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ABSTRACT

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).
Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = −42 ± 75, and f ortho

NL = −25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ΛCDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ≥ 0.02 (95% CL), in an
effective field theory parametrization, and the curvaton decay fraction rD ≥ 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model τNL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.

Key words. cosmology: cosmic background radiation – cosmology: observations – cosmology: theory – cosmology: early Universe – cosmology:
inflation
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1. Introduction

This paper, one of a set associated with the 2013 release of
data from the Planck1 mission (Planck Collaboration I 2013),
describes the constraints on primordial non-Gaussianity (NG)
obtained using the cosmic microwave background (CMB) maps
derived from the data acquired by Planck during its nominal op-
erations period, i.e., between 12 August 2009 and 27 November
2010.

Primordial NG is one of the most informative finger-
prints of the origin of structure in the Universe, prob-
ing physics at extremely high energy scales inaccessi-
ble to laboratory experiments. Possible departures from
a purely Gaussian distribution of the CMB anisotropies
provide powerful observational access to this extreme
physics (Allen et al. 1987; Salopek & Bond 1990; Falk et al.
1993; Gangui et al. 1994; Verde et al. 2000; Gangui & Martin
2000b; Wang & Kamionkowski 2000; Komatsu & Spergel
2001; Acquaviva et al. 2003; Maldacena 2003; Babich et al.
2004; for recent reviews Bartolo et al. 2004a, Liguori et al.
2010, Chen 2010b, Komatsu 2010, Yadav & Wandelt 2010).
A robust detection of primordial NG – or a strong constraint
on it – discriminates among competing mechanisms for the
generation of the cosmological perturbations in the early
Universe. Different inflationary models, firmly rooted in modern
theoretical particle physics, predict different amplitudes, shapes,
and scale dependence of NG. As a result, primordial NG is
complementary to the scalar-spectral index of curvature pertur-
bations and the tensor-to-scalar amplitude ratio, distinguishing
between inflationary models that are degenerate on the basis
of their power spectra alone. Even in the simplest models of
inflation, consisting of a single slowly-rolling scalar field, a
small (but calculable) level of NG is predicted (Acquaviva et al.
2003; Maldacena 2003); this is undetectable in present-quality
CMB and large-scale structure measurements. However, as
demonstrated by a large body of work in recent years, extending
this simplest paradigm will generically lead to detectable levels
of NG in CMB anisotropies. Critically, a robust detection
of primordial NG would rule out all canonical single-field
slow-roll models of inflation, pointing to physics beyond the
simplest “textbook” picture of inflation. Conversely, significant
improvements in the constraints on primordial NG strongly
limit extensions to the simplest paradigm, thus providing
powerful clues to the physical mechanism that generated cosmic
structure.

If the primordial fluctuations are Gaussian-distributed, then
they are completely characterised by their two-point correlation
function, or equivalently, their power spectrum. If they are non-
Gaussian, there is additional statistical information in the higher-
order correlation functions, which is not captured by the two-
point correlation function. In particular, the 3-point correlation
function, or its Fourier counterpart, the bispectrum, is impor-
tant because it is the lowest-order statistic that can distinguish
between Gaussian and non-Gaussian perturbations. One of the
main goals of this paper is to constrain the amplitude and shape
of primordial NG using the angular bispectrum of the CMB
anisotropies. The CMB angular bispectrum is related to the pri-

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.

mordial bispectrum defined by

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3). (1)

Here we define the potential Φ in terms of the comoving cur-
vature perturbation ζ on super-horizon scales by Φ ≡ (3/5)ζ.
In matter domination, on super-horizon scales, Φ is equivalent
to Bardeen’s gauge-invariant gravitational potential (Bardeen
1980), and we adopt this notation for historical consistency.
The bispectrum BΦ(k1, k2, k3) measures the correlation among
three perturbation modes. Assuming translational and rotational
invariance, it depends only on the magnitudes of the three
wavevectors. In general the bispectrum can be written as

BΦ(k1, k2, k3) = fNLF(k1, k2, k3) . (2)

Here, fNL is the so-called “nonlinearity parameter”
(Gangui et al. 1994; Wang & Kamionkowski 2000;
Komatsu & Spergel 2001; Babich et al. 2004), a dimen-
sionless parameter measuring the amplitude of NG. The
bispectrum is measured by sampling triangles in Fourier space.
The dependence of the function F(k1, k2, k3) on the type of
triangle (i.e., the configuration) formed by the three wavevec-
tors describes the shape of the bispectrum (Babich et al.
2004), which encodes much physical information. It can
also encode the scale dependence, i.e., the running, of the
bispectrum (Chen 2005c).2 Different NG shapes are linked
to distinctive physical mechanisms that can generate such
non-Gaussian fingerprints in the early Universe. For example,
the so-called “local” NG (Gangui et al. 1994; Verde et al.
2000; Wang & Kamionkowski 2000; Komatsu & Spergel 2001)
is characterized by a signal that is maximal for “squeezed”
triangles with k1 � k2 ' k3 (or permutations; Maldacena
2003) which occurs, in general, when the primordial NG is
generated on super-horizon scales. Conversely, “equilateral”
NG (Babich et al. 2004) peaks for equilateral configurations
k1 ≈ k2 ≈ k3, due to correlations between fluctuation modes
that are of comparable wavelengths, which can occur if the
three perturbation modes mostly interact when they cross the
horizon approximately at the same time. Other relevant shapes
include the so-called “folded” (or flattened) NG (Chen et al.
2007b), which is due to correlations between perturbation
modes that are enhanced for k1 ≈ 2k2 ≈ 2k3, or the “orthogonal”
NG (Senatore et al. 2010) that generates a signal with a positive
peak at the equilateral configuration and a negative peak at the
folded configuration.

We now sketch how non-Gaussian information in the ini-
tial conditions are transferred to observable quantities (in this
instance, the CMB anisotropies) in the context of inflation.
Primordial perturbations in the inflaton field(s) φ(x, t) = φ0(t) +
δφ(x, t) (where δφ denotes quantum fluctuations about the
background value φ0(t)) can be characterized by the comov-
ing curvature perturbation ζ, since this is conserved on super-
horizon scales for adiabatic perturbations. The inflaton fluctu-
ations δφ (in the flat gauge) induce a curvature perturbation3

2 Specifically, one can define the shape of the bispectrum as the de-
pendence of F(k1, k2, k3)(k1k2k3)2 on the ratios of momenta, e.g., (k2/k1)
and (k3/k1), once the overall scale of the triangle K = k1 + k2 + k3 is
fixed. The scale dependence of the bispectrum can be characterized by
the dependence of F(k1, k2, k3)(k1k2k3)2 on the overall scale K, once the
ratios (k2/k1) and (k3/k1) are fixed (see, e.g., Chen 2010b).

3 For the curvature perturbation, we follow the notation and sign
conventions of Komatsu et al. (2011). ζ is also sometimes denoted
R (see e.g., Lidsey et al. 1997, Lyth & Riotto 1999 and references
therein), while the comoving curvature perturbation R as defined, e.g.,
in Malik & Wands (2009) is such that R = −ζ.

2
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ζ = −(H/φ̇0) δφ at linear order; however, nonlinearities induce
corrections to this relation. The primordial NG in the curvature
perturbation ζ is intrinsically nonlinear, so that its contribution
to the CMB anisotropies is transferred linearly at leading order.
In particular, at the linear level, the curvature perturbation ζ is
related to Bardeen’s gravitational potential Φ during the matter-
dominated epoch by Φ = (3/5)ζ and ∆T/T ∼ g ζ, where g is the
linear radiation transfer function; thus, any primordial NG will
be transferred to the CMB even at linear order. For example, in
the large-angular scale limit, the linear Sachs-Wolfe effect reads
∆T/T = −Φ/3 = −ζ/5. Further, any other field excited during
the inflationary phase which develops quantum fluctuations con-
tributing to the primordial curvature perturbation – whether or
not it is driving inflation – can leave its non-Gaussian imprint in
the CMB anisotropies.

Thus the bispectrum of Eq. (1) measures the fundamental
(self-) interactions of the scalar field(s) involved in the infla-
tionary phase and/or generating the primordial curvature per-
turbation, as well as measuring nonlinear processes occurring
during or immediately after inflation. It therefore brings in-
sights into the fundamental physics behind inflation, possibly
allowing for the first time a reconstruction of the inflationary
Lagrangian itself. For example, in a large class of inflationary
models which involve additional light field(s) different from the
inflaton, the super-horizon evolution of the fluctuations in the ad-
ditional field(s) and their transfer to the adiabatic curvature per-
turbations can generate a large primordial NG of the local type.
This is the case for curvaton-type models (Linde & Mukhanov
1997; Lyth & Wands 2002; Lyth et al. 2003) where the late-time
decay of a scalar field, belonging to the non-inflationary sec-
tor of the theory, induces curvature perturbations; models where
the curvature perturbation is generated by the local fluctua-
tions of the inflaton’s coupling to matter during the reheating
phase (Kofman 2003; Dvali et al. 2004a); and multi-field models
of inflation (see, e.g., Bartolo et al. 2002, Bernardeau & Uzan
2002, Vernizzi & Wands 2006, Rigopoulos et al. 2006, 2007;
Lyth & Rodriguez 2005, Byrnes & Choi 2010). Since the non-
linear processes take place on super-horizon scales, the form of
NG is local in real space and thus, in Fourier space, the bis-
pectrum correlates large and small Fourier modes. “Equilateral”
NG (Babich et al. 2004) is a generic feature of single-field mod-
els with a non-canonical kinetic term, which can also gener-
ate the “orthogonal” type of NG (Senatore et al. 2010). In gen-
eral, these models are characterized by higher-derivative inter-
actions of the inflaton field. The correlation between the fluctu-
ation modes is suppressed when one of the modes is on super-
horizon scales, because the derivative terms are redshifted away,
so that the correlation is maximal for three modes of compa-
rable wavelengths that cross the horizon at the same time. An
example of “folded” NG is the one generated in a class of
single-field models with non-Bunch-Davies vacuum (Chen et al.
2007b; Holman & Tolley 2008). Indeed, these and other types of
primordial NG can also be produced in other models, and we re-
fer to Sect. 2 for more details. All these models can easily yield
primordial NG with an amplitude much bigger than the one pre-
dicted in the standard models of single-field slow-roll inflation,
for which the NG amplitude turns out to be proportional to the
usual slow-roll parameters fNL ∼ O(ε, η) (Acquaviva et al. 2003;
Maldacena 2003).

Given that a robust detection of primordial NG would
represent a breakthrough in the understanding of the physics
governing the Universe during its very first stages, it is crucial
that all sources of contamination are sufficiently understood to
firmly control their effects. In particular, any nonlinearity in

the post-inflationary Universe can introduce NG into perturba-
tions that were initially Gaussian. Therefore, one must ensure
that a primordial origin is not ascribed to a non-primordial
contaminant; however, estimators of (primordial) NG from
CMB data will also typically be sensitive to such contaminat-
ing signals. Potential non-primordial sources of NG can be
classified into four broad categories: instrumental systematic
effects (see e.g., Donzelli et al. 2009); residual foregrounds
and point sources; secondary CMB anisotropies, such as the
Sunyaev-Zeldovich (SZ) effect (Zeldovich & Sunyaev 1969),
gravitational lensing (see Lewis & Challinor 2006 for a re-
view), the Integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe
1967) or the Rees-Sciama effect (Rees & Sciama 1968); and
effects arising from nonlinear (second-order) perturbations
in the Boltzmann equations (due to the nonlinear nature
of General Relativity and the nonlinear dynamics of the
photon-baryon fluid at recombination). Among the secondary
anisotropies, the cross-correlation of the ISW/Rees-Sciama
and lensing (Goldberg & Spergel 1999) produces the domi-
nant contamination to the (local) primordial NG. The impact
is mainly on the local type of primordial NG, because the
ISW-lensing correlation couples the large-scale gravita-
tional potential fluctuations sourcing the ISW effect with
the small-scale lensing effects of the CMB, thus producing
a bispectrum which peaks on the squeezed configurations,
as for the local shape. Detailed analyses have shown that
the ISW-lensing bispectrum can introduce a bias to local
primordial NG, while the bias to equilateral primordial NG
is negligible (see Serra & Cooray 2008, Smith & Zaldarriaga
2011, Hanson et al. 2009b, Lewis et al. 2011, Mangilli & Verde
2009, Junk & Komatsu 2012, Lewis 2012, Mangilli et al. 2013).
In our analysis we have carefully accounted for this effect
(we report the values of the ISW-lensing bias in Sect. 5.2, and
demonstrate the detection of the effect with skew-C`s), as well as
validating our results through an extensive suite of simulations
and null tests in order to quantify the effects of systematic effects
and diffuse and point-source foregrounds. Finally, a consistent
treatment of weak NG in the CMB must account for additional
contributions that arise at the nonlinear (second-order) level both
in the gravitational perturbations after inflation ends, and for the
evolution of the CMB anisotropies at second-order in perturba-
tion theory at large and small angular scales. It has been shown
that these second-order CMB effects yield negligible contami-
nation to primordial NG for Planck-quality data (Bartolo et al.
2004b; Creminelli & Zaldarriaga 2004b; Bartolo et al. 2005;
Boubekeur et al. 2009; Nitta et al. 2009; Senatore et al.
2009; Khatri & Wandelt 2009; Bartolo & Riotto 2009;
Khatri & Wandelt 2010; Bartolo et al. 2010c; Creminelli et al.
2011b; Bartolo et al. 2012; Huang & Vernizzi 2013; Su et al.
2012; Pettinari et al. 2013).

Previous constraints on various shapes of primordial NG
come from the WMAP-9 data (Bennett et al. 2012). For the lo-
cal shape they find f local

NL = 37 ± 20 (68% CL). For equilateral-
type NG, they obtain f equil

NL = 51 ± 136 (68% CL), while for the
orthogonal shape f ortho

NL = −245 ± 100 (68% CL). Other analy-
ses employing different estimators give compatible constraints.
Limits on other shapes, such as e.g. flattened and feature models,
have also been obtained (Fergusson et al. 2012).

Before concluding this section let us point out the connec-
tion between the analyses presented here and in the compan-
ion paper Planck Collaboration XXIII (2013) on the statistical
and isotropy properties of the CMB. Statistical anisotropy and
NG are essentially two alternative descriptions of the same phe-

3
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nomenon on the sky (Ferreira & Magueijo 1997). Specifically
any Gaussian but statistically anisotropic model becomes, af-
ter averaging over the possible (a priori unknown) orienta-
tions of the anisotropy, a statistically isotropic non-Gaussian
model. For example local NG can be generated by large-scale
field fluctuations that couple to the small-scale power. For
the given fixed realization of large-scale modes that we see,
the small-scale anisotropies look anisotropic on the sky, and
it is equally valid to describe this as a Gaussian anisotropic
model (assuming the large-scale modes are Gaussian). In this
paper we mostly focus on the non-Gaussian interpretation of
various physically motivated models, although it is useful to
bear both perspectives in mind, in particular when considering
what forms of non-primordial signal might cause contamina-
tion. Planck Collaboration XXIII (2013) consider a broad class
of more general phenomenological forms of anisotropy, which
are complementary to the analysis presented here.

This paper is organized as follows. In Sect. 2, we present
models generating primordial NG that have been tested in this
paper. Section 3 summarizes the statistical estimators used to
constrain the CMB bispectrum from Planck data and the meth-
ods for the reconstruction of the CMB bispectrum. Section 4
summarizes the statistical estimator used to constrain the CMB
trispectrum. In Sect. 5, we discuss the non-primordial contribu-
tions to the CMB bispectrum and trispectrum, including fore-
ground residuals after component separation and focusing on the
fNL bias induced by the ISW-lensing bispectrum. Section 6 de-
scribes an extensive suite of tests performed on realistic simula-
tions to validate the different estimator pipelines, and compare
their performance. Using simulations, we also quantify the im-
pact on fNL of using a variety of component-separation tech-
niques. Section 7 contains our main results: we present con-
straints on fNL for the local, equilateral, and orthogonal bispec-
tra, and a selected set of other bispectrum shapes; we show a
reconstruction of the CMB bispectrum, and give limits on the
CMB trispectrum. In Sect. 8 we validate these results by per-
forming a series of null tests on the data to assess the robustness
of our results. In Sect. 9, we discuss the main implications of
Planck’s constraints on primordial NG for early Universe mod-
els. We conclude in Sect. 10. Appendix A contains a deriva-
tion of the expected scatter between fNL results on the same
map from different estimators used in the validation tests of
Sect. 6, while Appendix B presents a comparison of constraints
on some selected non-standard bispectrum shapes using different
foreground-cleaned maps.

2. Inflationary models for primordial
non-Gaussianity

There is a simple reason why standard single-field models of
slow-roll inflation predict a tiny level of NG, of the order of the
usual slow-roll parameters fNL ∼ O(ε, η):4 in order to achieve

4 This has been shown in the pioneering research which demon-
strated that perturbations produced in single-field models of slow-roll
inflation are characterized by a low-amplitude NG (Salopek & Bond
1990; Falk et al. 1993; Gangui et al. 1994). Later Acquaviva et al.
(2003) and Maldacena (2003) obtained a complete quantitative pre-
diction for the nonlinearity parameter in single-field slow-roll infla-
tion models, also showing that the predicted NG is characterized
by a shape dependence which is more complex than suggested by
previous results expressed in terms of the simple parameterization
Φ(x) = ΦL(x) + fNLΦ2

L(x) (Gangui et al. 1994; Verde et al. 2000;
Wang & Kamionkowski 2000; Komatsu & Spergel 2001) ,where ΦL is
the linear gravitational potential.

an accelerated period of expansion, the inflaton potential must
be very flat, thus suppressing the inflaton (self-)interactions and
any sources of nonlinearity, and leaving only its weak gravita-
tional interactions as the main source of NG. This fact leads to
a clear distinction between the simplest models of inflation, and
scenarios where a significant amplitude of NG can be generated
(e.g., Komatsu 2010), as follows. The simplest inflationary mod-
els are based on a set of minimal conditions: (i) a single weakly-
coupled neutral single scalar field (the inflaton, which drives
inflation and generates the curvature perturbations); (ii) with a
canonical kinetic term; (iii) slowly rolling down its (featureless)
potential; (iv) initially lying in a Bunch-Davies (ground) vacuum
state. In the last few years, an important theoretical realization
has taken place: a detectable amplitude of NG with specific tri-
angular configurations (corresponding broadly to well-motivated
classes of physical models) can be generated if any one of the
above conditions is violated (Bartolo et al. 2004a; Liguori et al.
2010; Chen 2010b; Komatsu 2010; Yadav & Wandelt 2010):

– “local” NG, where the signal peaks in “squeezed” triangles
(k1 � k2 ' k3) (e.g., multi-field models of inflation);

– “equilateral” NG, peaking for k1 ≈ k2 ≈ k3.
Examples of this class include single-field models with
non-canonical kinetic term (Chen et al. 2007b), such as k-
inflation (Armendariz-Picon et al. 1999; Chen et al. 2007b)
or Dirac-Born-Infield (DBI) inflation (Silverstein & Tong
2004; Alishahiha et al. 2004), models characterized by more
general higher-derivative interactions of the inflaton field,
such as ghost inflation (Arkani-Hamed et al. 2004), and
models arising from effective field theories (Cheung et al.
2008);

– “folded” (or flattened) NG. Examples of this class in-
clude: single-field models with non-Bunch-Davies vac-
uum (Chen et al. 2007b; Holman & Tolley 2008) and models
with general higher-derivative interactions (Senatore et al.
2010; Bartolo et al. 2010a);

– “orthogonal” NG which is generated, e.g., in single-
field models of inflation with a non-canonical kinetic
term (Senatore et al. 2010), or with general higher-derivative
interactions.

All these models naturally predict values of | fNL| � 1. A de-
tection of such a signal would rule out the simplest models of
single-field inflation, which, obeying all the conditions above,
are characterized by weak gravitational interactions with | fNL| �

1.
The above scheme provides a general classification of infla-

tionary models in terms of the corresponding NG shapes, which
we adopt for the data analysis presented in this paper:

1. “general” single-field inflationary models (tested using the
equilateral, orthogonal and folded shapes);

2. multi-field models of inflation (tested using the local shape).

In each class, there exist specific realizations of inflationary
models which are characterized by the same underlying phys-
ical mechanism, generating a specific NG shape. We will inves-
tigate these classes of inflationary models by constraining the
corresponding NG content, focusing on amplitudes and shapes.
We also perform a survey of non-standard models giving rise
to alternative specific shapes of NG. Different NG shapes are
observationally distinguishable if their cross-correlation is suf-
ficiently low; almost all of the shapes analysed in this paper
are highly orthogonal to each other (e.g., Babich et al. 2004;
Fergusson & Shellard 2007).
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There are exceptional cases which evade this classification:
for example, some exotic non-local single-field theories of in-
flation produce local NG (Barnaby & Cline 2008), while some
multi-field models can produce equilateral NG, e.g., if some
particle production mechanism is present (examples include
trapped inflation Green et al. 2009, and some models of axion
inflation Barnaby & Peloso 2011; Barnaby et al. 2011, 2012b).
Another example arises in a class of multi-field models where
the second scalar field is not light, but has a mass m ≈ H, of
the order of the Hubble rate during inflation. Then NG with
an intermediate shape, interpolating between local and equi-
lateral, can be produced – “quasi-single field” models of in-
flation (Chen & Wang 2010a,b) – for which the NG shape is
similar to the so-called constant NG of Fergusson & Shellard
(2007). Furthermore, there is the possibility of a superposition
of shapes (and/or running of NG), generated if different mech-
anisms sourcing NG act simultaneously during the inflation-
ary evolution. For example, in multi-field DBI inflation, equi-
lateral NG is generated at horizon crossing from the higher-
derivative interactions of the scalar fields, and it adds to the
local NG arising from the super-horizon nonlinear evolution
(e.g., Langlois et al. 2008a,b; Arroja et al. 2008; Renaux-Petel
2009).

In the following subsections, we discuss each of these possi-
bilities in turn. The reader already familiar with this background
material may skip to Sect. 3.

2.1. General single-field models of inflation

Typically in models with a non-standard kinetic term (or more
general higher-derivative interactions), inflaton perturbations
propagate with an effective sound speed cs which can be smaller
than the speed of light, and this results in a contribution to
the NG amplitude fNL ∼ c−2

s in the limit cs � 1. For exam-
ple, models with a non-standard kinetic term are described by
an inflaton Lagrangian L = P(X, φ), where X = gµν∂µφ ∂νφ,
with at most one derivative on φ, and the sound speed is c2

s =
(∂P/∂X)/(∂P/∂X + 2X(∂2P/∂X2)).

In this case, two interaction terms give the dominant con-
tribution to primordial NG, one of the type (δ̇φ)3 and the other
of the type δ̇φ(∇δφ)2, which arise from expanding the P(X, φ)
Lagrangian. Each of these two interaction terms generates a
bispectrum with a shape similar to the equilateral type, with
the first inflaton interaction yielding a nonlinearity parameter
fNL ≈ c−2

s , independent of the amplitude of the other bispec-
trum. Equilateral NG is usually generated by derivative interac-
tions of the inflaton field; derivative terms are suppressed when
one perturbation mode is frozen on super-horizon scales during
inflation, and the other two are still crossing the horizon, so that
the correlation between the three perturbation modes will be sup-
pressed, while it is maximal when all the three modes cross the
horizon at the same time, which happens for k1 ≈ k2 ≈ k3.

The equilateral type NG is well approximated by the tem-
plate (Creminelli et al. 2006)

Bequil
Φ

(k1, k2, k3) = 6A2 f equil
NL

×

− 1

k4−ns
1 k4−ns

2

−
1

k4−ns
2 k4−ns

3

−
1

k4−ns
3 k4−ns

1

−
2

(k1k2k3)2(4−ns)/3
+

 1

k(4−ns)/3
1 k2(4−ns)/3

2 k4−ns
3

+(5 permutations)
]}
, (3)

where PΦ(k) = A/k4−ns is the power spectrum of Bardeen’s grav-
itational potential with normalization A2 and scalar spectral in-
dex ns. For example, the models introduced in the string theory
framework based on the DBI action (Silverstein & Tong 2004;
Alishahiha et al. 2004) can be described within the P(X, φ)-class,
and they give rise to an equilateral NG with an overall amplitude
f equil
NL = −(35/108)c−2

s for cs � 1, which turns out typically to
be f equil

NL < −5. 5

The equilateral shape emerges also in models characterized
by more general higher-derivative interactions, such as ghost in-
flation (Arkani-Hamed et al. 2004) or models within effective
field theories of inflation (Cheung et al. 2008; Senatore et al.
2010; Bartolo et al. 2010a).

Taken individually, each higher-derivative interaction of the
inflaton field generically gives rise to a bispectrum with a
shape which is similar – but not identical to – the equilateral
form (an example is provided by the two interaction terms dis-
cussed above for an inflaton with a non-standard kinetic term).
Therefore it has been shown, using an effective field theory ap-
proach to inflationary perturbations, that it is possible to build a
combination of the corresponding similar equilateral shapes to
generate a bispectrum that is orthogonal to the equilateral one,
the so-called “orthogonal” shape. This can be approximated by
the template (Senatore et al. 2010)

Bortho
Φ (k1, k2, k3) = 6A2 f ortho

NL

×

− 3

k4−ns
1 k4−ns

2

−
3

k4−ns
2 k4−ns

3

−
3

k4−ns
3 k4−ns

1

−
8

(k1k2k3)2(4−ns)/3
+

 3

k(4−ns)/3
1 k2(4−ns)/3

2 k4−ns
3

+(5 perm.)
]}
. (4)

The orthogonal bispectrum can also arise as the predomi-
nant shape in some inflationary realizations of Galileon infla-
tion (Renaux-Petel et al. 2011).

Non-separable single-field bispectrum shapes: While most
single-field inflation bispectra can be well-characterized by the
equilateral and orthogonal shapes, we note that these are sep-
arable ansätze which only approximate the contributions from
two leading order terms in the cubic Lagrangian. In an effective
field theory approach these correspond to two shapes which can
be associated directly with the inflaton field interactions π̇(∂iπ)2

and π̇3 (in the language of the effective field theory of inflation
the inflaton scalar degree of freedom π is related to the comov-
ing curvature perturbation as ζ = −Hπ). They are, respectively

5 An effectively single-field model with a non-standard kinetic term
and a reduced sound speed for the adiabatic perturbation modes might
also arise in coupled multi-field systems, where the heavy fields
are integrated out: see discussions in, e.g., Tolley & Wyman (2010);
Achúcarro et al. (2011); Shiu & Xu (2011).
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(Senatore et al. 2010, see also Chen et al. 2007b)

BEFT1
Φ (k1, k2, k3) =

6A2 f EFT1
NL

(k1k2k3)3

(−9/17)
(k1 + k2 + k3)3 ×∑i

k6
i +

∑
i, j

[
3k5

i k j − k4
i k2

j − 3k3
i k3

j

]
(5)

+
∑
i, j,l

[
3k4

i k jkl − 9k3
i k2

j kl − 2k2
i k2

j k
2
l

] ,

BEFT2
Φ (k1, k2, k3) =

6A2 f EFT2
NL

k1k2k3

27
(k1 + k2 + k3)3 . (6)

These shapes differ from equilateral in the flattened or collinear
limit. DBI inflation gives a closely related shape of particular
interest phenomenologically (Alishahiha et al. 2004),

BDBI
Φ (k1, k2, k3) =

6A2 f DBI
NL

(k1k2k3)3

(−3/7)
(k1 + k2 + k3)2 × (7)∑i

k5
i +

∑
i, j

[
2k4

i k j − 3k3
i k2

j

]
+

∑
i, j,l

[
k3

i k jkl − 4k2
i k2

j kl

] .
For brevity, we have given the scale-invariant form of the shape
functions, without the mild power spectrum running. There are
also sub-leading order terms which give rise to additional non-
separable shapes, but these are expected to be much smaller
without special fine-tuning.

2.2. Multi-field models

This class of models generally includes an additional light
scalar field (or more fields) during inflation, which can be
different from the inflaton, and whose fluctuations contribute to
the final primordial curvature perturbation of the gravitational
potential. It could be the case of inflation driven by several
scalar fields – “multiple-field inflation” – or the one where the
inflaton drives the accelerated expansion, while other scalar
fields remain subdominant during inflation. This encompasses,
for instance, a large class of multi-field models which leads to
non-Gaussian isocurvature perturbations (for earlier works, see
e.g., Linde & Mukhanov 1997, Peebles 1997, Bucher & Zhu
1997). More importantly, such models can also lead to cross-
correlated and non-Gaussian adiabatic and isocurvature modes,
where NG is first generated by large nonlinearities in some
scalar (possibly non-inflatonic) sector of the theory, and
then efficiently transferred to the inflaton adiabatic sector(s)
through the cross-correlation of adiabatic and isocurvature
perturbations6 (Bartolo et al. 2002; Bernardeau & Uzan
2002; Vernizzi & Wands 2006; Rigopoulos et al. 2006,
2007; Lyth & Rodriguez 2005; Tzavara & van Tent 2011;
for a review on NG from multiple-field inflation models,
see, Byrnes & Choi 2010). Another interesting possibility
is the curvaton model (Mollerach 1990; Enqvist & Sloth
2002; Lyth & Wands 2002; Moroi & Takahashi 2001), where

6 This may happen, for instance, if the inflaton field is coupled
to the other scalar degrees of freedom, as expected on particle
physics grounds. These scalar degrees of freedom may have large self-
interactions, so that their quantum fluctuations are intrinsically non-
Gaussian, because, unlike the inflaton case, the self-interaction strength
in such an extra scalar sector does not suffer from the usual slow-roll
conditions.

a second light scalar field, subdominant during inflation,
decays after inflation ends, producing the primordial den-
sity perturbations which can be characterized by a high NG
level (e.g., Lyth & Wands 2002; Lyth et al. 2003; Bartolo et al.
2004d). NG in the curvature perturbation can be generated
at the end of inflation, e.g., due to the nonlinear dynamics of
(p)reheating (e.g., Enqvist et al. 2005; Chambers & Rajantie
2008; Barnaby & Cline 2006; see also Bond et al. 2009) or, as
in modulated (p)reheating and modulated hybrid inflation, due
to local fluctuations in the decay rate/interactions of the inflaton
field (Kofman 2003; Dvali et al. 2004a,b; Bernardeau et al.
2004; Zaldarriaga 2004; Lyth 2005; Salem 2005; Lyth & Riotto
2006; Kolb et al. 2006; Cicoli et al. 2012). The common feature
of all these models is that a large NG in the curvature pertur-
bation can be produced via both a transfer of super-horizon
non-Gaussian isocurvature perturbations in the second field (not
necessarily the inflaton) to the adiabatic density perturbations,
and via additional nonlinearities in the transfer mechanism.
Since, typically, this process occurs on super-horizon scales,
the form of NG is local in real space. Being local in real
space, the bispectrum correlates large and small scale Fourier
modes. The local bispectrum is given by (Falk et al. 1993;
Gangui et al. 1994; Verde et al. 2000; Wang & Kamionkowski
2000; Komatsu & Spergel 2001)

Blocal
Φ (k1, k2, k3) = 2 f local

NL

[
PΦ(k1)PΦ(k2) + PΦ(k1)PΦ(k3)

+ PΦ(k2)PΦ(k3)
]

= 2A2 f local
NL

 1

k4−ns
1 k4−ns

2

+ cycl.

