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1 INTRODUCTION

Understanding the processes that determine the IMF, andhelsg
processes appear to vary little with environment and meitgilis

one of the main challenges in star formation (e.g. EImegeteih
2008). Recent observations of prestellar cores (i.e. theajgrav-
itationally bound condensations in molecular clouds thate-
sumed to be destined to form individual stars or multipldeys)
suggest that such cores have a mass function very simil&iaipes

to the IMF, but shifted to higher masses by a factor of three to
five (e.g. Motte et al. 1998; Testi & Sargent 1998; Johnstarad e
2000;/ Motte et dl. 2001; Johnstone et al. 2001; Stanke e08k;2
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Observations indicate that the central portions of thedtieBay Prestellar Core Mass Func-
tion (hereafter CMF) and the Stellar Initial Mass Functibargafter IMF) both have approx-
imately log-normal shapes, but that the CMF is displaceddbdr mass than the IMF by a
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from the CMF onto the IMF. If we assume a self-similar mappitfpllows (i) thatF = N /n,
wheren is the mean fraction of a core’s mass that ends up in starsygmslthe mean number
of stars spawned by a single core; and (ii) that the starsrspeiy a single core must have an
approximately log-normal distribution of relative masse#th universal standard deviation
o,. Observations can be expected to deliver ever more acoestteates of, but this still
leaves a degeneracy betwegandV,; and o, is also unconstrained by observation. Here we
show that these parameters can be estimated by invokingylstetistics. Specifically, if (a)
each core spawns one long-lived binary system, and (b) thteapility that a star of madsl

is part of this long-lived binary is proportional #d“, current observations of the binary fre-
quency as a function of primary masgM, ), and the distribution of mass ratigs,, strongly
favourn~1.0+ 0.3, N, ~43+ 04, 0,~0.3+0.03 anda ~ 0.9+ 0.6; > 1 just means
that, between when its mass is measured and when it finish@esap stars, a core accretes
additional mass, for example from the filament in which itisedded. If not all cores spawn
a long-lived binary systendb/dM, <0, in strong disagreement with observation; conversely,
if a core typically spawns more than one long-lived binarsteyn, thenV, andr, have to be
increased further. The mapping from CMF to IMF is not necelysself-similar — there are
many possible motivations for a non self-similar mappingitibit is not, then the shape of
the IMF cannot be inherited from the CMF. Given the limitedsetvational constraints cur-
rently available and the ability of a self-similar mappirgsatisfy them, the possibility that
the shape of the IMF is inherited from the CMF cannot be rulatcht this juncture.
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Enoch et al.. 2006;_Johnstone & Bally 2006; Young et al. 2006;
Nutter & Ward-Thompson_2007; Alves etal. 2007; Enoch et al.
2008;| Simpson et al. 2008; Rathborne et al. 2009; Kdnyvet et
2010). The inference is that, in a statistical sense, tisa@riore-or-
less self-similar mapping from prestellar cores to stard,that the
shape of the IMF is therefore simply inherited from the shafitee
CMF. If true, this simply moves the problem to one of undardta
ing the processes that determine the CMF, and why the outcome
of these processes also varies little with environment aethific-

ity. In addition, we still need to understand how an indiatioore
maps into an individual star or multiple system, and to wixétret
this process can really be viewed as statistically selftaim

The IMF has been evaluated by Kroupa (2001) land Chabrier

* E-mail: Katy.Holman@astro.cf.ac.uk (KH) (2003, 2005)._Chabrier finds that the IMF is well fitted withog-
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normal function merging into a power law at high masses. Theo
retical models and simulations of turbulent fragmentasaggest
that the CMF may also approximate to a log-normal functiongne
ing into a power law at high masses (Padoan & Nordlund |2002;
Padoan et al. 2007; Hennebelle & Chabrier 2008, 2009).

However, these theories do not address the origins of stella
multiplicity. It is therefore timely to formulate the mapwg be-
tween core mass and star mass using simple distributionidumse
so that the additional constraints imposed by stellar plidtty can
be taken into account. It turns out that these additionasizamts
can be accomodated quite easily, but strongly favour a magpi
which each core typically spawn¥, ~ 4 stars, with quite high
efficiency,n ~ 1; the individual stars spawned by a core have a log-
normal mass distribution with standard deviation~ 0.3, and two
of them end up in a long-lived binary system; the probabitligt a
star with masdvl ends up in a long-lived binary system is approxi-
mately proportional tdM.

