be solved analytically. Let x = lnµ, y = lnG
and z = lnB. Then the joint PDF of these variables is
h(x, y, z; t) = p(µ(x), G(y),B(z); t)ex+y+z, where the last
factor is the Jacobian of the transformation of variables.
Taking µ → 0 in equation (31), we find that h satisfies

∂th =
κ

4

[

3hxx + hyy + hzz − 3(hxy + hxz) + hyz

+3(2hx − hy − hz)

]

. (36)

Let us now write h in the following form:

h(x, y, z; t) = f(x, y; t)δ(x+ y + z). (37)

Substituting this ansatz into equation (36), we find that the
factorization goes through and f satisfies

∂tf =
κ

4

[

3fxx + fyy − 3fxy + 3(2fx − fy)

]

. (38)
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Figure 5. The decrease of the mean square heat flux 〈µ2G2〉 for the time-correlated velocity field and different ratios η = τc/τeddy
(numerical results). While growth/decay rates of 〈B2〉 and 〈µ2G2〉 change with correlation time, their relative behaviour is practically
the same: 〈µ2G2〉 ∝ 〈B2〉−0.2.

This factorization implies that in the limit µ → 0, µG ∝ 1/B
independently from the initial conditions. This result was
anticipated in § 3.3, where we took the ratio of µG and 1/B
to be the same for all the segments of the field lines at the
initial moment.

Let us make another transformation: ξ = x = lnµ
and η = x + 2y = ln (µG2) to separate variables in equa-
tion (38). The joint PDF of these two variables, w(ξ, η; t) =
f(x(ξ), y(ξ, η); t), satisfies

∂tw =
κ

4

(

3wξξ + wηη + 6wξ

)

. (39)

This equation can be readily solved:

w(ξ, η; t) =
1√
3πκt

∫ +∞

−∞

dξ′dη′f(ξ′, η′; 0)e−
1

3κt
[ 3
2
κt+(ξ−ξ′)]2

×e−
1

κt
(η−η′)2 . (40)

Notice that along with diffusion in both variables, the PDF
drifts to ξ → −∞, i.e, to smaller µ. So there is a continued
tendency towards mutually perpendicular orientation of the
thermal gradients and the field lines.

If one is interested how the joint PDF of µ and G be-
haves in the case of µ order unity, full equation (31) inte-
grated over the magnetic field strength has to be solved.
Technically speaking, we are obliged to do this in order
to ascertain that the limit µ → 0 was the relevant one
to consider, i.e., that the joint distribution of µ and G
moves towards smaller µ independently of initial condi-
tions. Again, to separate variables, we employ the variables
ξ = lnµ and η = ln (µG2). The PDF of these variables,

w(ξ, η; t) =
∫

p(µ(ξ),G(ξ, µ), B; t)e
1

2
(ξ+η)dB, satisfies

∂tw =
κ

4

[

3(1− e2ξ)wξξ + (1 + 3e2ξ)wηη

+6(1− 2e2ξ)wξ − 12e2ξw

]

. (41)

In order to solve this equation numerically, it is convenient
to rewrite it in the divergence form as follows:

∂tw =
κ

4

{

∂ξ[2(1− e2ξ) + (1− e2ξ)∂ξ]

+∂η(1 + 3e2ξ)∂η

}

w. (42)

Numerical solution of this equation is presented in Fig. 6.
With time, the maximum of the PDF does indeed shift to-
wards smaller µ, demonstrating that the temperature gra-
dient and the magnetic field vector are becoming ever more
orthogonal to each other. One can replot this graph in co-
ordinates µG (heat flux) and G to observe that the rate of
smearing of the temperature fluctuations in equation (11) is
correlated with the magnitude of the temperature gradients
(Fig. 7) in such a way that sharper gradients on average
tend to be wiped out slower due to smaller corresponding
values of µG.

4 DISCUSSION

We now briefly discuss the assumptions made in our model
and its implications.

1) The ordering of scales in the problem considered in
this paper obeys the following relations:

c© 0000 RAS, MNRAS 000, 000–000
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10-210-1100

µ

100

101

G
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Figure 6. Evolution of the joint PDF of µ and G at regular time intervals from t = 0 to t = τeddy (turn-over time of the turbulent eddies)
obtained via numerical solution of the equation (42). The maximum of the function drifts to the region where the thermal gradients and
the field lines are perpendicular (µ → 0).

100 101

G

10-1

100

µG

100 101 100 101 100 101

Figure 7. Evolution of the joint PDF in terms of heat flux µG = |b ·∇T | and G = |∇T | at the same times as in Fig. 6. Sharper gradients
tend to be wiped out slower due to the smaller corresponding values of the heat flux.

ρe ≪ λmfp . l . λu, (43)

where l is the characteristic size of the region we deal with,
ρe is the electron Larmor radius, λmfp is the electron mean
free path and λu is the typical size of a turbulent eddy.