 . (8)

Most of the signal-to-noise ratio in fact peaks in the squeezed
configurations (k1 � k2 ' k3)

Blocal
Φ (k1 → 0, k2, k3)→ 4 f local

NL PΦ(k1)PΦ(k2) . (9)

The typical example of a curvature perturbation that generates
the bispectrum of Eq. (8) is the standard local form for the
gravitational potential (Hodges et al. 1990; Kofman et al. 1991;
Salopek & Bond 1990; Gangui et al. 1994; Verde et al. 2000;
Wang & Kamionkowski 2000; Komatsu & Spergel 2001)

Φ(x) = ΦL(x) + f local
NL (Φ2

L(x) − 〈Φ2
L(x)〉) , (10)

where ΦL(x) is the linear Gaussian gravitational potential and
f local
NL is the amplitude of a quadratic nonlinear correction (though

this is not the only possibility: e.g., the gravitational potential
produced in multiple-field inflation models generally cannot be
reduced to the Eq. (10)). For example, in the (simplest) adiabatic
curvaton models, the NG amplitude turns out to be (Bartolo et al.
2004d,c) f local

NL = (5/4rD) − 5rD/6 − 5/3, for a quadratic po-
tential of the curvaton field (Lyth & Wands 2002; Lyth et al.
2003; Lyth & Rodriguez 2005; Sasaki et al. 2006), where rD =
[3ρcurvaton/(3ρcurvaton + 4ρradiation)]D is the “curvaton decay frac-
tion” evaluated at the epoch of the curvaton decay in the sudden
decay approximation. Therefore, for rD � 1, a high level of NG
is imprinted.

There exists a clear distinction between multi-field and
single-field models of inflation that can be probed via a con-
sistency condition (Maldacena 2003; Creminelli & Zaldarriaga
2004a; Chen et al. 2007b; Chen 2010b): in the squeezed limit,
single-field models predict a bispectrum

Bsingle−field
Φ

(k1 → 0, k2, k3 = k2)→
5
3

(1−ns)PΦ(k1)PΦ(k2) , (11)
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and thus fNL ∼ O(ns − 1) in the squeezed limit, in a model-
independent sense (i.e., not only for standard single-field mod-
els). This means that a significant detection of local NG (in the
squeezed limit) would rule out a very large class of single-field
models of inflation (not just the simplest ones). Although based
on very general conditions, the consistency condition of Eq. (11)
can be violated in some well-motivated inflationary settings (we
refer the reader to Chen (2010b); Chen et al. (2013) and refer-
ences therein for more details).

Quasi-single field inflation: Quasi-single field inflation has an
extra field (or fields) with mass m close to the Hubble parame-
ter H during inflation; these models evolve quiescently, produc-
ing a calculable non-Gaussian signature (Chen & Wang 2010b).
The resulting one-parameter bispectrum smoothly interpolates
between local and equilateral models, though in a non-trivial
manner:

BQSI
Φ

(k1, k2, k3) =
6A2 f QSI

NL

(k1k2k3)3/2

33/2Nν[8k1k2k3/(k1 + k2 + k3)3]
Nν[8/27](k1 + k2 + k3)3/2 ,(12)

where ν = (9/4 − m2/H2)1/2 and Nν is the Neumann function
of order ν. Quasi-single field models can also produce an es-
sentially “constant” bispectrum defined by Bconst(k1, k2, k3) =
6A2 f const

NL /(k1k2k3)2. The constant model is the simplest possible
non-zero primordial shape, with all its late-time CMB structure
simply reflecting the behaviour of the transfer functions.

Alternatives to inflation: Local NG can also be generated
in some alternative scenarios to inflation, for instance in
cyclic/ekpyrotic models (for a review, see Lehners 2010), due
to the same basic curvaton mechanism described above. In this
case, typical values of the nonlinearity parameter can easily
reach | f local

NL | > 10.

2.3. Non-standard models giving rise to alternative specific
forms of NG

Non-Bunch-Davies vacuum and higher-derivative interactions:
Another interesting bispectrum shape is the folded one, which
peaks in flattened configurations. To facilitate data analyses,
the flat shape has been usually parametrized by the tem-
plate (Meerburg et al. 2009)

Bflat
Φ (k1, k2, k3) = 6A2 f flat

NL

×

 1

k4−ns
1 k4−ns

2

+
1

k4−ns
2 k4−ns

3

+
1

k4−ns
3 k4−ns

1

+
3

(k1k2k3)2(4−ns)/3
−

 1

k(4−ns)/3
1 k2(4−ns)/3

2 k4−ns
3

+(5 perm.)
]}
. (13)

The initial quantum state of the inflaton is usually specified
by requiring that, at asymptotically early times and short dis-
tances, its fluctuations behave as in flat space. Deviations from
this standard “Bunch-Davies” vacuum can result in interesting
features in the bispectrum. Models with an initial non-Bunch-
Davies vacuum state (Chen et al. 2007b; Holman & Tolley
2008; Meerburg et al. 2009) can generate sizeable NG similar
to this type. NG highly correlated with such a template can
be produced in single-field models of inflation from higher-
derivative interactions (Bartolo et al. 2010a), and in models
where a “Galilean” symmetry is imposed (Creminelli et al.
2011a). In both cases, cubic inflaton interactions with two

derivatives of the inflaton field arise. Single-field inflation
models with a small sound speed, studied in Senatore et al.
(2010), can generate the flat shape, as a result of a linear
combination of the orthogonal and equilateral shapes. In fact,
from a simple parametrization point of view, the flat shape
can be always written as Fflat(k1, k2, k3) = [Fequil(k1, k2, k3) −
Fortho(k1, k2, k3)]/2 (Senatore et al. 2010). Despite this, we pro-
vide constraints also on the amplitude of the flat bispectrum
shape of Eq. (13).

For models with excited (i.e., non-Bunch-Davies) initial
states, the resulting NG shapes are model-dependent, but they
are usually characterized by the importance of flattened or
collinear triangles, with k3 ≈ k1 + k2 along the edges of the
tetrapyd. We will denote the original flattened bispectrum shape,
given in Eq. (3.62) of Chen et al. (2007b), by BNBD

Φ
; it is gener-

ically much more flattened than the “flat” model of Eq. (13).
Although this shape was derived specifically for power-law k-
inflation, it encapsulates several different shapes, with ampli-
tudes which can vary between different phenomenological mod-
els. These shapes are also typically oscillatory, being regular-
ized by a cutoff scale kc giving the oscillation period; this cutoff
kc ≈ (csτc)−1 is determined by the (finite) time τc in the past
when the non-Bunch-Davies component was initially excited.
For excited canonical single-field inflation, the two leading order
shapes can be described (Agullo & Parker 2011) by the ansatz

BNBDi
Φ =

2A2 f NBDi
NL

(k1k2k3)3

{
fi(k1, k2, k3) × (14)

1 − cos[(k2 + k3 − k1)/kc]
k2 + k3 − k1

+ 2 perm.
}
,

where f1(k1, k2, k3) = k2
1(k2

2 + k2
3)/2 is dominated by squeezed

configurations, f2(k1, k2, k3) = k2
2k2

3 has a flattened shape, and i =
1, 2. Note that for all oscillatory shapes, the relevant bispectrum
equation defines the normalisation of fNL. The flattened signal
is most easily enhanced in the limit of small sound speed cs, for
which a regularized ansatz is given by (Chen et al. 2007b)

BNBD3
Φ =

2A2 f NBD3
NL

k1k2k3

[
k1 + k2 − k3

(kc + k1 + k2 − k3)4 + 2 perm.
]
. (15)

Scale-dependent feature and resonant models: Oscillating bis-
pectra can be generated from violation of a smooth slow-roll
evolution (“feature” or “resonant” NG). These models have the
distinctive property of a strong running NG, which breaks ap-
proximate scale-invariance. A sharp feature in the inflaton po-
tential forces the inflaton field away from the attractor solu-
tion, and causes oscillations as it relaxes back; these oscillations
can appear in the bispectrum (Wang & Kamionkowski 2000;
Chen et al. 2007a, 2008), as well as the power spectrum and
other correlators. An analytic form for the oscillatory bispectrum
for these feature models is (Chen et al. 2007a)

Bfeat
Φ (k1, k2, k3) =

6A2 f feat
NL

(k1k2k3)2 sin
[
2π(k1 + k2 + k3)

3kc
+ φ

]
, (16)

where φ is a phase factor and kc is a scale associated with the
feature, which is linked in turn to an effective multipole period-
icity `c of the CMB bispectrum. Typically, these oscillations will
decay with an envelope of the form exp[−(k1 + k2 + k3)/mkc] for
a model-dependent parameter m.

Closely related “resonant” bispectra can be created by pe-
riodic features superimposed on a smooth inflation potential
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(Chen et al. 2008; Flauger & Pajer 2011); these induce small
periodic features in the background evolution, with which the
quantum inflaton fluctuations can resonate while still inside
the horizon. Resonant models are particularly relevant in the
context of axion inflation models (e.g., Flauger et al. 2010;
Flauger & Pajer 2011; Barnaby et al. 2012b). These mecha-
nisms also create oscillatory behaviour in the bispectrum, but
with a more constant amplitude and a wavelength that becomes
logarithmically stretched. Here, the resonant oscillations for
most models can be represented in the form

Bres
Φ (k1, k2, k3) =

6A2 f res
NL

(k1k2k3)2 sin
[
C ln(k1 + k2 + k3) + φ

]
, (17)

where the constant C = 1/ ln(3kc) and φ is a phase.
Finally, we note that periodic features in the inflationary po-

tential can excite the vacuum state, as well as perturbing the
background inflation trajectory (Chen 2010a). Such models offer
the intriguing possibility of combining the flattened non-Bunch-
Davies shape with periodic oscillations:

BresNBD
Φ (k1, k2, k3) =

2A2 f resNBD
NL

(k1k2k3)2

{
exp(−k3/5

c (k2 + k3 − k1)/2k1)

× sin[kc((k2 + k3 − k1)/2k1 + ln k1) + φ] + 2 perm.
}
. (18)

This ansatz represents the dominant folded resonant contribution
in inflationary models with non-canonical kinetic terms, which
competes with resonant (Eq. (17)) and equilateral (Eq. (3)) con-
tributions; however, for slow-roll single-field inflation, there are
additional terms.

Directional dependence motivated by gauge fields: Additional
variations of the bispectrum shape have been proposed for mod-
els with vector fields, which can have an additional direc-
tional dependence through the parameter µ12 = k̂1 · k̂2 where
k̂ = k/k. For example, primordial magnetic fields sourcing
curvature perturbations can cause a dependence on both µ and
µ2 (Shiraishi et al. 2012), and a coupling between the inflaton
φ and the gauge field strength F2 can yield a µ2 dependence
(Barnaby et al. 2012a; Bartolo et al. 2013). We can parameter-
ize these shapes as variations on the local shape, following
Shiraishi et al. (2013), as

BΦ(k1, k2, k3) =
∑

L

cL[PL(µ12)PΦ(k1)PΦ(k2) + 2 perm], (19)

where PL(µ) is the Legendre polynomial with P0 = 1, P1 = µ
and P2 = 1

2 (µ2 − 1). For example, for L = 1 we have the shape

BL=1
Φ (k1, k2, k3) =

2A2 f L=1
NL

(k1k2k3)2

 k2
3

k2
1k2

2

(k2
1 + k2

2 − k2
3) + 2 perm.

 ,(20)

Also the recently introduced “solid inflation”
model (Endlich et al. 2012) generates bispectra similar to
Eq. (19). Here and in the following the nonlinearity parameters
f L
NL are related to the cL coefficients by c0 = 2 f L=0

NL , c1 = −4 f L=1
NL ,

and c1 = −16 f L=2
NL . The L = 1, 2 shapes exhibit sharp variations

in the flattened limit for e.g., k1 + k2 ≈ k3, while in the squeezed
limit, L = 1 is suppressed whereas L = 2 grows like the local
bispectrum shape (i.e., the L = 0 case). Whether or not the
underlying gauge field models prove robust, this directional
dependence on the wave vectors is a generic feature which
yields distinct bispectrum families, deserving closer study.

Warm inflation: In warm inflation (Berera 1995), where dissipa-
tive effects are important, a non-Gaussian signal can be gener-
ated (e.g., Moss & Xiong 2007) that peaks in the squeezed limit

– but with a more complex shape than the local one – and ex-
hibiting a low cross-correlation with the other shapes (see refer-
ences in Liguori et al. 2010).

2.4. Higher-order non-Gaussianity: the trispectrum

The connected four-point functions of CMB anisotropies (or the
harmonic counterpart, the so-called trispectrum) can also pro-
vide crucial information about the mechanism that gave rise to
the primordial curvature perturbations (Okamoto & Hu 2002).
The primordial trispectrum is usually characterised by two am-
plitudes τNL and gNL: τNL is most often related to f 2

NL-type con-
tributions, while gNL is the amplitude of intrinsic cubic nonlin-
earities in the primordial gravitational potential (corresponding,
in terms of field interactions, to a scalar-exchange and to a con-
tact interaction term, respectively). They correspond to ’soft’
limits of the full four-point function, with respectively the di-
agonal and one side of the general wavevector trapezoid being
much smaller than the others. In the CMB maps they appear re-
spectively approximately as a spatial variation in amplitude of
the small-scale fluctuations, and a spatial variations in the value
of fNL correlated with the large-scale temperature. In addition to
possible primordial signals that are the focus of this paper there
is also expected to be a large lensing trispectrum (of very dif-
ferent shape), discussed in detail in Planck Collaboration XVII
(2013).

The simplest local trispectrum is given by

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δ(3)(k1 + k2 + k3 + k4)

×

{
25
9
τNL

[
PΦ(k1)PΦ(k2)PΦ(k13) + (11 perm.)

]
+6gNL

[
PΦ(k1)PΦ(k2)PΦ(k3) + (3 perm.)

] }
, (21)

where ki j ≡ |ki + k j|. Previous constraints on τNL and gNLs
have been derived, e.g., by Smidt et al. (2010) who obtained
−7.4 × 105 < gNL < 8.2 × 105 and −0.6 × 104 < τNL < 3.3 × 104

(at 95% CL) analysing WMAP-5 data; for the same datasets
Fergusson et al. (2010b) obtained −5.4 × 105 < gNL < 8.6 × 105

(68% CL). This kind of trispectrum typically arises in multi-field
inflationary models where large NG arise from the conversion of
isocurvature perturbations on superhorizon scales. If the curva-
ture perturbation is the standard local form, in real space one has
Φ(x) = ΦL(x) + f local

NL (Φ2
L(x) − 〈Φ2

L〉) + gNLΦ3
L(x). In this case,

τNL = (6 f local
NL /5)2; however, in general the trispectrum ampli-

tude can be larger.
The trispectrum is a complementary observable to the CMB

bispectrum as it can further distinguish different inflationary sce-
narios. This is because the same interactions that lead to the bis-
pectrum might be responsible also for a large trispectrum, so
that the different NG parameters can be related to each other in
a well-defined way within specific models. If there is a non-zero
squeezed-shape bispectrum there must necessarily be a trispec-
trum, with τNL ≥ (6 f local

NL /5)2 (Suyama & Yamaguchi 2008;
Sugiyama et al. 2011; Sugiyama 2012; Lewis 2011; Smith et al.
2011; Assassi et al. 2012; Kehagias & Riotto 2012). In the sim-
plest inflationary scenarios the prediction would be τNL =
(6 f local

NL /5)2, but larger values would indicate more complicated
dynamics. Several inflationary scenarios have been found in
which the bispectrum is suppressed, thus leaving the trispec-
trum as the largest higher-order correlator in the data. A detec-
tion of a large trispectrum and a negligible bispectrum would
be a smoking gun for these models. This is the case, for ex-
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ample, of certain curvaton and multi-field field models of in-
flation (Byrnes et al. 2006; Sasaki et al. 2006; Byrnes & Choi
2010), which for particular parameter choice can produce a
significant τNL and gNL and small fNL. Large trispectra are
also possible in single-field models of inflation with higher-
derivative interactions (see, e.g., Chen et al. 2009; Arroja et al.
2009; Senatore & Zaldarriaga 2011; Bartolo et al. 2010b), but
these would be suppressed in the squeezed limit since they
are generated by derivative interactions at horizon-crossing, and
hence only project weakly onto the local shapes. These equi-
lateral trispectra arise can be well-described by some template
forms (Fergusson et al. 2010b). Naturally, higher-order correla-
tions could also be considered, but are not directly studied in this
paper.

3. Statistical estimation of the CMB bispectrum

In this Section, we review the statistical techniques that we use
to estimate the nonlinearity parameter fNL. We begin by fixing
some notation and describing the CMB angular bispectrum in
Sect. 3.1. We then introduce in Sect. 3.2 the optimal fNL bispec-
trum estimator. From Sect. 3.2.1 onwards we describe in detail
the different implementations of the optimal estimator that were
developed and applied to Planck data.

3.1. The CMB angular bispectrum

Temperature anisotropies are represented using the a`m coeffi-
cients of a spherical harmonic decomposition of the CMB map,

∆T
T

(n̂) =
∑
`m

a`mY`m(n̂) ; (22)

we write C` = 〈|a`m|2〉 for the angular power spectrum and Ĉ` =
(2` + 1)−1 ∑

m |a`m|2 for the corresponding (ideal) estimator; hats
“ˆ” denote estimated quantities. The CMB angular bispectrum
is the three-point correlator of the a`m:

Bm1m2m3
`1`2`3

≡ 〈a`1m1 a`2m2 a`3m3〉. (23)

If the CMB sky is rotationally invariant, the angular bispectrum
can be factorized as follows:

〈a`1m1 a`2m2 a`3m3〉 = G`1`2`3
m1m2m3

b`1`2`3 , (24)

where b`1`2`3 is the so called reduced bispectrum, and G`1`2`3
m1m2m3 is

the Gaunt integral, defined as:

G`1`2`3
m1m2m3

≡
∫

Y`1m1 (n̂) Y`2m2 (n̂) Y`3m3 (n̂) d2 n̂

= h`1`2`3

(
`1 `2 `3
m1 m2 m3

)
, (25)

where h`1`2`3 is a geometrical factor,

h`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
. (26)

The Wigner-3 j symbol in parentheses enforces rotational sym-
metry, and allows us to restrict attention to a tetrahedral domain
of multipole triplets {`1, `2, `3}, satisfying both a triangle condi-
tion and a limit given by some maximum resolution `max (the
latter being defined by the finite angular resolution of the ex-
periment under study). This three-dimensional domain VT of

allowed multipoles, sometimes referred to in the following as a
“tetrapyd”, is illustrated in Fig. 1 and it is explicitly defined by

Triangle condition: `1 ≤ `2 + `3 for `1 ≥ `2, `3,+perms.,
Parity condition: `1 + `2 + `3 = 2n , n ∈ N , (27)
Resolution: `1, `2, `3 ≤ `max , `1, `2, `3 ∈ N .

Here, VT is the isotropic subset of the full space of bispectra,
denoted byV.

One can also define an alternative rotationally-invariant re-
duced bispectrum B`1`2`3 in the following way:

B`1`2`3 ≡ h`1`2`3

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
Bm1m2m3
`1`2`3

. (28)

Note that this B`1`2`3 is equal to h`1`2`3 times the angle-averaged
bispectrum as defined in the literature. From Eqs. (24) and (25),
and the fact that the sum over all mi of the Wigner-3 j symbol
squared is equal to 1, it is easy to see that B`1`2`3 is related to the
reduced bispectrum by

B`1`2`3 = h2
`1`2`3

b`1`2`3 . (29)

The interest in this bispectrum B`1`2`3 is that it can be estimated
directly from maximally-filtered maps of the data:

B̂`1`2`3 =

∫
d2 n̂T`1 (n̂)T`2 (n̂)T`3 (n̂) , (30)

where the filtered maps T`(n̂) are defined as:

T`(n̂) ≡
∑

m

a`mY`m(n̂) . (31)

This can be seen by replacing the Bm1m2m3
`1`2`3

in Eq. (28) by its
estimate a`1m1 a`2m2 a`3m3 and then using Eq. (25) to rewrite the
Wigner symbol in terms of a Gaunt integral, which in its turn
is expressed as an integral over the product of three spherical
harmonics.

3.2. CMB bispectrum estimators

The full bispectrum for a high-resolution map cannot be eval-
uated explicitly because of the sheer number of operations in-
volved, O(`5

max), as well as the fact that the signal will be too
weak to measure in individual multipoles with any significance.
Instead, we essentially use a least-squares fit to compare the
bispectrum of the observed CMB multipoles with a particular
theoretical bispectrum b`1`2`3 . We then extract an overall “am-
plitude parameter” fNL for that specific template, after defin-
ing a suitable normalization convention so that we can write
b`1`2`3 = fNLbth

`1`2`3
, where bth

`1`2`3
is defined as the value of the

theoretical bispectrum ansatz for fNL = 1.
Optimal 3-point estimators, introduced by Heavens (1998)

(see also Gangui & Martin 2000a), are those which saturate the
Cramér-Rao bound. Taking into account the fact that instrument
noise and masking can break rotational invariance, it has been
shown that the general optimal fNL estimator can be written
as (Babich 2005; Creminelli et al. 2006; Senatore et al. 2010;
Verde et al. 2013):

f̂NL =
1
N

∑
`i,mi

G `1 `2 `3
m1m2m3

bth
`1`2`3

(32)

×
[
C−1
`1m1,`

′
1m′1

a`′1m′1 C−1
`2m2,`

′
2m′2

a`′2m′2 C−1
`3m3,`

′
3m′3

a`′3m′3

− 3 C−1
`1m1,`2m2

C−1
`3m3,`

′
3m′3

a`′3m′3

]
,

9
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Fig. 1. Permitted observational domain of Eq. (27) for the CMB bispec-
trum b`1`2`3 . Allowed multipole values (`1, `2, `3) lie inside the shaded
“tetrapyd” region (tetrahedron+pyramid), satisfying both the triangle
condition and the experimental resolution ` < L≡ `max.

where C−1 is the inverse of the covariance matrix C`1m1,`2m2 ≡

〈a`1m1 a`2m2〉 and N is a suitable normalization chosen to produce
unit response to bth

`1`2`3
.

In the expression of the optimal estimator above we note the
presence of two contributions, one (hereafter defined the “cubic
term” of the estimator) is cubic in the observed a`m and corre-
lates the bispectrum of the data to the theoretical fitting template
bth
`1`2`3

, while the other is linear in the observed a`m (hereafter,
the “linear term”), which is zero on average. In the rotationally-
invariant case the linear term is proportional to the monopole in
the map, which has been set to zero, so in this case the estima-
tor simply reduces to the cubic term. However, when rotational
invariance is broken by realistic experimental features such as
a Galactic mask or an anisotropic noise distribution, the linear
term has an important effect on the estimator variance. In this
case, the coupling between different ` would in fact produce a
spurious increase in the error bars (coupling of Fourier modes
due to statistical anisotropy can be “misinterpreted” by the esti-
mator as NG). The linear term correlates the observed a`m to the
power spectrum anisotropies and removes this effect, thus restor-
ing optimality (Creminelli et al. 2006; Yadav et al. 2008, 2007).

The actual problem with Eq. (32) is that its direct imple-
mentation to get an optimal fNL estimator would require mea-
surement of all the bispectrum configurations from the data. As
already mentioned at the beginning of this section, the compu-
tational cost of this would scale like `5

max and be totally pro-
hibitive for high-resolution CMB experiments. Even taking into
account the constraints imposed by isotropy, the number of mul-
tipole triples {`1, `2, `3} is of the order of 109 at Planck resolu-
tion, and the number of different observed bispectrum configu-
rations b̂`1`2`3

m1m2m3 is of the order of 1015. For each of them, costly
numerical evaluation of the Wigner symbol is also required. This
is completely out of reach of existing supercomputers. It is then
necessary to find numerical solutions that circumvent this prob-
lem and in the following subsections we will show how the dif-
ferent estimators used for the fNL Planck data analysis address

this challenge. Before entering into a more accurate description
of these different methods, we would like however to stress again
that they are all going to be different implementations of the opti-
mal fNL estimator defined by Eq. (32); therefore they are concep-
tually equivalent and expected to produce fNL results that are in
very tight agreement. This will later on allow for stringent vali-
dation tests based on comparing different pipelines. On the other
hand, it will soon become clear that the different approaches that
we are going to discuss also open up a range of additional ap-
plications beyond simple fNL estimation for standard bispectra.
Such applications include, for example, full bispectrum recon-
struction (in a suitably smoothed domain), tests of directional
dependence of fNL, and other ways to reduce the amount of data,
going beyond simple single-number fNL estimation. So different
methods will also provide a vast range of complementary infor-
mation.

Another important preliminary point, to notice before dis-
cussing different techniques, is that none of the estimators in
the following sections implement exactly Eq. (32), but a slightly
modified version of it. In Eq. (32) the CMB multipoles always
appear weighted by the inverse of the full covariance matrix.
Inverse covariance filtering of CMB data at the high angular
resolutions achieved by experiments like WMAP and Planck is
another very challenging numerical issue, which was fully ad-
dressed only recently (Smith et al. 2009; Komatsu et al. 2011;
Elsner & Wandelt 2013). For our analyses we developed two in-
dependent inverse-covariance filtering pipelines. The former is
based on an extension to Planck resolution of the algorithm used
for WMAP analysis (Smith et al. 2009; Komatsu et al. 2011); the
latter is based on the algorithm described in Elsner & Wandelt
(2013). However, detailed comparisons interestingly showed
that our estimators perform equally well (i.e., they saturate the
Cramér-Rao bound) if we approximate the covariance matrix as
diagonal in the filtering procedure and we apply a simple diffu-
sive inpainting procedure to the masked areas of the input CMB
maps. A more detailed description of our inpainting and Wiener
filtering algorithms can be found in Sect. 3.3.

In the diagonal covariance approximation, the minimum
variance estimator is obtained by making the replacement
(C−1a)`m → a`m/C` in the cubic term and then including the
linear term that minimizes the variance for this class of cubic
estimator (Creminelli et al. 2006). This procedure leads to the
following expression:

f̂NL =
1
N

∑
`i,mi

G `1 `2 `3
m1m2m3

b̃th
`1`2`3
×

[
ã`1m1

C̃`1

ã`2m2

C̃`2

ã`3m3

C̃`3

− 6
C̃`1m1,`2m2

C̃`1C̃`2

ã`3m3

C̃`3m3

]
, (33)

where the tilde denotes the modification of C` and b`1`2`3 to in-
corporate instrument beam and noise effects, and indicates that
the multipoles are obtained from a map that was masked and pre-
processed through the inpainting procedure detailed in Sect. 3.3.
This means that

b̃`1`2`3 ≡ b`1 b`2 b`3 b`1`2`3 , C̃` ≡ b2
`C` + N` , (34)

where b` denotes the experimental beam, and N` is the noise
power spectrum. For simplicity of notation, in the following we
will drop the tilde and always assume that beam, noise and in-
painting effects are properly included.

10
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Using Eqs. (28) and (29) we can rewrite Eq. (33) in terms of
the bispectrum B`1`2`3 :

f̂NL =
6
N

∑
`1≤`2≤`3

Bth
`1`2`3

(
Bobs
`1`2`3

− Blin
`1`2`3

)
V`1`2`3

. (35)

In the above expression, Bth is the theoretical template for B
(with fNL = 1) and Bobs denotes the observed bispectrum (the cu-
bic term), extracted from the (inpainted) data using Eq. (30). Blin

is the linear correction, also computed using Eq. (30) by replac-
ing two of the filtered temperature maps by simulated Gaussian
ones and averaging over a large number of them (three permuta-
tions). The variance V in the inverse-variance weights is given by
V`1`2`3 = g`1`2`3 h2

`1`2`3
C`1C`2C`3 (remember that these should be

viewed as being the quantities with tildes, having beam and noise
effects included) with g`1`2`3 a permutation factor (g`1`2`3 = 6
when all ` are equal, g`1`2`3 = 2 when two ` are equal, and
g`1`2`3 = 1 otherwise). Both Eqs. (33) and (35) will be used in the
following. Eq. (33) will provide the starting point for the KSW,
skew-C` and modal estimators, while Eq. (35) will be the basis
for the binned and wavelets estimators.

Next, we will describe in detail the different methods, and
show how they address the numerical challenge posed by the
necessity to evaluate a huge number of bispectrum configura-
tions. To summarize loosely: the KSW estimator, the skew-C`

approach and the separable modal methodology achieve mas-
sive reductions in computational costs by exploiting structural
properties of bth, e.g., separability. On the other hand, the binned
bispectrum and the wavelet approaches achieve computational
gains by data compression of Bobs.

3.2.1. The KSW estimator

To understand the rationale behind the KSW es-
timator (Komatsu et al. 2005, 2003; Senatore et al.
2010; Creminelli et al. 2006; Yadav et al. 2008, 2007;
Yadav & Wandelt 2008; Smith & Zaldarriaga 2011), as-
sume that the theoretical reduced bispectrum bth

`1`2`3
can be

exactly decomposed into a separable structure, e.g., there exist
some sequences of functions α(`, r), β(`, r) such that we can
approximate b`1`2`3 as

b`1`2`3 '

∫ [
β(`1, r)β(`2, r)α(`3, r) + β(`1, r)β(`3, r)α(`2, r)

+β(`2, r)β(`3, r)α(`1, r)
]

r2 dr , (36)

where r is a radial coordinate. This assumption is fulfilled
in particular by the local shape (Komatsu & Spergel 2001;
Babich et al. 2004), with α(`, r) and β(`, r) involving integrals of
products of spherical Bessel functions and CMB radiation trans-
fer functions. Let us consider the optimal estimator of Eq. (33)
and neglect for the moment the linear part. Exploiting Eq. (36)
and the factorizability property of the Gaunt integral (Eq. (25)),
the cubic term of the estimator can be written as:

S cub =

∫
dr r2

∫
d2 n̂ A(n̂, r)B2(n̂, r) (37)

where
A(n̂, r) =

∑
`m

α(`, r) a`mY`m(n̂)
C`

, (38)

and
B(n̂, r) =

∑
`m

β(`, r) a`mY`m(n̂)
C`

. (39)

From the formulae above we see that the overall triple inte-
gral over all the configurations `1, `2, `3 has been factorized into
a product of three separate sums over different `. This pro-
duces a massive reduction in computational time, as the prob-
lem now scales like `3

max instead of the original `5
max . Moreover,

the bispectrum can be evaluated in terms of a cubic statistic
in pixel space from Eq. (37), and the functions A(n̂, r), B(n̂, r)
are obtained from the observed a`m by means of Fast Harmonic
Transforms.

It is easy to see that the linear term can be factorized in anal-
ogous fashion. Again considering the local shape type of decom-
position of Eq. (36), it is possible to find:

S lin =
−6
N

∫
dr r2

∫
d2 n̂

[
2 〈A(r, n̂)B(r, n̂)〉MC ×

× B(r, n̂) + 〈B(r, n̂)B(r, n̂)〉MC A(r, n̂)
]
, (40)

where 〈·〉MC denotes a Monte Carlo (MC) average over simula-
tions accurately reproducing the properties of the actual data set
(basically we are taking a MC approach to estimate the prod-
uct between the theoretical bispectrum and the a`m covariance
matrix appearing in the linear term expression).

The estimator can be finally expressed as a function of S cub
and S lin:

f̂NL =
S cub + S lin

N
. (41)

Whenever it can be applied, the KSW approach makes the prob-
lem of fNL estimation computationally feasible, even at the high
angular resolution of the Planck satellite. One important caveat
is that factorizability of the shape, which is the starting point of
the method, is not a general property of theoretical bispectrum
templates. Strictly speaking, only the local shape is manifestly
separable. However, a large class of inflationary models can be
extremely well approximated by separable equilateral and or-
thogonal templates (Babich et al. 2004; Creminelli et al. 2006;
Senatore et al. 2010). The specific expressions of cubic and lin-
ear terms are of course template-dependent, but as long as the
template itself is separable their structure is analogous to the ex-
ample shown in this Section, i.e., they can be written as pixel
space integrals of cubic products of suitably-filtered CMB maps
(involving MC approximations of the a`m covariance for the lin-
ear term). For a complete and compact summary of KSW im-
plementations for local, equilateral and orthogonal bispectra see
Komatsu et al. (2009, Appendix).

