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A. Gregorio41,54, A. Gruppuso55, F. K. Hansen71, D. Hanson86,74,10, D. Harrison70,76, S. Henrot-Versillé77, C. Hernández-Monteagudo15,84,
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ABSTRACT

We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the
Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev–Zeldovich (SZ) effect, and the sub-sample used here has a
signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the calculation of the
expected cluster counts as a function of cosmological parameters, the completeness of the sample, and the likelihood construction method. Using a
relation between mass M and SZ signal Y based on comparison to X-ray measurements, we derive constraints on the power spectrum amplitude σ8
and matter density parameter Ωm in a flat ΛCDM model. We test the robustness of our estimates and find that possible biases in the Y–M relation
and the halo mass function appear larger than the statistical uncertainties from the cluster sample. Assuming a bias between the X-ray determined
mass and the true mass of 20%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we
find that σ8(Ωm/0.27)0.3 = 0.78 ± 0.01, with one-dimensional ranges σ8 = 0.77 ± 0.02 and Ωm = 0.29 ± 0.02. The values of the cosmological
parameters are degenerate with the mass bias, and it is found that the larger values of σ8 and Ωm preferred by the Planck’s measurements of the
primary CMB anisotropies can be accommodated by a mass bias of about 45%. Alternatively, consistency with the primary CMB constraints can
be achieved by inclusion of processes that suppress power on small scales, such as a component of massive neutrinos. We place our results in the
context of other determinations of cosmological parameters, and discuss issues that need to be resolved in order to make progress in this field.
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1. Introduction

This paper, one of a set associated with the 2013 release of data
from the Planck1 mission (Planck Collaboration I 2013), de-
scribes the constraints on cosmological parameters using num-
ber counts as a function of redshift for a sample of 189 galaxy
clusters.

Within the standard picture of structure formation, galaxies
aggregate into clusters of galaxies at late times, forming bound
structures at locations where the initial fluctuations create the
deepest potential wells. The study of these galaxy clusters has
played a significant role in the development of cosmology over
many years (see, for example, Allen et al. 2011 and Voit 2005).
Their internal dynamics (Carlberg et al. 1996) and baryon frac-
tions (White et al. 1993) have been used to infer the matter den-
sity, and this was found to be significantly below the critical den-
sity necessary to achieve a flat universe. More recently, as sam-
ples of clusters have increased in size and variety, number counts
inferred from tightly-selected surveys have been used to obtain
more detailed constraints on the cosmological parameters.

The early galaxy cluster catalogues were constructed by eye
from photographic plates with a “richness” (or number of galax-
ies) attributed to each cluster (Abell 1958; Abell et al. 1989).
As time has passed, new approaches for selecting clusters have
been developed, most notably using X-ray emission due to ther-
mal Bremsstrahlung radiation from the hot gas that makes up
most of the baryonic matter in the cluster. X-ray cluster sur-
veys include the NORAS (Böhringer et al. 2000) and REFLEX
(Böhringer et al. 2004) surveys, based on ROSAT satellite ob-
servations, which have been used as source catalogues for
higher-precision observations by the Chandra and XMM-Newton
satellites, and surveys with XMM-Newton, including the XMM
Cluster Survey (XCS, Mehrtens et al. 2012) and the XMM Large
Scale Structure survey (XMM-LSS, Willis et al. 2013).

To exploit clusters for cosmology, a key issue is how the
properties used to select and characterize the cluster are related
to the total mass of the cluster, since this is the quantity most
readily predicted from theoretical models. Galaxies account for
a small fraction of the cluster mass and the scatter between rich-
ness and mass appears to be large. However, there are a number
of other possibilities. In particular, there are strong correlations
between the total mass and both the integrated X-ray surface
brightness and X-ray temperature, making them excellent mass
proxies.

The Sunyaev–Zeldovich (SZ) effect (Sunyaev & Zeldovich
1970; Zeldovich & Sunyaev 1969) is the inverse Compton scat-
tering of cosmic microwave background (CMB) photons by
the hot gas along the line of sight, and this is most signifi-
cant when the line of sight passes through a galaxy cluster. It
leads to a decrease in the overall brightness temperature in the
Rayleigh–Jeans portion of the spectrum and an increase in the
Wien tail, with a null around 217 GHz (see Birkinshaw 1999
for a review). The amplitude of the SZ effect is given by the
integrated pressure of the gas within the cluster along the line
of sight. Evidence both from observation (Marrone et al. 2012;
Planck Collaboration Int. III 2013) and from numerical simula-
tions (Springel et al. 2001; da Silva et al. 2004; Motl et al. 2005;
Nagai 2006a; Kay et al. 2012a) suggests that this is an ex-

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.

cellent mass proxy. A number of articles have discussed the
possibility of using SZ-selected cluster samples to constrain
cosmological parameters (Barbosa et al. 1996; Aghanim et al.
1997; Haiman et al. 2001; Holder et al. 2001; Weller et al. 2002;
Diego et al. 2002; Battye & Weller 2003).

This paper describes the constraints on cosmological param-
eters imposed by a high signal-to-noise (S/N) sub-sample of
the Planck SZ Catalogue (PSZ, see Planck Collaboration XXIX
2013, henceforth Paper 1, for details of the entire catalogue) of
nearly 200 clusters (shown in Fig. 1). This sub-sample has been
selected to be pure, in the sense that all the objects within it
have been confirmed as clusters via additional observations, ei-
ther from the literature or undertaken by the Planck collabora-
tion. In addition all objects but one have an identified redshift, ei-
ther photometric or spectroscopic. This is the largest SZ-selected
sample of clusters used to date for this purpose. We will show
that it is the systematic uncertainties from our imperfect knowl-
edge of cluster properties that dominate the overall uncertainty.

The Planck cluster sample is complementary to those
from observations using the South Pole Telescope (SPT,
Carlstrom et al. 2011) and the Atacama Cosmology Telescope
(ACT, Swetz et al. 2011), whose teams recently published the
first large samples of SZ-selected clusters (Reichardt et al.
2012a; Hasselfield et al. 2013). The resolution of Planck at the
relevant frequencies is between 5 and 10 arcmin, whereas that
for ACT and SPT it is about 1 arcmin, but the Planck sky cover-
age is much greater. This means that Planck typically finds larger
and lower-redshift clusters than those found by SPT and ACT.

Our strategy in this first analysis is to focus on number counts
of clusters, as a function of redshift, above a high S/N threshold
of seven and to explore the robustness of the results. We do not
use the observed SZ brightness of the clusters, due to the sig-
nificant uncertainty caused by the size–flux degeneracy, as dis-
cussed in Paper 1. Accordingly, our theoretical modelling of the
cluster population is directed at determining the expected num-
ber of clusters in each redshift bin exceeding the S/N threshold,
and again does not otherwise use the predicted cluster SZ signal.
The predicted and observed numbers of clusters are then com-
pared in order to obtain the likelihood. In the future, we will
make use of the SZ-estimated mass and a larger cluster sample
to extend the analysis to broader cosmological scenarios.

This paper is laid out as follows. We describe the theoretical
modelling of the redshift number counts in Sect. 2, while Sect. 3
presents the Planck SZ cosmological sample and selection func-
tion used in this work. The likelihood we adopt for putting con-
straints on cosmological parameters in given in Sect. 4. Section 5
presents our results on cosmological parameter estimation and
the robustness of our results. We discuss how they fit in with
other cluster and cosmological constraints in Sect. 6, before pro-
viding a final summary. A detailed discussion of our calibration
of the SZ flux versus mass relation and its uncertainties is given
in Appendix A.

2. Modelling cluster number counts

2.1. Model definitions

We parameterize the standard cosmological model as follows.
The densities of various components are specified relative to the
present-day critical density, with ΩX = ρX/ρcrit denoting that
for component X. These components always include matter, Ωm,
and a cosmological constant ΩΛ. For this work we assume that
the Universe is flat, that is, Ωm + ΩΛ = 1 and the optical depth to
reionization if fixed, τ = 0.085, except in the CMB+SZ analyses.

2
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Fig. 1. The distribution on the sky of the Planck SZ cluster sub-sample used in this paper, with the 35% mask overlaid.

The present-day expansion rate of the Universe is quantified by
the Hubble constant H0 = 100 h km s−1 Mpc−1.

The cluster number counts are very sensitive to the ampli-
tude of the matter power spectrum. When studying cluster counts
it is usual to parametrize this in terms of the density variance
in spheres of radius 8h−1 Mpc, denoted σ8, rather than overall
power spectrum amplitude, As. In cases where we include pri-
mary CMB data we use As and compute σ8 as a derived param-
eter. In addition to the parameters above, we also allow the other
standard cosmological parameters to vary: ns representing the
spectral index of density fluctuations; and Ωbh2 quantifying the
baryon density.

The number of clusters predicted to be observed by a survey
in a given redshift interval [zi, zi+1] can be written

ni =

∫ zi+1

zi

dz
dN
dz

(1)

with

dN
dz

=

∫
dΩ

∫
dM500 χ̂(z,M500, l, b)

dN
dz dM500 dΩ

, (2)

where dΩ is the solid angle element and M500 is the mass within
the radius where the mean enclosed density is 500 times the crit-
ical density. The quantity χ̂(z,M500, l, b) is the survey complete-
ness at a given location (l, b) on the sky, given by

χ̂ =

∫
dY500

∫
dθ500P(z,M500|Y500, θ500) χ(Y500, θ500, l, b) . (3)

Here P(z,M500|Y500, θ500) is the distribution of (z,M500) for a
given (Y500, θ500), where Y500 and θ500 are the SZ flux and size
of a cluster of redshift and mass (z,M500).

This distribution is obtained from the scaling relations be-
tween Y500, θ500, and M500, discussed later in this section. Note
that χ̂(z,M500, l, b) depends on cosmological parameters through
P(z,M500|Y500, θ500), while the completeness in terms of the ob-
servables, χ(Y500, θ500, l, b), does not depend on the cosmology
as it refers directly to the observed quantities.