In the interests of simplicity, we ignore the high-mass pewe
law parts of the mass functions, and concentrate on the dogral
parts, since these are the parts that are best constraineldsby-
vation, and they can be described with just two parametdimg-a
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AssumprioN Il. The mapping between them is statistically self-
similar, which means that the distribution of tretative masses of
the stars spawned by a single core must also be log-normal.

Assumrtion Ill. When a core forms more than one star, two of
these stars end up in a binary system that icantly long-lived
to contribute to the statistics of binaries in the field. Aletrest
ultimately end up as singles.

Assumprion IV. The relative probability that a star with mass
M ends up in a long-lived binary system is proportionaM®.

We note that these assumptions are not made because we be-
lieve they are necessarily true, but because they are sirapte
because it turns out that theyfBae to fit all the observational con-
straints that currently appear to be robust.

In addition, we note that the long-lived binary systems that
contribute to the field statistics are probably not the omgthat
form in a core-cluster, simply the ones that survive itsalison
and subsequent tidal perturbations (e.g. Kroupal1995)€elibevi-
dence (e.dg. Kohler et al. 2008; Chen et al. 2013) that theijptiat
ity is much higher than in the field for young stars in some star
formation regions, and includes a significant proportiohigher-
order multiples. However, by the time stars arrive in thalfiahany

arithmi€l mean and standard deviation. Therefore our conclusions of these systems are likely to have been destroyed, and ther wi

are most pertinent to the mass range where this log-normaldp-
pears to be an acceptable approximation, sag @ 3 M,. How-
ever, it should be noted that our conclusions are not sigmifig
changed if the high-mass power-law talil is included; thiayy
makes the maths more laborious and less precise. For aedktail
discussion of the IMF and the eight parameters that may baegee
to describe it more completely, the reader is refered toiBast al.
(2010). We limit our consideration of multiplicity statiss$ to (i) the
binary frequency as a function of primary mass, and (i) tistrid
bution of mass ratios (for systems with Sun-like and M-dvgaif
maries), again because these appear to be the multipliatigtecs
that are most robustly constrained by observation. For tinpgse
of this paper brown dwarfs are counted as stars.

In Sectior 2 we present the definitions and assumptions under
lying our model. In Sectioh]3 we present the observationt de
will use to estimate the model parameters. In Se¢fion 4 werithes
the consequences of the model, using simple argumentgithis
cussion pre-empts the results of the more rigorous stalsinal-
ysis that follows. In Section] 5 we describe how stellar stats are
evaluated for a particular model using Monte Carlo integratand

systems will continue to $ter attrition due to stochastic tidal per-
turbations.

In other words, there are two veryfi#irent timescales in-
volved in the mapping. The mean number of stars spawned by a
core (N,) and the mean total mass of the stars spawned by a core
(hence the ficiency,n,) are — ignoring stellar mass-loss, accre-
tion, mass exchange and mergers — determined by procesdes th
terminate once the core disperses, after at most a few nmesya-y
In contrast, the binary statistics are never completelgfesbtThey
evolve most rapidly during the birth throes of the core-®ugthe
N, stars formed from a single core) and during its dispersion, b
they then evolve further due to interactions with othersstarthe
same large-scale cluster (here presumed to be an ensensbégf
formed from an ensemble of cores), and they continue to eyolv
after the large-scale cluster dissolves, due to interastwith the
ever changing background gravitational field (e.g. tidatypba-
tions from passing stars and molecular clouds). Howevesethe-
ter perturbations are rare, and given that the typical fitdd Isas
been in the field for many giga-years, its binary statistiosusd
by now be well defined. Our model does not concern itself with

in Sectior 6 we define the parameter we use to measure the qualthe details of the dynamical evolution of the stars spawnea b

ity of fit between a model and the observations. In Sediion 7 we
describe the Markov Chain procedure for identifying thetifiés
model parameters, and in Sectidn 8 we present the resuledn
tion[d, we discuss the results and relate them to previouk,\aod

in Sectior ID we summarise our main conclusions.

2 THE MODEL

2.1 Assumptions

If one accepts that most stars are formed in cores (see e.g.2.2

Bressert et al. 2010), the model has only four assumptions.
Assumprion |. The central portions of the CMF and the IMF
are both log-normal.

1 Throughout, all logarithms are to base 10.

single core; it simply focuses on the properties of systdrasdur-
vive to populate the field, posits that each core typicallsvams
just one such system, and shows that the observed binarg- stat
tics are reproduced well if this system tends to comprisedintbe
more massive stars spawned by the core. Other binary systeohs
higher multiples, are spawned by a core, but we presumeltbgt t
are disrupted on a timescafel Gyr. One would expect the binary
systems surviving in the field to be on average more massige an
closer than the ones that have been disrupted.