3.2.2. The Skew-C` Extension

The skew-C` statistics were introduced by Munshi & Heavens
(2010) to address an issue with estimators such as KSW which
reduce the map to an estimator of fNL for a given type of NG.
This level of data compression, to a single number, has the dis-
advantage that it does not allow verification that a NG signal is
of the type which has been estimated. KSW on its own cannot
tell if a measurement of fNL of given type is actually caused by
NG of that type, or by contamination from some other source or
sources. The skew-C` statistics perform a less radical data com-
pression than KSW (to a function of `), and thus retain enough
information to distinguish different NG signals. The desire to
find a statistic which is able to fulfil this rôle, but which is still
optimal, drives one to a statistic which is closely related to KSW,
and indeed reduces to it when the scale-dependent information
is not used. A further advantage of the skew-C` is that it allows
joint estimation of the level of many types of NG simultaneously.
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This requires a very large number of simulations for accurate es-
timation of their covariance matrix, and they are not used in this
role in this paper. However, they do play an important part in
identifying which sources of NG are clearly detected in the data,
and which are not.

We define the skew-C` statistics by extending from KSW, as
follows: from Eq. (37), the numerator E can be rewritten as

E =
∑
`

[CA,B2

`
+ 2CAB,B

`
] (42)

where

CA,B2

`
=

∫ ∫
S 2

∑
`1,`2

∑
m1,m2,m

[
β(`1; r)a`1m1 Y`1m1 (n̂)

C`1

×
β(`2; r)a`2m2 Y`2m2 (n̂)

C`2

α(`; r)a`mY`m(n̂)
C`

]
r2d2 n̂dr (43)

and

CAB,B
`

=

∫ ∫
S 2

∑
`1,`2

∑
m1,m2,m

[
β(`1; r)a`1m1 Y`1m1 (n̂)

C`1

×
α(`2; r)a`2m2 Y`2,m2 (n̂)

C`2

β(`; r)a`mY`m(n̂)
C`

]
r2d2 n̂dr . (44)

The skew-C` approach allows for the full implementation of the
KSW procedure, when the sum in Eq. (42) is fully evaluated;
furthermore, it allows for extra degrees of flexibility, e.g., by re-
stricting the sum to subsets of the multipole space, which may
highlight specific features of the NG signal. Each form of NG
considered has its own α, β, hence its own set of skew-C`, de-
noted S ` ≡ CA,B2

`
+ 2CAB,B

`
, and we have chosen to illustrate

here with the local form, but as with KSW the method can be
extended to other separable shapes, and some skew-C` do not
involve integrals, such as the ISW-lensing skew statistic. Note
that in this paper we do not fit the S ` directly, but instead we
estimate the NG using KSW, and then verify (or not) the nature
of the NG by comparing the skew-C` with the theoretical expec-
tation. No further free parameters are introduced at this stage.
This procedure allows investigation of KSW detections of NG
of a given type, assessing whether or not they are actually due to
NG of that type.

3.2.3. Separable Modal Methodology

Primordial bispectra need not be manifestly separable (like the
local bispectrum), or be easily approximated by separable ad
hoc templates (equilateral and orthogonal), so the direct KSW
approach above cannot be applied generically (nor to late-time
bispectra). However, we can employ a highly-efficient gener-
alization by considering a complete basis of separable modes
describing any late-time bispectrum (see Fergusson & Shellard
2007; Fergusson et al. 2010a), as applied to WMAP-7 data for
a wide variety of separable and non-separable bispectrum mod-
els (Fergusson et al. 2012). See also Planck Collaboration XXIII
(2013) and Planck Collaboration XXV (2013). We can achieve
this by expanding the signal-to-noise-weighted bispectrum as

b`1`2`3√
C`1C`2C`3

=
∑
i, j,k

αi jkQi jk(`1, `2, `3) , (45)

where the (non-orthogonal) separable modes Qn are defined by

Qi jk(`1, `2, `3) =
1
6

[qi(`1) q j(`2) qk(`3) + q j(`1) qi(`2) qk(`3)

+ cyclic perms in i, j, k ] . (46)

It is more efficient to label the basis as Qn, with the subscript n
representing an ordering of the {i, j, k} products (e.g., by distance
i2 + j2 + k2). The q̄i(`) are any complete basis functions up to
a given resolution of interest and they can be augmented with
other special functions adapted to target particular bispectra. The
modal coefficients in the bispectrum of Eq. (45) are given by the
inner product of the weighted bispectrum with each mode

αn =
∑

p

γ−1
np

〈
b`1`2`3√

C`1C`2C`3

, Qp(`1, `2, `3)
〉

(47)

where the modal transformation matrix is

γnp = 〈Qn, Qp〉

≡
∑
`1,`2,`3

h2
`1`2`3

Qi jk(`1, `2, `3) Qi′ j′k′ (`1, `2, `3) . (48)

In the following, the specific basis functions q̄i(`) we employ in-
clude either weighted Legendre-like polynomials or trigonomet-
ric functions. These are combined with the Sachs-Wolfe local
shape and the separable ISW shape in order to obtain high cor-
relations to all known bispectrum shapes (usually in excess of
99%).

Substituting the separable mode expansion of Eq. (45) into
the estimator and exploiting the separability of the Gaunt integral
(Eq. (25)), yields

E =
1

N2

∑
n↔prs

αn

∫
d2 n̂

[
M̄{p(n̂)M̄r(n̂)M̄s}(n̂)

− 6
〈
M̄G
{p(n̂)M̄G

r (n̂)
〉

M̄s}(n̂)
]
. (49)

where the M̄p(n̂) represent versions of the original CMB map
filtered with the basis function qp (and the weights (

√
C`)−1),

that is,
M̄p(n̂) =

∑
`m

qp(`)
a`m
√

C`

Y`m(n̂) . (50)

The maps M̄G
p (n̂) incorporate the same mask and a realistic

model of the inhomogeneous instrument noise; a large ensem-
ble of these maps, calculated from Gaussian simulations, is used
in the averaged linear term in the estimator of Eq. (49), allow-
ing for the subtraction of these important effects. Defining the
integral over these convolved product maps as cubic and linear
terms respectively,

βn
cub =

∫
d2 n̂ M̄{p(n̂)M̄r(n̂)M̄s}(n̂) , (51)

βn
lin =

∫
d2 n̂

〈
M̄G
{p(n̂)M̄G

r (n̂)
〉

M̄s}(n̂) , (52)

the estimator reduces to a simple sum over the mode coefficients

E =
1

N2

∑
n

αnβ̄n , (53)

where β̄Qn ≡ β̄
Q

n
cub − β̄Qn

lin. The estimator sum in Eq. (53) is now
straightforward to evaluate because of separability, since it has
been reduced to a product of three sums over the observational
maps (Eq. (49)), followed by a single 2D integral over all di-
rections (Eq. (51)). The number of operations in evaluating the
estimator sum is only O(`2).

For the purposes of testing a wide range inflationary mod-
els, we can also define a set of primordial basis functions
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Qink(k1, k2, k3) = q̄i(k1)q̄ j(k2)q̄k(k3) + perms. for wavenumbers
satisfying the triangle condition (again we will order the {i, j, k}
with n). This provides a separable expansion for an arbitrary
primordial shape function S (k1, k2, k3) = B(k1, k2, k3)/(k1k2k3)2,
that is,

S (k1, k2, k3) =
∑

n

ᾱnQn(k1, k2, k3) . (54)

Using the same transfer functions as in the KSW inte-
gral (37), we can efficiently project forward each separa-
ble primordial mode Qn(k1, k2, k3) to a corresponding late-
time solution Q̃n(l1l2l3) (essentially the projected CMB bispec-
trum for Qn(k1, k2, k3)). By finding the inner product between
these projected modes Q̃n(`1, `2, `3) and the CMB basis func-
tions Qn(`1, `2, `3), we can obtain the transformation matrix
(Fergusson et al. 2010a,b)

Γnp =
∑

r

γ̄−1
np〈Q̃r(`1, `2, `3), Q(`1, `2, `3)〉 , (55)

which projects the primordial expansion coefficients αQn to late-
time:

αn =
∑

p

Γnpᾱp . (56)

When Γnp is calculated once we can efficiently convert any given
primordial bispectrum B(k1, k2, k3) into its late-time CMB bis-
pectrum counterpart using Eq. (45). We can use this to extend
the KSW methodology and to search for the much broader range
of primordial models beyond local, equilateral and orthogonal,
having validated on these standard shapes.

3.2.4. Binned Bispectrum

In the binned bispectrum approach (Bucher et al. 2010), the
computational gains are achieved by data compression of the ob-
served B̂. This is quite feasible, because like the power spectrum
the bispectrum is a rather smooth function, with features on the
scale of the acoustic peaks. In this way one obtains an enormous
reduction of the computational resources needed at the cost of
only a tiny increase in variance (typically 1%).

More precisely, the following statistic is considered,

Ti(n̂) =
∑
`∈∆i

+∑̀
m=−`

a`mY`m(n̂), (57)

where the ∆i are intervals (bins) of multipole values [`i, `i+1−1],
for i = 0, . . . , (Nbins − 1), with `0 = `min and `Nbins = `max + 1, and
the other bin boundaries chosen in such a way as to minimize the
variance of f̂NL. The binned bispectrum is then obtained by using
Ti instead of T` in the expression for the sample bispectrum of
Eq. (30), to obtain:

Bbin
i1i2i3 =

∫
Ti1 (n̂)Ti2 (n̂)Ti3 (n̂)d2 n̂. (58)

The linear term Blin is binned in an analogous way, and the the-
oretical bispectrum template Bth and variance V are also binned
by summing them over the values of ` inside the bin. Finally
fNL is determined using the binned version of Eq. (35), i.e., by
replacing all quantities by their binned equivalent and replac-
ing the sum over ` by a sum over bin indices i. An important
point is that the binned bispectrum estimator does not mix the
observed bispectrum and the theoretical template weights until
the very last step of the computation of f̂NL (the final sum over

bin indices). Thus, the (binned) bispectrum of the map is also
a direct output of the code. Moreover, one can easily study the
`-dependence of the results by omitting bins from this final sum.

The full binned bispectrum allows one to explore the bis-
pectral properties of maps independent of a theoretical model.
Binned bispectra have been used to compare component separa-
tion maps and single-frequency maps dominated by foregrounds,
as presented in Sects. 3.4.2 and 7. In its simplest implementa-
tion, which is used in this paper, the binned estimator uses top-
hat filters in harmonic space, which makes the Gaussian noise
independent between different bins; however, slightly overlap-
ping bins could be used to provide better localization properties
in pixel space. In this sense the binned estimator is related to the
wavelet estimators, which we discuss below.

3.2.5. Wavelet fNL estimator

Wavelet methods are well-established in the CMB litera-
ture and have been applied to virtually all areas of the
data analysis pipeline, including map-making and compo-
nent separation, point source detection, search for anoma-
lies and anisotropies, cross-correlation with large scale struc-
ture and the ISW effect, and many others (see for instance
Antoine & Vandergheynst 1998, Martı́nez-González et al. 2002,
Cayon et al. 2003, McEwen et al. 2007a, Pietrobon et al. 2006,
Starck et al. 2006, McEwen et al. 2007b, Cruz et al. 2007,
Faÿ et al. 2008, Feeney et al. 2011, Geller & Mayeli 2009a,
Geller & Mayeli 2009b, Starck et al. 2010, Scodeller et al. 2011,
Fernandez-Cobos et al. 2012). These methods have the advan-
tage of possessing localization properties both in real and
harmonic space, allowing the effects of masked regions and
anisotropic noise to be dealt with efficiently.

In terms of the current discussion, wavelets can be viewed
as a way to compress the sample bispectrum vector by a
careful binning scheme in the harmonic domain. See also
Planck Collaboration XXIII (2013). In particular, the wavelet
bispectrum can be rewritten as

qi jk =
1

4π
1

σiσ jσk

∫
d2 n̂w(Ri, n̂)w(R j, n̂)w(Rk, n̂), (59)

where

w(R; b) =

∫
d2 n̂ f (n̂)Ψ(n̂; b,R) =

∑
`m

a`mω`(R)Y`m(n̂). (60)

Here b is the position on the sky at which the wavelet coefficient
is evaluated and σ is is the dispersion of the wavelet coefficient
map w(R; b) for the scale R. The filters ω`(R) can be seen as
the coefficients of the expansion into spherical harmonic of the
Spherical Mexican Hat Wavelet (SMHW) filter

Ψ(x, n; R) =
1
√

2π

1
N(R)

[
1 +

(
y

2

)2
]2 [

2 −
(
y

R

)2
]

e−y
2/2R2

. (61)

Here N(R) = R
√

1 + R2/2 + R4/4 is a normalizing constant and
y = 2 tan(θ/2) represents the distance between x and n, evaluated
on the stereographic projection on the tangent plane at n; θ is
the corresponding angular distance, evaluated on the spherical
surface.

The implementation of the linear-term correction can pro-
ceed in analogy with the earlier cases. However, note that, in
view of the real-space localization properties of the wavelet
filters, the linear term here is smaller than for KSW and re-
lated approaches, although not negligible. Moreover, it can be
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well-approximated by a term-by-term sample-mean subtrac-
tion for the wavelet coefficients, which allows for a further re-
duction of computational costs. Further details can be found
in Curto et al. (2011a,b, 2012); Regan et al. (2013) (see also
Lan & Marinucci 2008; Rudjord et al. 2009; Pietrobon et al.
2009, 2010; Donzelli et al. 2012 for related needlet-based pro-
cedures).

3.3. Wiener filtering

As discussed in Sect. 3.2, the fNL bispectrum estimator requires,
in principle, inverse covariance filtering of the data to achieve
optimality (equivalent to Wiener filtering up to a trivial multipli-
cation by the inverse of the signal power spectrum).

We have used the iterative method of Elsner & Wandelt
(2013) for Wiener filtering simulations and data. The algorithm
makes use of a messenger field, introduced to mediate between
the pixel space and harmonic space representation, where noise
and signal properties can be specified most directly. Since the
Wiener filter is the maximum a posteriori solution, we moni-
tor the χ2 of the current solution as a convergence diagnostics.
We terminate the algorithm as soon as the improvement in the
posterior between two consecutive steps has dropped below a
threshold of ∆χ2 ≤ 10−4σχ2 , where σχ2 is the standard deviation
of χ2-distributed variables with a number of degrees of freedom
given by the number of observed pixels. Results of this method
have been cross-validated using an independent conjugate gra-
dient inversion algorithm with multi-grid preconditioning, orig-
inally developed for the analysis of WMAP data in Smith et al.
(2009). Applying this estimator to simulations pre-processed us-
ing the above mentioned algorithms yielded optimal error bars
as expected.

However, we found that optimal error bars could also be
achieved for all shapes using a much simpler diffusive inpaint-
ing pre-filtering procedure that can be described as follows: all
masked areas of the sky (both Galactic and point sources) are
filled in with an iterative scheme. Each pixel in the mask is filled
with the average of all surrounding pixels, and this is repeated
2000 times over all masked pixels (we checked on simulations
that convergence of all fNL estimates was achieved with 2000 it-
erations). Note that the effect of this inpainting procedure, espe-
cially visible for the Galactic mask, is effectively to apodize the
mask, reproducing small-scale structure near the edges and only
large-scale modes in the interior. This helps to prevent propa-
gating any sharp-edge effects or lack of large-scale power in the
interior of the mask to the unmasked regions during harmonic
transforms.

Any bias and/or excess variance arising from the inpainting
procedure were assessed through MC validation (see Sect. 6) and
found to be negligible. Since the inpainting procedure is partic-
ularly simple to implement, easily allows inclusion of realistic
correlated-noise models in the simulations, and retains optimal-
ity, we chose inpainting as our data filtering procedure for the
fNL analysis.

3.4. CMB bispectrum reconstruction

3.4.1. Modal bispectrum reconstruction

Modal and related estimators can be used to reconstruct the
full bispectrum from the modal coefficients βi jk obtained from
map filtering with the separable basis functions Qi jk(`1, `2, `3)
(Eq. (51)) (Fergusson et al. 2010a). It is easy to show that the
expectation value for βi jk (or equivalently βn) for an ensemble

of non-Gaussian maps generated with a CMB bispectrum shape
given by αn (Eq. (47)) (with amplitude fNL) is

〈βn〉 = fNL

∑
p

γnpαp , (62)

where γnp is defined in Eq. (48). Hence, we expect the best fit
coefficients for a particular αn realization to be given by the βns
themselves (for a sufficiently large signal). Assuming that we
can extract the βn coefficients accurately from a particular ex-
periment, we can directly reconstruct the CMB bispectrum using
the expansion of Eq. (46), that is,

b`1`2`3 =
√

C`1C`2C`3

∑
n,p

γ−1
np βp Qn(`1, `2, `3)

=
√

C`1C`2C`3

∑
n

βR
n Rn(`1, `2, `3) , (63)

where, for convenience, we have also defined orthonormalized
basis functions Rn(`1, `2, `3) with coefficients αR

n and βR
n such that

〈Rn, Rp〉 = δnp. This method has been validated for simulated
maps, showing the accurate recovery of CMB bispectra, and it
has been applied to the WMAP-7 data to reconstruct the full 3D
CMB bispectrum (Fergusson et al. 2012).

To quantify whether or not there is a model-independent
deviation from Gaussianity, we can consider the total inte-
grated bispectrum. By summing over all multipoles, we can de-
fine a total integrated nonlinearity parameter F̄NL which, with
the orthonormal modal decomposition of Eq. (63) becomes
(Fergusson et al. 2012)

F̄2
NL =

1
N2

loc

∑
li

h2
`1`2`3

b2
`1`2`3

C`1C`2C`3

=

∑
n β

R
n

2∑
n α

R
n

2 , (64)

where Nloc is the normalization for the local fNL = 1 model.
The expectation value 〈F̄2

NL〉 contains more than just the three-
point correlator, with contributions from products of the two-
point correlators and even higher-order contributions,

F̄2
NL ≈

1
N2

loc

6nmax +

nmax∑
n=1

(
F2

NLα
R
n

2 + 〈βR
n

2〉6pt + ...
) . (65)

Here F̄2
NL is the full 6-point function over the unconnected

Gaussian part, i.e., the product of 3 C`. So, for a Gaussian in-
put this recovers an average of 1 per mode. In the non-Gaussian
case the leading-order contributions after the Gaussian part are
the bispectrum squared and the product of the power spectrum
and the trispectrum, which enter at the same order (for additional
explanations see Fergusson et al. 2012).

3.4.2. Smoothed binned bispectrum reconstruction

As explained in Sect. 3.2.4, the full binned bispectrum of the
maps under study is one of the products of the binned estimator
code.

Given the relatively fine binning (about 50 bins up to ` =
2000 or 2500), most of the measurement in any single bin-triplet
is noise. If combinations of maps are chosen so that the CMB
primordial signal dominates, most of this noise is Gaussian, re-
flecting the fact that even when 〈xyz〉 = 0, for a particular statis-
tical realization, xyz is almost certainly non-zero. If our goal is
to test whether there is any statistically significant signal, then it
makes sense to normalize by defining a new fieldBi1i2i3 , which is
the binned bispectrum divided by its expected standard deviation
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(computed in the standard way assuming Gaussian statistics).
The distribution of Bi1i2i3 in any one bin-triplet is very nearly
Gaussian as a result of the central limit theorem, and there is
almost no correlation between different bins.

We could study the significance of the extreme values at this
fine resolution, but it also makes sense to smooth in order to
detect features coherent over a wider range of `. If the three-
dimensional domain over which the bispectrum is defined (con-
sisting of those triplets in the range [`min, `max] satisfying the tri-
angle inequality and parity condition) did not have boundaries,
the smoothing would be more straightforward. We smooth with
a Gaussian kernel of varying width in ∆(ln `), normalized so that
the smoothed function in each pixel would be normal-distributed
if the input map were Gaussian. In this way, based on the extreme
values, it is possible to decide on whether there is a statistically
significant NG signal in the map in a “blind” (non-parametric)
way.

4. Statistical estimation of the CMB trispectrum

4.1. The squeezed-diagonal trispectrum: τNL

The 4-point function, or equivalently the trispectrum, of the
CMB, can also place interesting constraints on inflation-
ary physics. There are several physically interesting “shapes”
of the trispectrum (e.g., Huang & Shiu 2006; Byrnes et al.
2006; Fergusson et al. 2010b; Izumi et al. 2012), in analogy
to the bispectrum case. In the simplest non-Gaussian mod-
els, the CMB bispectrum has larger signal-to-noise than the
trispectrum, but there are examples of technically natural
models in which the trispectrum has larger signal-to-noise
(e.g., Senatore & Zaldarriaga 2011; Baumann & Green 2012;
see also Bartolo et al. 2010b). This can happen in models in
which the field modulating the fluctuation amplitude is only
weakly correlated to the observed large-scale curvature pertur-
bation.

Analysis of the trispectrum is more challenging than that of
the bispectrum, due to the increased range of systematic effects
and secondary signals which can contribute. For example, grav-
itational lensing of the CMB generates a many-sigma contribu-
tion to the trispectrum, though it has a distinctive anisotropic
shape that differs from primordial NG modulated by scalar
fields. As an instrumental example, any mismatch between the
true covariance of the observed CMB plus noise and the co-
variance which is assumed in the analysis (due, for example, to
mischaracterisation of the pointing, beams, or noise properties)
will generally lead to biases in the estimated trispectrum. Due to
these challenges, we have deferred a full analysis of the primor-
dial trispectrum to a future paper, and here focus on the simplest
squeezed shape that can provide useful constraints on primordial
models, τNL.

τNL is most easily understood as measuring the large-scale
modulation of small-scale power. The constraints on fNL show
that such a modulation must be small if correlated with the tem-
perature. However it is possible for multi-field inflation models
to produce squeezed-shape modulations which are uncorrelated
with the large-scale curvature perturbations. Such models can be
constrained by the trispectrum, conventionally parameterized by
τNL in the squeezed-diagonal shape.

For example, consider the case where a small-scale Gaussian
curvature perturbation ζ0 is modulated by another field φ so that
the primordial perturbation is given by

ζ(x) = ζ0(x)[1 + φ(x)], (66)

where φ(x) is a large-scale modulating field (with amplitude
� 1). The large-scale modes of φ can be measured from the
modulation they induce in the small-scale ζ power spectrum. If
φ has a nearly scale-invariant spectrum, the nearly-white cos-
mic variance noise on the reconstruction dominates on small-
scales, so only the very largest modes can be reconstructed
(Kogo & Komatsu 2006). A reconstruction of φ is going to be
limited to only very large-scale variations, in which case the
scale of the variation is very large compared to the width of the
last-scattering surface; i.e., in any particular direction a large-
scale modulating field will modulate all small-scale perturba-
tions through the last-scattering surface by approximately the
same amount. This approximation is good at the percent level,
and can readily be related to the full trispectrum estimator, as dis-
cussed in more detail in Pearson et al. (2012, Sect. IV); see also
Okamoto & Hu 2002; Munshi et al. 2011; Smidt et al. 2010.

A large-scale power modulation therefore translates directly
into a large-scale modulation of the small-scale CMB tempera-
ture:

T (n̂) ≈ Tg(n̂)[1 + φ(n̂, r∗)] ≡ Tg(n̂)[1 + f (n̂)], (67)

where Tg are the usual small-scale Gaussian CMB temperature
anisotropies and r∗ is the radial distance to the last-scattering
surface. We can quantify the trispectrum as a function of modu-
lation scale by using the power spectrum of the modulation,

τNL(L) ≡
C f

L

Cζ?
L

. (68)

As is conventional, we normalize relative to Cζ?
L , the power spec-

trum of the primordial curvature perturbation at the location of
the recombination surface. The field f is directly observable,
but Cζ?

L is not, since the curvature perturbation can only be con-
strained very indirectly on very large scales. We shall therefore
give constraints on f , which is directly constrained by Planck,
but also on τNL for comparison with the inflation literature. Note
that τNL ∼ 500 corresponds to an f = O(10−3) modulation.

A general quadratic estimator methodology for reconstruct-
ing f was developed in Hanson & Lewis (2009), which we
broadly follow here. The structure is essentially identical to that
for lensing reconstruction (Planck Collaboration XVII 2013),
where here instead of reconstructing a lensing potential (or de-
flection angle), we are reconstructing a scalar modulation field.
The quadratic maximum likelihood estimator for the large-scale
modulation field f (assuming it is small) is given by

f̂LM = F −1
LML′M′

[
f̄L′M′ − 〈 f̄L′M′〉

]
, (69)

where f̄ is a quadratic function of the filtered data that can be
calculated quickly in real space:

f̄LM =

∫
d2 n̂Y∗LM

∑
`1m1

T̄ i
`1m1

Y`1m1


∑
`2m2

C̃`2 T̄ j
`2m2

Y`2m2

 . (70)

Here T̄ i = C−1T̃ i is an inverse-variance filtering sky map (which
accounts for sky cuts and inhomogeneous noise), and C̃`2 is the
lensed C`. The “mean field” f̄ MF ≡ 〈 f̄ 〉 can be estimated from
simulations, along with the Fisher normalization F that is given
by the covariance of f̄ − f̄ MF. The i, j indices are included here,
since we shall be using different sky maps with independent
noise to avoid noise biases at the level of modulation field re-
construction. For low L and high `max the reconstruction noise
is very nearly constant (white, because each small patch of sky
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gives a nearly-uncorrelated but noisy estimate of the small-scale
power), and the reconstruction is very local.

In practice the inverse-variance filtering is imperfect, the
noise cannot be modelled exactly, and the normalizing Fisher
matrix F`m`′m′ evaluated from simulations would be inaccu-
rate. Instead we focus on f̄ directly, which is approximately an
inverse-variance weighed reconstruction of the modulation, and
is manifestly very local in real space (and hence zero in the cut
part of the sky). Since the reconstruction noise, which also ap-
proximately determines the normalization, is nearly white (con-
stant in L), f̄ − f̄ MF in real space has an expectation nearly pro-
portional to the underlying modulation outside the mask.

We then define an estimator of the modulation power spec-
trum

Ĉ f
L = kL

 AL

2L + 1

∑
M

| f̄LM − f̄ MF
LM |

2 − N(0)
L

 (71)

where

N(0)
L =

AL

2L + 1

∑
M

〈| f̄LM − f̄ MF
LM |

2〉0 (72)

is a noise bias for zero signal estimated from simulations. The
normalization AL is the analytic ideal full-sky normalization
which is very close to a constant, and kL is a calibration fac-
tor determined from with-signal simulations. On small scales
kL ∝ f −1

sky, but has some scale dependence: it increases towards
kL ∝ f −2

sky at L = 0 at very low L. We shall sometimes plot

C̄ f
L ≡ k−1

L Ĉ f
L, corresponding to the uncalibrated reconstruction

of the power modulation, which is very local in real space.
For each value of the modulation scale L, Eq. (71) defines a

separate estimator for τNL

τ̂NL(L) ≡
Ĉ f

L

Cζ?
L

. (73)

We can combine estimators from all ` by constructing

τ̂NL,1 ≈ N−1
Lmax∑

L′=Lmin

Cζ?
L′ cov−1

L′LĈ f
L, (74)

where N =
∑Lmax

L′=Lmin
Cζ?

L′ cov−1
L′LCζ?

L and covLL′ is the covariance of
Ĉ f

L from simulations with τNL = 0. On the full-sky the estimators
from each L would be independent, but the mask introduces sig-
nificant coupling between the very low multipoles and this form
of the estimator allows us to account for this. In the full-sky
uncorrelated approximation, with a nearly scale-invariant pri-
mordial spectrum and using the whiteness of the reconstruction
noise, the estimator for τNL simplifies to (Pearson et al. 2012)

τ̂NL ≈ N−1
Lmax∑

L=Lmin

2L + 1
L2(L + 1)2

Ĉ f
L

Cζ?
L

, (75)

where N ≡ Lmin
−2 − (Lmax + 1)−2. This result does not require

many simulations to estimate the covariance accurately for inver-
sion, and is typically expected to give very similar results with
an error bar that is less than 10% larger. We calculate both as
a cross-check, but report results for τ̂NL because it is more ro-
bust, and in our simulation results actually has slightly lower
tails (though larger variance). Mean fields and the N(0)

L bias are
estimated in all cases from 1000 zero-τNL simulations, and the
mask used retains about 70% of the sky.

If there is a nearly scale-invariant signal, so C f
L ∝ Cζ

L as ex-
pected in most multi-field inflation models, the contributions fall
rapidly ∝ 1/L3, as expected when measuring a scale-invariant
signal that has large white reconstruction noise. The signal is
therefore on very large scales, with typically half the Fisher sig-
nal in the dipole modulation and 95% of the signal at L ≤ 4,
justifying the squeezed approximations used. We use Lmax = 10
for the estimators, which includes almost all of the signal-to-
noise but avoids excessive contamination with the ‘blue’ spec-
trum of lensing contributions. However, due to the small number
of modes involved, the posterior distributions of τNL can have
quite broad tails corresponding to the finite probability that all
the largest-scale modulation modes just happen to be near zero.
To improve constraints on large values it can help to include a
larger range of L, and we consider L up to Lmax = 50, which is
about the limit of where the approximations are valid.

5. Non-primordial contributions to the CMB
bispectrum and trispectrum

In this subsection we present the steps followed to account for
and remove the main non-primordial contributions to CMB NG.

5.1. Foreground subtraction

Foreground emission signals in the microwave bands have a
strong non-Gaussian signature. Therefore any residual emis-
sion in the CMB data can give a spurious apparent primordial
NG detection. In this Section we describe how the foreground
emission was modelled and treated in the creation of the CMB
maps used in the present analysis. A comprehensive descrip-
tion of the sky modelling can be found in Delabrouille et al.
(2012). The foreground cleaning techniques are described in
Planck Collaboration XII (2013).

The pre-launch version of the Planck Sky Model (PSM) is
based on observations of the emission from our own Galaxy and
known extra-Galactic sources, largely in the radio and infrared
bands. The PSM is described in Delabrouille et al. (2012) and
includes models of CMB (including a dipole), diffuse Galactic
emissions (synchrotron, free-free, thermal dust, Anomalous
Microwave Emission and CO molecular lines), emission from
compact objects (thermal SZ effect, kinetic SZ effect, radio
sources, infrared sources, correlated far-infrared background and
ultra-compact H ii regions). The sky model includes total inten-
sity as well as polarization, which was not used in this paper.

The PSM has been used to create the sixth round of Full
Focal Plane (FFP6) simulations, a set of simulations for the 2013
data release based on detailed models of the sky and instrument
(e.g., noise properties, beams, satellite pointing and map-making
process), consisting of both Gaussian and non-Gaussian CMB
realizations. A detailed description of the FFP6 simulations can
be found in Planck Collaboration ES (2013). The FFP6 simula-
tions have been used to test and validate the component separa-
tion algorithms employed in Planck and to select the ones to be
applied to the data (Planck Collaboration XII 2013).

CMB foreground-cleaned maps have been created using
several independent techniques: explicit parametrization and
fitting of foregrounds in real space (Commander-Ruler, C-R);
Spectral Matching of foregrounds implementing Independent
Component Analysis (SMICA) (Delabrouille et al. 2003;
Cardoso et al. 2008); Internal Linear Combination (Needlet
Internal Linear Combination, (NILC) (Delabrouille et al.
2009); and Internal Template Fitting (Spectral Estimation via
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Table 1. The bias in the three primordial fNL parameters due to
the ISW-lensing signal for the four component-separation meth-
ods.

SMICA NILC SEVEM C-R

Local . . . . . . . . . . . . . . . . 7.1 7.0 7.1 6.0
Equilateral . . . . . . . . . . . . 0.4 0.5 0.4 1.4
Orthogonal . . . . . . . . . . . . −22 −21 −21 −19

Table 2. Results for the amplitude of the ISW-lensing bispec-
trum from the SMICA, NILC, SEVEM, and C-R foreground-cleaned
maps, for the KSW, binned, and modal (polynomial) estimators;
error bars are 68% CL .