For the present work, we restrict our analysis to the quan-
tity dN/dz which measures the total counts in redshift bins.
In particular, we do not use the blind SZ flux estimated by
the cluster candidate extraction methods that, as detailed in
Planck Collaboration VIII (2011), is found to be significantly
higher than the flux predicted from X-ray measurements. In con-
trast to the blind SZ flux, the blind S/N is in good agreement with
the S/N measured using X-ray priors. Figure 2 shows the blind
S/N (S/Nblind) versus the S/N re-extracted at the X-ray position
and using the X-ray size (S/NX). The clusters follow the equality
line. In Sect. 3, we use the (S/Nblind) values to define our cosmo-
logical sample, while for the predicted counts (defined in Sect. 2)
we use the completeness based on S/NX. Our analysis relies on
the good match between these two quantities.

To carry out a prediction of the counts expected in a survey,
given cosmological assumptions, we therefore need the follow-
ing inputs:

– a mass function that tells us the number distribution of clus-
ters with mass and redshift;

– scaling relations that can predict observable quantities from
the mass and redshift;

– the completeness of the survey in terms of those observables,
which tells us the probability that a model cluster would
make it into the survey catalogue.

These are described in the remainder of this section and in the
next.

2.2. Mass function

Our main results use the mass function from Tinker et al. (2008),
which is given by

dN
dM500

(M500, z) = f (σ)
ρm(z = 0)

M500

d lnσ−1

dM500
, (4)

where

f (σ) = A
[
1 +

(
σ

b

)−a]
exp

(
−

c
σ2

)
, (5)

3
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Fig. 2. Blind S/N versus S/N re-extracted at the X-ray position
using the X-ray size, for the MMF3 detections of Planck clusters
that are associated with known X-ray clusters in the reference
cosmological sample. In contrast to the blind SZ flux, the blind
S/N is in good agreement with S/N measured using X-ray priors.

and ρm(z = 0) is the mean matter density at z = 0. The co-
efficients A, a, b and c are tabulated in Tinker et al. (2008) for
different overdensities, ∆mean, with respect to the mean cosmic
density, and depend on z. Here we use ∆critical = 500 relative to
the critical density, so we compute the relevant mass function
coefficients by interpolating the Tinker et al. (2008) tables for
halos with ∆mean ≡ ∆critical/Ωm(z) = 500/Ωm(z), where Ωm(z) is
the matter density parameter at redshift z.

The quantity σ is the standard deviation, computed in linear
perturbation theory, of the density perturbations in a sphere of
radius R, which is related to the mass by M = 4πρm(z = 0)R3/3.
It is given by

σ2 =
1

2π2

∫
dk k2P(k, z)|W(kR)|2 , (6)

where P(k, z) is the matter power spectrum at redshift z, which
we compute for any given set of cosmological parameters using
CAMB (Lewis et al. 2000), and W(x) = 3(sin x − x cos x)/x3 is
the filter function of a spherical top hat of radius R.

The quantity dN/(dz dM500 dΩ) in Eq. 2 is computed by mul-
tiplying the mass function dN(M500, z)/dM500 by the volume el-
ement dV/(dz dΩ).

As a baseline we use, except where stated otherwise, the
Tinker et al. (2008) mass function, but we consider an alterna-
tive mass function as a cross-check. In a recent publication by
Watson et al. (2012), a new mass function is extracted from the
combination of large cosmological simulations (typical particle
numbers of 30003 to 60003) with a very large dynamic range
(size from 11 h−1 to 6000 h−1Mpc), which extends the maximum
volume probed by Tinker et al. by two orders of magnitude.
The two mass functions agree fairly well, except in the case
of the most massive objects, where Tinker et al.’s mass func-
tion predicts more clusters than Watson et al.’s. The Tinker et al.
mass function might be derived from volumes that are not large

Table 1. Summary of scaling-law parameters and error budget.
Note that β is kept fixed at its central value except in Sect. 5.3.

log Y∗ −0.19 ± 0.02
α 1.79 ± 0.08
β 0.66 ± 0.50

σlog Y 0.075 ± 0.01

enough to properly sample the rarer clusters. These rare clusters
are more relevant for Planck than for ground-based SZ experi-
ments, which probe smaller areas of the sky. The Watson et al.
mass function is used only in Sect. 5.3, which deals with mass
function uncertainties.

2.3. Scaling relations

A key issue is to relate the observed SZ flux, Y500, to the mass
M500 of the cluster. As we show in Sect. 5, cosmological con-
straints are sensitive to the normalization and slope of the as-
sumed Y500–M500 relation. We thus paid considerable attention
to deriving the most accurate scaling relations possible, with
careful handling of statistical and systematic uncertainties, and
to testing their impact on the derived cosmological parameters.

The baseline relation is obtained from an observational cal-
ibration of the Y500–M500 relation on one-third of the cosmo-
logical sample, using the mass derived from the X-ray YX–M500

relation, MYX
500, as a mass proxy. Here YX is the X-ray analogue

of the SZ signal, defined in Appendix A. Y500 is then measured
interior to RYX

500, the radius corresponding to MYX
500. The relation

is corrected for Malmquist bias effects, and we carefully prop-
agate the statistical and systematic uncertainties on the relation
between MYX

500 and the true mass M500. The mean bias between
these two quantities, (1−b), has been estimated from comparison
with the predictions from several sets of numerical simulations,
as detailed in Appendix A.

The large uncertainties on (1−b) are due to the dispersion in
predictions from the various simulation sets, which is a limiting
factor in our analysis. In the following, our baseline approach is
to fix b to the value (1−b) = 0.80. This value is to be considered
an average over the cluster population, and is assumed to be red-
shift independent. On a cluster-by-cluster basis it would be ex-
pected to be stochastic, contributing to scatter in the Y500–M500
relation given below. In our analysis of systematic uncertainties
on the derived cosmological parameters, we also consider a case
where (1 − b) can vary occupying the range [0.7, 1.0] with a flat
prior.

As detailed in Appendix A, we derive a baseline relation for
the mean SZ signal Ȳ500 from a cluster of given mass and redshift
in the form

E−β(z)
 D2

A(z) Ȳ500

10−4 Mpc2

 = Y∗

[
h

0.7

]−2+α [
(1 − b) M500

6 × 1014 Msol

]α
, (7)

where DA(z) is the angular-diameter distance to redshift z and
E2(z) = Ωm(1 + z)3 + ΩΛ. The coefficients Y∗, α and β are given
in Table 1.

Equation 7 has an estimated intrinsic scatter2 σlog Y = 0.075,
which we take to be independent of redshift (see Appendix A).

2 Throughout this article, log is base 10 and ln is base e.
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This is incorporated by drawing the cluster’s Y500 from a log-
normal distribution

P(log Y500) =
1√

2πσ2
log Y

exp

− log2(Y500/Ȳ500)
2σ2

log Y

 , (8)

where Ȳ500 is given by Eq. 7. Inclusion of this scatter increases
the number of clusters expected at a given S/N; since the clus-
ter counts are a steep function of M500 in the range of mass in
question, there are more clusters that scatter upwards from be-
low the limit given by the zero-scatter scaling relation than those
that scatter downwards.

In addition to Eq. 7 we need a relation between θ500 (in fact
θYX

500, the angular size corresponding to the physical size RYX
500),

the aperture used to extract Y500, and M500. Since M500 = 500 ×
4πρcritR3

500/3 and θ500 = R500/DA, this can be expressed as

θ̄500 = θ∗

[
h

0.7

]−2/3 [
(1 − b) M500

3 × 1014Msol

]1/3

E−2/3(z)
[

DA(z)
500 Mpc

]−1

, (9)

where θ∗ = 6.997 arcmin.

2.4. Limiting mass

One can use Eqs. 7 and 9 to compute the limiting mass at a
point on the sky where the noise level, σY , has been computed
as described in Sect. 3. As the latter is not homogeneous on the
sky, we show in Fig. 3 the limiting mass, defined at 50% com-
pleteness, as a function of redshift for three different zone, deep,
medium, and shallow, covering respectively, 3.5%, 48.8% and
48.7% of the unmasked sky. For each line a S/N cut of 7 has
been adopted.

2.5. Implementation

We have implemented three independent versions of the com-
putation of counts and constraints. The differences in predicted
counts are of the order of a few percent, which translates to less
than a tenth of 1σ on the cosmological parameters of interest.

3. The Planck cosmological samples

3.1. Sample definition

The reference cosmological sample is constructed
from the Planck SZ Catalogue (PSZ) published in
Planck Collaboration XXIX (2013) and made public with
the first release of Planck cosmological products. It is based
on the SZ detections performed with the Matched Multi-filter
(MMF) method MMF3 (Melin et al. 2006), which relies on use
of a filter of adjustable width θ500 chosen to maximize the
S/N of the detection. In order to ensure a high purity and to
maximize the number of redshifts, the cosmological sample
was constructed by selecting the SZ detections above a S/N
threshold of 7 outside Galactic and point source masks covering
35% of the sky, as discussed in Paper 1. From the original PSZ,
only the information on S/N (for the selection) and redshift are
used.

This sample contains 189 candidates. All but one are con-
firmed bona fide clusters with measured redshifts, including
184 spectroscopic redshifts. Among these confirmed clusters
12 were confirmed with follow-up programmes conducted by
the Planck collaboration (see Paper 1 for details). The remain-
ing non-confirmed cluster candidate is a high-reliability CLASS1
candidate, meaning that its characterization as a cluster is sup-
ported by data in other wavebands (see Paper 1 for details). It
is thus considered as a bona fide cluster. The distribution on the
sky of this baseline cosmological sample is shown in Fig. 1.