Input parameters

Table[1 summarises the six model input parameters, viz.ate |
arithmic meany,, and standard deviatiow;., of the CMF; the
efficiency,n, i.e. the fraction of a core’s mass that is converted into
stars; the mean number of stalg,, spawned by a single core; the
logarithmic standard deviatiomy;,, of the relative masses of the
stars spawned by a core; and the dynamical biasing pargraeter
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Table 1. Input parameters regulating a single Monte Carlo integnatand the ranges of values admitted by the Markov chainpfibefor the Markov Chain
is that, within these ranges, all values are equally prabab}. is the mass of a core, ar{\Mn}RZ’lV are the masses of the stars formed from a single core.

PARAMETER IDENTITY Minmum  MaxiMum
He ARITHMETIC MEAN OF |ogm(MC /MO) -0.2 +0.2
oc SrANDARD DEVIATION OF Iogm(Mc /M O) 0.3 0.7
n MEAN Srar FormATION EFFICIENCY IN CORE = 22’1\’ {Mn} /M, 0.0 20
No MEAN NUMBER OF StarS FORMED IN CORE 1.0 7.0
oq STANDARD DEVIATION OF Iogm(Mn/ MO) 0.0 05
a DyNAMICAL BIASING PARAMETER, dIn(p,,)/dIn(M) -20 5.0

There are direct observational constraintgiprando, but not, as
yet, onn, N, o, anda.
We note that values of greater than unity are admissible, be-

Janson et al. (2012); Bin 4, those|of Raghavanlet al. (201i); B
5, those of Preibisch etlal. (1999); and Bin 6, those of Masah e
(1998). For evaluating the quality of the fit, we give the fimir

cause, between the time when the mass of a core is estimated anbins equal weightsiM, = 1/16, i =1to4, so that their combined

added to the CMF, and the time when its star formation is com-
plete, the core can, and almost certainly does, grow in niass,
example by accretion along the filament in which it is embedde
(e.glSmith et al. 2011). By the same token it is not necesbaity

all the stars spawned by a core form simultaneously. Indeeder-

ical simulations suggest that some of the stars spawned byea c
start to condense out of the filamentary material accretirig the
core, and may only reach the core as it starts to disintegeage
Bate 2012} Girichidis et al. 2012)

In addition, non-integer values &, are admissible. In such
cases, we adopt the simple device of dividing cores between t
integer values that brackeaf, . Thus, for examplel, = 2.2 means
that 80% of cores hav&’ = 2 and 20% havey = 3.

Apart from this device, we do not allow any variance in the in-
put parameters, because to do so introduces extra inpuhpsees,
but does not significantly improve, or even alter, the fitaoigd.

2.3 Output parameters

Given the four assumptions listed above, and values forithia-s
put parameters, we can predict the IMF (which, being logwadr

is characterised by a logarithmic megag, and a logarithmic stan-
dard deviationg), the binary frequency as a function of primary
mass,b(M,), and the distributions of mass ratio for systems with
Sun-like and M-dwarf primariegy)q(M,). Our objective is to use
observations of these output parametgts ¢, b(M,), pq(M,)) to
constrain the model input parametets (o, n, Ny, 07, ).

3 OBSERVATIONAL DATA

Table[2 summarises the expectation valigg,uncertaintiesUy,
and weights Wy, accorded to the fierent observational param-
eters, X, that the model seeks to predict. The weights determine
the influence that dierent observed quantities exert on the overall
quality of fit of a model (see Sectidh 6), and by design theywgud
to unity.

For the mean and standard deviation of the IMFando,
we use values informed by Chabrier (2005), and since thege tw
guantities appear to be quite well constrained by obsemvative
give them both a high weighty,, = W, = 1/4.

For the binary frequencies we consider six primary-mass. bin
Bin m=1 (the lowest mass bin) represents the results of Close et al.
(2003); Bin 2, those of Basri & Reiners (2006); Bin 3, those of
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weight is /4. The last two bins are given zero weight, because the
stars in these bins are not strictly field sfarBherefore these two
bins should not influence the choice of best-fit model. Theyimr
cluded because — notwithstanding — the predictions of tisé-fite
model agree with them well (see Hig. 3).