SMICA NILC SEVEM C-R

KSW . . . . . 0.81 ± 0.31 0.85 ± 0.32 0.68 ± 0.32 0.75 ± 0.32
Binned . . . . 0.91 ± 0.37 1.03 ± 0.37 0.83 ± 0.39 0.80 ± 0.40
Modal . . . . 0.77 ± 0.37 0.93 ± 0.37 0.60 ± 0.37 0.68 ± 0.39

Expectation Minimization, SEVEM). These and other techniques
underwent a pre-launch testing phase (Leach et al. 2008). Each
method provides a Planck CMB foreground-cleaned map with a
confidence mask, which defines the trusted cleaned region of the
sky; an estimate of the noise in the output CMB map obtained
from half-ring difference maps; and an estimate of the beam
transfer function of the processed map. The resolution reaches
5 arcminutes. In addition a union of all the confidence masks,
denotes as U73, is provided. Channels from both the Low
Frequency Instrument (LFI, Planck Collaboration II 2013) and
the High Frequency Instrument (HFI, Planck Collaboration VI
2013) of Planck are used to achieve each of the reconstructed
CMB templates. The validation of CMB reconstruction through
component separation is based on the inspection of several
observables, as explained in detail in Planck Collaboration XII
(2013): the two-point correlation function and derived cosmo-
logical parameters; indicators of NG including the fNL results
presented in the present paper; and cross-correlation with
known foreground templates. MC simulations varying the CMB
realizations in the FFP6 simulations were used to establish
uncertainties on the observables listed above. Based on various
figures-of-merit, the foreground cleaning techniques performed
comparably well (Planck Collaboration XII 2013).

5.2. The Integrated Sachs-Wolfe-lensing bispectrum

One of the most relevant mechanisms that can generate NG from
secondary CMB anisotropies is the coupling between weak lens-
ing and the ISW (Sachs & Wolfe 1967) effect. This is in fact
the leading contribution to the CMB secondary bispectrum with
a blackbody frequency dependence (Goldberg & Spergel 1999;
Verde & Spergel 2002; Giovi et al. 2005).

Weak lensing of the CMB is caused by gradients in the
matter gravitational potential that distorts the CMB photon
geodesics. The ISW on the other hand arise because of time-
varying gravitational potentials due to the linear and nonlinear
growth of structure in the evolving Universe. Both the lensing
and the ISW effect are then related to the matter gravitational
potential and thus are correlated phenomena. This gives rise to
a non-vanishing 3-point correlation function. Furthermore, lens-
ing is related to nonlinear processes which are therefore non-
Gaussian. A detailed description of the signal, which accounts

also for the contribution from the early-ISW effect, can be found
in Lewis (2012).

The ISW-lensing bispectrum takes the form:

Bm1m2m3
`1`2`3

≡ 〈a`1m1 a`2m2 a`3m3〉 = 〈aP
`1m1

aL
`2m2

aISW
`3m3
〉+5 perm. , (76)

where P, L, and ISW indicate primordial, lensing and ISW con-
tributions respectively. This becomes

Bm1m2m3 (ISW−L)
`1`2`3

= G
m1m2m3
`1`2`3

bISW−L
`1`2`3

, (77)

where Gm1m2m3
`1`2`3

is the Gaunt integral and bISW−L
`1`2`3

is the reduced
bispectrum given by

bISW−L
`1`2`3

=
`1(`1 + 1) − `2(`2 + 1) + `3(`3 + 1)

2
× C̃TT

`1
CTφ
`3

+ (5 perm.) . (78)

Here C̃TT
` is the lensed CMB power spectrum and CTφ

`
is the ISW-lensing cross-power spectrum (Lewis 2012;
Goldberg & Spergel 1999; Verde & Spergel 2002; Cooray & Hu
2000) that expresses the statistical expectation of the correlation
between the lensing and the ISW effect.

As shown in Hanson et al. (2009b), Mangilli & Verde
(2009), and Lewis et al. (2011), the ISW-lensing bispectrum can
introduce a contamination in the constraints on primordial local
NG from the CMB bispectrum. Both bispectra are maximal for
squeezed or nearly squeezed configurations. The bias on a pri-
mordial fNL (e.g., local) due to the presence of the ISW-lensing
cross correlation signal is defined as:

∆ f local
NL =

Ŝ
N
, (79)

with

Ŝ =
∑

26`1`2`3

BISW−L
`1`2`3

BP
`1`2`3

V`1`2`3

, N =
∑

26`1`2`3

(
BP
`1`2`3

)2

V`1`2`3

, (80)

where BISW−L and BP refer respectively to the ISW-lensing and
the primordial bispectrum, and V is defined below Eq. (35).

The bias in the estimation of the three primordial fNL from
Planck is given in Table 1. As one can see, taking into account
the fNL statistical error bars shown, e.g., in Table 8, the local
shape is most affected by this bias (at the level of more than
1σlocal), followed by the orthogonal shape (at the level of about
0.5σortho), while the equilateral shape is hardly affected. In this
paper we have taken into account the bias reported in Table 1 by
subtracting it from the measured fNL.7

The results for the amplitude of the ISW-lensing bispectrum
from the different foreground-cleaned maps are given in Table 2.
It should be noted that the binned and modal estimators are
less correlated to the exact template for the ISW-lensing shape
than they are for the primordial shapes, hence their larger er-
ror bars compared to KSW (which uses the exact template by
construction (Mangilli et al. 2013)). The conclusion is that we
detect the ISW-lensing bispectrum at a value consistent with the
fiducial value of 1, at a significance level of 2.6σ (taking the
SMICA-KSW value as reference). For details about comparisons
between different estimators and analysis of the data regarding
primordial shapes we refer the reader to Sects. 6 and Sect. 7.

7 See Kim et al. (2013) for other debiasing techniques.
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Fig. 2. The binned skew-C` statistics from the SMICAmap for (a)
ISW-lensing and (b) Poisson point sources. Theoretical curves
are not fitted to the data shown, but are plotted with the ampli-
tude (the only free parameter) determined from the KSW tech-
nique. The Poisson point-source foreground is clearly detected,
and the ISW-lensing skew-spectrum is evident for ` < 1750,
with a suggestion of another source of NG at high `. bps is the
Poisson point-source amplitude in dimensionless units of 10−29,
and f ISW-L

NL is the ISW-lensing amplitude in units of that expected
from the Planck best-fit cosmology. Note that error bars are from
data-averaging, and as a consequence are underestimates.

We show for the SMICA map in the top figure of Fig. 2
the measured skew-C` spectrum (see Sect. 3.2.2) for opti-
mal detection of the ISW-lensing bispectrum, along with the
best-fitting estimates of fNL from the KSW method for dif-
ferent values of `. It should be noted that the skew-C` spec-
trum is not a fit to the KSW data points; its shape is fully
fixed by the template under consideration, with only the over-
all amplitude as a free parameter. Hence the agreement be-
tween the curve and the points in the régime up to ` ∼
1750 is good evidence that KSW is really detecting the ISW-
lensing effect and not some other source of NG (although there
might be some evidence of an additional NG contribution at
` > 1750; note that point sources, at the level determined
by their own skew-spectrum, do not contribute significantly
to the ISW-lensing statistic). See Planck Collaboration XVII
(2013), Planck Collaboration XIX (2013) for further informa-
tion about the detection by Planck of the ISW-lensing signal.

5.3. Point-sources bispectrum

Extra-Galactic point sources at Planck frequencies are divided
into two broad categories: radio sources with synchrotron and/or
free-free emission; and infrared galaxies with thermal emission
from dust heated by young stars. Radio sources are dominant at
central CMB frequencies up to 143 GHz, and can be considered
unclustered (Toffolatti et al. 1998; González-Nuevo et al. 2005).
Hence their bispectrum is constant and is related to their number

Table 3. Results for the amplitude of the point source (Poisson)
bispectrum (in dimensionless units of 10−29) from the SMICA,
NILC, SEVEM, and C-R foreground-cleaned maps, for the KSW,
binned, and modal (polynomial) estimators; error bars are 68%
CL. Note that the KSW and binned estimators use `max = 2500,
while the modal estimator has `max = 2000.

SMICA NILC SEVEM C-R

KSW . . . . . . 7.7 ± 1.5 9.2 ± 1.7 7.6 ± 1.7 1.1 ± 5.1
Binned . . . . 7.7 ± 1.6 8.2 ± 1.6 7.5 ± 1.7 0.9 ± 4.8
Modal . . . . . 10 ± 3 11 ± 3 10 ± 3 0.5 ± 6

counts as

bps = k3
ν

∫ S c

0
S 3 dn

dS
dS , (81)

with S the flux density, dn/dS the number counts per steradian,
S c the flux cut and kν the conversion factor from flux to relative
temperature elevation, depending on the frequency and instru-
mental bandpass.

Infrared galaxies become important at higher frequencies,
217GHz and above, and are highly clustered in dark matter ha-
los, which enhances their bispectrum on large angular scales
(Lacasa et al. 2012; Curto et al. 2013). However, in the Planck
context it was shown by Lacasa & Aghanim (2012) that the IR
bispectrum is more than 90% correlated with the Poissonian
template of the radio sources. So a joint estimation of fNL with a
Poissonian bispectrum template will essentially account for the
IR signal, and provide quasi-identical values compared to an
analysis accounting for the IR bispectrum template. Indeed, in
our final optimal bispectrum constraints for primordial shapes,
we will account for the potential contamination from point
sources by jointly fitting primordial and Poisson templates to the
data.

Our final measured point-source bispectrum amplitudes
from the data are reported in Table 3. The amplitude is expressed
in dimensionless units, i.e., it has been divided by the appropri-
ate power of the monopole temperature T0, and has been mul-
tiplied by 1029. As shown in Sect. 8.1, the Poisson template is
the only one that still evolves significantly between ` = 2000
and ` = 2500. This explains the differences between the values
of the KSW and binned (that use `max = 2500) and the modal
(that uses `max = 2000) estimators. It has been shown that for
the same value of `max all three estimators agree very well.

We finally conclude from Table 3 that we detect the point-
source bispectrum with high significance in the SMICA, NILC,
and SEVEM cleaned maps, while it is absent from the C-R cleaned
map. The measured skew-C` spectrum of the SMICA map in the
bottom figure of Fig. 2 gives further evidence that the NG from
foreground point sources is convincingly detected. The only de-
gree of freedom in this plot is the amplitude, which is not set by
a direct fit to the skew-C`, but rather is estimated by KSW. As a
result, the good agreement with the shape of this skew-C` spec-
trum is powerful evidence that there is NG from point sources.
However, this still turns out to be a negligible contaminant for
primordial fNL studies, due to the very low correlation between
the Poisson bispectrum and the primordial shapes.

5.4. Non-primordial contributions to the trispectrum

The main non-instrumental source of non-primordial sig-
nal is the kinematic modulation dipole due to the pecu-
liar velocity of the earth, u, whose magnitude is O(10−3)
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(Challinor & van Leeuwen 2002; Kosowsky & Kahniashvili
2011; Amendola et al. 2011). If data are used to constrain
τNL using the dipole modulation (which shrinks the Fisher
error by a factor of two relative to starting at L = 2), the
dipole-induced signal must be subtracted, since its modulation
reconstruction has signal-to-noise larger than unity at Planck
resolution. Confirmation that this signal is detected with the
expected magnitude and direction is a good test of our method-
ology. The dipole signal seen by Planck is studied in detail
in Planck Collaboration XXVII (2013), so we only summarize
the key points here.

The local Doppler effect modulates the observed CMB tem-
perature T0[1 + ∆T (n̂)] by 1 + n̂ · u at leading order, so that
T (n̂) = T0[1 + ∆T (n̂)](1 + n̂ · u). The spectrum in each direction
remains a blackbody, but the relative response in the intensity
Iν(ν, n̂) at the observed Planck frequencies is however frequency
dependent. The effective thermodynamic fractional temperature
anisotropy ∆Θ at each frequency for zero peculiar velocity is
defined by

Iν(ν, n̂) = Iν(ν)
[
1 +

d ln Iν
d ln T

∣∣∣∣∣
ν
∆Θ(n̂)

]
. (82)

With peculiar velocity the temperature T depends on the second
order term ∆T n̂ · u, so expanding the Planck function to second
order then gives a change in the effective small-scale temper-
ature anisotropy from both first and second order terms in the
expansion of Iν:

∆Θ(n̂) →
[
1 + n̂ · u + T

d2Iν/dT 2

dIν/dT
n̂ · u

]
∆Θ(n̂)

= (1 + [x coth(x/2) − 1] n̂ · u) ∆Θ(n̂), (83)

where x ≡ hν/kBT0 (and we neglect small second-order non-
modulation terms). Thus the anisotropies in the Planck maps
have a dipolar modulation given by 1 + bν n̂ · u, where for the fre-
quency bands we use b143 ≈ 2, b217 ≈ 3, and β ≡ |u| = 1.23×10−3

in the direction of CMB dipole. In addition our peculiar velocity
induces kinetic aberration, which looks at leading order exactly
like a dipole lensing convergence and only projects weakly into
the power anisotropy estimator. For constraining τNL both of the
expected kinematic signals can be included in the simulations,
and hence subtracted in the mean field of the modulation recon-
struction.

Secondary effects are dominated by the significant and very
blue lensing signal. However unlike for the fNL bispectrum lens-
ing only overlaps with τNL at a small fraction of the error bar as
long as only low modulation multipoles L <

∼ 10 are used, where
the τNL signal peaks (Pearson et al. 2012). We include lensing in
the simulations, so lensing is straightforwardly accounted for in
our analysis by its inclusion in the N(0)

L noise bias (Eq. (72)) and
mean field.

A variety of instrumental effects can also give a spurious
modulation signal if not modelled accurately. In particular the
mean field due to anisotropic noise is very large (Hanson et al.
2009a). On the ultra-large scales of interest for τNL, our un-
derstanding of the noise is not adequate to calculate accurately
and subtract this large signal. Instead, as for the power spec-
trum estimation, we use cross-map estimators that have no noise
mean field on average. Both the noise and most other instru-
mental effects such as gain variations are expected to produce
a signal with approximate symmetry about the ecliptic plane.
Our modulation reconstruction methodology is especially use-
ful here, since we can easily inspect the orientation of any sig-
nal found; for example a naive treatment of the noise not using

cross-maps would give a large apparent quadrupolar modulation
signal aligned with the ecliptic, corresponding to percent-level
misestimation of the noise mean field from inaccurate noise sim-
ulation.

Beam asymmetries are included in the simulation, as de-
scribed in Planck Collaboration XVII (2013), but their effect
is very small, since the modulation we are reconstructing is
isotropic.

Since we are reconstructing a modulation of small-scale
power, the estimator is totally insensitive to smooth large-
scale foregrounds. However large-scale variation in small-
scale foreground power can mimic a trispectrum modulation.
We project out 857 GHz as a dust template in our inverse-
variance filtering procedure, as described in Appendix A of
Planck Collaboration XVII (2013), but do not include any other
foreground model in the trispectrum analysis. Any unmodelled
foreground power variation would increase the τNL signal, so our
modelling is sufficient to place a robust upper limit.

6. Validation Tests

The fNL results quoted in this paper have all been cross-
validated using multiple bispectrum-based estimators from dif-
ferent groups. Having multiple estimators was extremely useful
for the entire analysis, for two main reasons. First, it allowed
great improvement in the robustness of the final results. In the
early stages of the work the comparison between different in-
dependent techniques helped to resolve bugs and other techni-
cal issues in the various computer codes, while during the later
stages it was very useful to understand the data and find the opti-
mal way of extracting information about the various bispectrum
templates. Secondly, besides these cross-checking purposes, dif-
ferent estimators provide also interesting complementary infor-
mation, going beyond simple fNL estimation. For example, the
binned and modal estimators provide a reconstruction of the
full bispectrum of the data (smoothed in different domains), the
skew-C` estimator allows monitoring of the contribution to fNL
from different sources of NG, the wavelets reconstruction allows
fNL directionality tests, and so on.

In this Section we are concerned with the first point above,
that is, the use of multiple bispectrum-based pipelines as a way
to improve the robustness of the results. For this purpose, a large
amount of work was dedicated to the development and analy-
sis of various test maps, in order to validate the estimators. This
means not only checking that the various estimators recover the
input fNL within the expected errors, but also that the results
agree on a map-by-map basis.

The Section is split into two parts. Sect. 6.1 shows results on
a set of initially full-sky, noiseless, Gaussian CMB simulations,
to which we add, in several steps, realistic complications, in-
cluding primordial NG, anisotropic coloured noise, and a mask,
showing the impact on the results at each step. In Sect. 6.2 we
show our results on a set of simulations that mimic the real data
as closely as possible (except for the presence of foreground
residuals, which will be studied in Sect. 8.4): no primordial NG,
but NG due to the ISW-lensing effect; simulated instrumental
effects and realistic noise; and simulations passed through the
component separation pipelines. In fact these are the simulations
that are used to determine the error bars for the final Planck re-
sults.

We present here only a small subset of the large number of
validation tests that were performed. For example, we also had a
number of “blind fNL challenges”, in which the different groups
received a simulated data set with an unknown value of input fNL
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for a given shape and they had to report their estimated values. In
addition different noise models were tested (white vs. coloured
and isotropic vs. anisotropic), leading to the conclusion that it
is important to make the noise in the estimator calibration as
realistic as possible (coloured and anisotropic). We also tested
different Galactic and point source masks, with and without in-
painting, concluding that it is best to fill in both the point sources
and the Galactic mask, using a sufficient number of iterations in
our diffusive procedure to entirely fill in the point source gaps,
while at the same time only effectively apodizing the Galactic
mask (no small-scale structure in its interior). There were also
various tests on realistic simulations of Planck data, including
detailed modelling of the Planck satellite, and the sky signals
(Gaussian or non-Gaussian CMB and all foregrounds, provided
by the PSM). These simulations were tested both before and af-
ter they had passed through the component separation pipelines.
In all comparison tests the results were consistent with input fNL
values and differences between estimators were consistent with
theoretical expectations.

6.1. Validation of estimators in the presence of primordial
non-Gaussianity

The aim of the first set of validation tests is threefold. First, we
want to study the level of agreement from different estimators
in ideal conditions (i.e., full-sky noiseless data). The expected
scatter between measurements is, in this case, entirely due to
the slightly imperfect correlation between weights of estimators
that adopt different schemes to approximate the primordial shape
templates. For this case the scatter can be computed analytically
(see Appendix A for details). We can then verify that our results
in ideal conditions match theoretical expectations. This is done
in Sect. 6.1.1. Second, we want to make sure that the estima-
tors are unbiased and correctly recover fNL in input for local,
equilateral, and orthogonal shapes. This is done in Sects. 6.1.2
and 6.1.3, where a superposition of local, equilateral and orthog-
onal bispectra is included in the simulations and the three fNL
values are estimated both independently and jointly. Finally we
want to understand how much the agreement between pipelines
in ideal conditions is degraded when we include a realistic cor-
related noise component and a sky cut, thus requiring the intro-
duction of a linear term in the estimators in order to account
for off-diagonal covariance terms introduced by the breaking
of rotational invariance. Since we want to study the impact of
adding noise and masking separately, we will first work on a set
of full-sky maps with noise in Sect. 6.1.2, and then add a mask
in Sect. 6.1.3.

The tests that we are going to show were applied to the KSW,
binned and modal estimators. These are three optimal bispec-
trum pipelines used to analyse Planck data in Sect. 7. Our goal
for this set of tests is not so much to attain the tightest possi-
ble agreement between methods, as it is to address the points
summarized in the above paragraph. For this reason the estima-
tor implementations used in this specific Section were slightly
less accurate but faster to compute than those adopted for the fi-
nal data analysis of Sect. 7. The primary difference with respect
to the main analysis is that a smaller number of simulations was
used to calibrate the linear term (80–100 in these tests, as against
200 or more for the full analysis). For the modal estimator we
also use a faster expansion with a smaller number of modes: 300
here versus 600 in the high accuracy version of the pipeline8

8 While most of the modal results in this paper come from the most
accurate 600 modes pipeline, a few computationally intensive data vali-

used in Sect. 7. Even with many fewer modes, the modal estima-
tor is still quite accurate: the correlation coefficient for the modal
expansion of the local template is 0.95, while for the equilateral
and orthogonal shapes it is 0.98.

6.1.1. Ideal Gaussian simulations

As a basis for the other tests we start with the ideal case, a set
of 96 simulations of a full-sky Gaussian CMB, with a Gaussian
beam with FWHM 5 arcmin and without any noise, cut off at
`max = 2000 in our analyses. The independent Fisher matrix er-
ror bars in that case are 4.2 for local NG, 56 for equilateral, and
28 for orthogonal.

Note that this test does not make sense for all estimators, and
hence results are not included for all of them. For example, for
the binned estimator the optimal binning depends on the noise.
While this dependence is not very strong, the difference between
no noise and Planck noise is sufficiently large that a completely
different binning would have to be used just for this test, going
against the purpose of this Section to validate the estimators as
used for the data analysis.9

The purpose here is mostly aimed at checking consistency
with the following formula (derived in Appendix A) for the ex-
pected scatter (standard deviation) between fNL results of the
same map from an exact and an approximate estimator:

σδ fNL = ∆th

√
1 − r2

r
. (84)

Here ∆th is the standard deviation of the exact estimator and r
is the correlation coefficient that gives the correlation of the ap-
proximate bispectrum template with the exact one, defined as

r ≡

∑
`1≤`2≤`3

Bth
`1`2`3

Bexp
`1`2`3

g`1`2`3 C`1 C`2 C`3√∑
`1≤`2≤`3

(Bth
`1`2`3

)2

g`1`2`3 C`1 C`2 C`3

∑
`1≤`2≤`3

(Bexp
`1`2`3

)2

g`1`2`3 C`1 C`2 C`3

, (85)

where the label “th” denotes the initial bispectrum shape to fit to
the data, and “exp” is the approximate expanded one. Note that
this formula has been obtained under the simplifying assump-
tions of Gaussianity, full-sky coverage and homogeneous noise.
For applications dealing with more realistic cases we might ex-
pect the scatter to become larger, while remaining qualitatively
consistent.

The results averaged over the whole set of maps are given in
Table 4 for the KSW and modal estimators individually, as well
as for their difference. The plane wave modal expansion imple-
mented here achieves about 98% correlation with the separable
shapes used by KSW. According to the formula above we then
expect a standard deviation of map-by-map differences of order
0.2∆ fNL for a given shape, where ∆ fNL is the corresponding fNL
error bar. Looking at the left-hand side of Table 4, we see that
the error bars are 4 for local NG, 50 for equilateral, and 30 for
orthogonal. So we predict a standard deviation of map-by-map

dation tests of Sect. 8 also use the fast 300 modes version; therefore the
results in this Section also provide a direct validation of the fast modal
pipeline.

9 While the binning with 48 bins and `max = 2000 used in the vali-
dation tests of Sects. 6.1.2 and 6.1.3 is also slightly different from the
binning used for the data analysis with 51 bins and `max = 2500, these
differences are very small and the binnings have very similar correlation
coefficients of 0.99 or more for local and equilateral shapes, and 0.95
for orthogonal.
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Table 4. Results for fNL for the set of ideal Gaussian simulations
described in Sect. 6.1.1 for the KSW and modal estimators and
for their difference, assuming all shapes to be independent.

KSW Modal Modal − KSW
Independent

Local . . . . . . . . . −0.5 ± 4.1 −0.5 ± 4.1 . . −0.0 ± 0.6
Equilateral . . . . . . 2.2 ± 48 1.3 ± 48 . . −0.9 ± 8.9
Orthogonal . . . . . −1.1 ± 29 −1.0 ± 30 . . 0.1 ± 6.5

differences of 0.8, 10 and 6 for local, equilateral, and orthogo-
nal NG, respectively. As one can see from the “Modal-KSW”
column, the measurements are in excellent agreement with the
theoretical expectation.

6.1.2. Non-Gaussian simulations with realistic noise

A set of 96 full-sky non-Gaussian CMB simulations was created
according to the process described by Fergusson et al. (2010a),
with local f local

NL = 12, equilateral f equil
NL = 35, and orthogonal

f ortho
NL = −22. The effect of a 5 arcmin beam was added, as well

as realistic coloured and anisotropic noise according to the speci-
fications of the SMICA cleaned map. The independent Fisher ma-
trix error bars in that case are 5.3 for local, 63 for equilateral,
and 33 for orthogonal NG, while the joint ones are respectively
6.0, 64, and 37.

The results averaged over the whole set are given in Table 5
for the various estimators individually, as well as for the differ-
ences with respect to KSW. Compared to the previous case we
now deviate from the exact theoretical expectation for two rea-
sons: we include a realistic correlated noise component; and we
have NG in the maps. The presence of NG in the input maps
will lower the agreement between estimators with respect to the
Gaussian case if the correlation between weights is not exactly
100%. This is even more true in this specific case, where NG
of three different kinds is present in the input maps and also
cross-correlation terms between different expanded shapes are
involved (and propagated over in the joint analysis). Moreover,
when noise is included the specific modal expansion used for
this test is 95% correlated to the separable KSW local shape (so
there is a 3% reduction of the correlation compared to the ideal
case for the modal local shape); we thus expect a further degra-
dation of the level of agreement for this specific case. Finally, in
order to correct for noise effects, a linear term has to be added
to the estimators. Since the linear term is obtained by MC aver-
aging over just 80 or 96 simulations in this test (depending on
the estimator), MC errors are also adding to the measured differ-
ences. Of course the MC error can be reduced by increasing the
number of simulations in the linear term sample. We do this for
the analysis of the real data and in Sect. 6.2, but it was computa-
tionally too expensive for this set of preliminary validation tests,
so we decided here to just account for it in the final interpretation
of the results.

As a consequence of the above, we can no longer expect the
map-by-map fNL differences to follow perfectly the theoretical
expectation, obtained in the previous Section in idealized con-
ditions (full-sky, no noise, and Gaussianity). With these caveats
in mind, the agreement between different pipelines remains very
good, being about 0.3σ in most cases and about 0.5σ for the
modal-KSW difference in the local case, which can be easily ex-
plained by the fact that this is the set of weights with the lowest

correlation (95%, as mentioned above). All estimators are unbi-
ased and recover the correct input values.

6.1.3. Impact of the mask

To the simulations of Sect. 6.1.2 we now apply the Planck
union mask - denoted U73 - masking both the Galaxy and
the brightest point sources and leaving 73% of the sky un-
masked (Planck Collaboration XII 2013). This is the same mask
used to analyse Planck data in Sect. 7. The independent Fisher
matrix error bars in that case (taking into account the fsky cor-
rection) are 6.2 for local NG, 74 for equilateral, and 39 for or-
thogonal, while the joint ones are respectively 7.1, 76, and 44.

All masked areas of the sky (both Galactic and point sources)
are filled in with a simple iterative method. In this simple in-
painting method each pixel in the mask is filled with the average
of all eight surrounding pixels, and this is repeated 2000 times
over all masked pixels. The filling-in helps to avoid propagating
the effect of a sharp edge and the lack of large-scale power inside
the mask to the unmasked regions during harmonic transforms.
This inpainting method is the one that was used to produce all
NG results in this paper for methods that need it (KSW, binned
and modal).

The results averaged over the whole set of simulations are
given in Table 6 for the various estimators individually, as well
as for the differences with respect to KSW. The map-by-map
results are shown in Fig. 3.

This is the most realistic case we consider in this set of tests.
Besides noise, we also include a sky cut and our usual mask in-
painting procedure. All the caveats mentioned for the previous
case are still valid, and possibly emphasized by the inclusion of
mask and inpainting. In the light of this, the agreement is still
very good, worsening a bit with respect to the “full-sky + noise”
case only for the local measurement, where the mask is indeed
expected to have the biggest impact. In the joint analysis all esti-
mators recover the correct input values for the local and orthog-
onal cases, but all estimators find a value for equilateral NG that
is somewhat too low. It is unclear whether this is an effect of
masking and inpainting on the equilateral measurement or just a
statistical fluctuation for this set of simulations. In any case, this
potential bias is small compared to the statistical uncertainty, so
that it would not have a significant impact on the final results.

To summarize the results of this Sect. 6.1, we performed an
extensive set of validation tests between different fNL estimators
using strongly, but not perfectly, correlated primordial NG tem-
plates in their weights. The test consisted in comparing the fNL
measured by the different estimators for different sets of simula-
tions, on a map-by-map basis. We started from ideal conditions:
full-sky Gaussian noiseless maps. In this case we computed a
theoretical formula providing the expected standard deviation of
the fNL differences, as a function of the correlations between the
input NG templates in the different estimators. Our results match
this formula very well. In the other two simulation sets we added
realistic features (noise, mask and inpainting) and we included
a linear combination of local, equilateral and orthogonal NG.
First of all we verified that all the pipelines correctly recover
the three fNL input values, hence they are unbiased. Moreover,
we observed that adding such features produces an expected
slight degradation of the level of agreement between different
pipelines, that nevertheless remains very good: about 0.3–0.4σ
for equilateral and orthogonal NG, and about 0.5–0.6σ for local
NG, which is the shape most affected by mask and noise con-
tamination.
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Table 5. Results from the different estimators for fNL for the set of full-sky non-Gaussian simulations described in Sect. 6.1.2. Both
the results for the estimators individually and for the differences with KSW are given.

KSW Binned Modal Binned − KSW Modal − KSW
Independent

Local . . . . . . . . . . . . . . . . 13.8 ± 5.2 14.1 ± 5.2 14.1 ± 5.3 . . . . . 0.3 ± 2.1 0.4 ± 2.6
Equilateral . . . . . . . . . . . . 63 ± 57 62 ± 58 64 ± 57 . . . . . −0.9 ± 20.1 1.0 ± 18.1
Orthogonal . . . . . . . . . . . . −52 ± 37 −58 ± 40 −54 ± 37 . . . . . −6.0 ± 12.6 −2.2 ± 12.3

Joint
Local . . . . . . . . . . . . . . . . 11.7 ± 6.2 12.0 ± 6.6 12.0 ± 6.4 . . . . . 0.2 ± 2.7 0.2 ± 3.2
Equilateral . . . . . . . . . . . . 31 ± 59 29 ± 61 31 ± 59 . . . . . −1.8 ± 21.1 −0.2 ± 18.5
Orthogonal . . . . . . . . . . . . −20 ± 43 −22 ± 47 −21 ± 42 . . . . . −2.1 ± 15.6 −0.6 ± 14.8

Table 6. Results from the different estimators for fNL for the set of masked non-Gaussian simulations described in Sect. 6.1.3. Both
the results for the estimators individually and for the differences with KSW are given.

KSW Binned Modal Binned − KSW Modal − KSW
Independent

Local . . . . . . . . . . . . . . . . 13.5 ± 7.1 13.1 ± 6.5 14.0 ± 6.8 . . . . . −0.3 ± 3.5 0.5 ± 4.6
Equilateral . . . . . . . . . . . . 55 ± 64 50 ± 59 58 ± 63 . . . . . −4.4 ± 24.1 3.3 ± 20.2
Orthogonal . . . . . . . . . . . . −50 ± 45 −53 ± 46 −52 ± 45 . . . . . −3.5 ± 16.4 −1.9 ± 15.2

Joint
Local . . . . . . . . . . . . . . . . 11.7 ± 8.3 11.4 ± 7.9 12.2 ± 8.4 . . . . . −0.3 ± 4.3 0.4 ± 5.7
Equilateral . . . . . . . . . . . . 23 ± 66 19 ± 59 24 ± 64 . . . . . −3.8 ± 27.7 1.7 ± 24.8
Orthogonal . . . . . . . . . . . . −18 ± 51 −20 ± 54 −18 ± 55 . . . . . −1.3 ± 19.9 0.3 ± 20.4

Table 7. Results from the different estimators for fNL for 99 maps from a set of realistic lensed simulations passed through the
SMICA pipeline, described in Sect. 6.2. Both the results for the estimators individually and for the differences with KSW are given.