In addition to our reference sample, we consider two other
samples drawn from the PSZ for consistency checks. One is
based on the detections from the second implementation of the
MMF algorithm, MMF1, described in Paper 1. It contains 188
clusters with S/N > 7 and no missing redshifts, with almost com-
plete overlap with the baseline sample (187 clusters in common).
The third sample considered in the present study is also based on
MMF3 detections but with a higher S/N cut of S/N > 8. It allows
us to test selection effects and to probe the consistency of the
results as a function of the S/N cut. It contains 136 clusters, all
with measured redshifts.

The selection function for each of these samples is con-
structed as described in the next section.

3.2. Completeness

The completeness of the reference cosmological sample is com-
puted with two distinct and complementary approaches: a semi-
analytic approach based on the assumption of Gaussian uncer-
tainties; and a computational approach based on Monte Carlo
cluster injection into real sky maps.

The completeness χ can be evaluated analytically by set-
ting the probability of the measured SZ flux, Y500, to be
Gaussian distributed with a standard deviation equal to the noise,
σY500 (θ500, l, b), computed for each size θ500 of the MMF filter
and at each position (l, b) on the sky:

χerf(Y500, θ500, l, b) =
1
2

1 + erf

Y500 − X σY500 (θ500, l, b)
√

2σY500 (θ500, l, b)

 , (10)
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Fig. 4. Noise map σY500 (θ500) for θ500 = 6 arcmin. The PSZ
is limited by instrumental noise at high (|b| > 20◦) Galactic
latitude (deeper at ecliptic poles) and foreground noise at low
Galactic latitude. The scale of the map ranges from 0.5 to 2
times the mean noise of the map, which is 〈σY500 (6 arcmin)〉 =

2.2 × 10−4arcmin2.

where X = 7 is the S/N threshold and the error function is de-
fined as usual by

erf(u) =
2
√
π

∫ u

0
exp

(
−t2

)
dt . (11)

χerf(Y500, θ500, l, b) thus lies in the range [0, 1] and gives the prob-
ability for a cluster of flux Y500 and size θ500 at position (l, b) to
be detected at S/N ≥ X.

The noise estimate σY500 (θ500, l, b) is a by-product of the
detection algorithm and can be written in the form (see e.g.,
Melin et al. 2006)

σY500 (θ500, l, b) =

[∫
d2k Ft

θ500
(k) · P−1(k, l, b) · Fθ500 (k)

]−1/2

, (12)

with Fθ500 (k) being a vector of dimension Nfreq (the six highest
Planck frequencies here) containing the beam-convolved clus-
ter template scaled to the known SZ frequency dependence. The
cluster template assumed is the non–standard universal pres-
sure profile from Arnaud et al. (2010a). P(k, l, b) is the noise
power spectrum (dimension Nfreq×Nfreq) directly estimated from
the data at position (l, b). Figure 4 shows σY500 (θ500, l, b) for
θ500 = 6 arcmin in a Mollweide projection with the Galactic
mask used in the analysis applied. As expected, the noise at high
Galactic latitude is lower than in the areas contaminated by dif-
fuse Galactic emission. The ecliptic pole regions have the lowest
noise level, reflecting the longer Planck integration time in these
high-redundancy areas.

The Monte Carlo (MC) completeness is calculated by in-
jecting simulated clusters into real sky maps following the
method presented in Paper 1, with the modifications that the
65% Galactic dust mask and a S/N > 7 threshold are applied
to match the cosmological sample definition. The Monte Carlo
completeness encodes effects not probed by the erf approxima-
tion, including the variation of cluster pressure profiles around
the fiducial pressure profile used in the MMF, spatially-varying
and asymmetric effective beams, and the effects of correlated
non-Gaussian uncertainties in the estimation of (Y500, θ500). As
shown in Fig. 5, the erf-based formula for the completeness is
a good approximation to the Monte Carlo completeness. The
agreement is best for the typical sizes probed by Planck (5 to
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Fig. 5. Completeness averaged over the unmasked sky as a func-
tion of Y500 for two different filter sizes, θ500 = 6 and 15.3 ar-
cmin. The dashed lines show the semi-analytic approximation
of Eq. 10.

10 arcmin), though the two determinations of the completeness
start to deviate for small and large sizes, due to beam and profile
effects, respectively. For simplicity, we chose the erf formulation
as the baseline. The effect of using the Monte Carlo complete-
ness instead is discussed in Sect. 5.2.

4. Likelihood and Markov chain Monte Carlo

4.1. The likelihood

We now have all the information needed to predict the counts in
redshift bins for our theoretical models. To obtain cosmological
constraints with the Planck SZ sample presented in Sect. 3, we
construct a likelihood function based on Poisson statistics (Cash
1979):

ln L = lnP(Ni|ni) =

Nb∑
i=1

[Ni ln(ni) − ni − ln(Ni!)] , (13)

where P(Ni|ni) is the probability of finding Ni clusters in each
of Nb bins given an expected number of ni in each bin in red-
shift. The likelihood includes bins that contain no observed clus-
ters. As a baseline, we assume bins in redshift of ∆z = 0.1 and
we checked that our results are robust when changing the bin
size between 0.05 and 0.2. The modelled expected number ni
depends on the bin range in redshift and on the cosmological
parameters, as described in Sect. 2. It also depends on the scal-
ing relations and the selection function of the observed sample.
The parameters of the scaling relations between flux (or size)
and mass and redshift are taken to be Gaussian distributed with
central values and uncertainties stated in Table 1, and with the
scatter in Y500 incorporated into the method via the log-normal
distribution with width σlog Y .

In the PSZ, the redshifts have been collected from differ-
ent observations and from the literature. Individual uncertainties
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Fig. 6. Planck SZ constraints (+BAO+BBN) on ΛCDM cosmological parameters in red. The black lines show the constraints upon
substituting the BAO constraints for H0 constraints.

in redshift are thus spread between 0.001 and 0.1. Most of the
clusters in the cosmological sample have spectroscopic redshifts
(184 out of 189) and we checked that the uncertainties in redshift
are not at all dominant in our error budget and are thus neglected.
The cluster without known redshift is incorporated by scaling the
counts by a factor 189/188, i.e., by assuming its redshift is drawn
from the distribution defined by the other 188 objects.

4.2. Markov chain Monte Carlo

In order to impose constraints on cosmological parameters from
our sample(s) given our modelled expected number counts, we
modified CosmoMC (Lewis & Bridle 2002) to include the like-
lihood described above. We mainly study constraints on the
spatially-flat ΛCDM model, varying Ωm, σ8, Ωb, H0 and ns,
but also adding in the total neutrino mass,

∑
mν, in Sect. 6. In

each of the runs, the nuisance parameters (Y∗, α, σlog Y ) follow
Gaussian priors, with the characteristics detailed in Table 1, and
are marginalized over. The redshift evolution of the scaling, β, is
fixed to its reference value unless stated otherwise.

4.3. External datasets

When probing the six parameters of the ΛCDM model, we
combine the Planck clusters with the Big Bang nucleosynthesis
(BBN) constraints from Steigman (2008), Ωbh2 = 0.022±0.002.
We also use either the H0 determination from HST by Riess et al.
(2011), H0 = (73.8±2.4) kms−1Mpc−1, or baryon acoustic oscil-

lation (BAO) data. In the latter case we adopt the combined like-
lihood of Hinshaw et al. (2012) and Planck Collaboration XVI
(2013), which uses the radial BAO scales observed by 6dF-
GRS (Beutler et al. 2011), SDSS-DR7-rec and SDSS-DR9-rec
(Padmanabhan et al. 2012; Anderson et al. 2012), and WiggleZ
(Blake et al. 2012).

5. Constraints from Planck clusters: ΛCDM

5.1. Results for Ωm and σ8

Cluster counts in redshift for our Planck cosmological sample
are not sensitive to all parameters of the ΛCDM model. We fo-
cus first on (Ωm, σ8), assuming that ns follows a Gaussian prior
centred on the best-fit Planck CMB value3 (ns = 0.963± 0.009).
We combine our SZ counts likelihood with the BAO and BBN
likelihoods discussed earlier. We also consider uncertainties on
scaling parameter estimates as stated in Table 1. We furthermore
assume a constant mass bias 1 − b = 0.8.

We find the expected degeneracy between the two param-
eters, σ8(Ωm/0.27)0.3 = 0.782 ± 0.0104, with central values
and relative uncertainties respectively of Ωm = 0.29 ± 0.02 and
σ8 = 0.765 ± 0.021 (Fig. 6, red contours, and Table 2). The
counts in redshift for the best-fit model are plotted in Fig. 7.

3 Table 2 of Planck Collaboration XVI (2013).
4 We express it this way to ease comparison with other works. The

actual best fit is given by σ8(Ωm/0.29)0.322 = 0.765 ± 0.010.
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Table 2. Best-fit cosmological parameters for various combinations of data and analysis methods. Note that for the analysis using Watson et al.
mass function, or (1-b) in [0.7-1], the degeneracy line is different and thus the value of σ8(Ωm/0.27)0.3 is just illustrative

σ8(Ωm/0.27)0.3 Ωm σ8 1 − b

Planck SZ +BAO+BBN 0.782 ± 0.010 0.29 ± 0.02 0.77 ± 0.02 0.8
Planck SZ +HST+BBN 0.792 ± 0.012 0.28 ± 0.03 0.78 ± 0.03 0.8
MMF1 sample +BAO+BBN 0.800 ± 0.010 0.29 ± 0.02 0.78 ± 0.02 0.8
MMF3 S/N > 8 +BAO+BBN 0.785 ± 0.011 0.29 ± 0.02 0.77 ± 0.02 0.8
Planck SZ +BAO+BBN (MC completeness) 0.778 ± 0.010 0.30 ± 0.03 0.75 ± 0.02 0.8
Planck SZ +BAO+BBN (Watson et al. mass function) 0.802 ± 0.014 0.30 ± 0.01 0.77 ± 0.02 0.8
Planck SZ +BAO+BBN (1 − b in [0.7, 1.0]) 0.764 ± 0.025 0.29 ± 0.02 0.75 ± 0.03 [0.7,1]
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Fig. 7. Distribution in redshift for the clusters of the Planck cos-
mological sample. The observed number counts (red), are com-
pared to our best model prediction (blue). The dashed and dot-
dashed lines are the best models from the Planck SZ power spec-
trum and Planck CMB power spectrum fits, respectively. The
uncertainties on the observed counts, shown for illustration only,
are the standard deviation based on the observed counts, except
for empty bins where we show the inferred 84% upper limit
on the predicted counts assuming a Poissonian distribution. See
Sect. 6 for more discussion.