The limit l ≪ λu simplifies the calculation of the field-
line stretching because the linear expansion of the velocity
field can be used [equation (14)]. This allows for analytic
treatment of the problem. Note that kinematic dynamo nat-
urally sets the parallel correlation length of the magnetic
field λB‖ to be ∼ λu (Schekochihin et al. 2002, 2004).

The condition λmpf . l allows us to apply the thermal
conduction equation (10) at these spatial scales. Due to the
fact that in the kinematic-dynamo regime, λu ∼ λB‖, we
also have λmfp . λB‖. This limit being assumed, we can
ignore the magnetic mirroring effects because the electrons
are free to escape magnetic traps by changing their pitch
angles by collisions (Chandran & Cowley 1998; Chandran
et al. 1999).

A typical value of λmfp ∼
20kpc(T/108 K)2(ne/10

−3 cm−3)−1 due to Coulomb
collisions varies in the cluster cores from 0.01 to 20 kpc
depending on temperature and density. For example, in
the core of the Coma cluster the mean free path is ∼ 5
kpc (Churazov et al. 2012); in M87/Virgo it is much
smaller, viz., λmfp ∼ 0.01 kpc, due to lower temperature
and higher density (Churazov et al. 2008). On the other

hand, the value of λu can be in the range of 10 kpc to
200 kpc (Inogamov & Sunyaev 2003; Schuecker et al. 2004;
Schekochihin & Cowley 2006; Subramanian et al. 2006;
Zhuravleva et al. 2011; Kunz et al. 2011). Therefore, our
analysis is relevant for scales between ∼ 0.1 to ∼ 100 kpc.
Some of these scales are directly resolvable with Chandra or
XMM-Newton, suggesting that the observed substructures
in the temperature maps should have the magnetic field
lines roughly aligned with the iso-temperature contours.

2) The assumption of incompressibility (needed to use
equation (16) for the description of the velocity field) is valid
as long as the gas velocities are subsonic. This is reasonable
for the ICM, except for cases of strong mergers or AGN-
driven strong shocks in the very core of a cluster. The com-
parison of cluster mass estimates from X-ray data and lens-
ing or stellar kinematics (e.g., Churazov et al. 2008) and
simulations (e.g., Lau et al. 2009) suggest that the kinetic
energy of the gas motions is at the level of 5-15% of its ther-
mal energy in the relaxed clusters. Slight deviations from
incompressibility should not dramatically alter our results.

3) As shown in § 3.3, the evolution of the decay rate of
the small-scale (l . λu) temperature variations can be linked
to the amount of stretching of the field lines as ∝ 〈1/s2〉. Es-
sentially the decay rate goes down because the field lines,
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along which the heat is transported, are stretched1 The
amount of stretching is of course limited by saturation of
the magnetic field. We note that saturation, which can be
one of the key effects in the problem, is completely neglected
in our paper and is a matter of further study. Another po-
tentially important effect we have blatantly disregarded is
reconnection of the field lines that constantly modifies their
topology. While we believe the simple model considered in
this paper correctly captures the qualitative picture, direct
numerical simulations are required to confirm this.

4) We stress again that we only consider the suppres-
sion of local thermal conductivity on scales l . λu. We have
established that the fluctuating temperature gradients are
predominantly oriented perpendicular to the magnetic field
lines, which slows down thermal conduction. This process
resembles the one that occurs macroscopically in cold fronts
where the field lines are aligned along the cold front inter-
face by the plasma flow. If one is interested in the global
heat transport on scales l ≫ λu, other effects start to be
important. In particular, the exponential divergence of the
field lines and transverse diffusion of electrons increase the
global conductivity (Rechester & Rosenbluth 1978; Chan-
dran & Cowley 1998; Narayan & Medvedev 2001; Chandran
& Maron 2004).

5 CONCLUSIONS

We have studied the correlations between the local fluctuat-
ing temperature gradients and the orientation of the frozen-
in magnetic field lines in the turbulent ICM. One of the fre-
quently made assumptions is that the magnetic field is ran-
domly oriented with respect to the temperature gradients.
We argue, instead, that strong correlation between the di-
rection of the field and the temperature gradients can be ex-
pected in a turbulent ICM. Gas motions tend to increase the
temperature gradients and, at the same time, aline the mag-
netic field lines perpendicular to the gradients. Cold fronts
in clusters provide a vivid example of this process at large
scales. The net result of the correlated evolution of the tem-
perature distribution and the magnetic field is the effective
suppression of the local heat flux. We have calculated ex-
plicitly the joint distribution function of the gradients and
the angles they make relative to the field lines and demon-
strated that significant suppression takes place for generic
3D isotropic incompressible motions. The main results of
this study can be summarized as follows:

• Strong correlation of the fluctuating temperature gra-
dients and the local magnetic field orientation is established
on the eddy turnaround time.

• For disturbed clusters, where large-scale clumps of gas
are displaced, the largest observed gradients should be asso-
ciated with the largest heat flux suppression. The estimates
of the effective conductivity based on these gradients may
not be characteristic of the bulk of the gas.