KSW Binned Modal Wavelet Binned − KSW Modal − KSW Wavelet − KSW
Independent

Local . . . . . . . . . . . . . . . 7.6 ± 6.0 6.8 ± 5.8 7.7 ± 5.9 8.1 ± 8.4 . . . . . −0.8 ± 1.2 0.1 ± 1.4 0.5 ± 6.4
Equilateral . . . . . . . . . . . 4 ± 76 −1 ± 72 2 ± 76 −3 ± 76 . . . . . −5 ± 20 −2 ± 13 −7 ± 91
Orthogonal . . . . . . . . . . . −21 ± 42 −20 ± 41 −21 ± 42 −15 ± 53 . . . . . 1.6 ± 11 −0.1 ± 8 6.4 ± 48

6.2. Validation of estimators on realistic Planck simulations

In the tests of the previous Subsection we checked the bias of the
estimators and studied their level of agreement, given the corre-
lation between their weights, in the presence of noise and a sky
cut. To speed up the computation while still retaining enough
accuracy for the purposes of that analysis, we used a relatively
small number of maps for linear term calibrations (80–100) and
used a smaller number of modes than usual in the modal esti-
mator. In the present Subsection we instead try to simulate as
accurately as possible real data analysis conditions. Our goal is
to obtain an accurate MC-based expectation of the scatter be-
tween different fNL measurements when the pipelines are run on
actual Planck maps.

To this aim we use FFP6 simulation maps described in
Planck Collaboration ES (2013). The original FFP6 maps were
lensed using the Lenspix algorithm, and processed through the
SMICA component separation pipeline. They were then multi-
plied by the Galactic and point source mask U73 as in the ac-
tual fNL analysis, and inpainted as usual. Since our final re-
sults show full consistency with Gaussianity for local, equilateral
and orthogonal shapes, we do not include any primordial fNL in
these maps. We note that although the simulations were passed
through SMICA in order to provide a realistic filtering of the data,

they did not include any foreground components. The impact of
foreground residuals will be studied separately in Sect. 8.4.

The configuration of all bispectrum pipelines was the same
as used for the final data analysis, which implies a correlation
of 99% or better between the weights of the KSW, binned and
modal estimators. Linear terms were calibrated using 200 sim-
ulations, after verifying that this number allows accurate con-
vergence for all the shapes. For this test we also included the
wavelet bispectrum pipeline described in Sect. 3. Although this
last estimator turns out to be about 30% suboptimal and, in its
current implementation, less correlated with the primordial tem-
plates than the other estimators, it does provide an additional
interesting cross-check of our results by introducing another de-
composition basis. We thus used it to analyse SMICA data in
Sect. 7, while the other three pipelines were used on all maps.

A comparison of the measured fNL map-by-map for all
shapes and estimators is shown in Fig. 4. As an overall figure of
merit of the level of agreement achieved by different pipelines
we take as usual the standard deviation of the map-by-map fNL
differences, σδ fNL

. Table 7 shows that the final agreement be-
tween the three optimal pipelines (KSW, binned, and modal) is
close to saturating the ideal bound in Eq. (84) determined by the
imperfect correlation of the weights, i.e., it varies from about
once to twice σδ fNL

' 0.15 ∆ fNL for an r = 0.99 correlation. This
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Fig. 3. Map-by-map comparison of the results from the differ-
ent estimators for local (top), equilateral (centre), and orthogo-
nal (bottom) fNL for the set of masked non-Gaussian simulations
described in Sect. 6.1.3, assuming the shapes to be independent.
The horizontal solid line is the average value of all maps for
KSW, and the dashed and dotted horizontal lines correspond to
1σ and 2σ deviations, respectively.

is very consistent with the level of agreement that we find be-
tween estimators for the final results from the data, providing a
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Fig. 4. Map-by-map comparison of the results from the differ-
ent estimators for local (top), equilateral (centre), and orthogonal
(bottom) fNL for 99 maps from a set of realistic lensed simula-
tions passed through the SMICA pipeline, described in Sect. 6.2,
assuming the shapes to be independent. The horizontal solid line
is the average value of the maps for KSW, and the dashed and
dotted horizontal lines correspond to 1σ and 2σ deviations, re-
spectively.
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1σ, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in different
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The different
expansions are all different implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from different methods are
expected to be consistent with each other within about 0.3σ fNL .
It is then clear that comparing outputs from both different esti-
mators and different component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own differ-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG effects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted
KSW KSW

SMICA
Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8
Equilateral . . . . . −37 ± 75 −42 ± 75
Orthogonal . . . . . −46 ± 39 −25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (∼ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four differ-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted
KSW Binned Modal KSW Binned Modal

SMICA
Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . −37 ± 75 −20 ± 73 −20 ± 77 . . . . . −42 ± 75 −25 ± 73 −20 ± 77
Orthogonal . . . . . . . . . . . . −46 ± 39 −39 ± 41 −36 ± 41 . . . . . −25 ± 39 −17 ± 41 −14 ± 42

NILC
Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . −41 ± 76 −31 ± 73 −20 ± 76 . . . . . −48 ± 76 −38 ± 73 −20 ± 78
Orthogonal . . . . . . . . . . . . −74 ± 40 −62 ± 41 −60 ± 40 . . . . . −53 ± 40 −41 ± 41 −37 ± 43

SEVEM
Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . −32 ± 76 −21 ± 73 −13 ± 77 . . . . . −36 ± 76 −25 ± 73 −13 ± 78
Orthogonal . . . . . . . . . . . . −34 ± 40 −30 ± 42 −24 ± 42 . . . . . −14 ± 40 −9 ± 42 −2 ± 42

C-R
Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . −60 ± 79 −52 ± 74 −33 ± 78 . . . . . −62 ± 79 −55 ± 74 −32 ± 78
Orthogonal . . . . . . . . . . . . −76 ± 42 −60 ± 42 −63 ± 42 . . . . . −57 ± 42 −41 ± 42 −42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coefficient r ∼
−0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted
Wavelets Wavelets

SMICA
Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . −73 ± 52 −45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C` statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate `-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C` spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for different values of `. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C` statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Fig. 5. Binned skew-C` statistics from the SMICA map for (a)
local, (b) equilateral, and (c) orthogonal. Theoretical curves are
not fitted to the data shown, but are plotted with the amplitude
(the only free parameter) determined from the KSW technique.
The dashed line shows the ISW-lensing contribution to the local
statistic. There is no evidence for detection of primordial NG.
Note that the error bars are underestimated, as they ignore data
correlations.

useful cross-check of the other methods, also given some techni-
cal complementarities, e.g., they are the only approach that does
not require inpainting, as explained in Sect. 3. Hence we include
wavelet results, but only for SMICA. The fNL results for the opti-
mal KSW, binned and modal bispectrum estimators, for the four
component separation methods, are summarized in Table 9, one
of the main products of our analysis of Planck data. The wavelet
bispectrum analysis of SMICA is reported in Table 10. In the
analysis, the KSW and binned bispectrum estimators considered
multipoles up to `max = 2500, while the modal estimator went to
`max = 2000. As shown in Sect. 8.1 and Table 16, error bars and
central values for the three primordial shapes have converged at
`max = 2000, so the final primordial fNL estimates from the three
pipelines are directly comparable.11

The binned bispectrum estimator used 51 bins, which were
determined by optimizing the expected variance of the differ-
ent fNL parameters, focusing in particular on the primordial

11 The lower `max for the modal pipeline is also a conservative choice
in view of the large survey of “non-standard” models that will be pre-
sented in Sect. 7.3

shapes.12 The modal estimator employed a polynomial basis
(nmax = 600) previously described in Fergusson et al. (2010a),
but augmented with a local shape mode (approximating the
SW large-angle local solution) to improve convergence in the
squeezed limit. The above choices for the binned and modal
methods produce a very high correlation (generally 99% or bet-
ter) of the expanded/binned templates with the exact ones used
by the KSW estimator. The wavelet estimator is based on third-
order statistics generated by the different possible combinations
of the wavelet coefficient maps of the SMHW evaluated at cer-
tain angular scales. See for example Antoine & Vandergheynst
(1998) and Martı́nez-González et al. (2002) for detailed infor-
mation about this wavelet. We considered a set of 15 scales
logarithmically spaced between 1.3 and 956.3 arcmin and we
also included the unconvolved map. The wavelet map w(Ri; b)
(Eq. (60)) for each angular scale Ri has an associated extended
mask generated from the mask U73 following the procedure de-
scribed and extensively used in Curto et al. 2009b,a, 2011a,b,
2012; Donzelli et al. 2012; Regan et al. 2013. The wavelet coef-
ficient maps are later combined into the third-order moments qi jk
(Eq. (59)), for a total 816 different statistics, and these statistics
are used to constrain fNL through a χ2 test.

The high level of agreement between results from the KSW,
binned and modal fNL estimators, and from all the component
separation pipelines, is representative of the robustness of our
results with respect to residual foreground contamination, and
is fully consistent with our preliminary MC analysis shown in
Sect. 6. The scatter with wavelets is a bit larger, but this was
expected due to the suboptimality of the wavelet estimator and
is also in agreement with our MC expectations from the tests.
Therefore wavelets do provide another successful cross-check.

7.2. Bispectrum reconstruction

As previously explained (see Sect. 3), in addition to looking in
specific bispectrum-space directions and extracting the single
number fNL for given shapes, the binned and modal pipelines
have the capability to generate a smoothed (i.e., either coarse-
grained in `-space, or truncated at a given expansion eigen-
mode) reconstruction of the full bispectrum of the data. See also
Planck Collaboration XXIII (2013).

7.2.1. Modal bispectrum reconstruction

The modal pipeline was applied to the Planck temperature
maps for the foreground-separation techniques SMICA, NILC,
and SEVEM (Fergusson et al. 2010a). For this analysis we used
two alternative sets of hybrid basis functions in order to cross-
check results and identify particular signals. First, we employed
trigonometric functions (nmax = 300) augmented with the SW
local mode, together with the three separable modes contribut-
ing to the CMB ISW-lensing signal. Secondly, we employed the
same polynomial basis (nmax = 600) with local SW mode as was
used for fNL estimation.

The modal coefficients βR
n extracted from the Planck SMICA,

NILC, and SEVEM maps are shown in Fig. 8. Here we have used
the hybrid Fourier modes with local and ISW-lensing modes.

12 The boundary values of the bins are: 2, 4, 10, 18, 27, 39, 55, 75, 99,
130, 170, 224, 264, 321, 335, 390, 420, 450, 518, 560, 615, 644, 670,
700, 742, 800, 850, 909, 950, 979, 1005, 1050, 1110, 1150, 1200, 1230,
1260, 1303, 1346, 1400, 1460, 1510, 1550, 1610, 1665, 1725, 1795,
1871, 1955, 2091, 2240, and 2500 (i.e., the first bin is [2,3], the second
[4,9], etc., while the last one is [2240,2500]).
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Fig. 6. Full 3D CMB bispectrum recovered from the Planck foreground-cleaned maps, including SMICA (left), NILC (centre) and
SEVEM (right), using the hybrid Fourier mode coefficients illustrated in Fig. 8, These are plotted in three-dimensions with multipole
coordinates {`1, `2, `3} on the tetrahedral domain shown in Fig. 1 out to `max = 2000. Several density contours are plotted with red
positive and blue negative. The bispectra extracted from the different foreground-separated maps appear to be almost indistinguish-
able.

Fig. 7. Planck CMB bispectrum detail in the signal-dominated regime showing a comparison between full 3D reconstruction using
hybrid Fourier modes (left) and hybrid polynomials (right). Note the consistency of the main bispectrum properties which include
an apparently ‘oscillatory’ central feature for low-` together with a flattened signal beyond to ` . 1400. Note also the periodic CMB
ISW-lensing signal in the squeezed limit along the edges of the tetrapyd.

These amplitudes show remarkable consistency between the dif-
ferent maps, demonstrating that the alternative foreground sepa-
ration techniques do not appear to be introducing spurious NG.
Note that here the βR

n coefficients are for the orthonormalized
modes Rn (Eq. (63)) and they have a roughly constant variance,
so anomalously large modes can be easily identified. It is ev-
ident, for example, that among the low modes there are large
signals, which include the ISW-lensing signal and point source
contributions.

Using the modal expansion of Eq. (45) with Eq. (63), we
have reconstructed the full 3D Planck bispectrum. This is illus-
trated in Fig. 6, where we show “tetrapyd” comparisons between
different foreground cleaned maps. The tetrapyd (see Fig. 1) is
the region defined by the multipoles that obey the triangle condi-
tion, with ` ≤ `max. The 3D plots show the reduced bispectrum of
the map, divided by a Sachs-Wolfe CMB bispectrum solution for

a constant primordial shape, S (k1, k2, k3) = 1. This constant pri-
mordial bispectrum template normalizaton is carried out in order
to remove an ∼ `4 scaling from the starting bispectrum (it is anal-
ogous to multiplication of the power spectrum by `(` + 1)). To
facilitate the interpretation of 3D bispectrum figures, note that
squeezed configurations lie on the edges of the tetrapyd, flat-
tened on the faces and equilateral in the interior, with b``` on the
diagonal. The colour levels are equally spaced with red denot-
ing positive values, and blue denoting negative. Given the cor-
respondence of the βR

n coefficients for SMICA, NILC, and SEVEM,
the reconstructed 3D signals also appear remarkably consistent,
showing similar contours out to ` . 1500. At large multipoles `
approaching `max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution.
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Fig. 8. Modal bispectrum coefficients βR
n for the mode expansion

(Eq. (63)) obtained from Planck foreground-cleaned maps using
hybrid Fourier modes. The different component separation meth-
ods, SMICA, NILC and SEVEM exhibit remarkable agreement. The
variance from 200 simulated noise maps was nearly constant for
each of the 300 modes, with the average ±1σ variation shown in
red.
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Fig. 9. The total integrated bispectrum F2
NL defined in Eq. (64)

as a cumulative sum over orthonormal modal coefficients βR
n

2

(upper panel) and over multipoles up to a given ` (lower panel).
Above, the relative quantity F2

NL ≡ F̄2
NL −FG

NL
2 is plotted, where

FG
NL

2 is the mean obtained from 200 CMB Gaussian maps with
the standard deviation shown as the red line. Below the square
of the bispectrum is integrated over the tetrapyd out to ` and its
significance plotted relative to the Gaussian standard deviation
(1σ red line). A hybrid polynomial basis nmax = 600 is employed
in the signal-dominated region ` ≤ 1500.

There are some striking features evident in the 3D bispec-
trum reconstruction which appear in both Fourier and polyno-
mial representations, as shown in more detail in Fig. 7. There is
an apparent oscillation at low ` . 500 already seen in WMAP-7
(Fergusson et al. 2012). Beyond out to ` ∼ 1200 there are further
distinct features (mostly “flattened” on the walls of the tetrapyd),
and an oscillating ISW-lensing contribution can be discerned in
the squeezed limit. Whatever its origin, Gaussian or otherwise,
Fig. 7 reveals the CMB bispectrum of our Universe as observed
by Planck.

The cumulative sum F2
NL over the squared orthonormal co-

efficients βR
n

2 from Eq. (64) for the Planck data is illustrated in
Fig. 9 (upper panel). The Planck bispectrum contribution can
be directly compared with Gaussian expectations averaged from
200 lensed Gaussian maps with simulated residual foregrounds.
It is interesting to note that the integrated bispectrum signal
fairly consistently exceeds the Gaussian mean by around 2σ
over much of the domain. This includes the ISW and PS con-
tributions for which subtraction only has a modest effect. Also
shown (lower panel) is the corresponding cumulative F2

NL quan-
tity as a function of multipole `, for which features have visible
counterparts at comparable ` in Fig. 7. Despite the high bispec-
trum signal, this χ2-test over the orthonormal mode coefficients
βR

n is cumulatively consistent with Gaussianity.

7.2.2. Binned bispectrum reconstruction

As explained in Sect. 3.4.2, it is interesting to study the smoothed
observed bispectrum divided by its expected standard devia-
tion, since this will indicate if there is a significant deviation
from Gaussianity for certain regions of `-space. This quantity is
shown in Figs. 10 and 11 as a function of `1 and `2, for two differ-
ent values (or rather, bins) of `3: the intermediate value [610,654]
in Fig. 10 and the high value [1330,1374] in Fig. 11. Each figure
shows the results for the SMICA, NILC, SEVEM, and C-R cleaned
maps as well as for the raw 143 GHz channel map. The bis-
pectra were obtained with the binned bispectrum estimator and
smoothed with a Gaussian kernel as explained in Sect. 3.4.2.
Very blue or red regions indicate significant NG, regions that are
less red or blue just represent expected fluctuations of a Gaussian
distribution.

From Fig. 10 at an intermediate value of `3 we can conclude
that there is a very good agreement between SMICA, NILC, and
SEVEM for all values of `1 and `2, and with C-R up to about
`1, `2 ∼ 1500. In fact, up to 1500 there is also a good agree-
ment with the raw 143 GHz channel. We also see no significant
non-Gaussian features in this figure (except maybe in the C-R
and raw maps at `1, `2 > 2000).

Figure 11 at a high value of `3, on the contrary, shows signif-
icant non-Gaussian features in the raw map, but much less NG in
the cleaned maps. In particular one can see the point source bis-
pectral signal at high-` approximately equilateral configurations.
There is still an excellent agreement between SMICA, NILC, and
SEVEM. The C-Rmap shows less NG than the other three cleaned
maps, which is consistent with the absence of a detection of the
Poisson point source bispectrum for C-R, see Table 3.

7.3. Constraints on specific targeted shapes

We have deployed the modal estimator to investigate a wide
range of the inflationary models described in Sect. 2. This is
the same validated estimator for which the standard fNL re-
sults have been reported in the Sect. 7, but it is augmented with
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Fig. 10. Smoothed observed bispectrum as determined with the binned estimator divided by its expected standard deviation, as a
function of `1 and `2, with `3 in the bin [610,654]. From left to right on the top row are shown: SMICA, NILC, and SEVEM; and on the
bottom row: C-R and the raw 143 GHz channel.
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Fig. 11. Similar to Fig. 10, but with `3 in the bin [1330,1374].

the primordial modal decomposition and projection described in
Sect. 3.2.3. The resulting modal-projected local, equilateral and
orthogonal shapes are ∼99% correlated with those found using

direct integration of Eq. (37) (as for the analysis above). Modal
correlations for the other models investigated were determined
for both the primordial shapes and the late-time projected de-
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compositions and were all above 90%, unless stated otherwise.
This primordial modal estimator pipeline has been applied al-
ready extensively to the WMAP-7 data (Fergusson et al. 2012).

7.3.1. Nonseparable single-field bispectrum shape results

Having characterised single-field inflation bispectra using com-
binations of the separable equilateral and orthogonal ansätze,
we note that the actual leading-order non-separable contribu-
tions (Eqs. (6, 7)) exhibit significant differences in the collinear
(flattened) limit. For this reason we provide constraints on DBI
inflation (Eq. (7)) and the two effective field theory shapes
(Eqs. (5, 6)), as well as the ghost inflation bispectrum, which
is an exemplar of higher-order derivative theories (specifically
Eq. (3.8) in Arkani-Hamed et al. 2004). Using the primordial
modal estimator, with the SMICA foreground-cleaned data, we
find:

f DBI
NL = 11 ± 69 (FDBI−eq

NL = 10 ± 77) ,

f EFT1
NL = 8 ± 73 (FEFT1−eq

NL = 8 ± 77) ,

f EFT2
NL = 19 ± 57 (FEFT2−eq

NL = 27 ± 79) ,

f Ghost
NL = −23 ± 88 (FGhost−eq

NL = −20 ± 75) . (86)

where we have normalized with the usual primordial fNL con-
vention which is shape-dependent (i.e., the central value of the
shape function is taken such that S (k, k, k) = 1). In parenthe-
ses we also give a reweighted Fequil

NL constraint for easier com-
parison with the equilateral constraint from the same modal
estimator, i.e., we have rescaled using the Fisher variance for
the closely-related equilateral shape. Given the strong cross-
correlation (above 95%) between all these models, the equi-
lateral family results of (86) reveal larger differences around
σ/3 than might be expected (and somewhat larger than ob-
served previously in the WMAP data (Fergusson et al. 2012)).
The reason for this variation between the equilateral shapes in
Planck appears to be the additional signal observed in the flat-
tened limit in the bispectrum reconstruction beyond the WMAP
signal-dominated range (see Fig. 6). There is also a contribution
from the small correlation difference between equilateral models
from primordial modal and KSW methods. The results for these
models for all the SMICA, NILC and SEVEM foreground-separated
maps are given in Appendix B (Table B.3).

7.3.2. Non-Bunch-Davies vacuum results

We have investigated the non-separable shapes arising from ex-
cited initial states (non-Bunch-Davies vacuum models) which
usually peak in the flattened or collinear limit. In particular, we
have searched for the four non-separable bispectra described in
Eqs. (14) and (15), as well as the original flattened shape BNBD

Φ
(Eq. (6.2-3) in Chen et al. 2007b). This entails choosing suit-
able cut-offs kc to ensure that the signal is strongly flattened
(i.e., distinct from flat in Eq. (13)), while also accurately rep-
resented by the modal expansion at both early and late times
(Eqs. (54, 55)). For BNBD

Φ
, we adopted the same edge truncation

and mild Gaussian filter described in Fergusson et al. (2012),
while for BNBD1

Φ
and BNBD2

Φ
, which are described by Eq. (14),

we chose kc = 0.001, and in Eq. (15) we take kc = 0.01. The
shape correlations for most non-Bunch-Davies vacua were good
(above 90%), except for the strongly squeezed model with os-
cillations of Eq. (14) which was relatively poor (60%). Together
with the orthogonal (Eq. (4)), flat (Eq. (13)) and vector (Eq. (19))
shapes, these non-Bunch-Davies models explore a broad range

of flattened models, with a variety of different widths for picking
out signals around the faces of the tetrapyd (see Fig. 1).

The fNL results obtained for the non-Bunch-Davies models
from the different foreground-cleaned map bispectra were con-
sistent and the constraints from SMICA (for brevity) are given in
Table 11. More comprehensive results from SMICA, NILC and
SEVEM can be found in Table B.3 in Appendix B. Both BNBD

Φ
and

BNBD2
Φ

(Eq. (14)) produced raw results above 2σ, in part picking
out the flattened signal observed in the bispectrum reconstruc-
tion in Fig. 6. However, these flattened squeezed signals are also
correlated with CMB ISW-lensing and so, after subtracting the
predicted ISW bias (as well as the measured point source signal),
most NBD fNL results were reduced to 1σ or less (see “Clean
fNL” column in Table 11). The exception was the most flattened
model BNBD

Φ
which remained higher f NDB

NL = 178 ± 78, i.e., with
signals at 2.0σ, 1.8σ and 2.1σ for SMICA, NILC and SEVEM re-
spectively.

We emphasise that this has to be considered just as prelimi-
nary study of flattened NG in the Planck data using four exem-
plar models. In order to reach a complete statistical assessment
of constraints regarding flattened models in forthcoming anal-
yses, we will have to undertake a systematic search for best-fit
Planck NBD models using the parameter freedom available.

7.3.3. Scale-dependent feature and resonant model results

We have investigated whether the Planck bispectrum reconstruc-
tions include oscillations expected in feature or resonant models
(Eqs. (16, 17)). Although poorly correlated with scale-invariant
shapes, the feature and resonant models have (at least) two free
parameters - the period kc and the phase φ - forming a model
space which must be scanned to determine if there is any sig-
nificant correlation (in the absence of any physical motivation
for restricting attention to specific periodicities). We have under-
taken an initial survey of these models with the wavelength range
defined by the native resolution of the present modal estimator
(hybrid local polynomials with 600 modes), similar to the feature
model search in WMAP data in Fergusson et al. (2012). For fea-
ture models of Eq. (16) we can obtain high correlations (above
95%) for the predicted CMB bispectrum if we take kc > 0.01,
that is, for an effective multipole periodicity `c > 140 feature
models are accurately represented.

The results of a first survey of feature models in the Planck
data is shown in Table 12 for 0.01 ≤ kc ≤ 0.1 and phases
φ = 0, π/4, π/2, 3π/4 (for φ ≥ π we will identify a correlation
with the opposite sign). Again, there was good consistency be-
tween the different foreground-separation methods SMICA, NILC
and SEVEM showing that the results are robust to potential resid-
ual foreground contamination in the data. For brevity we only
give SMICA results here, while providing measurements from
other component separation methods in Appendix B. Feature
signals are typically largely uncorrelated with the ISW-lensing
or point sources, but nevertheless we subtract these signals and
give results for the cleaned fNL. The Table 12 results show that
there is a parameter region around 0.01 ≤ kc ≤ 0.025 for which
signals well in excess of 2σ are possible (we undertook a broader
search with 0.01 ≤ kc ≤ 0.1 but found only a low signal be-
yond k > 0.3). It appears that some feature models are able to
match the low-` ‘plus-minus’ and other features in the Planck
bispectrum reconstruction (see Fig. 6). The best fit model has
kc = 0.0185 (`c ≈ 260) and phase φ = 0 with a signal −3σ.
As a further validation step of our results, we also re-analysed
the models with > 2.5σ significance using a different modal de-
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Table 11. Constraints on flattened or collinear bispectrum models (and related models) using the SMICA foreground-cleaned Planck
map. These bispectrum shapes, with equation numbers given, are described in detail in the text.

Flattened model (Eq. number) Raw fNL Clean fNL ∆ fNL σ Clean σ

Flat model (13) . . . . . . . . . . . . . . . . . . . 70 37 77 0.9 0.5
Non-Bunch-Davies (NBD) . . . . . . . . . . . 178 155 78 2.2 2.0
Single-field NBD1 flattened (14) . . . . . . 31 19 13 2.4 1.4
Single-field NBD2 squeezed (14) . . . . . . 0.8 0.2 0.4 1.8 0.5
Non-canonical NBD3 (15) . . . . . . . . . . . 13 9.6 9.7 1.3 1.0
Vector model L = 1 (19) . . . . . . . . . . . . −18 −4.6 47 −0.4 −0.1
Vector model L = 2 (19) . . . . . . . . . . . . 2.8 −0.4 2.9 1.0 −0.1

Table 12. Planck bispectrum estimation results for feature models compared to the SMICA foreground-cleaned maps. This prelim-
inary survey on a coarse grid in the range 0.01 ≤ kc ≤ 0.025 and 0 ≤ kc < π/4 finds specific models with significance up to
99.7%.

Phase φ = 0 φ = π/4 φ = π/2 φ = 3π/4
Wavenumber fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ)

kc = 0.01000 . . . . . . . −110 ± 159 (−0.7) −98 ± 167 (−0.6) −17 ± 147 (−0.1) 56 ± 142 ( 0.4)
kc = 0.01125 . . . . . . . 434 ± 170 ( 2.6) 363 ± 185 ( 2.0) 57 ± 183 ( 0.3) −262 ± 168 (−1.6)
kc = 0.01250 . . . . . . . −70 ± 158 (−0.4) 130 ± 166 ( 0.8) 261 ± 167 ( 1.6) 233 ± 159 ( 1.5)
kc = 0.01375 . . . . . . . 35 ± 162 ( 0.2) 291 ± 145 ( 2.0) 345 ± 147 ( 2.3) 235 ± 162 ( 1.5)
kc = 0.01500 . . . . . . . −313 ± 144 (−2.2) −270 ± 137 (−2.0) −95 ± 145 (−0.7) 179 ± 154 ( 1.2)
kc = 0.01625 . . . . . . . 81 ± 126 ( 0.6) 177 ± 141 ( 1.2) 165 ± 144 ( 1.1) 51 ± 129 ( 0.4)
kc = 0.01750 . . . . . . . −335 ± 137 (−2.4) −104 ± 128 (−0.8) 181 ± 117 ( 1.5) 366 ± 126 ( 2.9)
kc = 0.01875 . . . . . . . −348 ± 118 (−3.0) −323 ± 120 (−2.7) −126 ± 119 (−1.1) 137 ± 117 ( 1.2)
kc = 0.02000 . . . . . . . −155 ± 110 (−1.4) −298 ± 119 (−2.5) −241 ± 113 (−2.1) −44 ± 105 (−0.4)
kc = 0.02125 . . . . . . . −43 ± 96 (−0.4) −186 ± 107 (−1.7) −229 ± 115 (−2.0) −125 ± 104 (−1.2)
kc = 0.02250 . . . . . . . 22 ± 95 ( 0.2) −115 ± 92 (−1.2) −194 ± 105 (−1.8) −148 ± 107 (−1.4)
kc = 0.02375 . . . . . . . 70 ± 100 ( 0.7) −56 ± 94 (−0.6) −159 ± 93 (−1.7) −164 ± 101 (−1.6)
kc = 0.02500 . . . . . . . 106 ± 93 ( 1.1) 6 ± 97 ( 0.1) −103 ± 98 (−1.1) −153 ± 94 (−1.6)

composition, namely an oscillating Fourier basis (nmax = 300)
augmented with a local SW mode (the same used for the recon-
struction plots in Sect. 7). The results from this basis are shown
in Appendix B and they are fully consistent with the polynomial
measurements presented here. The previous best-fit WMAP fea-
ture model, kc = 0.014 (`c ≈ 200) and phase φ = 3π/4, attained
a 2.15σ signal with ` < 500 (Fergusson et al. 2012), but it only
remains at this level for Planck.

We note however that the apparently high statistical signifi-
cance of these results is much lower if we consider this to be a
blind survey of feature models, because we are seeking several
uncorrelated models simultaneously. Following what we did for
our study of impact of foregrounds in Sect. 8, we considered a
set of 200 realistic lensed FFP6 simulations, processed through
the SMICA pipeline, and including realistic foreground residuals.
If we use this accurate MC sample to search for the same grid
of 52 feature models as in Table 12, we find a typical maximum
signal of 2.23(±0.56)σ. Searching across all feature models (see
below) studied here yields an expected maximum 2.37(±0.53)σ
(whereas the survey for all 511 models from all paradigms in-
vestigated yielded 2.55(±0.52)σ). This means that our best-fit
model from data has a statistical significance below 1.5σ above
the maximum signal expectation from simulations, so we con-
clude that we have no significant detection of feature models
from Planck data.

Feature models typically have a damping envelope repre-
senting the decay of the oscillations as the inflaton returns to
its background slow-roll evolution. Indeed, the feature envelope
is a characteristic of the primordial mechanism producing the
fluctuations, decaying as k increases for inflation while rising

Fig. 12. CMB bispectrum shown for the best-fit feature model
with an envelope with parameters k = 0.01875, phase φ = 0 and
∆k = 0.045 (see Table 13). Compare with the Planck bispectrum
reconstruction, Fig. 7.

for contracting models like the ekpyrotic case (Chen 2011). We
have made an initial survey to determine whether a decaying
envelope improves the significance of any feature models. The
envelope employed was a Gaussian centred at kc = 0.045 with
a falloff ∆k = 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045 and re-
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Table 13. Feature model results with an envelope decay function. Results are only presented for feature models with better than
95% CL result on the full domain (see Table 12).

Width ∆k = 0.015 ∆k = 0.03 ∆k = 0.045 Full
Model fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ)

kc = 0.01125; φ = 0 . 765 ± 275 ( 2.8) 703 ± 241 ( 2.9) 648 ± 218 ( 3.0) 434 ± 170 ( 2.6)
kc = 0.01750; φ = 0 . −661 ± 234 (−2.8) −494 ± 192 (−2.6) −425 ± 171 (−2.5) −335 ± 137 (−2.4)
kc = 0.01750; φ = 3π/4 399 ± 207 ( 1.9) 438 ± 183 ( 2.4) 442 ± 165 ( 2.7) 366 ± 126 ( 2.9)
kc = 0.01875; φ = 0 . −562 ± 211 (−2.7) −559 ± 180 (−3.1) −515 ± 159 (−3.2) −348 ± 118 (−3.0)
kc = 0.01875; φ = π/4 −646 ± 240 (−2.7) −525 ± 189 (−2.8) −468 ± 164 (−2.9) −323 ± 120 (−2.7)
kc = 0.02000; φ = π/4 −665 ± 229 (−2.9) −593 ± 185 (−3.2) −500 ± 160 (−3.1) −298 ± 119 (−2.5)

sults for specific parameters are given in Table 13. The best fit
model remains k = 0.01875 (`c = 265) with phase φ = 0 and
the significance rises to 3.23σ, together with a second model
k = 0.02 (`c = 285) φ = π/4. However the caveats about blind
survey statistics previously noted also do not allow a claim of
any detection in this case. A plot of the best-fit feature model
with a decay envelope is shown in Fig. 12, for which the main
features should be compared with those in Fig. 7. Non-Gaussian
bispectrum signals from feature models typically produce coun-
terparts in the power spectrum as will be described in Sect. 9. An
improved statistical interpretation of the results presented in this
Section will be possible when this additional investigation will
be completed.