To investigate how robust our results are when changing our
priors, we repeat the analysis substituting the HST constraints
on H0 for the BAO results. Figure 6 (black contours) shows that
the main effect is to change the best-fit value of H0, leaving the
(Ωm, σ8) degeneracy almost identical.

5.2. Robustness to observational sample

To test the robustness of our results, we performed the same anal-
ysis with different sub-samples drawn from our cosmological
sample or from the PSZ, as described in Sect. 3, following that
section’s discussion of completeness. Figure 8 shows the likeli-
hood contours of the three samples (blue, MMF3 S/N > 8; red,
MMF3 S/N > 7; black, MMF1 S/N > 7) in the (Ωm, σ8) plane.
There is good agreement between the three samples. Obviously
the three samples are not independent, as many clusters are com-
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Fig. 8. 95% contours for different robustness tests: MMF3 with
S/N cut at 7 in red; MMF3 with S/N cut at 8 in blue; and MMF1
with S/N cut at 7 in black; and MMF3 with S/N cut at 7 but as-
suming the MC completeness in purple.

mon, but the noise estimates for MMF3 and MMF1 are different
leading to different selection functions. Table 2 summarizes the
best-fit values.

We perform the same analysis as on the baseline cosmologi-
cal sample (SZ+BAO+BBN), but assuming a different computa-
tion of the completeness function using the Monte Carlo method
described in Sect. 3. Figure 8 shows the change in the 2D like-
lihoods when the alternative approach is adopted. The Monte
Carlo estimation (in purple), being close to the analytic one,
gives constraints that are similar, but shifts the contour along
the (Ωm, σ8) degeneracy.

5.3. Robustness to cluster modelling

A key ingredient in the modelling of the number counts is the
mass function. Our main results adopt the Tinker et al. mass
function as the reference model. We use the Watson et al. mass
function to check for possible differences in our results due to
the most massive/extreme clusters. Figure 9 shows the 95% con-
tours when the different mass functions are assumed. The main
effect is a change in the slope of the degeneracy between Ωm and
σ8, moving the best-fit values by less than 1σ.

We also relax the assumption of standard evolution of the
scalings with redshift by allowing β to vary with a Gaussian prior
taken from Planck Collaboration X (2011), β = 0.66±0.5. Once
again, the contours move along the σ8–Ωm degeneracy direction
(shown in blue in Fig. 9).
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Fig. 9. Comparison of the outcome using the mass functions of
Watson et al. (black) and Tinker et al. (red). Allowing the bias
to vary in the range [0.7, 1.0] enlarges the constraints perpendic-
ular to the σ8–Ωm degeneracy line due to the degeneracy of the
number of clusters with the mass bias (purple). When relaxing
the constraints on the evolution of the scaling law with redshift
(blue), the contours move along the degeneracy line. Contours
are 95% confidence levels here.

As shown in Appendix A, the estimation of the mass bias is
not trivial and there is a large scatter amongst simulations. We
thus now allow the mass bias (1−b) to vary in the range [0.7, 1.0]
to reflect the uncertainty in the possible bias between the X-ray
mass and the true mass for our given sample. Figure 9 shows the
corresponding constraints from Planck SZ clusters + BAO+BBN
in purple. While Ωm is not affected much by relaxing the bias,
σ8 is now less constrained, due to the degeneracy with (1 − b).

6. Discussion

Our main result is the constraint in the (Ωm, σ8) plane
for the standard ΛCDM model imposed by the SZ counts,
which we have shown is robust to the details of our mod-
elling. We now compare this result first to constraints from
other cluster samples, and then to the constraints from the
Planck analysis of the sky-map of the Compton y-parameter
(Planck Collaboration XXI 2013) and of the primary CMB tem-
perature anisotropies (Planck Collaboration XVI 2013).

6.1. Comparison with other cluster constraints

We restrict our comparison to some recent analyses exploiting a
range of observational techniques to obtain cluster samples and
mass calibrations.

Benson et al. (2011) used 18 galaxy clusters in the first
178 deg2 of the SPT survey to find σ8(Ωm/0.25)0.3 = 0.785 ±
0.037 for a spatially-flat model. They break the degeneracy be-
tween σ8 and Ωm by incorporating primary CMB constraints,
deducing that σ8 = 0.795 ± 0.016 and Ωm = 0.255 ± 0.016. In
addition, they find that the dark energy equation of state is con-
strained to w = −1.09±0.36, using just their cluster sample along
with the same HST and BBN constraints we use. Subsequently
Reichardt et al. (2012a) reported a much larger cluster sample
and used this to improve on the statistical uncertainties on the
cosmological parameters. Hasselfield et al. (2013) use a sample
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Fig. 10. Comparison of constraints (68% confidence interval) on
σ8(Ωm/0.27)0.3 from different experiments of large–scale struc-
ture (LSS), clusters, and CMB. The solid line ACT point as-
sumes the same universal pressure profile as this work. Probes
marked with an asterisk have an original power of Ωm different
from 0.3. See text and Table 3 for more details.

of 15 high S/N clusters from ACT, in combination with primary
CMB data, to find σ8 = 0.786 ± 0.013 and Ωm = 0.25 ± 0.012
when assuming a scaling law derived from the universal pressure
profile.

Strong constraints on cosmological parameters have been
inferred from X-ray and optical richness selected samples.
Vikhlinin et al. (2009c) used a sample of 86 well-studied X-
ray clusters, split into low- and high-redshift bins, to conclude
that ΩΛ > 0 with a significance about 5σ and that w =
−1.14 ± 0.21. Rozo et al. (2010) used the approximately 104

clusters in the Sloan Digital Sky Survey (SDSS) MaxBCG clus-
ter sample, which are detected using a colour–magnitude tech-
nique and characterized by optical richness. They found that
σ8(Ωm/0.25)0.41 = 0.832 ± 0.033. Notably, the quoted uncer-
tainty on this quantity is similar to that from the 18 clusters in
the original SPT survey, even though they found over two orders
of magnitude more clusters; this is because the relationship used
between the optical richness and the mass has a very significant
uncertainty on the scatter and absolute mass scale. In both cases
much tighter constraints were found by incorporating a range of
other cosmological probes.

Fig. 10 and Table 3 summarize some of the current
constraints on the combination σ8(Ωm/0.27)0.3, which is the
main degeneracy line in cluster constraints. Cosmic shear
(Kilbinger et al. 2013), X-rays (Vikhlinin et al. 2009b), and
MaxBCG (Rozo et al. 2010) each have a different slope in Ωm,
being 0.6, 0.47, and 0.41, respectively (instead of 0.3), as they
are probing different redshift ranges. We have rescaled when
necessary the best value and errors to quote numbers with a
pivot Ωm = 0.27. Hasselfield et al. (2013) have derived “cluster-
only” constraints from ACT by assuming several different scal-
ing laws, shown in blue and dashed blue in Fig. 10. The con-
straint assuming the universal pressure profile is highlighted as

9



Planck Collaboration: Cosmology from SZ clusters counts

Table 3. Constraints from clusters on σ8(Ωm/0.27)0.3.

Experiment CPPPa MaxBCGb ACTc SPT Planck SZ

Reference Vikhlinin et al. Rozo et al. Hasselfield et al. Reichardt et al. This work
Number of clusters 49+37 70810 15 100 189
Redshift range [0.025,0.25] and [0.35,0.9] [0.1,0.3] [0.2,1.5] [0.3,1.35] [0.0,0.99]
Median mass (1014h−1Msol) 2.5 1.5 3.2 3.3 6.0
Probe N(z,M) N(M) N(z,M) N(z,YX) N(z)
S/N cut 5 (N200 > 11) 5 5 7
Scaling YX–TX , Mgas N200–M200 several LX–M, YX YSZ–YX
σ8(Ωm/0.27)0.3 0.784 ± 0.027 0.806 ± 0.033 0.768 ± 0.025 0.767 ± 0.037 0.782 ± 0.010

a The degeneracy is σ8(Ωm/0.27)0.47.
b The degeneracy is σ8(Ωm/0.27)0.41.
c For ACT we choose the results assuming the universal pressure profile derived scaling law in this table (constraints with other scalings relations

are shown in Fig. 10).

the solid symbol and error bar. For SPT we show the “cluster-
only” constraints from Reichardt et al. (2012a). The two error
bars of the Planck SZ cluster red point indicate the statistical
and systematic (1 − b free in the range [0.7, 1.0]) error bars.
The figure thus shows good agreement amongst all cluster ob-
servations, whether in optical, X-rays, or SZ. Table 3 compares
the different data and assumptions of the different cluster-related
publications.

6.2. Consistency with the Planck y-map

In a companion paper (Planck Collaboration XXI 2013), we per-
formed an analysis of the SZ angular power spectrum derived
from the Planck y-map obtained with a dedicated component-
separation technique. For the first time, the power spectrum has
been measured at intermediate scales (50 ≤ ` ≤ 1000). The
same modelling as in Sect. 2 and Taburet et al. (2009, 2010)
has been used to derive best-fit values of Ωm and σ8, assum-
ing the universal pressure profile (Arnaud et al. 2010b), a bias
1−b = 0.8, and the best-fit values for other cosmological param-
eters from Planck Collaboration XVI (2013). The best model ob-
tained, shown in Fig. 7 as a dashed line, confirms the consistency
between the Planck SZ number counts and the signal observed
in the y-map.