For the distribution of mass ratiog}, we consider only
primary-mass binsm = 3 and 4, since these are the ones
with relatively robust mass-ratio statistics (RaghavaalleP010;
Reggiani & Meyer| 2011| Janson et al. 2012). In both primary-
mass bins, the distribution of mass ratios appears to be flat
(Reggiani & Meyer 2011). We follow convention by allocatitige
mass-ratios to five equal bing,= 1to5, so that binf accom-
modates values in the range2f — 1) < q < 0.2¢. For primary-
mass bin 3, Janson et &l. (2012) conclude that, when all@visnc
made for selectionfiects, the distribution of mass ratios is flat, and
therefore we simply set all the expectation value®/fg, = 0.20,
and all the uncertainties ttJ,,, = 0.05. For primary-mass bin
4, we adopt expectation values and Poisson uncertainties fr
Raghavan et al| (2010). For all ten primary-miassss-ratio bins
we allocatew,, , = 1/40, so that their combined weight ig4l

4 SIMPLE INFERENCES

In SectiorL8 we present the results of a Markov Chain MontéoCar
analysis. Here we present simple arguments to preempt the ma
results of that analysis.

4.1 Theshift between theIMF and the CMF

The mean mass of the stars that form from a given core aredelat
to the mass of the core by thffieiency,n (the fraction of the core’s
mass that ends up in stars), divided by the number of stamsefbr
from the coreN,. Hence the factor by which the peak of the CMF
exceeds the peak of the IMF is given by
No . 1)
n
If we adoptug = —0.6+0.05 (from|Chabrier 2003), ang. = 0.0+
0.1 (from, e.g.| Enoch et 5l. 2006; Young etlal. 2006; Enochlet al

F 10%c#s) =

2 The last two bins concern binaries with relatively high-sakort-lived
primaries in the Orion Nebula Clustér (Preibisch et al. 19881 a mixture
of systems in clusters, associations and the field (Masok E9983).
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Table 2. Output parameters characterising the observed IMF andybfitatistics (two lefthand columns), and parameters egng the quality of the fit of a
model to the observations (three righthand columns). Colargives the name of the parameter in the model, and Colunmi@eintity. Column 3 gives the
observedvalue ) of this parameter, and Column 4 itincertainty UJ). Column 5 gives th&Veight W) accorded to fitting the observed valud, is the
mass of a star from the whole ensemble of stars formed in éedingnte Carlo integration. The sources for the observatidata are given in Sectign 3.

PARAMETER  |DENTITY OBSERVED VALUE ~ UNCERTAINTY WEIGHT
s MEan o log, (Mg/M, ) Vg =—0.70 Uy =010 W, =1/4
oy SrANDARD DEVIATION OF |ogm(MS /MO) V(’s =055 U"s =0.05 W"s =1/4
by MurripLiciTy FREQUENCY IN (0.05,0.10) M, Vp, =0.20 Up, =0.15 W, = 1/16
by MutrrpLicity FrReQuENcy IN (0.05,0.17) M, Vp, = 0.26 Up, =0.10 W, =1/16
b3 MucripLicity FREQUENcY IN (0.15,0.60) M, Vp, = 0.34 Up, = 0.04 Wh, = 1/16
bs MutrrpLicity FrReQuency IN (0.8, 1.2) M Vp, = 0.45 Up, = 0.03 W, =1/16
bs MurripLiciTy FREQUENCY IN (3, 50) M, Vp, = 0.70 Up, = 0.10 Whs =0
bg MutrrpLicity FREQUENCY IN (20, 70) M Vps = 0.85 Up, = 0.10 Whs =0
P3.c FRACTION OF SYSTEMS FROM PRIMARY-MASS BIN 3 IN MASS-RATIO BIN £ (£=1t05) Vpg, =0.20 Up,, =0.05 Wp,, = 1/40
Vps, = 0.20 Ups, = 0.05 W, = 1/40
Vpss = 0.20 Ups; = 0.05 Wy, 5 = 1/40
Vps4 = 0.20 Ups, = 0.05 W, = 1/40
Vpgs = 0.20 Upgs = 0.05 Wy, = 1/40
Pa.r FRACTION OF SYSTEMS FROM PRIMARY-MASS BIN 4 IN MASS-RATIO BIN £ (£=1t05) Vp,, =010 Up,, =0.03 Wp,, = 1/40
Vp,, = 0.25 Up,, = 0.05 W, = 1/40
Vp,; =021 Up,; = 0.05 W, = 1/40
Vp,, =019 Up,, = 0.04 Whp,, = 1/40
Vpys = 0.25 Up,s = 0.05 Wy, s = 1/40
2008 Kdnyves et al. 2010), we hak¥e~ 4 + 1, whence 4.3 Standard deviation of the relative masses of the stars

spawned by a single core
N, = Fp = (4x1)n. 2
Since the mapping of the CMF onto the IMF involves the cornvolu
tion of a log-normal CMF with a log-normal distribution ofiagive
o stellar masses, the logarithmic standard deviation of\tig &, is
4.2 Raising the degeneracy between N, and obtained by adding the logarithmic standard deviation ef@&MF,
o, and the logarithmic standard deviation of the relativélaate