We have also undertaken a survey of resonant models and
the non-Bunch-Davies resonant models (or enfolded resonance
models). With the modal estimator, we can achieve high ac-
curacy for the predicted bispectrum for kc > 0.001 (note that
this has a different logarithmic dependence to feature models
and a varying effective `c). For the resonance model shape of
Eq. (18), we have not undertaken an extensive survey, except
selecting a likely range for a high signal with periodicity com-
parable to the feature model, that is, with 0.25 < kc < 0.5
and phases φ = 0, π/4, π/2, 3π/4, π. However, no signif-
icant signal was found (all below 1σ), as can be verified in
Table B.1 in Appendix B. For the enfolded resonance model
shape of Eq. (18) , we have undertaken a preliminary search in
the range 4 < kc < 12 with the same phases. Again, no signifi-
cant signal emerges from the Planck data, as shown in Table B.2
in Appendix B.

7.3.4. Directional dependence motivated by gauge fields

We have investigated whether there is significant NG from
bispectrum shapes with non-trivial directional dependence
(Eq. (19)), which are motivated by inflationary models with vec-
tor fields. Using the primordial modal estimator we obtained a
good correlation with the L = 1 flattened type model, but the
squeezed L = 2 model produced a relatively poor correlation
of only 60%, given the complexity of the dominant squeezed
limit. Preliminary constraints on these models are given in the
Table 11, showing no evidence of a significant signal.

7.3.5. Warm inflation

Warm inflation produces a related shape with a sign change
in the squeezed limit. This also had a poor correlation, until
smoothing (WarmS) was applied as described in Fergusson et al.
(2012). The resulting bispectrum shows no evidence for signifi-
cant correlation with Planck data (SMICA),

f WarmS
NL = 4 ± 33 . (87)

The full list of constraints for SMICA, NILC and SEVEM models
can be found for warm inflation and vector models in Table B.3
in Appendix B.

7.3.6. Quasi-single-field inflation

Finally, quasi-single-field inflation has been analysed constrain-
ing the bispectrum shape of Q (Eq. (12)), that depends on two
parameters, ν and f QSI

NL . In order to constrain this model we have
calculated modal coefficients for 0 ≤ ν ≤ 1.5 in steps of 0.01
(so 151 models in total). These were then applied to the data
and the one with the greatest significance was selected. Results
are shown in Fig. 24. The maximum signal occurred at ν = 1.5,
f QSI
NL = 4.79 (0.31σ). To obtain error curves we performed a

full likelihood using 2 billion simulations following the method
described in Sefusatti et al. (2012). Such a large number of sim-
ulations was possible as they were generated from the modal β-
covariance matrix which is calculated once from the 200 Planck
realistic CMB simulations, rather than repeatedly from the CMB
simulations themselves. The procedure is to take the 151 × 151
correlation matrix for the models (this is just the normalized dot
product of the modal coefficients). This is then diagonalised us-
ing PCA, after which only the first 5 eigenvalues are kept as the
remaining eigenvalues are < 10−10. The β-covariance matrix is
projected into the same sub-basis where it is also diagonalised
via PCA into 5 orthonormal modes, with the two leading modes
closely correlated with local and equilateral. The procedure by
which to produce a simulation is to generate five Gaussian ran-
dom numbers and add the mean values obtained from the Planck
data, rotating them to the sub-basis where we determine the ν
with the greatest significance. The result is then projected back
to the original space to determine the related fNL. The two billion
results from this MC analysis are then converted into confidence
curves plotted in Fig. 24. The curve shows that there is no pre-
ferred value for ν with all values allowed at 3σ. This reflects the
results obtained from data previously, where we found the least
preferred value of ν = 0.86 had only a marginally lower signif-
icance of 0.28σ (Sefusatti et al. 2012). Of course, these conclu-
sions are directly related to the null results for both local and
equilateral templates.

7.4. Constraints on local non-Gaussianity with Minkowski
Functionals

In this Subsection, we present constraints on local NG ob-
tained with Minkowski Functionals (MFs). MFs describe the
morphological properties of the CMB field and can be used as
generic estimators of NG (Komatsu et al. 2003; Eriksen et al.
2004; De Troia et al. 2007; Hikage et al. 2008; Curto et al. 2008;
Natoli et al. 2010; Hikage & Matsubara 2012; Modest et al.
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Fig. 13. The Wiener filter WM used to constrain f local
NL with MFs.

Table 14. Validation tests with MFs: results for f local
NL obtained

using the filter WM, for `max = 2000 and Nside = 2048.

Gaussian Ideal 0.21 ± 10.71
Realistic Noise, f local

NL = 12 12.14 ± 13.12
Mask ( fsky = 0.73), realistic noise f local

NL = 12 12.18 ± 18.13

2013). As they are sensitive to every order of NG, they
can be used to constrain different bispectrum and trispectrum
shapes (Hikage et al. 2006, 2008; Hikage & Matsubara 2012).
They are therefore complementary to, and a useful valida-
tion of, optimal estimators. Their precise definition and ana-
lytic formulations are presented in Planck Collaboration XXIII
(2013). The MF technique is also used in the companion paper
Planck Collaboration XXV (2013).

We review here the properties of MFs, as a complementary
tool to poly-spectrum based estimators.

First, they are defined in real space, which makes MFs ro-
bust to masking effects and no linear term is needed to take
into account the anisotropy of the data model. Second, as MFs
are sensitive to every non-Gaussian feature in the maps, they
can be a useful probe of every potential bias in the bispectrum
measurement, in particular the different astrophysical contami-
nations (foregrounds and secondaries).

There is a limitation to MF studies: they can be expressed in
terms of weighted sums of the bispectrum (and trispectrum) in
harmonic space (Matsubara 2010), hence the angle-dependence
of the bispectrum is partially lost. This makes MFs subopti-
mal in two ways: increasing error bars for constraints on spe-
cific shapes and reducing the distinguishability of different bis-
pectrum shapes. This lack of specificity can introduce biases,
as MFs will partially confuse primordial and non-primordial
sources of NG and can introduce degeneracies between differ-
ent primordial shapes. Constraints on orthogonal and equilateral
shapes are quite degenerate with MFs, we therefore chose here to
focus on the local bispectrum shape. We also leave trispectrum
analyses for future studies.

An attractive feature of MFs is their linearity for weak
NG ( fNL) and weak signals (such as point sources, and
Galactic residuals after masking and component separation)
(Ducout et al. 2013). This property can be used to estimate dif-
ferent known non-primordial contributions.

7.4.1. Method

We constrain f local
NL using the optimized procedure described in

Ducout et al. (2013). To obtain constraints on f local
NL , we apply a

specific Wiener filter on the map (WM), shown in Fig. 13. We do
not use here the filter designed to enhance the information from
the gradients of the map (WD1 =

√
`(` + 1)WM), because this

filter is very sensitive to small-scale effects and may be biased
by foreground residuals.

We use maps at HEALPix resolution Nside =
1024 (Górski et al. 2005) and `max = 2000. Our results
are based on the four normalized13 functionals vk (k = 0, 3)
(respectively Area, Perimeter, Genus and Ncluster), computed on
nth = 26 thresholds ν, between νmin = −3.5 and νmax = +3.5 in
units of the standard deviation of the map.

We combine all functionals into one vector y (of size n =
104). We then analyse this vector in a Bayesian way to obtain
a posterior for the f local

NL , and hence an estimate of this parame-
ter. The principle is to compare the vector measured on the data
ŷ to the ones measured on non-Gaussian simulations with the
same systematic effects (realistic noise, effective beam) and data
processing (Wiener filtering) as the data, ȳ( f local

NL ). Modelling the
MFs as multivariate Gaussians we obtain the posterior distribu-
tion for f local

NL with a χ2 test :

P( f local
NL | ŷ) ∝ exp

−χ2(ŷ, f local
NL )

2

 (88)

with

χ2(ŷ, f local
NL ) ≡

[
ŷ − ȳ( f local

NL )
]T

C−1
[
ŷ − ȳ( f local

NL )
]
, (89)

Since NG is weak, the covariance matrix C is computed with
104 Gaussian simulations, again reproducing effective beam, re-
alistic noise and filtering of the data. The dependence of the MFs
on f local

NL , ȳ( f local
NL ), is obtained as an average of ŷmeasured on 100

simulations. The simulations used here are based on the WMAP-
7 best-fit power spectrum (Komatsu et al. 2011), using the pro-
cedure described in Elsner & Wandelt (2009).

7.4.2. Validation tests

We report here validation of the MFs estimator on f local
NL in

thoroughly realistic Planck simulations. This validation subsec-
tion is analogous to Sect. 6.1 concerning bispectrum-based es-
timators. The same tests (ideal Gaussian maps, full-sky non-
Gaussian maps with noise and non-Gaussian maps with noise
and mask) are performed, but different non-Gaussian simula-
tions are used. Non-Gaussian CMB simulations as processed in
Fergusson et al. (2010a) only guarantee the correctness of the 3-
point correlations. Since the MFs are sensitive to higher-order
n-point functions, they were validated with physical simulations
(Elsner & Wandelt 2009).

The first test consists of 100 simulations of a full-sky
Gaussian CMB, with a Gaussian beam with FWHM of 5 arcmin
and without any noise, cut off at `max = 2000, with Nside = 2048.
Here validation tests were made at Nside = 2048, but results (es-
timate and error bars) remain the same at Nside = 1024 as we
keep the same `max. The second test includes non-Gaussian sim-
ulations with f local

NL = 12 and realistic coloured and anisotropic

13 Raw MFs Vk depend on the Gaussian part of fields through a nor-
malization factor Ak that is a function only of the power spectrum shape.
We therefore normalize functionals vk = Vk/Ak to focus on NG, see
Planck Collaboration XXIII (2013) and references therein.
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Fig. 14. The MFs curves for SMICA at Nside = 1024 and `max = 2000, for the four functionals vk: (a) Area, (b) Perimeter, (c)
Genus, and (d) Ncluster. The curves are the difference of each normalized MF, measured from the data, to the average from Gaussian
Planck realistic simulations (not lensed). The difference curves are normalized by the maximum of the Gaussian curve. To compare
the curves to the presence of primordial NG, the average difference curves for non-Gaussian simulations with f local

NL = 50 is also
represented (100 simulations).

Table 15. Estimates of f local
NL obtained with MFs on Planck data. Foreground and secondary effects are evaluated in terms of f local

NL .
Results are for SMICA at Nside = 1024 and `max = 2000.

f local
NL Source Corresponding ∆ f local

NL

Raw map 19.1 ± 19.3 −

Lensing subtracted 8.5 ± 20.5 Lensing +10.6

Lensing+PS subtracted 7.7 ± 20.3 Point sources +0.8
Lensing+CIB subtracted 7.5 ± 20.5 CIB +1.0
Lensing+SZ subtracted 6.0 ± 20.4 SZ +2.5

All subtracted 4.2 ± 20.5 All +14.9

noise, processed through the Planck simulation pipeline and the
component-separation method SMICA. Finally, in the third test
we add the union mask U73 to the previous simulations, mask-
ing both the Galaxy and the brightest point sources, and leaving
73% of the sky unmasked. Only the inpainting of the smallest
holes in the point sources part of the mask was performed. For
these three tests, the results are presented in Table 14. We give
here the average estimate and error bar obtained on the 100 simu-
lations, when we use the four functionals. The results show that
the MF estimator is unbiased, robust, and a competitive alter-
native to bispectrum-based estimators. Moreover a map-by-map

comparison of the results obtained on f local
NL with KSW and MFs

estimators showed a fair agreement between the two methods.

7.4.3. Results

For our analysis we considered a foreground-cleaned map
obtained with the component separation method SMICA at
Nside = 1024 and `max = 2000. As for the previous results
in this Section, we used the union mask U73, which leaves
fsky = 73% of the sky after masking Galaxy and point sources.
To take into account some instrumental effects (asymmetry
of beams, component separation processing) and known non-
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Gaussian contributions (lensing), we used realistic unlensed and
lensed simulations (103) of Planck data (FFP6 simulations, see
Planck Collaboration ES 2013). First, MFs were applied to the
unlensed simulations and the resulting curves served to calibrate
the estimator, as the Gaussian part of the NG curves ȳ( f local

NL )14.
This estimate is referred to as the “raw map”. Secondly, MFs
were applied to the lensed simulations, and the same procedure
was applied, the result being referred as “lensing-subtracted”.
We summarize the procedure in the following equation:

ȳ( f local
NL ) = ȳG

Planck simulations, lensed + ∆ȳNG
fNL, NG simulations (90)

Here we assume that the MF respond linearly to lensing at first
order and that primordial NG and lensing contributions are there-
fore additive.

Additionally, we tried to characterize other non-primordial
contributions that one could expect in masked SMICA-cleaned
maps covering 73% of the sky. To this end, we used simula-
tions of extragalactic foregrounds and secondary anisotropies:
uncorrelated (Poissonian) point sources; clustered CIB; and
SZ clusters. These component simulations reproduce accurately
the whole Planck data processing pipeline (beam asymme-
try, component separation method). Using the linearity of MFs
(Ducout et al. 2013), we could introduce these effects as a simple
additive bias on the curves following

ŷ = ŷFGsubtracted + ∆ȳPS + ∆ȳCIB + ∆ȳSZ (91)

where ∆ȳPS,... is the average bias measured on 100 simulations.
Note that the SZ simulation does not take into account the SZ-
lensing correlation, which is expected to be negligible given the
error bars.

Results are summarized in Table 15 and MFs curves are
shown in Fig. 14, without including the lensing subtraction
(“raw curves”). Considering the larger error bars of MF estima-
tors, the constraints obtained are consistent with those from the
bispectrum-based estimators, even without subtracting the ex-
pected non-primordial contributions. Moreover, results are quite
robust to Galactic residuals: constraints obtained with other
component separation methods (NILC and SEVEM), with differ-
ent sky coverage, differ from the SMICA results presented here
by less than ∆ f local

NL = 1.

7.5. CMB trispectrum results

As shown in Fig. 15 the modulation reconstruction mean field
has two large contributions, one from the mask and one from
anisotropic noise, reflecting the fact that they both look like a
large spatially-varying modulation of the fluctuation power. The
noise we use to estimate the mean field is taken from FFP6 sim-
ulations, adjusted with an additional 10 µK arcmin white noise
component to match the power spectrum in the observed maps.
However this is still only an approximate description of the in-
strumental noise present in the data. The mean field from non-
independent maps (e.g., 143 × 143 GHz maps) shows a large
noise anisotropy that is primarily quadrupolar before masking,
and any mismatch between the simulated noise and reality would
lead to a large error in the mean field subtraction. By instead us-
ing the modulation estimator for 143×217 GHz maps errors due
to misestimation of the noise are avoided, and the mean field
is then dominated by the shape of the Galactic cut, which is
well known, and a smaller uncertainty from assumed simulation

14 The overall effect of data processing on the f local
NL constraint from

MFs was evaluated as f local
NL (process.) ∼ 3.
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Fig. 15. The two upper maps show the modulation reconstruc-
tion mean field f̄ MF(n̂) at L ≤ 100 , which is essentially a map
of the expected total small-scale power on the masked map as
a function of position (assuming there is no primordial power
modulation). The top mean field map from the 143 GHz auto
estimator has a large signal from both the cut (which can be
calculated accurately), and from the noise anisotropy (aligned
roughly with the ecliptic, which cannot be estimated very accu-
rately from simulations). The lower mean field is the 143 × 217
GHz cross-estimator map, and does not have the contribution
from the noise anisotropy (note the colour scale is adjusted).
The lower plot shows the corresponding mean field power spec-
tra compared to the reconstruction noise N(0)

L (connected part of
the trispectrum); the reconstruction noise is much smaller than
both the detector noise and mask contributions to the mean field.
Since any τNL signal is all on large scales we do not reconstruct
modes above Lmax = 100.

power spectrum and beam errors (see Fig. 15). For this reason for
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Fig. 16. Power spectrum of the power modulation reconstructed
from 143 × 217 GHz maps. Shading shows the 68%, 95% and
99% CL intervals from simulations with no modulation or kine-
matic signal. The dashed lines are when the mean field simula-
tions include no kinematic effects, showing a clear detection of a
modulation dipole. The blue points show the expected kinematic
modulation dipole signal from simulations, along with 1σ error
bars (only first four points shown for clarity). The solid line sub-
tracts the dipolar kinematic signal in the mean fields from sim-
ulations including the expected signal, and represents out best
estimate of the non-kinematic signal (note this is not just a sub-
traction of the power spectra since the mean field takes out the
fixed dipole anisotropy in real space before calculating the re-
maining modulation power). The dotted line shows the expected
signal for τNL = 1000.

our main result we work with modulation reconstructions gener-
ated from 143 × 217 GHz maps with independent noise, which
removes the leading error due to noise mean field misestimation.

Figure 16 shows the reconstructed modulation power from
143 × 217 GHz maps that we use for our analysis. We show
two results: one where we do not include the expected kinematic
dipole signal in the mean field subtraction (see Sect. 5.4), and
one were we do so that the reconstruction should then be domi-
nated by the primordial and any unmodelled systematic effects.
In the first case the 143 × 217 result gives a clear first detection
of the dipolar kinematic modulation signal of roughly the ex-
pected magnitude (see Planck Collaboration XXVII (2013) for a
more detailed discussion of this signal). Including the expected
kinematic signal in the simulations (and hence the mean field)
removes this signal, giving a cosmological modulation recon-
struction that is broadly consistent with no modulation (statisti-
cal isotropy) except for the anomalous very significant signal in
the modulation octopole.

Note that only the two-point reconstruction is free from noise
bias, the four-point is still sensitive to noise modelling at the
level of the subtraction of the N(0)

L (Eq. (72)) reconstruction noise
power spectrum. However as shown in the Fig. 16, N(0)

L is not
that much larger than the reconstruction scatter at low multipoles
where the τNL signal peaks, so the sensitivity to noise misestima-
tion is much less than in the mean field subtraction (where the

�500 0 500 1000 1500 2000

⌧̂NL

0.
00

02
0.

00
06

0.
00

10
0.

00
14

B
in

n
ed

pr
ob

ab
ili

ty

Fig. 17. Distribution of τ̂NL estimators from Gaussian simula-
tions (Lmax = 10) compared to data estimates (vertical lines).
The distribution is rather skewed because the main contributions
are from L <

∼ 4 where the modulation power spectra have skewed
χ2 distributions with low degrees of freedom. The red line shows
the predicted distribution for a weighted sum of τ̂NL(L) estima-
tors assuming the reconstructed modulation modes are Gaussian
with 2L + 1 modes measured per L, which fits the full simula-
tions well. The black vertical lines show the data estimates from
Lmax = 10, and should be compared to the green which have
Lmax = 2 and hence are insensitive to the anomalous octopole
signal. The dashed lines are τNL,1, the slightly more optimal vari-
ant of the estimator.

large-scale noise anisotropy gives a large-scale mean field in the
auto-estimators orders of magnitude larger, Fig. 15).

The τNL estimator from the 143 × 217 GHz modulation re-
construction gives τ̂NL = 442, compared to a null hypothesis
distribution −452 < τ̂NL < 835 at 95% CL (στNL ≈ 335). Our
quoted error bar is assuming zero signal so that there is no signal
cosmic variance contribution, and the bulk of the apparent signal
is coming from the high octopole seen in Fig. 16. The alterna-
tive estimator τ̂NL,1 gives a slightly different weighting to the
octopole, giving τ̂NL,1 = 569 with an expected null-hypothesis
στNL ≈ 332. The surprisingly large difference between the es-
timators can be explained as due to the large octopole signal,
which has τ̂NL(L = 3) ≈ 6000. However the shape of the total
signal would not be expected from a genuine τNL signal, since
as shown in Fig. 16 on average the latter is expected to fall off
approximately proportional to 1/L2 (i.e., a large primordial τNL
would be expected in most realisations to give large dipole and
quadrupole signals that we do not see). If we estimate τNL using
Lmax = 2 we obtain τ̂NL = 165 with only a slightly larger null-
hypothesis error στNL = 349, where in this case τ̂NL,1 = 172.

Note that the distribution of τ̂NL is quite skewed because
the signal is dominated by the very-low multipole modulation
power spectra which have skewed χ2-like distributions due to
the large cosmic variance there (see Fig. 17; Hanson & Lewis
2009; Smith & Kamionkowski 2012). The reconstruction noise
acts like nearly-uncorrelated Gaussian white noise, so each of
the C̄ f

L comes from a sum of squares of ∼ 2L + 1 modulation re-
construction modes; the shape of the τ̂NL distribution is consis-
tent with what would come from calculating a weighted sum of
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Fig. 18. Approximate posterior distributions P(τNL|τ̂NL(L)) for a
range of Lmax. The distributions have broad tails to high values
because of the small number of large-scale modulation modes
that are measured, and hence large cosmic variance. For Lmax ≥

3 the distributions are pulled away from zero by the significant
octopole modulation signal observed, and are gradually move
back towards zero as we include more modulation modes that
are inconsistent with large τNL values. As shown in Fig. 19 the
octopole has significant frequency dependence and is therefore
unlikely to be physical.

χ2-distributed random variables. If we assume that any primor-
dial modulation modes giving rise to a physical τNL signal are
also Gaussian, for any given physical τNL the τ̂NL(L) estimators
would also have χ2 distributions. This allows us to evaluate the
posterior distribution of τNL given the observed τ̂NL, in exactly
the same way that one can do for the CMB temperature power
spectrum. For each L the posterior distribution P(τNL(L)|τ̂NL(L))
on the full sky would have an inverse-gamma distribution. We
follow Hamimeche & Lewis (2008) by generalizing this to a cut-
sky approximation for a range of multipoles:

− 2 ln P({τNL(L)}|{τ̂NL(L)}) ≈∑
LL′

[
g(x(L))N(0)

τNL
(L)

] [
M−1

]
LL′

[
N(0)
τNL

(L′)g(x(L′))
]

(92)

where MLL′ is the covariance of the estimators calculated from
null hypothesis simulations, N(0)

τNL (L) = kLN(0)
L /Cζ∗

L is the estima-
tor reconstruction noise,

x(L) ≡
τ̂NL(L) + N(0)

τNL (L)

τNL(L) + N(0)
τNL (L)

, (93)

and
g(x) ≡ sign(x − 1)

√
2(x − ln(x) − 1). (94)

For uncorrelated χ2-distributed estimators this distribution re-
duces to the exact distribution, a product of inverse-gamma dis-
tributions. This approximation to the posterior can be used to
evaluate the probability of any scale dependent τNL(L), and does
not rely on compression into a single τ̂NL estimator; it can there-
fore fully account for the observed distribution of modulation
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Fig. 19. Comparison of the un-normalized modulation power
C̄ f

L with various combinations of frequencies. The middle plot
shows the results used for our main τNL result, since it removes
the significant largely-quadrupolar signal from anisotropic noise
misestimation seen in the two other plots. The noticeable differ-
ence in the odd octopole signal between channels indicates that
the residual signal in 143 × 217 GHz is unlikely to be physical,
but we cannot currently identify its origin.

power between L. Here we focus on the main case of interest
where τNL(L) is nearly-scale-invariant so that for all L we have
τNL(L) = τNL.

The resulting posterior distributions of τNL are shown in
Fig. 18 for a range of Lmax. These are strongly skewed, in the
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same way as the posterior from the low quadrupole in the CMB
temperature data. The high octopole is pulling the distributions
up to higher τNL values, but increasing Lmax can reduce the high-
L tail because very large τNL values are inconsistent with the low
modulation power seen at L , 3. With Lmax = 2 the posterior
peaks near zero, but the distribution is then very broad because
there are only about 8 modes, which therefore have large cosmic
variance. For Lmax = 50 we find τNL < 2800 at 95% CL, which
we take as our upper limit.

Figure 19 shows the modulation reconstructions for the 143
GHz and 217 GHz maps separately compared to the cross esti-
mator. The picture is complicated here by the large signals from
noise misestimation seen in the 143 × 143 and 217 × 217 esti-
mators, however the fact that the octopole in 143 × 143 is lower
than in the cross-estimator indicates that the octopole signal is
very unlikely to be mainly physical. Our measured τNL limit in
practice represents a strong upper limit on the level of primor-
dial τNL that could be present, since unmodelled varying small-
scale foreground or non-constant gain/calibration would also
only serve to increase the measured estimate compared to pri-
mordial on average. The octopole signal does vary slightly with
Galactic mask, though at present we cannot clearly isolate its
origin. If more extensive analysis (for example using cross-map
estimators at the same frequency) can identify a non-physical
origin and remove it, the quoted upper limit on τNL would be-
come significantly tighter. For a more extensive discussion of
possible foreground and systematic effect issues that can af-
fect 4-point estimators see Planck Collaboration XXVII (2013);
Planck Collaboration XVII (2013).

We have focussed on nearly scale invariant modulations
here. As discussed in Planck Collaboration XXIII (2013) there
are some interesting “anomalies” in the distribution of power in
the Planck data, especially the hemispherical power asymmetry
at `max < 500. This would correspond to a τNL-like trispectrum,
but as we have shown here the power anisotropy does not per-
sist to smaller scales (we use `max = 2000) except for the signal
aligned with the CMB dipole expected from kinematic effects.
For a primordial trispectrum to be consistent with both results
the modulation would have to be scale-dependent on small-scale
modes (rather than just τNL = τNL(L)), so that larger small-scale
modes are modulated more than the smallest ones.

8. Validation of Planck results

Here we perform a set of tests to check the robustness and sta-
bility of our fNL measurements. As these are validation tests
of Planck results, and not internal comparisons of bispectrum
pipelines (already shown to be in tight agreement in Sect. 6 and
7) we will not employ all the bispectrum estimators on each test.
In general we choose to use two estimators on each test, in order
to have a cross-check of the outcomes without excessive redun-
dancy.

8.1. Dependence on maximum multipole number

The dependence on the maximum multipole number `max of the
SMICA results (assuming independent shapes) is shown in Fig. 20
(for the binned estimator) and Table 16 (for both the KSW and
binned estimators). Testing the `max dependence is easiest for the
binned estimator, where one can simply omit the highest bins
in the final sum when computing fNL. It is clear that we have
reached convergence both for the values of fNL and for their error
bars at `max = 2500, with the possible exception of the error bars
of the diffuse point source bispectrum. The diffuse point source

bispectrum template is dominated by equilateral configurations
at high `. Moreover, for all the shapes except point sources, re-
sults at `max = 2000 are very close to those at `max = 2500,
taking into account the size of the error bars.

It is very interesting to see that at `max ∼ 500 we find a local
fNL result in very good agreement with the WMAP-9 value of
37.2±19.9 (Bennett et al. 2012). At these low `max values we also
find negative values for orthogonal fNL, although not as large or
significant as the WMAP-9 value (which is −245 ± 100). One
can clearly see the importance of the higher resolution of Planck
both for the values of the different fNL parameters and for their
error bars.

It is also clear that the higher resolution of Planck is abso-
lutely crucial for the ISW-lensing bispectrum; this is simply un-
detectable at WMAP resolution. On the other hand, the high sen-
sitivity of Planck measurements also exposes us to a larger num-
ber of potentially spurious effects. For example we see that the
bispectrum of point sources is also detected at high significance
by Planck at `max ≥ 2000, while remaining undetectable at lower
resolutions. The presence of this bipectrum in the data could in
principle contaminate our primordial fNL measurements. For this
reason, the presence of a large point source signal has been ac-
counted for in previous Sections by always including the Poisson
bispectrum in a joint fit with primordial shapes. Fortunately, it
turns out that the very low correlation between the primordial
templates and the Poisson one makes the latter a negligible con-
taminant for fNL, even when the residual point source amplitude
is large.

8.2. Dependence on mask and consistency between
frequency channels

To test the dependence on the mask, we have analysed the
SMICA maps applying four different masks. Firstly the union
mask U73 used for the final results in Sect. 7, which leaves
73% of the sky unmasked. Secondly we used the confidence
mask CS-SMICA89 of the SMICA technique, which leaves 89%
of the sky. Next, a bigger mask constructed by multiplying the
union mask U73 with the Planck Galactic mask CG60, leading
to a mask that leaves 56% of the sky. And finally a very large
mask, leaving only 32% of the sky, which is the union of the
mask CL31 - used for power spectrum estimation on the raw
frequency maps - with the union mask U73 (for mask details
see Planck Collaboration XII 2013 for U73, CS-SMICA89, and
CG60; Planck Collaboration XV 2013 for CL31). The results of
this analysis are presented in Table 17 for two different esti-
mators: binned and modal. The fNL are assumed independent
here. In order to correctly interpret our results and conclusions,
an important point to note is that binned results have been ob-
tained choosing `max = 2500, while modal results correspond to
`max = 2000. Primordial shape and ISW-lensing results and er-
ror bars saturate at `max = 2000 (see Sect. 8.1), so the results
from the two estimators are directly comparable in this case.
The Poisson (point sources) bispectrum is however dominated
by high-` equilateral configurations and the signal for this spe-
cific template still changes from ` = 2000 to ` = 2500. The
differences in central values and uncertainties between the two
estimators for the Poisson shape are fully consistent with the dif-
ferent `max values. Direct comparisons on data and simulations
between these two estimators and the KSW estimator showed
that Poisson bispectrum results match each other very well when
the same `max is used.

Results from the modal pipeline have uncertainties deter-
mined from MC simulations, while the results from the binned
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Fig. 20. Evolution of the fNL parameters (solid blue line with data points) and their uncertainties (dashed lines) for the five bispectrum
templates as a function of the maximum multipole number `max used in the analysis. From left to right and top to bottom the
figures show respectively local, equilateral, orthogonal, diffuse point sources, and ISW-lensing. To better show the evolution of the
uncertanties, they are also plotted around the final value of fNL (solid green lines without data points). The results are for SMICA,
assume all shapes to be independent, and have been determined with the binned bispectrum estimator.

Table 16. Results for fNL (assumed independent) of the SMICA cleaned map using different values of `max, for the KSW and binned
estimators.