6.3. Comparison with Planck primary CMB constraints

We now compare the Planck SZ cluster constraints to those from
the analysis of the primary CMB temperature anisotropies given
in Planck Collaboration XVI (2013). In that analysis σ8 is de-
rived from the standard six ΛCDM parameters.

The primary CMB constraints, in the (Ωm, σ8) plane, dif-
fer significantly from our constraints, in favouring higher val-
ues of each parameter, as seen in Fig. 11. This leads to a larger
number of predicted clusters than actually observed (see Fig. 7).
There is therefore some tension between the results from this
analysis and our own. Figure 10 illustrates this with a compar-
ison of three CMB analyses5 (Planck Collaboration XVI 2013;
Story et al. 2012; Hinshaw et al. 2012) with cluster constraints
in terms of σ8(Ωm/0.27)0.3.

5 For Planck CMB we derived the constraints from the chain corre-
sponding to column 1 of Table 2 of Planck Collaboration XVI (2013).
Note that the SPT results may be biased low by systematics, as dis-
cussed in the appendix of Planck Collaboration XVI (2013).
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Fig. 11. 2D Ωm–σ8 likelihood contours for the analysis with
Planck CMB only (red); Planck SZ + BAO + BBN (blue); and
the combined Planck CMB + SZ analysis where the bias (1 − b)
is a free parameter (black).

It is possible that the tension results from a combination of
some residual systematics with a substantial statistical fluctu-
ation. Enough tests and comparisons have been made on the
Planck data sets that it is plausible that at least one discrepancy
at the two or three sigma level will arise by chance. Nevertheless,
it is worth considering the implications of the discrepancy being
real.

As we have discussed, the modelling of the cluster gas
physics is the most important uncertainty in our analysis, in
particular the mass bias (1 − b) between the hydrostatic and
true masses. While we have argued that the preferred value is
(1 − b) ' 0.8, with a plausible range from 0.7 to 1, a signifi-
cantly lower value would substantially alleviate the tension be-
tween CMB and SZ constraints. Performing a joint analysis us-
ing the CMB likelihood presented in Planck Collaboration XV
(2013) and the cluster likelihood of this paper, we find (1 − b) =
0.55± 0.06 and the black contours shown in Fig. 11 (in that case
(1 − b) was sampled in the range [0.1,1.5]). Such a large bias
is difficult to reconcile with numerical simulations, and cluster
masses estimated from X-rays and from weak lensing do not typ-
ically show such large offsets. Some systematic discrepancies
in the relevant scaling relations were, however, identified and
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Fig. 12. Cosmological constraints when including neutrino
masses

∑
mν from: Planck CMB data alone (black dotted line);

Planck CMB + SZ with 1−b in [0.7, 1] (red); Planck CMB + SZ
+ BAO with 1 − b in [0.7, 1] (blue); and Planck CMB + SZ with
1 − b = 0.8 (green).

studied in Planck Collaboration XII (2011), Sehgal et al. (2011),
Draper et al. (2012), and Biesiadzinski et al. (2012), based on
stacking analyses of X-ray, SZ, and lensing data for the very
large MaxBCG cluster sample, suggesting that the issue is not
yet fully settled from an observational point of view.

A different mass function may also help reconcile the ten-
sion. Mass functions are calibrated against numerical simula-
tions that may still suffer from volume effects for the largest ha-
los, as shown in the difference between the Tinker et al. (2008)
and Watson et al. (2012) mass functions. This does not seem suf-
ficient, however, given the results presented in Fig. 9.

Alternatively, the discrepancy may indicate the need to ex-
tend the minimal ΛCDM model that is used to generate the σ8
values. Any extension would need to modify the power spectrum
on the scales probed by clusters, while leaving the scales probed
by primary CMB observations unaffected. The inclusion of neu-
trino masses, quantified by their sum,

∑
mν, can achieve this (see

Marulli et al. 2011 for a review of how cosmological observa-
tions can be affected by the inclusion of neutrino masses). The
SPT collaboration (Hou et al. 2012) recently considered such a
possibility to mitigate their tension with WMAP-7 primary CMB
data. There is an upper limit of

∑
mν < 0.93 eV from the Planck

primary CMB data alone (Planck Collaboration XVI 2013). If
we include the cluster count data using a fixed value (1−b) = 0.8,
then we find a 2.9σ preference for the inclusion of neutrino
masses with

∑
mν = (0.58 ± 0.20) eV, as shown in Fig. 12. If,

on the other hand, we adopt a more conservative point of view
and allow (1 − b) to vary between 0.7 and 1.0, this preference
drops to 2σ with

∑
mν = (0.45 ± 0.21) eV. Adding BAO data

to the compilation lowers the value of the required mass but in-
creases the significance, yielding

∑
mν = (0.22 ± 0.09) eV, due

to a breaking of the degeneracy between H0 and
∑

mν.
As these results depends on the value and allowed range of

(1 − b), better understanding of the scaling relation is the key to

further investigation. This provides strong motivation for further
study of the relationship between Y and M.

7. Summary

We have used a sample of nearly 200 clusters from the PSZ,
along with the corresponding selection function, to place strong
constraints in the (Ωm, σ8) plane. We have carried out a series
of tests to verify the robustness of our constraints, varying the
observed sample choice, the estimation method for the selection
function, and the theoretical methodology, and have found that
our results are not altered significantly by those changes.

The relation between the mass and the integrated SZ signal
plays a major role in the computation of the expected number
counts. Uncertainties in cosmological constraints from clusters
are no longer dominated by small number statistics, but by the
gas physics. Uncertainties in the Y–M relation include X-ray in-
strument calibration, X-ray temperature measurement, inhomo-
geneities in cluster density or temperature profiles, and selec-
tion effects. Considering several ingredients of the gas physics
of clusters, numerical simulations predict scaling relations with
30% scatter in amplitude (at a fiducial mass of 6×1014Msol). All
this points toward a mass bias between the true mass and the es-
timated mass of (1 − b) = 0.8+0.2

−0.1, and adopting the central value
we found constraints on Ωm and σ8 that are in good agreement
with previous measurements using clusters of galaxies.

Comparing our results with Planck primary CMB con-
straints within the ΛCDM cosmology indicates some tension.
This can be alleviated by permitting a large mass bias (1 −
b ' 0.55), which is however significantly larger than expected.
Alternatively, the tension may motivate an extension of the
ΛCDM model that modifies its power spectrum shape. For ex-
ample the inclusion of non-zero neutrino masses helps in recon-
ciling the primary CMB and cluster constraints, a fit to Planck
CMB + SZ + BAO yielding

∑
mν = (0.22 ± 0.09) eV.

Cosmological parameter determination using clusters is cur-
rently limited by the knowledge of the observable–mass rela-
tions. In the future our goal is to increase the number of ded-
icated follow-up programmes to obtain better estimates of the
mass proxy and redshift for most of the S/N > 5 Planck clusters.
This will allow for better determination of the scaling laws and
the mass bias, increase the number of clusters that can be used,
and allow us to investigate an extended cosmological parameter
space.
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Appendix A: Calibration of the Y500–M500 relation

A cluster catalogue is a list of positions and measurements of ob-
servable physical quantities. Its scientific utility depends largely
on our ability to link the observed quantities to the underly-
ing mass, in other words, to define an observable proxy for the
mass. Planck detects clusters through the SZ effect. This ef-
fect is currently the subject of much study in the cluster com-
munity, chiefly because numerical simulations indicate that the
spherically-integrated SZ measurement is correlated particularly
tightly with the underlying mass. In other words, this measure-
ment potentially represents a particularly valuable mass proxy.

To establish a mass proxy, one obviously needs an accurate
measurement both of the total mass and of the observable quan-
tity in question. However, even with highly accurate measure-
ments, the correlation between the observable quantity and the
mass is susceptible to bias and dispersion, and both of these ef-
fects need to be taken into account when using cluster catalogues
for scientific applications.

The aim of this Appendix is to define a baseline relation be-
tween the measured SZ flux, Y500, and the total mass M500. The
latter quantity is not directly measurable. On an individual clus-
ter basis, it can be inferred from dynamical analysis of galax-
ies, from X-ray analysis assuming hydrostatic equilibrium (HE),
or from gravitational lensing observations. However, it is im-
portant to note that all observed mass estimates include inher-
ent biases. For instance, numerical simulations suggest that HE
mass measurements are likely to underestimate the true mass
by 10–15 percent due to neglect of bulk motions and turbu-
lence in the intra-cluster medium ((ICM, e.g., Nagai et al. 2007;
Piffaretti & Valdarnini 2008; Meneghetti et al. 2010)), an effect
that is commonly referred to in the literature as the “hydrostatic
mass bias”. Similarly, simulations indicate that weak lensing
mass measurements may be biased by 5 to 10 percent, owing to
projection effects or the use of inappropriate mass models (e.g.,
Becker & Kravtsov 2011). Instrument calibration systematic ef-
fects constitute a further source of error. For X-ray mass deter-
minations, temperature estimates represent the main source of
systematic uncertainty, as the mass at a given density contrast
scales roughly with T 3/2. Other biases in the determination of
mass–observable scaling relations come from the object selec-
tion process itself (e.g., Allen et al. 2011; Angulo et al. 2012). A
classic example is the Malmquist bias, where bright objects near
the flux limit are preferentially detected. This effect is amplified
by Eddington bias, the mass function dictating that many more
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low-mass objects are detected compared to high-mass objects.
Both of these biases depend critically on the distribution of ob-
jects in mass and redshift, and on the dispersion in the relation
between the mass and the observable used for sample selection.
This is less of a concern for SZ selected samples than for X-
ray selected samples, the SZ signal having much less scatter at a
given mass than the X-ray luminosity. However for precise stud-
ies it should still be taken into account.