1 The effect of the field-line stretching on the suppression of ther-
mal conduction has previously been studied by Rosner & Tucker
1989 and Tao 1995, but in the case of λB < λmfp and constant
macroscopic thermal gradient.

• On average, the decay time of temperature fluctuations
is anti-correlated with the amplification of the magnetic field
by the gas motions. Volume averaged decay rate decreases
with the growth of the magnetic energy density as 〈B2〉−1/5.
In other words, mixing of the ICM by the isotropic incom-
pressible motions does not promote heat exchange as long
as the magnetic field remains frozen.
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APPENDIX A: STATISTICAL CALCULATION

OF THE JOINT PDF OF µ, G AND B

The general form of the joint PDF of the magnetic field and
the temperature gradient is

P (g, b, G, B; t) = 〈P̃ 〉,
P̃ = δ(g − g(t))δ(b− b(t))δ(G−G(t))δ(B −B(t)), (A1)

where g, b, G and B are variables and g(t), b(t), G(t) and
B(t) are stochastic processes that are solutions of equa-
tions (30). Taking time derivative of P̃ and using equa-
tions (30), we obtain

∂tP = L̂m
i σi

mP̃ , (A2)

where

L̂m
i =

∂

∂gk
(δkm − gkgm)gi − ∂

∂bk
(δki − bkbi)bm

+
∂

∂G
gigmG− ∂

∂B
bibmB. (A3)

The average of equation (A2) is

∂tP = L̂m
i 〈σi

mP̃ 〉 (A4)

and we now apply apply the Furutsu-Novikov formula (Fu-
rutsu 1963; Novikov 1965) to calculate the right-hand side:

〈σi
m(t)P̃ (t)〉 =

∫

dt′〈σi
m(t)σj

n(t
′)〉
〈

δP̃ (t)

δσj
n(t′)

〉

= κT ij
mn

〈

δP̃ (t)

δσj
n(t)

〉

(A5)

where we have used equation (15). From equation (A2),

δP̃ (t)

δσj
n(t)

=

∫ t

−∞

dt′
[

L̂m
i δijδ

n
mδ(t− t′)P̃ (t′)

+L̂m
i σi

m(t′)
δP̃ (t′)

δσj
n(t)

]

=
1

2
L̂n
j P̃ (t). (A6)

The second term inside the integral vanishes by causality
(t′ < t). Using equation (A6) in equation (A5) and substi-
tuting into equation (A4), we arrive at a closed equation for
the desired PDF:

∂tP =
κ

2
T ij
mnL̂

m
i L̂n

j P. (A7)

Since the medium is isotropic, the PDF only depends
on G, B and the angle between the unit vectors g and b.
Therefore, it can be factorized as

P (g, b, G,B; t) =
1

8π2
δ(g2 − 1)δ(b2 − 1)p(µ,G,B; t), (A8)

where µ = b · g. The factor 1/8π2 has been introduced in
order to keep p(µ,G,B; t) normalized to unity. Substituting
this expression into equation (A7), we get

L̂m
i L̂n

j P = δ(g2 − 1)δ(b2 − 1)

×{(bibjbmbn + gigjgmgn − gibjgmbn

−bigjbmgn)µ∂µµ∂µ

+(bigjbmgn − gigjgmgn)µ∂µ∂GG

+(gibjgmbn − 2bibjbmbn + bigjbmgn)µ∂µ∂BB

−(gibjgmbn + bigjbmgn)∂GG∂BB

+gigjgmgn∂GG∂GG

+[2(d+ 1)(bibjbmbn + gigjgmgn)

−2d(gibjgmbn + bigjbmgn)− bmbnδij − bjbmδin

−gignδjm − gigjδmn ]µ∂µ

+[−2(d+ 1)gigjgmgn + d(gibjgmbn + bigjbmgn)

+gignδjm + gigjδmn ]∂GG

+[−2(d+ 1)bibjbmbn + dgibjgmbn + dbigjbmgn

+bmbnδij + bjbmδjm]∂BB

+d[(d+ 2)(bibjbmbn + gigjgmgn)− d(gibjgmbn

+bigjbmgn)

−(bmbnδij + bjbmδin + gignδjm + gigjδmn )]}p, (A9)

where d is the number of spatial dimensions. The PDF is
factorized, as it ought to be, and we only need to solve the
equation for p(µ,G,B; t). Substituting equation (A9) into
equation (A7), we perform the convolutions involving T ij

mn

[see equation (16)] using the identities

T ij
mnb

ibjbmbn =
d− 1

d+ 1
,

T ij
mng

ibjgmbn =
µ2 − 1

d+ 1
,

T ij
mnb

jbmδin = 0,

T ij
mnb

mbnδij =
(d− 1)(d+ 2)

d+ 1
,

T ij
mnb

igjbmgn =
µ2 − 1

d+ 1
,

T ij
mng

igjgmgn =
d− 1

d+ 1
,

T ij
mng

ignδjm = 0,

T ij
mng

igjδmn =
(d− 1)(d− 2)

d+ 1
. (A10)

The result is equation (31).
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