`max = 500 `max = 1000 `max = 1500 `max = 2000 `max = 2500
KSW

Local . . . . . . . . . 38 ± 18 6.4 ± 9.7 6.9 ± 6.2 9.1 ± 5.8 9.8 ± 5.8
Equilateral . . . . . −119 ± 121 −45 ± 88 −41 ± 75 −40 ± 75 −37 ± 75
Orthogonal . . . . . −163 ± 109 −89 ± 52 −57 ± 45 −45 ± 40 −46 ± 39
Diff.ps ·1029 . . . . (−1.5 ± 1.3)×104 (−7.9 ± 3.1)×102 −39 ± 18 10.0 ± 3.1 7.7 ± 1.5
ISW-lensing . . . . 3.2 ± 1.2 1.00 ± 0.43 1.00 ± 0.35 0.83 ± 0.31 0.81 ± 0.31

Binned
Local . . . . . . . . . 33 ± 18 6.6 ± 9.8 7.1 ± 6.1 8.5 ± 5.9 9.2 ± 5.9
Equilateral . . . . . −95 ± 107 −55 ± 77 −47 ± 72 −22 ± 73 −20 ± 73
Orthogonal . . . . . −102 ± 94 −69 ± 58 −60 ± 44 −35 ± 40 −39 ± 41
Diff.ps ·1029 . . . . (−1.4 ± 1.2)×104 (−8.2 ± 2.9)×102 −42 ± 17 9.9 ± 2.9 7.7 ± 1.6
ISW-lensing . . . . 2.6 ± 1.6 0.57 ± 0.52 0.80 ± 0.42 0.85 ± 0.38 0.91 ± 0.37

pipeline (in Table 17 and the next only) are given with Fisher
error bars. It is very interesting to see that even with the large
fsky = 0.32 mask, the simple inpainting technique still allows
us to saturate the (Gaussian) Cramér-Rao bound, except for the
ISW-lensing shape where we have a significant detection of NG
in a squeezed configuration (so that an error estimate assuming
Gaussianity is not good enough). Finally we note that only for
the tests in this and in the next paragraph we adopted a faster but
slightly less accurate version of the modal estimator than the one
used to obtain the final fNL constraints in Sect. 7. In this faster
implementation we use fewer modes in order to increase com-
putational speed, and consequently we get a slight degrading of

the level of correlation of our expanded templates with the initial
primordial shapes. Note that the changes are small: we go from
99% correlation for local, equilateral and orthogonal shapes in
the most accurate (and slower) implementation to 98% correla-
tion for equilateral and orthogonal snapes, and 95% correlation
for local shape in the faster version. This of course still allows for
very stringent validation tests for all the primordial shapes, and
produces results very close to the high-accuracy pipeline, while
at the same time increasing overall speed by almost a factor 2.
Both versions of the modal pipeline were separately validated on
simulations (see Sect. 6).
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Table 17. Results for fNL (assumed independent) of the SMICA cleaned map using different masks as described in the main text
(Sect. 8.2). Results are given for the binned and modal estimators. Uncertainties for the binned estimator in this table and the next
are Fisher error bars. The modal estimator uses a faster and slightly less correlated expansion of the primordial templates for this
test and the next than for other analyses (see Sect. 8.2 for more explanations). These caveats explain why the results shown in this
table for the fsky = 0.73 mask display small differences with respect to the corresponding numbers in the main results tables of
Sect. 7, for both estimators. We also note that the binned estimator uses `max = 2500 and the modal estimator `max = 2000, which
has an impact on the point source results as explained in the main text.

fsky = 0.89 fsky = 0.73 fsky = 0.56 fsky = 0.32
Binned

Local . . . . . . . . . 13 ± 5.4 9.2 ± 5.9 11 ± 6.8 6.1 ± 8.9
Equilateral . . . . . 35 ± 66 −20 ± 73 −20 ± 83 39 ± 109
Orthogonal . . . . . −18 ± 36 −39 ± 39 −45 ± 45 −5 ± 59
Diff.ps · 1e29 . . . 14.0 ± 1.3 7.7 ± 1.4 9.0 ± 1.7 10.3 ± 2.2
ISW-lensing . . . . 0.69 ± 0.26 0.91 ± 0.29 0.84 ± 0.33 0.81 ± 0.43

Modal
Local . . . . . . . . . 12.1 ± 5.5 8.4 ± 6.0 12.3 ± 7.1 9.2 ± 8.7
Equilateral . . . . . 52 ± 66 −56 ± 72 −31 ± 84 42 ± 104
Orthogonal . . . . . 3.3 ± 35 −31 ± 40 −50 ± 47 −27 ± 59
Diff.ps · 1e29 . . . 20.6 ± 2.5 11.4 ± 2.8 10.7 ± 3.2 12.7 ± 3.9
ISW-lensing . . . . 0.42 ± 0.35 0.62 ± 0.40 1.1 ± 0.45 0.80 ± 0.48

Table 18. Results for fNL (assumed independent) for the raw frequency maps at 70, 100, 143, and 217 GHz with a very large mask
( fsky = 0.32) compared to the SMICA result with the union mask U73 ( fsky = 0.73), as determined by the binned (with `max = 2500)
and modal (with `max = 2000) estimators. The same caveats as for the previous table (Table 17) apply here as well.

SMICA 70 GHz 100 GHz 143 GHz 217 GHz
Binned

Local . . . . . . . . . 9.2 ± 5.9 19.7 ± 26.0 −2.5 ± 13.2 10.4 ± 9.8 −4.7 ± 9.6
Equilateral . . . . . −20 ± 73 159 ± 188 70 ± 132 48 ± 114 −9 ± 114
Orthogonal . . . . . −39 ± 39 −78 ± 139 −106 ± 81 −101 ± 64 −84 ± 63
Diff.ps · 1e29 . . . 7.7 ± 1.4 (−1.4 ± 2.3)×103 −4.0 ± 64 8.7 ± 6.1 14.2 ± 3.0
ISW-lensing . . . . 0.91 ± 0.29 3.5 ± 2.2 0.35 ± 0.78 0.89 ± 0.50 0.87 ± 0.48

Modal
Local . . . . . . . . . 8.4 ± 6.0 36.5 ± 27.2 −6.6 ± 13.6 6.6 ± 9.4 −6.5 ± 8.9
Equilateral . . . . . −56 ± 72 74 ± 193 49 ± 123 81 ± 111 28.9 ± 110
Orthogonal . . . . . −31 ± 40 −225 ± 119 −75 ± 80 −133 ± 62 −112.4 ± 61
Diff.ps ·1e29 . . . . 11.4 ± 2.8 (-2.5 ± 2.8)×103 −45 ± 64 5.7 ± 7.0 25 ± 5.0
ISW-lensing . . . . 0.62 ± 0.40 2.6 ± 2.3 0.92 ± 0.80 0.78 ± 0.60 0.85 ± 0.56

Besides confirming again the good level of agreement be-
tween the two estimators already discussed in Sects. 6 and 7,
the main conclusion we draw from this analysis is that our mea-
surements for all shapes are robust to changes in sky coverage,
taking into account the error bars and significance levels, at least
starting from a certain minimal mask. The fsky = 0.89 mask is
probably a bit too small, likely leaving foreground contamina-
tion around the edges of the mask, though even for this mask the
results are consistent within 1σ, except for point sources (which
might suggest the presence of residual Galactic point source con-
tamination for the small mask). The results from the fsky = 0.73
and fsky = 0.56 masks are highly consistent. This conclusion
does not really change when going down to fsky = 0.32, although
uncertainties of course start increasing significantly for this large
mask.

We also investigate if there is consistency between frequency
channels when the largest mask with fsky = 0.32 is used, and if
these results agree with the SMICA results obtained with the com-
mon mask. The results (assuming independent fNL) are given
both for the binned and the modal estimator in Table 18. As in
the previous table, the full modal pipeline (faster but slightly less

accurate version) has been run here, obtaining both central val-
ues from data and MC error bars from simulations, while the
binned pipeline (which is slower in determining full error bars
than the modal pipeline) is used to cross-check the modal mea-
surements and has error bars given by simple Fisher matrix es-
timates. As one can see here and as was also checked explicitly
in many other cases, the error bars from different estimators are
perfectly consistent with each other and saturate the Cramér-Rao
bound (except in the case of a significant non-Gaussian ISW-
lensing detection).

A detailed analysis of Table 18 might actually suggest that
the agreement between the two estimators employed for this
test, although still clearly good, is slightly degraded when com-
pared to their performance on clean maps from different compo-
nent separation pipelines. If we compare e.g., SMICA results in
Table 17 to raw data results in Table 18, we see that in the for-
mer case the discrepancy between the two estimators is at most
of order σ fNL/3, and smaller in most cases. In the latter case,
however, we notice several measurements displaying differences
of order σ fNL/2 between the two pipelines, and the value of f ortho

NL
at 70 GHz being 1σ away. We explain these larger differences as
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follows. For SMICA runs we calibrated the estimator linear terms
using FFP6 simulations, accurately reproducing noise properties
and correlations. On the other hand, for the present tests on raw
frequency channels we adopted a simple noise model, based on
generating uncorrelated noise multipoles with a power spectrum
as extracted from the half-ring null map, and remodulating the
noise in pixel space according to the hit-count distribution. This
approximation is expected to degrade the accuracy of the linear
term calibration, and thus to produce a slightly lower agreement
of different pipelines for shapes where the linear correction is
most important. Those are the shapes that take significant con-
tributions from squeezed triangles: local and ISW-lensing, and
to a smaller but non-negligible extent orthogonal, i.e., exactly
the shapes for which we find slightly larger differences.

We conclude that no significant fluctuations are observed
when comparing measurements from different frequency chan-
nels (between themselves or with the clean and co-added SMICA
map) or from different estimators on a given channel for the pri-
mordial shapes. The same is true for the ISW-lensing shape, al-
though it should be noted that in particular the 70 GHz chan-
nel (like WMAP) does not have sufficient resolution to mea-
sure either the lensing or point source contributions. The uncer-
tainties of the point source contribution vary significantly be-
tween frequency channels, although results remain consistent
between channels given the error bars (when all multipoles up to
`max = 2500 are taken into account, as performed by the binned
estimator). This is due to the fact that this shape is dominated by
high-` equilateral configurations, the signal-to-noise of which
depends crucially on the beam and noise characteristics, which
vary from channel to channel. In the SMICA map point sources
are partially removed by foreground cleaning, explaining the sig-
nificantly lower value than for 217 GHz. As explained before,
differences between the binned and modal estimators regard-
ing point sources are due to the different values of `max (2500
for binned and 2000 for modal), which particularly affects the
217 GHz channel and the SMICA cleaned map.

8.3. Null tests

To make sure there are no hidden NG in the instrumental noise,
we performed a set of tests on null maps. These are noise-only
maps obtained from differences between maps with the same sky
signal. In the first place we constructed half-ring null maps, i.e.,
maps constructed by taking the difference between the first and
second halves of each pointing period, divided by 2. Secondly,
we constructed a survey difference map (Survey 2 minus Survey
1 divided by 2). A “survey” is defined as half a year of data,
roughly the time needed to scan the full sky once; the nominal
period of Planck data described by these papers contains two
full surveys. Finally we constructed the detector set difference
map (“detset 1” minus “detset 2” divided by 2). The four polar-
ized detectors at each frequency from 100 to 353 GHz are split
into two detector sets per frequency, in such a way that each
set can measure all polarizations and the detectors in a set are
aligned in the focal plane (see Planck Collaboration VI (2013)
and Planck Collaboration XII (2013) for details on the null maps
analysed in this Section).

All these maps are analysed using the union mask U73 used
for the final data results. However, in the case of the survey and
detector set difference maps this mask needs to be increased by
the unseen pixels. That effect only concerns a few additional pix-
els for the detector set null map, but is particularly important for
the survey difference map, since a survey only approximately

covers the full sky. The final fsky of the mask used for the survey
difference map is 64%.

The test consisted of extracting fNL from the null maps de-
scribed above, using only the cubic part of the bispectrum es-
timators (i.e., no linear term correction), and keeping the same
weights as for the full “signal + noise” analysis. This means that
the weights were not optimized for noise-only maps, as our aim
was not to study the bispectrum of the noise per se but rather
to check whether the noise alone produces a three-point func-
tion detectable by our estimators when they are run in the same
configuration as for the actual CMB data analysis. For a similar
reason it would have been pointless to introduce a linear term in
this test. The purpose of the linear correction is in fact that of
decreasing the error bars by accounting for off-diagonal covari-
ance terms introduced by sky cuts and noise correlations when
optimal weights are used, which is not the case here.

Our fNL error bars for this test are obtained by running the
estimators’ cubic part on Gaussian noise simulations including
realistic correlation properties. In the light of the above para-
graph it is clear that such uncertainties have nothing to do with
the actual uncertainties from CMB data, and cannot be compared
to them.

Since SMICAwas the main component-separation method for
our final analysis of data, we present in Table 19 the results of
our SMICA half-ring study using the KSW, binned and modal es-
timators, i.e., all the three main pipelines used in this paper. For
the cleaned maps we do not have survey or detector set differ-
ence maps. Those are, however, available for single frequency
channels. Thus we also studied all three types of null maps for
the raw 143 GHz channel in Table 20, using the binned estimator.
In both tables all fNL shapes are assumed to be independent. The
binned estimator is best suited for these specific tests as its cu-
bic part is less sensitive to masking compared to other pipelines,
especially modal. Therefore in this “cubic only” test, the binned
results provide the most stringent constraints in terms of final
error bars.

As one can see Planck passes these null tests without any
problems: all values found for fNL in these null maps are com-
pletely negligible compared to the final measured results on the
data maps, and consistent with zero within the error bars.

8.4. Impact of foreground residuals

In Sect. 7 we applied our bispectrum estimators to Planck
data filtered through four different component separation meth-
ods: SMICA, NILC, SEVEM and C-R (for a detailed descrip-
tion of component separation techniques used for Planck see
Planck Collaboration XII (2013)). The resulting set of fNL mea-
surements shows very good internal consistency both between
different estimators (as expected from our MC validation tests
of bispectrum pipelines described in Sect. 6) and between dif-
ferent foreground-cleaned maps. This already makes it clear that
foreground residuals in the data are very well under control, and
their impact on the final fNL results is only at the level of a small
fraction of the measured error bars. In this Section we further
investigate this issue, and validate our previous findings on data
by running extensive tests in which we compare simulated data
sets with and without foreground residuals from two different
component separation pipelines, SMICA and NILC. The goal is to
provide a MC-based assessment of the expected fNL systematic
error from residual foreground contamination.

For each component separation pipeline, we consider two
sets of simulations. One set includes realistic Planck noise and
beam, is masked and inpainted in the same way as we do for
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Table 19. Results for fNL (assumed independent) of the SMICA half-ring null maps, determined by the KSW, binned and modal
estimators.

KSW Binned Modal
SMICA half-ring

Local . . . . . . . . . −0.008 ± 0.18 −0.086 ± 0.20 −0.13 ± 0.35
Equilateral . . . . . −0.16 ± 2.2 1.3 ± 2.1 0.66 ± 2.0
Orthogonal . . . . . −0.035 ± 0.57 0.51 ± 0.57 0.14 ± 0.60
Diff.ps · 1e29 . . . −0.05 ± 0.60 0.03 ± 0.68 0.05 ± 0.65
ISW-lensing . . . . (-0.06 ± 2.0)×10−3 (−2.2 ± 4.7)×10−3 0.009 ± 0.030

Table 20. Results for fNL (assumed independent) of several null maps determined by the binned estimator. We consider half-ring
(r1 − r2)/2, survey (s2 − s1)/2, and detector set (d1 − d2)/2 difference maps for SMICA and the raw 143 GHz channel.

SMICA 143 GHz 143 GHz 143 GHz
half-ring half-ring survey detector set

Binned

Local . . . . . . . . . −0.086 ± 0.20 −0.016 ± 0.073 0.43 ± 0.56 1.9 ± 1.7
Equilateral . . . . . 1.3 ± 2.1 3.2 ± 1.8 −1.5 ± 4.2 0.9 ± 5.8
Orthogonal . . . . . 0.51 ± 0.57 1.2 ± 0.6 −1.7 ± 1.3 −1.3 ± 1.8
Diff.ps · 1e29 . . . 0.03 ± 0.68 0.19 ± 1.9 3.4 ± 3.2 −1.0 ± 4.3
ISW-lensing . . . . (−2.2 ± 4.7)×10−3 (−0.5 ± 1.7)×10−3 (−0.6 ± 11)×10−3 0.033 ± 0.026

Table 21. Summary of our fNL analysis of foreground residuals. For realistic lensed FFP6 simulations processed through the SMICA
and NILC component separation pipelines, we report: the average fNL with and without foreground residuals added to the maps, the
fNL standard deviation in the same two cases, and the standard deviation of the map-by-map fNL difference between the “clean” and
“contaminated” sample. The impact of foreground residuals is clearly subdominant when compared to statistical error bars for all
shapes. Results reported below have been obtained using the modal estimator.

SMICA SMICA NILC NILC SMICA NILC
clean residual clean residual residual − clean residual − clean

Modal

Local . . . . . . . . . 7.7 ± 5.9 7.8 ± 5.9 7.7 ± 5.8 7.4 ± 6.0 0.04 ± 1.0 −0.27 ± 1.1
Equilateral . . . . . −0.5 ± 77 −8.7 ± 79 −0.6 ± 78 −9.0 ± 79 −8.3 ± 8.2 −8.4 ± 8.3
Orthogonal . . . . . −23 ± 41 −25 ± 41 −24 ± 40 −26 ± 41 −2.0 ± 4.7 −2.4 ± 4.8
ISW-lensing . . . . 1.00 ± 0.38 1.01 ± 0.38 1.01 ± 0.38 1.02 ± 0.38 0.006 ± 0.052 0.013 ± 0.052

real data, and is processed through SMICA and NILC but it
does not contain any foreground component. The other set is
obtained by adding to the first one a number of diffuse fore-
ground residuals: thermal and spinning dust components; free-
free and synchrotron emission; kinetic and thermal SZ; CO lines
and correlated CIB. These residuals have been evaluated by ap-
plying the component separation pipelines to accurate synthetic
Planck datasets including foreground emission according to the
PSM (Delabrouille et al. 2012), and are of course dependent on
the cleaning method adopted. The simple procedure of adding
foreground residuals to the initially clean simulations is made
possible because we consider only linear component separation
methods for our analysis. Linearity is in general an important
requirement for foreground cleaning algorithms aiming at pro-
ducing maps suitable for NG analyses. All maps in both samples
are lensed using the LensPix algorithm. We analyse both sets
using different bispectrum estimators (modal, KSW, binned) for
cross-validation purposes.

The presence of residual foreground components in the data
can have two main effects on the measured fNL. The first is to in-
troduce a bias in the fNL measurements due to the correlation be-
tween the foreground and primordial 3-point function for a given
shape. The second is to increase the error bars while leaving
the bispectrum estimator asymptotically unbiased. This is a con-

sequence of accidental correlations between primordial CMB
anisotropies and foreground emission. Of course these “CMB-
CMB-foregrounds” bispectrum terms average to zero but they
do not cancel in the bispectrum variance 6-point function). An
interesting point to note is that a large foreground three-point
function will tend to produce a negative bias in the local bispec-
trum measurements. That is because foreground emission pro-
duces a positive skewness of the CMB temperature distribution
(“excess of photons”), and a positive skewness is in turn related
to a negative f local

NL
15. A large negative f local

NL is thus a signature
of significant foreground contamination in the map. This is in-
deed what we observe if we consider raw frequency maps with
a small Galactic cut, which is why our frequency-by-frequency
analysis in Sect. 8.2 was performed using a very large mask. For
more details regarding effects of foreground contamination on
primordial NG measurements in the context of the WMAP anal-
ysis see Yadav & Wandelt 2008 and Senatore et al. 2010.

15 While not rigorous, this argument captures the leading effect since
Galactic foregrounds predominantly contaminate large scales. In prin-
ciple, positively skewed, small scale foreground residuals (` > 60), or
the negatively skewed SZ effect, can contribute positive bias. Our sim-
ulations with foreground residuals demonstrate that these contributions
are subdominant.
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Fig. 21. The measured f local
NL for the first 99 maps in the lensed

FFP6 simulation sample used for the foreground studies pre-
sented in Sect. 8.4. We show measurements from SMICA and
NILC processed maps both with and without foreground resid-
uals. The horizontal solid line is the average value of the SMICA
clean maps, and the dashed and dotted horizontal lines corre-
spond to 1σ and 2σ deviations, respectively. The plot clearly
shows the very small impact of including residuals, and the
very good consistency between the two component separation
pipelines.

In our test we built maps contaminated with foreground
residuals by simply adding residual components to the clean
maps. That means that the difference ( f residual

NL − f clean
NL )i for the i-th

realization in the simulated sample exactly quantifies the change
in fNL due to foregrounds on that realization. In order to assess
the level of residual foreground contamination on primordial and
ISW-lensing shapes, first of all we consider the difference be-
tween average values and standard deviations of fNL measured
from the two map samples for each shape. As shown in Table 21
we find that neither the average nor the standard deviation shows
a significant change between the two datasets. That means that
foreground residuals are clearly subdominant, as they do not bias
the estimator for any shape and they do not increase the variance
through spurious correlations with the CMB primordial signal.

We also consider the difference f residual
NL − f clean

NL on a map-by-
map basis and compute its standard deviation. This is used as an
estimate of the expected bias on a single realization due to the
presence of residuals. As already expected from the negligible
change in the standard deviations of the two samples, the vari-
ance of the map-by-map differences is also very small: Table 21
again shows that it is at most about σ fNL/6 for any given shape,
where σ fNL is the fNL standard deviation for that shape. As an
example, in Fig. 21 we show the measured values of f local

NL for
the first 99 maps in both the SMICA and NILC samples, compar-
ing results with and without residuals. It is evident also from this
plot that the change in central value due to including residuals is
very small. The very good agreement between the two compo-
nent separation pipelines is also worth notice.

From the study shown here and from the comparison be-
tween different component separation methods in Sect. 7, we can
thus conclude that the combination of foreground-cleaned maps
and fsky = 0.73 sky coverage we adopt in this work provide a
very robust choice for fNL studies.

9. Implications for early Universe physics

The NG analyses performed in this paper show that Planck data
are consistent with Gaussian primordial fluctuations. The stan-
dard models of single-field slow-roll inflation have therefore
survived the most stringent tests of Gaussianity performed to
date. On the other hand, the NG constraints obtained on dif-
ferent primordial bispectrum shapes (e.g., local, equilateral and
orthogonal), after properly accounting for various contaminants,
severely limit various classes of mechanisms for the generation
of the primordial perturbations proposed as alternatives to the
standard models of inflation.

In the following Subsections, unless explicitly stated oth-
erwise, we translate limits on NG to limits on parameters
of the theories by constructing a posterior assuming the fol-
lowing: the sampling distribution is Gaussian (which is sup-
ported by Gaussian simulations); the likelihood is approximated
by the sampling distribution but centred on the NG estimate
(see Elsner & Wandelt 2009); uniform or Jeffreys’ prior (where
stated), over ranges which are physically meaningful, or as oth-
erwise stated. Where two parameters are involved, the posterior
is marginalized to give one-dimensional constraints on the pa-
rameter of interest.

9.1. General single-field models of inflation

DBI models: The constraints on f equil
NL provide constraints on

the sound speed with which the inflaton fluctuations can prop-
agate during inflation. For example, for DBI models of infla-
tion (Silverstein & Tong 2004; Alishahiha et al. 2004), where
the inflaton field features a non-standard kinetic term, the
predicted value of the nonlinearity parameter is f DBI

NL =

−(35/108)(c−2
s − 1) (Silverstein & Tong 2004; Alishahiha et al.

2004; Chen et al. 2007b). Although very similar to the equilat-
eral shape, we have obtained constraints directly on the theo-
retical (nonseparable) predicted shape (Eq. 7)). The constraint
f DBI
NL = 11 ± 69 at 68% CL (see Eq. (86)) implies

cDBI
s ≥ 0.07 95% CL . (95)

The DBI class contains two possibilities based on string con-
structions. In ultraviolet (UV) DBI models, the inflaton field
moves under a quadratic potential from the UV side of a warped
background to the infrared side. It is known that this case is al-
ready at odds with observations, if theoretical internal consis-
tency of the model and constraints on power spectra and primor-
dial NG are taken into account (Baumann & McAllister 2007;
Lidsey & Huston 2007; Bean et al. 2007; Peiris et al. 2007). Our
results strongly limit the relativistic régime of these models even
without applying the theoretical consistency constraints.

It is therefore interesting to look at infrared (IR) DBI mod-
els (Chen 2005b,a) where the inflaton field moves from the IR to
the UV side, and the inflaton potential is V(φ) = V0 −

1
2βH2φ2,

with a wide range 0.1 < β < 109 allowed in principle. In
previous work (Bean et al. 2008) a 95% CL limit of β < 3.7
was obtained using WMAP. In a minimal version of IR DBI,
where stringy effects are neglected and the usual field the-
ory computation of the primordial curvature perturbation holds,
one finds (Chen 2005c; Chen et al. 2007b) cs ' (βN/3)−1,
ns − 1 = −4/N, where N is the number of e-folds; further,
primordial NG of the equilateral type is generated with an
amplitude f DBI

NL = −(35/108) [(β2 N2/9) − 1]. For this model,
the range N ≥ 60 is compatible with Planck’s 3σ limits on
ns (Planck Collaboration XXII 2013). Marginalizing over 60 ≤
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N ≤ 90, we find
β ≤ 0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = −170/(81γ), where
ns − 1 = −3γ, c2

s ' γ/8. Assuming a prior of 0 < γ < 2/3,
our constraint f equil

NL = −42 ± 75 at 68% CL (see Table 9)
leads to the limit γ ≥ 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns − 1 yields the limit 0.01 ≤ γ ≤
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms different from the (π̇)3 and π̇(∇π)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[π̈(∂i∂ jπ)2/a4 − 2Hπ̇π̈2 + 3H3π̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(εM2
Pl) (Creminelli et al. 2011a). Here, π is the

relevant inflaton scalar degree of freedom, ε the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(εM2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the Effective Field Theory approach as
M2π̇(∂i jπ)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s εM2

Pl). In
this case, we obtain M2/(c2

s εM2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The effective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)

S =

∫
d4x
√
−g

−M2
PlḢ

c2
s

(
π̇2 − c2

s
(∂iπ)2

a2

)
(97)

− M2
PlḢ(1 − c−2

s )π̇
(∂iπ)2

a2 +

(
M2

PlḢ(1 − c−2
s ) −

4
3

M4
3

)
π̇3

]
where π is the scalar degree of freedom (ζ = −Hπ). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms π̇(∂iπ)2 and (π̇)3 which
give respectively f EFT1

NL = −(85/324)(c−2
s − 1) and f EFT2

NL =

−(10/243)(c−2
s − 1)

[
c̃3 + (3/2)c2

s

]
(Senatore et al. 2010, see also

Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly different, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator π̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding χ2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).

Following Senatore et al. (2010) we will focus on the dimension-
less parameter c̃3(c−2

s − 1) = 2M4
3c2

s/(ḢM2
Pl). For example, DBI

inflationary models corresponds to c̃3 = 3(1 − c2
s )/2, while the

non-interacting model (vanishing NG) correspond to cs = 1 and
M3 = 0 (or c̃3(c−2

s − 1) = 0).
The mean values of the estimators for equilateral and orthog-

onal NG amplitudes are given in terms of cs and c̃3 by

f equil
NL =

1 − c2
s

c2
s

(−0.275 + 0.0780A)

f ortho
NL =

1 − c2
s

c2
s

(0.0159 − 0.0167A) (98)
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where A = −(c2
s + (2/3)c̃3), and the coefficients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators π̇(∇π)2 and π̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a χ2 statistic given by
χ2(c̃3, cs) = uT (c̃3, cs)C−1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) − f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring χ2 ≤ 2.28, 5.99, and 11.62 respec-

tively, as appropriate for a χ2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs ≥ 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two effective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)

f local
NL =

5
4rD
−

5rD

6
−

5
3
, (100)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3ρcurvaton/(3ρcurvaton + 4ρradiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD ≥ 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ν, f QSI

NL , with a shape that interpolates between
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NL for quasi-single field inflation. The best fit value of ν = 1.5,

f QSI
NL = 4.75 is marked with an X. The contours were calculated

using MC methods by creating 2 × 109 simulations using the β
covariance matrix around this best fit model.

the local shape, where ν = 1.5 and the equilateral shape, where
ν = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ν = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
different from the inflaton has a mass m � H. However, the
figure shows that there is no preferred value for ν with all values
allowed at 3σ.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = −(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ∼ 4σ discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1 ≤ 4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) κ3

√
ε+5, where ε ∼ 100 is natural (Lehners 2010).

Assuming a prior −1 < κ3 < 5, we obtain −0.8 < κ3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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table examples are bispectra produced in excited initial state
models (non-Bunch-Davies vacua), which can be generated by
strong disturbances away from background slow-roll evolu-
tion or additional trans-Planckian physics (Chen et al. 2007b;
Holman & Tolley 2008; Meerburg et al. 2009; Agullo & Parker
2011). The constraints we have obtained are summarized in
Table 11, and cover four representative cases (see Eq. (14, 15))
in the literature. We find no strong evidence for these flattened
bispectra in the Planck data after subtraction of the ISW-lensing
signal, with which all these models have some correlation. This
is consistent with an earlier constraint on the NBD model from
WMAP (Fergusson et al. 2012). However, this investigation is
limited by the present resolution of the polynomial modal es-
timator (nmax = 600), so more strongly flattened models are not
excluded by this analysis.

Directional dependence motivated by fields: Directionally-
dependent bispectra (Eq. (19)), motivated by inflation with
gauge fields, have also been constrained (see Table 11). For ex-
ample, models with a kinetic term of the vector field(s) L =
−I2(φ)F2/4, where F2 is the strength of the gauge field, and I(φ)
is a function of the inflaton field which, with an appropriate time
dependence (see, e.g., Ratra 1992), can generate vector fields
during inflation. For these models the L = 0, 2 modes in the
bispectrum are excited with f L

NL = XL(|g∗|/0.1) (Nk3/60), where
XL=0 = (80/3) and XL=2 = −(10/6), respectively (Barnaby et al.
2012a; Bartolo et al. 2013; Shiraishi et al. 2013). Here g∗ is the
amplitude of a quadrupolar anisotropy in the power spectrum
(see, e.g., Ackerman et al. (2007)) and N is the number of e-
folds before the end of inflation when the relevant scales exit
the horizon. These modes therefore relate the bispectrum am-
plitude to the level of statistical anisotropy in the power spec-
trum. Marginalizing over a prior 50 ≤ N ≤ 70 assuming uni-
form priors on g∗, our constraints in Table 11 lead to the limits
−0.05 < g∗ < 0.05 and −0.36 < g∗ < 0.36 from the L = 0, L = 2
modes respectively (95% CL). Note, however, that in the current
analysis only a modest correlation was possible with the shape
corresponding to the L = 2 mode. These results apply to all mod-
els where curvature perturbations are sourced by a I2(φ)F2 term
(see references in Shiraishi et al. 2013).

Feature models: Non-scale-invariant oscillatory bispectrum
shapes can be generated by sharp or periodic features in the
inflaton potential, with particular recent interest on axion mon-
odromy models motivated by string theory (see Sect. 2.3). We
have undertaken a survey of simple feature models (Eq. (16))
which have a periodicity accessible to the polynomial modal
estimator (wavenumbers K = k1 + k2 + k3 & 0.01), a two-
parameter space spanned by K and a phase φ. There are inter-
esting best fit models for the Planck CMB bispectrum around
K = 0.01875, φ = 0 (that is, with a large-` bispectrum pe-
riodicity around ∆` = 260), with results shown in Table 12.
We note important caveats on the statistics of parameter sur-
veys like this in Sect. 7.3.3; given the large numbers of feature
models studied, we have to apply a higher threshold for statis-
tical significance as shown for a survey of 200 Gaussian sim-
ulations. This feature survey takes forward earlier results for
the WMAP data (Fergusson et al. 2012), with the apparent fit
reflecting the signal observed in the Planck CMB reconstruc-
tion (see Fig. 7). Most attention on feature models has been
motivated by the simplest single-field case for which there are
correlated signals predicted in the bispectrum and power spec-
trum (see e.g., Chen et al. 2007a; Adshead et al. 2012). In this
case, regions with small k ∼ 0.001 are favoured for producing

an observable bispectrum16, given existing WMAP power spec-
trum constraints on these models. Periodicities ∆` . 20 are
anticipated (see Adshead et al. 2012) which are not accessible
to the present modal bispectrum estimator analysis, but which
are discussed in (Planck Collaboration XXII 2013). Conversely,
the Planck feature model survey using the power spectrum
(Planck Collaboration XXII 2013) does cover bispectrum scales
and parameters investigated in this paper. An analysis of
the Bayesian posterior probability (Planck Collaboration XXII
2013) does not appear to provide evidence favoring parameters
associated with the current best-fit bispectrum model. More de-
tailed analysis using the specific bispectrum envelope for the
single-field feature solution is being undertaken.