On the theoretical side, numerous Y500–M500 relations have
been derived from simulated data, as discussed below. The obvi-
ous advantage of using simulated data is that the relation be-
tween the SZ signal and the true mass can be obtained, be-
cause the ‘real’ value of all physical quantities can be measured.
The disadvantage is that the ‘real’ values of measurable physi-
cal quantities depend strongly on the phenomenological models
used to describe the different non-gravitational processes at work
in the ICM.

Nevertheless, the magnitude of the bias between observed
and true quantities can only be assessed by comparing multi-
wavelength observations, of a well-controlled cluster sample, to
numerical simulations. Thus, ideally, we would have full follow-
up of a complete Planck cluster sample. For large samples, how-
ever, full follow-up is costly and time consuming. This has led
to the widespread use of mass estimates obtained from mass–
proxy relations. These relations are generally calibrated from in-
dividual deep observations of a subset of the sample in question
(e.g., Vikhlinin et al. 2009a), or from deep observations of ob-
jects from an external dataset (e.g., use of the REXCESS rela-
tions in Planck Collaboration XI 2011).

For the present paper, we will rely on mass estimates
from a mass–proxy relation. In this context, the M500–YX rela-
tion is clearly the best to use. YX, proposed by Kravtsov et al.
(2006), is defined as the product of Mg,500, the gas mass within
R500, and TX, the spectroscopic temperature measured in the
[0.15–0.75] R500 aperture. In the simulations performed by
Kravtsov et al. (2006), YX was extremely tightly correlated with
the true cluster mass, with a logarithmic dispersion of only 8 per-
cent. Observations using masses derived from X-ray hydrostatic
analysis indicate that YX does indeed appear to have a low disper-
sion (Arnaud et al. 2007; Vikhlinin et al. 2009a). Furthermore,
the local M500–YX relation for X-ray selected relaxed clusters has
been calibrated to high statistical precision (Arnaud et al. 2010b;
Vikhlinin et al. 2009a), with excellent agreement achieved be-
tween various observations (see e.g., Arnaud et al. 2007). Since
simulations suggest that the Y500–M500 relation is independent
of dynamical state, calibrating the Y500–M500 relation via a low-
scatter mass proxy, itself calibrated on clusters for which the HE
bias is expected to be minimal, is a better approach than using
HE mass estimates for the full sample, since the latter can be
highly biased for very unrelaxed objects.

We approach the determination of the Y500–M500 relation in
two steps. We first calibrate the Y500–proxy relation. This is com-
bined with the X-ray calibrated relation, between the proxy and
M500, to define an observation-based Y500–M500 relation. In the
second step, we assess possible biases on the relation by directly
comparing the observation-based relation with that from simula-
tions. This approach, rather than directly assessing the HE mass
bias, allows us to avoid complications linked to the strong de-
pendence of the HE bias on cluster dynamical state, and thus on
the cluster sample (real or simulated). The final output from this
procedure is a relation between Y500 and M500, with a full ac-
counting of the different statistical and systematic uncertainties
that go into its derivation, including bias.

In the following, all relations are fit with a power law in log-
space using orthogonal the BCES method (Akritas & Bershady
1996), which takes into account the uncertainties in both vari-
ables and the intrinsic scatter. All dispersions are given in log10.

A.1. Baseline mass–proxy relation

As a baseline, we use the relation between YX and the X-ray
hydrostatic mass MHE

500 established for 20 local relaxed clusters
by Arnaud et al. (2010b):

E−2/3(z)
[

YX

2 × 1014Msol keV

]
(A.1)

= 100.376±0.018
 MHE

500

6 × 1014Msol

1.78±0.06

,

assuming standard evolution, and where the uncertainties are sta-
tistical only. For easier comparison with the Y500–M500 relation
given below, the normalization for YX expressed in 10−4 Mpc2 is
10−0.171±0.018. The HE mass is expected to be a biased estimator
of the true mass,

MHE
500 = (1 − b) M500 , (A.2)

where all of the possible observational biases discussed above
(departure from HE, absolute instrument calibration, tempera-
ture inhomogeneities, residual selection bias) have been sub-
sumed into the bias factor (1 − b). The form of the YX–M500
relation is thus

E−2/3(z)YX = 10A±σA [(1 − b) M500]α±σα , (A.3)

where σA and σα are the statistical uncertainties on the normal-
ization and slope and b is the bias between the true mass and
the observed mass used to calibrate the relation. The bias is a
poorly-known stochastic variable with substantial variation ex-
pected between clusters. In our case, b represents the mean bias
between the observed mass and the true mass.

The mass proxy MYX
500 is defined from the best-fit YX–MHE

500
relation

E−2/3(z)YX = 10A
[
MYX

500

]α
. (A.4)

For any cluster, MYX
500, together with the corresponding YX and

RYX
500, can be estimated iteratively about this relation from the

observed temperature and gas mass profile, as described in
Kravtsov et al. (2006). The calibration of the YX–M500 relation
is equivalent to a calibration of the MYX

500–M500 relation, which
relates the mass proxy, MYX

500, to the mass via

MYX
500 = 10±σA/α [(1 − b) M500]1±σα/α . (A.5)

In addition to the bias factor, there are statistical uncertainties on
the slope and normalization of the relation, as well as intrinsic
scatter around the relation, linked to the corresponding statistical
uncertainties and scatter of the YX–MHE

500 relation.

A.2. Relation between Y500 and MYX
500

A.2.1. Best-fit relation

We first investigate the relationship between Y500 and MYX
500,

the mass estimated iteratively from Eq. A.4, with parameters
given by the best-fit Arnaud et al. (2010b) relation (Eq. A.2).
Full X-ray follow-up of the Planck SZ cosmological cluster
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Table A.1. Parameters for the Y500–M500 relation, expressed as E−2/3(z)
[
D2

AY500/10−4Mpc2
]

= 10α
[
M500/6 × 1014Msol

]β
: column 1, considered

sample; column 2, number of clusters in the sample; column 3, Malmquist bias correction; if this column contains Y, a mean correction for
Malmquist bias has been applied to each point before fitting; column 4, Mass definition; columns 5 and 6, slope and normalization of the relation;
columns 7 and 8, intrinsic and raw scatter around the best-fit relation.

Sample Nc MB Mass α β σlog,int σlog,raw

XMM-ESZ PEPXI 62 N MYX
500 −0.19 ± 0.01 1.74 ± 0.08 0.10 ± 0.01 ...

Cosmo sample 71 N MYX
500 −0.175 ± 0.011 1.77 ± 0.06 0.065 ± 0.010 0.080 ± 0.009

Cosmo sample 71 Y MYX
500 −0.186 ± 0.011 1.79 ± 0.06 0.063 ± 0.011 0.079 ± 0.009

XMM-ESZ 62 Y MYX
500 −0.19 ± 0.01 1.75 ± 0.07 0.065 ± 0.011 0.079 ± 0.009

S/N > 7 78 Y MYX
500 −0.18 ± 0.01 1.72 ± 0.06 0.063 ± 0.010 0.078 ± 0.008

Cosmo sub-sample A 10 Y MHE
500 −0.15 ± 0.04 1.6 ± 0.3 ... 0.08 ± 0.02

Cosmo sub-sample B 56 Y MHE
500 −0.19 ± 0.03 1.7 ± 0.2 0.25 ± 0.06 0.27 ± 0.06

sample is not yet available. Our baseline sample is thus a subset
of 71 detections from the Planck cosmological cluster sample,
detected at S/N > 7, for which good quality XMM-Newton
observations are available. The sample consists of data from
our previous archival study of the Planck Early SZ (ESZ)
clusters (Planck Collaboration XI 2011), of Planck-detected
LoCuSS clusters presented by Planck Collaboration Int. III
(2013), and from the XMM-Newton validation programme
(Planck Collaboration IX 2011; Planck Collaboration Int. I
2012; Planck Collaboration Int. IV 2013). The correspond-
ing sub-samples include 58, 4, and 9 clusters, respectively.
Uncertainties on YX, RYX

500, and MYX
500 include those due to

statistical errors on the X-ray temperature and the gas mass
profile.

The SZ signal is estimated within a sphere of radius RYX
500

centred on the position of the X-ray peak, as detailed in
e.g., Planck Collaboration XI (2011). The re-extraction proce-
dure uses Matched Multi-Filters (MMF) and assumes that the
ICM pressure follows the universal profile shape derived by
Arnaud et al. (2010b) from the combination of the REXCESS

sample with simulations. The uncertainty on Y500 includes sta-
tistical uncertainties on the SZ signal derived from the MMF,
plus the statistical uncertainty on the aperture RYX

500. The latter
uncertainty is negligible compared to the statistical error on the
SZ signal. The resulting relation for these 71 clusters from the
cosmological sample is

E−2/3(z)
 D2

A Y500

10−4 Mpc2

 (A.6)

= 10−0.175±0.011

 MYX
500

6 × 1014Msol

1.77±0.06

.

This agrees within 1σ with the results from the sample of 62
clusters from the ESZ sample with archival XMM-Newton data
published in Planck Collaboration XI (2011). The slope and nor-
malization are determined at slightly higher precision, due to the
better quality SZ data. The derived intrinsic scatter (Table A.1)
is significantly smaller. This is a consequence of: a more robust
treatment of statistical uncertainties; propagation of gas mass
profile uncertainties in the YX error budget; and, to a lesser ex-
tent, the propagation of RYX

500 uncertainties to Y500 estimates.