Resonance models: We have also investigated resonance models
of Eq. (17) such as axion monodromy and enfolded resonance
models of Eq. (18), in which non-Bunch-Davies vacua are ex-
cited by sharp features. This limited analysis focuses on period-
icities associated with the best-fit feature model and the results
are described in Tables B.1 and B.2. No significant signal was
found in this domain for either of these two models. However,
we note that the logarithmic dependence of the bispectrum cre-
ates challenges at low k, as we must ensure important features
do not fall below the modal resolution. This restricts the present
survey range, which will be extended in future. Again, we note
that most attention on these models has focused on higher `-
periodicities than those accessible to the present modal estima-
tor (see e.g., Flauger & Pajer 2011; Peiris et al. 2013), for the
same reason as the feature models. A resonance model survey
using the Planck power spectrum has been undertaken and the
results can be found in Planck Collaboration XXII (2013); how-
ever, this also currently excludes high frequencies that have re-
ceived attention in the literature.

Warm inflation: This model, where dissipative effects are impor-
tant, predicts f warm

NL = −15 ln (1 + rd/14) − 5/2 (Moss & Xiong
2007) where the dissipation parameter rd = Γ/(3H) must be
large for strong dissipation. The limit from WMAP is rd ≤ 2.8 ×
104 (Moss & Xiong 2007). Assuming a prior 0 ≤ log10 rd ≤ 4,
our constraint f warmS

NL = 4 ± 33 at 68% CL (see Sect. 7.3.5)
yields a limit on the dissipation parameter of log10 rd ≤ 2.6
(95% CL), improving the previous limit by nearly two orders
of magnitude. The strongly-dissipative regime with rd & 2.5 still
remains viable; however, the Planck constraint puts the model
in a regime which can lead to an overproduction of gravitinos
(see Hall & Peiris (2008) and references within).

9.5. Implications of CMB trispectrum results

The non-detection of local-type fNL by Planck raises the imme-
diate question of whether there might still be a large trispec-
trum. In this first analysis we have focused on the local shape
τNL. Most inflation models predict τNL ∼ O( f 2

NL) (Byrnes et al.
2006; Elliston et al. 2012), and hence given our tight fNL limits,
would be predicted to be very small. This is easily consistent
with our conservative upper limit τNL < 2800, and also with
the significantly smaller signals found in the modulation dipole
and quadrupole. Our upper limit also restricts the freedom of
curvaton-like models with quadratic terms that are nearly uncor-

16 Planck Collaboration XVI (2013) confirms an anomaly in the
power spectrum at 20 . ` . 40 first noted in WMAP, which leads to an
improvement in likelihood when fitted with a feature in the inflationary
potential (Peiris et al. 2003). Unfortunately, the best-fit parameters in
this case do not lead to an observable bispectrum (Adshead et al. 2011).
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related with the curvature perturbation, which could in principle
have fNL ∼ 0 but a large trispectrum (Byrnes & Choi 2010).

10. Conclusions

In this paper we have derived constraints on primordial NG, us-
ing the CMB maps derived from the Planck nominal mission
data. Using three optimal bispectrum estimators – KSW, binned,
and modal – we obtained consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quot-
ing as our final result f local

NL = 2.7 ± 5.8, f equil
NL = −42 ± 75,

and f ortho
NL = −25 ± 39 (68 % CL statistical). Hence there is

no evidence for primordial NG of one of these shapes. We did,
however, measure the ISW-lensing bispectrum expected in the
ΛCDM scenario, as well as a contribution from diffuse point
sources, and these contributions are clearly seen in the form
of the associated skew-C`. These results have been confirmed
by measurements using the wavelet bispectrum, and Minkowski
functional estimators, and demonstrated to be stable for the four
different component separation techniques SMICA, NILC, SEVEM,
and C-R, showing their robustness against foreground residuals.
They have also passed an extensive suite of tests studying the
dependence on the maximum multipole number and the mask,
consistency checks between frequency channels, and several null
tests. In addition, we have summarized in this paper an extensive
validation campaign for the three optimal bispectrum estimators
on Gaussian and non-Gaussian simulations.

Extending our analysis beyond estimates of individual
shape amplitudes, we presented model-independent, three-
dimensional reconstructions of the Planck CMB bispectrum us-
ing the modal and binned bispectrum estimators. These results
were also shown to be fully consistent between the different
component separation techniques even for the full bispectrum,
and contained no significant NG signals of a type not captured
by our standard templates at low multipole values. At high mul-
tipoles, some indications of unidentified NG signals were found,
as also evidenced by the results from the skew-C` estimator.
Further study will be required to ascertain whether these indi-
cations are due to foreground residuals, beams, data processing,
or a more interesting signal.

Using the modal decomposition, we have presented con-
straints on key primordial NG scenarios, including general
single-field models with non-separable shapes, excited initial
states (non-Bunch-Davies vacua), and directionally-dependent
vector models. We have also undertaken an initial survey of
scale-dependent feature and resonance models.

Moving beyond three-point correlations, we have obtained
limits from the Planck data on the amplitude of the local four-
point function. Our trispectrum reconstruction yielded a signal
consistent with zero except for an anomalously large octopole.
Frequency dependence indicated that this was unlikely to be pri-
mordial, but allowing the signal to be primordial we placed an
upper limit τNL < 2800 (95% CL).

We have discussed the impact of these results on the infla-
tionary model space, and derived bispectrum constraints on a se-
lection of specific inflationary mechanisms, including both gen-
eral single-field inflationary models (extensions to the standard
single-field slow-roll case) and multi-field models. Our results
led to a lower bound on the speed of sound, cs ≥ 0.02 (95%
CL), in an effective field theory approach to inflationary models
which includes models with non-standard kinetic terms. Strong
constraints on other scenarios such as IR DBI, k-inflation, infla-
tionary models involving gauge fields, and warm inflation have

been obtained. Within the class of multi-field models, our mea-
surements limit the curvaton decay fraction to rD ≥ 0.15 (95%
CL). Ekpyrotic/cyclic scenarios were shown to be under severe
pressure from the Planck data: we robustly ruled out the so-
called “ekpyrotic conversion” mechanism, and found that the pa-
rameter space of the “kinetic conversion” mechanism is severely
limited.

With these results, the paradigm of standard single-field
slow-roll inflation has survived its most stringent tests to-date.
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Appendix A: Expected level of agreement from
bispectrum estimators with correlated weights

The estimator cross-validation work presented in Sect. 6.1 was
based on comparing results from different estimators using sets
(typically 50 to 100 simulations in size) of both Gaussian and
non-Gaussian simulations. We started from idealized maps (e.g.,
full-sky, noiseless, Gaussian simulations) and then went on to
include an increasing number of realistic features at each addi-
tional validation step. This allowed better testing and character-
ization of the response of different pipelines and bispectrum de-
compositions to various potential spurious effects in the data. As
a preliminary step, we derived a general formula describing the
expected level of agreement between estimators with different
but strongly correlated weights, with the simplifying assumption
of full-sky measurements and homogeneous noise. This theoret-
ical expectation, summarized by Eq. (84), was then used as a
benchmark against which to assess the quality of the results. The
aim of this appendix is to describe in detail how we obtained
Eq. (84).

Let us consider the idealized case of full-sky, noiseless CMB
measurements (note that the following conclusions also work
for homogeneous noise, because the pure cubic fNL estimators
without linear term corrections are still optimal) . Under these
assumptions, the fNL estimator for a given CMB shape B`1`2`3

can be written simply as (see Sect. 3 for details):

f̂NL =
1
F

∑
`1≤`2≤`3

∑
m1m2m3

Bth
`1`2`3

a`1m1 a`2m2 a`3m3

g`1`2`3C`1C`2C`3

, (A.1)

where Bth
`1`2`3

is the angle-averaged bispectrum template for a
given theoretical shape, a`1m1 a`2m2 a`3m3 is a bispectrum estimate
constructed from the data, and F is the normalization of the es-
timator, provided by the Fisher matrix number

F =
∑

`1≤`2≤`3

(Bth
`1`2`3

)2

g`1`2`3C`1C`2C`3

. (A.2)

As explained in Sect. 3, the different fNL estimation techniques
implemented in this work can be seen as separate implementa-
tions of the optimal estimator of Eq. (A.1). Each implementa-
tion is based on expanding the angular bispectrum as a sum of
basis templates defined in different domains: for example in our
analyses we built templates out of products of wavelets at dif-
ferent scales, cubic combinations of 1-dimensional polynomials
and plane waves (what we call “modal estimator” in the main
text), and `-binning of the bispectrum (what we called ”binned
estimator” in the main text). Our initial theoretical templates
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in this work are the local, equilateral and orthogonal separable
cases used in the KSW and skew-C` estimators. In this sense
the KSW/skew-C` estimator provides an “exact” estimate of fNL
for this choice of shapes, while the other pipelines provide an
approximate result that approaches KSW measurements as the
expansions get more accurate. The differences between results
from different pipelines became smaller and smaller as the ap-
proximate expanded templates converge to the starting one (e.g.,
by increasing the number of `-bins or the number of wavelets
and polynomial triplets). The degree of convergence can be mea-
sured through the correlation coefficient r between the initial bis-
pectrum and its reconstructed expanded version. The correlation
coefficient is, as usual, defined as

r ≡

∑
`1≤`2≤`3

Bth
`1`2`3

Bexp
`1`2`3

g`1`2`3 C`1 C`2 C`3√∑
`1≤`2≤`3

(Bth
`1`2`3

)2

g`1`2`3 C`1 C`2 C`3

∑
`1≤`2≤`3

(Bexp
`1`2`3

)2

g`1`2`3 C`1 C`2 C`3

, (A.3)

where the label “th” denotes the initial bispectrum shape to fit to
the data, and “exp” is the approximate expanded one. The corre-
lator between shapes naturally defines a scalar product in bispec-
trum space, and in the following the operation of correlating two
shapes will be denoted by the symbol 〈 , 〉, so that the definition
above would read r = 〈Bth, Bexp〉/

√
〈Bexp, Bexp〉〈Bth, Bth〉.

Whichever basis and separation scheme we have chosen, let
us call Rn(`1, `2, `3) the n-th template in the adopted bispectrum
expansion, and αn the coefficients of the expansion, so that we
can write:

Bexp
`1`2`3

=

Nexp∑
n=0

αnRn(`1, `2, `3) . (A.4)

From now on we will also call Rn(`1, `2, `3) the “modes” of our
expansion, Nexp is the number of modes we are using to approxi-
mate the starting template in order to obtain a correlation coeffi-
cient r. We will also assume that the modes form an orthonormal
basis, that is:

〈Rn1 ,Rn2〉 = δn2
n1
, (A.5)

where δn2
n1 is the Kronecker delta symbol. The orthogonality as-

sumption does not imply loss of generality since any starting
set of modes can always be rotated and orthogonalized. We now
consider an expansion with a number of coefficients Nth > Nexp
that perfectly reproduces the initial bispectrum (i.e., r = 1), and
is characterized by the same modes and coefficients as the pre-
vious one up to Nexp. So we can write

Bth
`1`2`3

=

Nth∑
n=0

αnRn(`1, `2, `3) . (A.6)

We now build two optimal estimators of fNL for the shape Bth:
an “exact” estimator and an “approximate” one. In the exact es-
timator we fit the actual Bth shape to the data and obtain the esti-
mate f̂th, while in the approximate estimator we fit the expanded
shape Bexp to obtain f̂exp. We want to understand by how much
the “exact” and “approximate” fNL measurements are expected
to differ, as a function of the correlation coefficient r between the
weights Bth and Bexp that appear in the two estimators.

For each mode template Rn(`1, `2, `3) we can build an opti-
mal estimator (following Eq. (A.1)) in order to fit the mode to
the data and get a corresponding amplitude estimate βn. In other
words, the observed bispectrum can then be reconstructed as in
Eq. (A.4), but with coefficients βn instead of αn. Due to the or-
thonormality of the Rn, the β coefficients have unit variance. It

is then possible to show (Fergusson et al. 2010a) that the fNL es-
timate for a given Bth with expansion parameters αn is given by

f̂NL =
1
F

∑
n

αnβn . (A.7)

In the light of all the above, the exact and approximate estimators
are:

f̂ th
NL =

1
Fth

Nth∑
n=0

αnβn ; (A.8)

f̂ exp
NL =

1
Fexp

Nexp∑
n=0

αnβn . (A.9)

Thanks to the orthonormality properties of the modes, we can
easily relate the Fisher matrix normalization F to the expansion
coefficients α:

F ≡
∑

`1≤`2≤`3

B2
`1`2`3

g`1`2`3C`1C`2C`3

=
∑

`1≤`2≤`3

∑N
n1=0 αn1Rn1 (`1, `2, `3)

∑N
n2=0 αn2Rn2 (`1, `2, `3)

g`1`2`3C`1C`2C`3

=

N∑
n1=0

αn1

N∑
n2=0

αn2〈Rn1 ,Rn2〉

=

N∑
n1=0

N∑
n2=0

αn1αn2δ
n2
n1

=

N∑
n=0

α2
n . (A.10)

In analogous fashion we can derive an expression for the correla-
tion coefficient r between the two estimators we are comparing.
It is easy to check that the following holds:

r2 =

∑Nexp

n=0 α
2
n∑Nth

n=0 α
2
n

, (A.11)

and using the equation just derived above we can also write r2 =
Fexp/Fth, i.e., the square of the correlation coefficients between
the estimators equals the ratio of the normalizations.

Armed with this preliminary notation we can now calcu-
late the expected scatter between the exact and approximate fNL
measurement when we apply the two estimators to the same
set of data. In order to quantify it we will consider the variable
δ fNL ≡ f̂ th

NL − f̂ exp
NL , and calculate its standard deviation. We find

σ2
δ fNL
≡

〈 1
Fth

Nth∑
n=0

αnβn −
1

Fexp

Nexp∑
n=0

αnβn


2〉

=
1

F2
exp

〈r2
Nth∑
n=0

αnβn −

Nexp∑
n=0

αnβn


2〉
,

(A.12)

where we made use of Eq. (A.11). It is easy to show that or-
thonormality of the R templates implies no correlation of the
amplitudes β, i.e., 〈βpβq = δ

q
p〉. A straightforward calculation

then yields:

σ2
δ fNL

=
1

F2
exp

Nexp∑
n=0

α2
n − 2r2

Nexp∑
n=0

α2
n + r4

Nth∑
n=0

α2
n . (A.13)
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This, together with Eqs. (A.10, A.11) finally gives:

σδ fNL = ∆th

√
1 − r2

r
, (A.14)

where ∆th is the standard deviation of the exact estimator. Eq.
(A.14) is the starting point of our validation tests. It provides
an estimate of the expected scatter between fNL estimators with
correlated weights, as a function of the fNL error bars and of
the correlation coefficient r. Note that this formula has been ob-
tained under the simplifying assumptions of Gaussianity, full-
sky coverage and homogeneous noise. For applications dealing
with more realistic cases we might expect the scatter to become
larger than this expectation, while remaining qualitatively con-
sistent.

In our tests we started from sets of simulated maps and com-
pared fNL results from different pipelines and shapes on a map-
by-map basis. In our validation tests the correlation levels be-
tween templates in different expansions were varying between
r ∼ 0.95 and r ∼ 0.99, depending on the estimators and the
shapes under study. Using the formula above, this corresponds
to an expected scatter 0.15 ∆ ≤ σ ≤ 0.3 ∆, where ∆ is the fNL
standard deviation for the shape under study.

In Sect. 6.1 we presented several applications to simulated
data sets, showing that the recovered results are fully consistent
with these expectations, and thus the different pipelines are fully
consistent with each other.

Appendix B: Targeted Bispectrum Constraints

This Appendix provides further tables of results for primordial
models, extending those given in Sect. 7.3, notably for reso-
nance models, while it also gives additional validation checks for
the modal bispectrum estimator, beyond the extensive tests de-
scribed already in the paper for the standard bispectrum shapes.
In particular, using each of the SMICA NILC and SEVEM maps,
we will quote results for the main paradigms for non-standard
bispectrum models, including comparisons for the feature model
results. Remarkably consistent results are again obtained using
the different foreground-separation methodologies and using dif-
ferent modal basis functions.

B.1. Additional results for resonance models and enfolded
resonance models

As described in Sect. 7.3, we have surveyed resonance mod-
els (Eq. (17)) in the region of most interest for feature models,
that is, with comparable periodicities to those with described in
Table 12 near the best-fit feature model. The results from this
initial survey for the SMICA component-separated map produced
no significant signal, with the results Table B.1. We note that
while the feature and resonance models proved similar for the
WMAP analysis (Fergusson et al. 2012), wavelengths are much
more differentiated for Planck and so it can be difficult to re-
solve the shortest wavelengths at low `. This is the key limitation
on surveys with the present estimator and will be circumvented
in future, by using specific separable templates to improve the
overall resolution. Just as local and ISW templates can be incor-
porated into the analysis, so can targeted feature modes. Note
that consistent results were obtained using the NILC and SEVEM
maps, though we only show results here for feature models with
an envelope (see discussion below with Table B.4).

The enfolded resonant (or non-Bunch-Davies feature) mod-
els (Eq. (18)) were also surveyed for these periodicities and also

yielded no significant signal; see Table B.2. These are interest-
ing shapes which hold out the prospect of exhibiting both oscil-
latory and flattened features observed in the Planck bispectrum
reconstruction, see Fig. 7. Due to similar resolution restrictions,
only relatively large multipole periodicities (` > 100) have been
surveyed in the present work, again searching around the peri-
odicities exhibited for feature models.

B.2. Comparison of fNL results from SMICA, NILC and SEVEM
foreground-cleaned maps

Tables B.3 and B.4 compare bispectrum results extracted from
Planck maps created using the three different component-
separation techniques, SMICA, NILC and SEVEM. In addition
to the models discussed in Sect. 7.3, we have also included
the constant model which is defined by Bconst(k1, k2, k3) =
6A2 f const

NL /(k1k2k3)2. The abbreviations EFT denotes the effective
field theory single field shapes, NBD the non-Bunch-Davies (ex-
cited initial state) models, vector models are gauge field inflation
with directional dependence, along with DBI, Ghost and Warm
inflation, also described previously. The expression “cleaned”
refers to removal of the predicted ISW-lensing signal and the
measured point source signal, unless stated otherwise.

We note that there is good consistency between the differ-
ent foreground-separation techniques for all models, whether
equilateral, flattened, or squeezed as shown in Table B.3. For
the non-scaling case, differences for the best-fit feature models
were below 1/3σ confirming the interesting results discussed in
Sect. 3.2.3, see Table B.4.

B.3. Comparison of fNL results from ISW Fourier basis with
hybrid polynomials

As described in Sect. 3.2.3, the modal bispectrum estima-
tor can flexibly incorporate any suitable basis functions with
which to expand the bispectrum and separably filter CMB
maps (Fergusson et al. 2010a). For the Planck analysis, we have
evolved two sets of basis functions to fulfil three basic crite-
ria: first, to provide a complete basis for the bispectrum up to
a given `-resolution, secondly, to accurately represent primor-
dial models of interest and, thirdly, to incorporate the CMB
ISW-lensing signal, which with diffuse point sources provides
a significant secondary signal which must be subtracted. The
first basis functions are nmax = 600 polynomials (closely re-
lated to Legendre polynomials) which are supplemented with the
Sachs-Wolfe local mode in order to more accurately represent
the squeezed limit; enhanced orthogonality is preconditioned by
choosing these from a larger set of polynomials. The second ba-
sis functions are nmax = 300 Fourier modes, augmented with
the same SW local mode, together with the the separable ISW-
lensing modes. Both modal expansions proved useful, provid-
ing important validation and cross-checks, however, the twofold
resolution improvement from the polynomials meant that most
quantitative results employed this basis. This improved resolu-
tion was particularly important in probing flattened models on
the edge of the tetrapyd.

In Fig. 7, we show a direct comparison between the modal
reconstructtion of the 3D bispectrum using the polynomial and
Fourier mode expansions. The basic features of the two recon-
structions are in good agreement, confirming a central feature
which changes sign at low ` and a flattened signal beyond as
discussed previously in Sect. 7.2. Notably the polynomial ba-
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Table B.1. Results from a limited fNL survey of resonance models of Eq. (17) with 0.25 ≤ kc ≤ 0.5 using the SMICA component-
separated map. These models have a large-` periodicity similar to the feature models in Table 12.

Phase φ = 0 φ = π/5 φ = 2π/5 φ = 3π/5 φ = 4π/5 φ = π
Wavenumber fNL ± ∆ fNL fNL ± ∆ fNL fNL ± ∆ fNL fNL ± ∆ fNL fNL ± ∆ fNL fNL ± ∆ fNL

kc = 0.25 . . . . . . −16 ± 57 6 ± 63 19 ± 67 31 ± 69 38 ± 68 −6 ± 60
kc = 0.30 . . . . . . −66 ± 73 −57 ± 74 −44 ± 73 −26 ± 72 −7 ± 71 −65 ± 73
kc = 0.40 . . . . . . 5 ± 57 40 ± 66 55 ± 71 63 ± 73 63 ± 71 22 ± 61
kc = 0.45 . . . . . . 25 ± 56 34 ± 59 36 ± 62 34 ± 67 27 ± 69 30 ± 56
kc = 0.50 . . . . . . −2 ± 65 −13 ± 72 −16 ± 69 −16 ± 60 −14 ± 55 −7 ± 71

Table B.2. Results from a limited fNL survey of non-Bunch-Davies feature models (or enfolded resonance models) of Eq. (18) with
4 ≤ kc ≤ 12, again overlapping in periodicity with the feature model survey.

Phase φ = 0 φ = π/4 φ = π/2 φ = 3π/4
Wavenumber fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ)

kc = 4 . . . . . . . . . . . 11 ± 146 ( 0.1) 2 ± 145 ( 0.0) −7 ± 143 ( 0.0) −15 ± 142 (−0.1)
kc = 6 . . . . . . . . . . . 52 ± 202 ( 0.3) 63 ± 203 ( 0.3) 72 ± 201 ( 0.4) 80 ± 197 ( 0.4)
kc = 8 . . . . . . . . . . . 100 ± 190 ( 0.5) 130 ± 189 ( 0.7) 158 ± 189 ( 0.8) 183 ± 190 ( 1.0)
kc = 10 . . . . . . . . . . . 188 ± 241 ( 0.8) 210 ± 242 ( 0.9) 230 ± 242 ( 1.0) 248 ± 243 ( 1.0)
kc = 12 . . . . . . . . . . . 180 ± 307 ( 0.6) 171 ± 310 ( 0.6) 158 ± 312 ( 0.5) 142 ± 314 ( 0.5)

sis, with double the resolution, preserves the large-scale features
observed in the Fourier basis.

In Table B.5, results from both basis expansions are shown
for a variety of non-separable models. These demonstrate con-
sistent results where the Fourier basis had sufficient resolution,
as indicated by the ratio of the variance reflecting the Fisher
ratio (i.e., above 90% correlation as indicated by the results in
Appendix A). Note that we independently determine the estima-
tor correlation between the exact solution and primordial decom-
position and then at late times with the CMB decomposition; we
use a polynomial basis as the overall benchmark here. This anal-
ysis also includes several feature models (phase φ = 0) show-
ing good agreement from the Fourier basis while the Fisher esti-
mates remain accurate. Again, the hybrid Fourier basis degrades
in accuracy towards k = 0.02 as it reaches its resolution limit,
when the variance disparity rises towards 10%. With nmax = 600
modes and `max = 2000, the polynomial basis retains a good
correlation for all primordial feature models for k > 0.01. The
accuracy and robustness of the feature model results have been
verified using `max = 1500 for the polynomial expansion, for ex-
ample, obtaining 3.1σwith the SMICAmap for the best-fit model
(K = 0.01875, φ = 0).
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18 Departamento de Fı́sica Fundamental, Facultad de Ciencias,

Universidad de Salamanca, 37008 Salamanca, Spain
19 Departamento de Fı́sica, Universidad de Oviedo, Avda. Calvo

Sotelo s/n, Oviedo, Spain
20 Department of Astronomy and Astrophysics, University of

Toronto, 50 Saint George Street, Toronto, Ontario, Canada
21 Department of Astrophysics/IMAPP, Radboud University

Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
22 Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley, California, U.S.A.
23 Department of Physics & Astronomy, University of British

Columbia, 6224 Agricultural Road, Vancouver, British Columbia,
Canada

24 Department of Physics and Astronomy, Dana and David Dornsife
College of Letter, Arts and Sciences, University of Southern
California, Los Angeles, CA 90089, U.S.A.

25 Department of Physics and Astronomy, University College
London, London WC1E 6BT, U.K.

26 Department of Physics and Astronomy, University of Sussex,
Brighton BN1 9QH, U.K.

27 Department of Physics, Gustaf Hällströmin katu 2a, University of
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Table B.3. Summary of results from the modal estimator survey of primordial models for the main non-standard bispectrum shapes.
This is an extended version of Table 11, but with results from SMICA, NILC and SEVEM.

SMICA FNL FNL-Clean StDev Fisher σ σ-clean
Const (see text) 26 14 44 42 0.6 0.3
EFT1 shape (5) 13 8 73 70 0.2 0.1
EFT2 shape (5) 27 19 57 54 0.5 0.3
DBI inflation (7) 17 11 69 67 0.2 0.2
Ghost inflation (see text) −27 −24 88 87 −0.3 −0.3
Flat model (13) 70 37 77 71 0.9 0.5
NBD (see text) 178 155 78 76 2.2 2.0
NBD1 flattened (14) 31 19 13 12 2.4 1.4
NBD2 squeezed (14) 0.8 0.2 0.4 0.5 1.8 0.5
NBD3 non-canonical (15) 13 9.6 9.7 9.0 1.3 1.0
Vector model L = 1 (19) −18 −4.6 47 45 −0.4 −0.1
Vector model L = 2 (19) 2.8 −0.4 2.9 2.8 1.0 −0.1
WarmS inflation (see text) −8 1 33 33 −0.2 0.04
SEVEM FNL FNL-Clean StDev Fisher σ σ-clean
Const (see text) 23 11 44 42 0.5 0.2
EFT1 shape (5) 9 −1 72 71 0.1 −0.02
EFT2 shape (5) 21 14 56 54 0.4 0.2
DBI inflation (7) 13 7 68 67 0.2 0.1
Ghost inflation −24 −21 88 88 −0.3 −0.2
Flat model (13) 63 31 76 72 0.8 0.4
NBD (see text) 159 137 78 76 2.0 1.8
NBD1 flattened (14) 30 18 12 12 2.4 1.4
NBD2 squeezed (14) 0.9 0.4 0.4 0.5 2.1 0.8
NBD3 non-canonical (15) 12 9 10 9 1.2 0.9
Vector model L = 1 (19) −15 −2 47 45 −0.3 −0.04
Vector model L = 2 (19) 3.5 0.3 2.7 2.8 1.3 0.1
WarmS inflation −11 −2 33 33 −0.3 −0.1
NILC FNL FNL-Clean StDev Fisher σ σ-clean
Const (see text) 37 25 44 42 0.8 0.6
EFT1 shape (5) 20 −4 72 70 0.3 −0.05
EFT2 shape (5) 39 32 56 54 0.7 0.6
DBI inflation (7) 26 20 69 67 0.4 0.3
Ghost inflation −36 −33 88 87 −0.4 −0.4
Flat model (13) 100 68 76 71 1.3 0.9
NBD (see text) 189 165 78 76 2.4 2.1
NBD1 flattened (14) 35 22 13 12 2.7 1.7
NBD2 squeezed (14) 0.8 0.3 0.4 0.5 1.9 0.6
NBD3 non-canonical (15) 17 13 9 9 1.8 1.4
Vector model L = 1 (19) −41 −28 46 45 −0.9 −0.6
Vector model L = 2 (19) 3.8 0.6 2.6 2.8 1.4 0.2
WarmS inflation −23 −14 32 33 −0.7 −0.4

Table B.4. Cross-validation of best fit feature model results for the SMICA, NILC and SEVEM foreground-cleaned maps. Results are
only presented for feature models with better than a 2.5σ result on the full domain (see Table 12).

Component separation . NILC SEVEM SMICA
Feature model . . . . fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ)

kc = 0.01125; φ = 0 . . . . . 458 ± 169 ( 2.7) 409 ± 169 ( 2.4) 434 ± 170 ( 2.6)
kc = 0.01750; φ = 0 . . . . . −337 ± 131 (−2.6) −328 ± 128 (−2.6) −335 ± 137 (−2.4)
kc = 0.01750; φ = 3π/4 . . . 368 ± 124 ( 3.0) 348 ± 121 ( 2.9) 366 ± 126 ( 2.9)
kc = 0.01875; φ = 0 . . . . . −359 ± 118 (−3.1) −366 ± 115 (−3.2) −348 ± 118 (−3.0)
kc = 0.01875; φ = π/4 . . . . −339 ± 117 (−2.9) −328 ± 115 (−2.9) −323 ± 120 (−2.7)
kc = 0.02000; φ = π/4 . . . . −305 ± 118 (−2.6) −334 ± 118 (−2.8) −298 ± 119 (−2.5)
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Table B.5. Comparison of fNL results for the hybrid polynomial and Fourier modes for a variety of non-separable and feature
models.

Modal basis . . . . . Polynomial Fourier ISW
Model . . . . . . . fNL ± ∆ fNL (σ) fNL ± ∆ fNL (σ)

Const (see text) . . . . . . . . . 14 ± 44 ( 0.3) 10 ± 44 ( 0.2)
EFT1 shape (5) . . . . . . . . . 8 ± 73 ( 0.1) 6 ± 73 ( 0.1)
EFT2 shape (5) . . . . . . . . . 19 ± 57 ( 0.3) 13 ± 57 ( 0.2)
DBI inflation (7) . . . . . . . . 12 ± 69 ( 0.2) −0.3 ± 70 ( 0.0)
Ghost inflation (see text) . . −24 ± 88 (−0.3) −48 ± 89 (−0.5)
Flat model (13) . . . . . . . . . 37 ± 77 ( 0.5) 38 ± 76 ( 0.5)
NBD (see text) . . . . . . . . . 155 ± 78 ( 2.0) 116 ± 92 ( 1.3)
NBD1 flattened (14) . . . . . 19 ± 13 ( 1.4) 4 ± 19 ( 0.2)
NBD2 squeezed (14) . . . . . 0.25 ± 0.45 ( 0.5) −0.3 ± 0.5 (−0.5)
NBD3 non-canonical (15) . 10 ± 10 ( 1.0) 4 ± 11 ( 0.3)
Vector model L = 1 (19) . . −5 ± 47 (−0.1) −24 ± 50 (−0.5)
Vector model L = 2 (19) . . −0.4 ± 2.8 (−0.1) −1.0 ± 3.2 (−0.3)
WarmS inflation (see text) . 1 ± 33 ( 0.04) −16 ± 41 (−0.4)
Feature kc = 0.015 . . . . . . . −313 ± 144 ( 2.1) −264 ± 161 ( 1.6)
Feature kc = 0.020 . . . . . . . −155 ± 110 (−1.4) −167 ± 122 (−1.4)
Feature kc = 0.025 . . . . . . . 106 ± 93 ( 1.1) 110 ± 98 ( 1.1)
Feature kc = 0.030 . . . . . . . 56 ± 89 ( 0.6) 78 ± 96 ( 0.8)
Feature kc = 0.035 . . . . . . . 22 ± 82 ( 0.3) 15 ± 84 ( 0.2)
Feature kc = 0.040 . . . . . . . −0.9 ± 68 (−0.01) 4 ± 69 ( 0.1)
Feature kc = 0.050 . . . . . . . −0.2 ± 63 ( 0.00) 15 ± 66 ( 0.2)
Feature kc = 0.080 . . . . . . . 16 ± 64 ( 0.2) 21 ± 64 ( 0.3)
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CNRS, Bâtiment 210, 91405 Orsay, France

55



Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

75 Lawrence Berkeley National Laboratory, Berkeley, California,
U.S.A.

76 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1,
85741 Garching, Germany

77 McGill Physics, Ernest Rutherford Physics Building, McGill
University, 3600 rue University, Montréal, QC, H3A 2T8, Canada
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