A.2.2. Effects of Malmquist bias

The fitted parameters are potentially subject to selection effects
such as Malmquist bias, owing to part of the sample lying close
to the selection cut. For the present sample, we use an ap-
proach adapted from that described in Vikhlinin et al. (2009a)
and Pratt et al. (2009), where each data point is rescaled by the
mean bias for its flux, and the relation refitted using the rescaled
points. The method is described in more detail in Paper 1. For the
baseline cosmological sample of 71 systems, the bias-corrected
Y500–MYX

500 relation is

E−2/3(z)
 D2

A Y500

10−4 Mpc2

 (A.7)

= 10−0.19±0.01

 MYX
500

6 × 1014Msol

1.79±0.06

.

The best-fit relation, together with Malmquist bias corrected data
points, is plotted in Fig. A.1.

The correction decreases the effective Y500 values at a given
mass, an effect larger for clusters closer to the S/N threshold. The
net effect is small, a roughly 1σ decrease of the normalization
and a slight steepening of the power-law slope (Table A.1).

A.2.3. Stability of slope and normalization

We note that the slope and normalization of this relation are ro-
bust to the choice of sample (Table A.1). There is agreement
within 1σ with the results derived from the extended sample
of 78 clusters having S/N > 7 with archive XMM-Newton ob-
servations and the updated XMM-ESZ sample. They are also in
agreement with the relation obtained from a simple combination
of the Y500–YX relation (discussed in Paper 1) and the YX–MHE

500
relation (Eq. A.2 above).

A.3. The observation-based Y500–M500 relation

A.3.1. Combination of the Y500–MYX
500 and the MYX

500–M500
relations

We now combine Eq. A.8 with the MYX
500–M500 relation. This will

not change the best-fit parameters, but will increase their uncer-
tainties. As the determinations of the two relations are indepen-
dent, we added quadratically the uncertainties in the best-fit pa-
rameters of the Y500–MYX

500 (Eq. A.7) and MYX
500–M500 (Eq. A.5,
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Fig. A.1. Best scaling relation between Y500 and M500, and the
data points utilized after correction of the Malmquist bias

with values from Eq. A.2) relations. Our best-fit Y500–M500 rela-
tion is then

E−2/3(z)
 D2

A Y500

10−4 Mpc2

 (A.8)

= 10−0.19±0.02
(

(1 − b) M500

6 × 1014Msol

)1.79±0.08

.

Thus inclusion of the statistical uncertainty in the MYX
500–MHE

500 re-
lation doubles the uncertainty on the normalization and increases
the uncertainty on the slope by 40%.

A.3.2. Effect of use of an external dataset

The above results assume a mass estimated from the baseline
YX–M500 relation, derived by Arnaud et al. (2010b) from an ex-
ternal dataset of 20 relaxed clusters (Eq A.2). How does this re-
lation compare to the individual hydrostatic X-ray masses of the
Planck cosmological cluster sample? While spatially-resolved
temperature profiles are available for 58 of the 71 clusters with
XMM-Newton observations, we must be careful in interpreta-
tion of these data. The Arnaud et al. relation was derived from
a carefully chosen data set consisting of relaxed, cool-core ob-
jects having well-constrained temperature profiles out to around
R500, i.e., the type of object for which it makes sense to under-
take a hydrostatic mass analysis. Many clusters of the Planck
sample are merging systems for which such an analysis would
give results that are difficult to interpret. In addition, few of the
Planck sample have spatially-resolved temperature profiles out
to R500. However, as given in Table A.1, the best-fit YX–MHE

500
relation for the 10 cool-core clusters that are detected to R500
agrees with Eq. A.9 within 1σ. Moreover, the relation for the 58
Planck clusters with HE mass estimates, regardless of dynam-
ical state, also agrees within 1σ (albeit with greatly increased
scatter). We are thus confident that the masses estimated from
an externally-calibrated YX–MHE

500 relation are applicable to the
present data set.

A.3.3. Dispersion about the observed relations

A key issue is the dispersion around the mean relation. We first
estimate an upper limit6 to the intrinsic scatter of the Y500–MHE

500
relation by combining the intrinsic scatter of the Y500–MYX

500 re-
lation and that of the MYX

500–MHE
500 relation. This upper limit is

applicable to relaxed objects only, since the Y500–MHE
500 relation

has been measured using a sample of such systems. This gives

σ =

√
σ2

Y500 |M
YX
500

+ 2 cos2(tan−1 β)σ2
MHE

500 |YX
, (A.9)

where β is the slope of the Y500–MYX
500 relation. As the HE mass

estimate introduces extra scatter as compared to the true mass
(Kay et al. 2012b), the dispersion about the Y500–M500 relation
is expected to be smaller than that of the Y500–MHE

500 relation. The
above expression thus also provides an upper limit to the scat-
ter of the Y500–M500 relation, again for relaxed objects. Further
assuming that the intrinsic scatter of the Y500–M500 relation is
the same for the total relaxed and unrelaxed population, as indi-
cated by numerical simulations (Kravtsov et al. 2006; Kay et al.
2012b), Eq. A.9 gives a conservative estimate of the intrinsic
scatter of the Y500–M500 relation.

The intrinsic dispersion about our baseline YX–MHE
500 relation

(Eq. A.2), taken from Arnaud et al. (2010b), is not measurable;
neither is it measurable for the best-fit Chandra YX–MHE

500 rela-
tion published in Vikhlinin et al. (2009a). Using a smaller sam-
ple of 10 systems, Arnaud et al. (2007) measured an intrinsic
scatter of σlog MHE

500 |YX
= 0.039 (9 percent), in excellent agree-

ment with the results of the simulations of Nagai et al. (2007)
for the scatter of the MHE

500–YX relation for relaxed clusters (8.7
percent, their Table 4). It is somewhat larger than the intrinsic
scatter of the relation between the true mass and YX derived by
Kravtsov et al. (σlog M500 |YX = 5 − 7 percent) but close to the re-
sults of Fabjan et al. (2011), who find σlog M500 |YX =0.036-0.046.
We thus take as a conservative estimate σlog MHE

500 |YX
= 0.05. The

intrinsic dispersion about the Y500–MYX
500 relation for our data is

σlog Y500 |M
YX
500

= 0.065 ± 0.01. This value is three times larger than
the results of Kay et al. (2012b). Partly this is due to the presence
of outliers in our dataset (as discussed in Paper 1), and it may
also be due to projection effects in observed data sets (Kay et al.
2012b).

Our final upper limit on the intrinsic scatter is then
σlog Y500 |M500 < 0.074 or 18 percent, similar to the predictions
from Kay et al. (2012b) and Sehgal et al. (2010). These predic-
tions depend both on the numerical scheme and specific physics
assumptions, with values varying by a factor of two in the typical
range 0.04 to 0.08 (references in Sect. A.4.1 below).

A.4. Assessing the bias from comparison with numerical
simulations

The final piece of the jigsaw consists of assessing the bias b in
Eq. A.2. Since the relation has been calibrated using the HE mass
for a sample of relaxed clusters, b represents the bias between
MHE

500 and the true mass for this category of clusters. In principle,
this can be assessed through comparison with numerical simu-
lations. However, this approach is hampered by two difficulties.

6 When combining relations of the type Z = BYβ and Y = AXα,
the orthogonal scatter of the Z–X relation is the quadratic sum of the
orthogonal scatter of the individual relations, if Y is a fully independent
variable. In other cases, this provides an upper limit.
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Fig. A.2. Left: comparison of Y500–M500 relations from 12 simulations undertaken by six different groups with the updated obser-
vational Y500–MHE

500 result from Planck, Eq. A.9. Right: ratio of each simulated Y500–M500 relation relative to Eq. A.9. The different
scaling laws are taken from Kay et al. (2012b), Battaglia et al. (2012), Yang et al. (2010), Sehgal et al. (2010), Krause et al. (2012),
Nagai (2006b), and Planck Collaboration XI (2011).

The first is the exact definition of “relaxed”, since it is almost
impossible to select such clusters from observations and simu-
lations according to the same criteria. The second is the specific
implementation of the HE equation, which can differ substan-
tially between observations (e.g., the use of forward fitting using
parametric models, etc.) and simulations (e.g., the use of mock
observations, etc.). Thus the amplitude of the bias that is found
will depend not only on physical departures from HE, but also
on technical details in the approach to data analysis.

Here we use a different approach that avoids these pitfalls,
assessing the bias b by comparing directly the estimated Y500–
M500 relations with those found from numerical simulations. We
then discuss the consistency of the resulting bias estimate with
the HE bias expected from simulations and from absolute cali-
bration uncertainties.

A.4.1. Comparison of simulated Y500–M500 relations and
data

We first compared the Y500–M500 relations from 12 differ-
ent analyses done by six groups (Nagai 2006b; Yang et al.
2010; Sehgal et al. 2010; Krause et al. 2012; Battaglia et al.
2012; Kay et al. 2012b). We translated the results into a com-
mon cosmology and, where necessary, converted cylindrical
relations into spherical measurements assuming a ratio of
Y500,cyl/Y500,sph = 0.74/0.61 ' 1.2, as given by the Arnaud et al.
(2010b) pressure profile.

The left-hand panel of Fig. A.2 shows the different
Y500–M500 relations rescaled to our chosen cosmology. The sim-
ulations use various different types of input physics, and the re-
sulting Y500–M500 relations depend strongly on this factor. The
only obvious trend is a mild tendency for adiabatic simula-
tions to find nearly self-similar slopes (1.66). Runs with non-
gravitational processes tend to find slightly steeper slopes, but
this is not always the case (e.g., the Krause et al. 2012 simula-
tions). The right-hand panel of Fig. A.2 shows the ratio of each
simulation Y500–M500 relation to the Planck Y500–MYX

500 relation
given in Eq. A.9. All results have been rescaled to account for
the differences in baryon fraction between simulations. At our

reference pivot point of M500 = 6×1014 Msol, all simulations are
offset from the measured relation. There is also a clear depen-
dence on mass arising from the difference in slope between the
majority of the simulated relations and that of the Planck rela-
tion. The Planck slope is steeper, possibly indicating the stronger
effect of non-gravitational processes in the real data.

A.4.2. Quantification of the mass bias

We define the mass bias b between the “true” and observed M500
values, following Eq. A.2. Both masses are defined at a fixed
density contrast of 500, so that the relations between observed
and true mass and radius read

Mobs
500 = (1 − b) Mtrue

500 , (A.10)

Robs
500 = (1 − b)1/3 Rtrue

500 ,

where ‘true’ denotes simulated quantities, and “obs” denotes
quantities estimated at the apertures derived from observations.
In our case, Y500 is measured interior to RYX

500 as opposed to Rtrue
500 .

The corresponding Y500–M500 relations are

Y(< Rtrue
500) = Atrue

[
Mtrue

500

]5/3
, (A.11)

Y(< Robs
500) = Aobs

[
Mobs

500

]5/3
, (A.12)

neglecting any departure from the self-similar slope.
The bias b can then be estimated from the ratio of the nor-

malization of the observed and simulated relations:

Atrue

Aobs
=

Y(< Rtrue
500)

Y(< Robs
500)

 Mobs
500

Mtrue
500

5/3

∝ f (b) × (1 − b)5/3 , (A.13)

where f (b) depends on the radial variation of Y500 for scaled
radii, r/RYX

500 = Rtrue
500/R

obs
500 = (1−b)−1/3, which is close to 1. For a

GNFW universal profile (Arnaud et al. 2010b), we find that f (b)
can be well fit by a power law of the form (1 − b)−1/4. Thus we
arrive at

(1 − b) = (Atrue/Aobs)12/17 . (A.14)
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Fig. A.3. The dependence of (1−b) on mass. Note that this value
is strongly dependent on the baryon fraction fb (see text).

For the ensemble of simulations shown in Fig. A.2, we have
measured the values of Atrue/Aobs for various values of Mtrue.
Figure A.3 shows the variation of (1 − b) as a function of mass
M. This is mass-dependent due to the difference in slopes be-
tween the simulated and observed relations. At a pivot point of
M500 = 6 × 1014 Msol, the median value of Atrue/Aobs is 0.74, im-
plying (1−b) = 0.81. However, there is a large amount of scatter
in the predictions from simulations. As a consequence, (1 − b)
can vary from 0.74 to 0.97 at M500 = 6×1014 Msol. Note that the
above results depend significantly on the baryon fraction fb. For
example, assuming the WMAP-7 value fb = 0.167, the median
value of (1−b) is 0.86 at the pivot point of M500 = 6×1014 Msol.

A.4.3. Consistency with HE bias predictions and absolute
calibration uncertainties

Taken at face value, the bias we derive above of (1 − b) ' 0.8
implies that the HE mass used to calibrate the Y500–MHE

500 rela-
tion is offset from the true mass by around 20 percent. Is this
reasonable?

We can first compare HE X-ray and weak lensing (WL)
masses. Although as mentioned above both measurements are
expected to be biased, such comparisons are useful because
the mass measurements involved are essentially independent.
In addition measurements for moderately large sample sizes
(tens of systems) are now starting to appear in the literature.
However, at present there is little consensus, with some stud-
ies finding good agreement between HE and WL masses (e.g.,
Vikhlinin et al. 2009a; Zhang et al. 2010), some finding that
HE masses are lower than WL masses, (e.g., Mahdavi et al.
2008), and some even finding that HE masses are higher than
WL masses (Planck Collaboration Int. III 2013). The key point
in such analyses is rigorous data quality on both the X-ray
and optical sides. The most recent works both point to rela-
tively good agreement between X-ray and WL masses, with
MHE/MWL ' 0.9 on average, and MHE/MWL ' 1 for relaxed
systems (Mahdavi et al. 2012; von der Linden et al. 2012).

According to cosmological numerical simulations, the mea-
surement bias induced by X-ray measurements relative to the

“true” values can be caused by two main effects. The first is
the classic “hydrostatic bias” due to non-thermal pressure sup-
port from turbulence/random motions, etc. However, the exact
details are very model-dependent. The HE bias expected from
simulations varies substantially, depending on the details of the
numerical scheme, the input physics, and the approach used to
calculate the HE masses (e.g., Rasia et al. 2012). In addition, the
amount of bias is different depending on the dynamical state of
the object, relaxed systems having less bias than unrelaxed sys-
tems. The majority of numerical simulations predict HE biases
of 10 to 20 percent (Nagai et al. 2007; Piffaretti & Valdarnini
2008; Lau et al. 2009; Kay et al. 2012b; Rasia et al. 2012).

Temperature inhomogeneities constitute the second contrib-
utor to X-ray measurement bias. In the presence of large amounts
of cool gas, a single-temperature fit to a multi-temperature
plasma will yield a result that is biased towards lower temper-
atures (e.g., Mazzotta et al. 2004). The presence of temperature
inhomogeneities will depend on the dynamical state. While this
effect can be investigated with simulations, estimates of its im-
pact vary widely, owing to differences in numerical schemes and
the different implementations of the input physics. For instance,
simulations with heat conduction consistently predict smoother
temperature distributions, thus X-ray spectroscopic biases are
minimal in this case. On the other hand, “adiabatic” simula-
tions predict long-lasting high-density cool-core type phenom-
ena, which will lead to significant biases in single-temperature
fits. Estimates of biasing due to temperature inhomogeneities
can range up to 10 or 15 percent (e.g., Rasia et al. 2012).

Finally, for HE mass estimates obtained from X-ray data,
instrument calibration uncertainties also play a significant role
in introducing uncertainties in mass estimates. For instance, the
difference in calibration between XMM-Newton and Chandra
can induce differences in YX. This is typically 5 percent,
from a comparison of XMM-Newton based values published by
Planck Collaboration XI (2011) to Chandra values for 28 ESZ
clusters by Rozo et al. (2012). This can lead to differences of up
to 10 percent in the mass MYX

500 derived from YX, owing to the
dependence of the mass on YX.

Thus our adopted baseline value of (1 − b) ' 0.8, ranging
from 0.7–1, appears to encompass our current ignorance of the
exact bias.

A.5. Conclusions

In summary the baseline is

E−2/3(z)
 D2

A Y500

10−4 Mpc2

 = 10−0.19±0.02
[

(1 − b)M500

6 × 1014Msol

]1.79±0.08

, (A.15)

with an intrinsic scatter of σlog Y = 0.075 and a mean bias
(1 − b) = 0.80+0.2

−0.1. The statistical uncertainty on the normal-
ization is about 5% and the error budget is fully dominated by
the systematic uncertainties.
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Université Joseph Fourier, Grenoble 1 / CNRS-INSU, UMR 5274,
Grenoble, F-38041, France

60 ISDC Data Centre for Astrophysics, University of Geneva, ch.
d’Ecogia 16, Versoix, Switzerland

61 IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune
411 007, India

62 Imperial College London, Astrophysics group, Blackett
Laboratory, Prince Consort Road, London, SW7 2AZ, U.K.

63 Infrared Processing and Analysis Center, California Institute of
Technology, Pasadena, CA 91125, U.S.A.

64 Institut Néel, CNRS, Université Joseph Fourier Grenoble I, 25 rue
des Martyrs, Grenoble, France

65 Institut Universitaire de France, 103, bd Saint-Michel, 75005,
Paris, France

66 Institut d’Astrophysique Spatiale, CNRS (UMR8617) Université
Paris-Sud 11, Bâtiment 121, Orsay, France

67 Institut d’Astrophysique de Paris, CNRS (UMR7095), 98 bis
Boulevard Arago, F-75014, Paris, France

68 Institute for Space Sciences, Bucharest-Magurale, Romania
69 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei,

Taiwan
70 Institute of Astronomy, University of Cambridge, Madingley Road,

Cambridge CB3 0HA, U.K.
71 Institute of Theoretical Astrophysics, University of Oslo, Blindern,

Oslo, Norway
72 Instituto de Astrofı́sica de Canarias, C/Vı́a Láctea s/n, La Laguna,
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Cosmos, Facultad de Ciencias, Granada, Spain

108 University of Miami, Knight Physics Building, 1320 Campo Sano
Dr., Coral Gables, Florida, U.S.A.

109 Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478
Warszawa, Poland

19


	1 Introduction
	2 Modelling cluster number counts 
	2.1 Model definitions
	2.2 Mass function
	2.3 Scaling relations
	2.4 Limiting mass
	2.5 Implementation

	3 The Planck cosmological samples 
	3.1 Sample definition
	3.2 Completeness

	4 Likelihood and Markov chain Monte Carlo 
	4.1 The likelihood
	4.2 Markov chain Monte Carlo
	4.3 External datasets 

	5 Constraints from Planck clusters: CDM 
	5.1 Results for m and 8
	5.2 Robustness to observational sample 
	5.3 Robustness to cluster modelling

	6 Discussion
	6.1 Comparison with other cluster constraints
	6.2 Consistency with the Planck y-map
	6.3 Comparison with Planck primary CMB constraints

	7 Summary
	A Calibration of the Y500–M 500 relation 
	A.1 Baseline mass–proxy relation
	A.2 Relation between Y500 and M 500Y X
	A.2.1 Best-fit relation
	A.2.2 Effects of Malmquist bias
	A.2.3 Stability of slope and normalization

	A.3 The observation-based Y500–M 500 relation
	A.3.1 Combination of the Y500–M 500Y X and the M 500Y X–M 500 relations
	A.3.2 Effect of use of an external dataset
	A.3.3 Dispersion about the observed relations

	A.4 Assessing the bias from comparison with numerical simulations
	A.4.1 Comparison of simulated Y500–M 500 relations and data
	A.4.2 Quantification of the mass bias
	A.4.3 Consistency with HE bias predictions and absolute calibration uncertainties

	A.5 Conclusions