The degeneracy betwegy), andz can be raised by considering the .
massesy,,, in quadrature,

binary statistics. Two essential features of the binaryssies in the
field are that — very roughly — the number of single-star systes 2 52 4 g2 ©)

comparable with, but somewhat larger than, the number @friin s ¢ °©

systemsandthe binary frequency is an increasing function of pri- A corollary of Eqn. [8) is that — for a self-similar mapping ket
mary massdb/dM, > 0). The influence of these constraints can |ogarithmic standard deviation of the IMF cannot be smaten
be understood with the followin@edankenexperimenSuppose the logarithmic standard deviation of the CMF,

(purely for the sake of argument, and averaged over all sasse

that 60% of systems are single and 40% are binary. This can beocs > 0. (4)

achieved in two ways. . . . . .
In interpreting this inequality, one must recognise that thg-

e N, = 14. In this case, 60% of cores hawe = 1 and spawn normal CMF we are discussing here is one that representsya ver
singles, whilst 40% of cores hawé = 2 and spawn binaries. This  large region embracing a representative ensemble of staafmn
gives 026 < 5 < 0.44. However, it means that the components of regions; the log-normal CMFs inferred for individual starrha-
binary systems are on average less massive than singleatars ~ tion regions can — and apparently do — have a range of means and
therefore the binary fraction is a decreasing function dfgry logarithmic standard deviations, but together they catrase a
mass, which is the opposite of what is observed. logarithmic standard deviation greater than that of the BH still

e N, = 35. In this case, each core spawns a binary system, admit a self-similar mapping. Since observations suggesto,
but 50% haveN = 3 so they spawn one extra single star, and the thisin turnimplies that-, cannot bevery large
remaining 50% haveV = 4 and therefore spawn two extra single
stars. This gives.0 < n < 1. Moreover, provided > 0, the compo-
nents of binary systems are now, on average, more massivéiha
single stars, and consequently the binary fraction is areasing 4.4 Massratios

function of primary mass, as observed.
Observations | (Raghavan et al. 2010; Reggiani & Meyer 12011;

There is therefore a strong preference for the larger value o Janson et al. 2012) suggest that the distributions of maissfea
N, to ensure thadb/dM, >0. binary systems having Sun-like and M-dwarf primaries arthbo
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flat. In our model, this means firstly thaf, can not bevery smalfi
otherwise the range of stellar masses formed in a singlevooudd
be too narrow to produce log-systems; and secondly thatcan
not be too large, otherwise the low-mass stars would hatte lit
chance of pairing up with the high-mass ones to prouced@ys-
tems.

5 MONTE CARLO INTEGRATION

For a single model (i.e. a fixed combination of the input parears,
He, 0¢, 1, Ny, 0, @), we evaluate the stellar statistics as follows.

First, a core mass\l., is obtained by generating a Gaussian
random deviateg, on (-0, +0), and setting

M., = 10Hc*97IM,_ .

C

©)

Next, if N, is non-integer, a value fo¥ is obtained by generating
a linear random deviate, on (Q 1), and putting

- |

OtherwiseN = N, . Then the masses of tité stars spawned by this
core can be obtained by generating Gaussian random dedates
on (—oo, +00), and computing

INT(A,),
INT(A,) + 1,

whenL > Ny = INT(N,);

whenZ < N, — INT(N.). )

M =

S

@)

If N'>2, the integrated probability of each possible pairing ekt
stars (stan with starn’) is computed,

Men 10970 .
N

v =n'

<
Il
=}

{ms Mg

i
i™M

+1
=N

7
Pnw = 4
nm v=N-1 v

®)

i
z

(g )

i

v'=y+1l

<

Finally, a linear random variate;, on (Q 1), is generated, and the
pairing whose integrated probability is just abagés selected.

This is repeated until a total of 1Gtars has been created.
Then the mean and standard deviation of the IMFando, are
computed (using the logarithms of the stellar masses). &air star
that falls in one of the mass bins defined in Tdble 2, we note (i)
whether it is the primary in a binary system, the secondarg in
binary system, or a single star; and, if it is a primary, we aste
which mass-ratio bin the binary falls in. If mass ImrcontainsP,,
primaries ands,, singles, the corresponding binary frequ&i&y

Pm
Pm+Sm’

bn = ©)

3 It turns out that finding a value of , that is both small enough to satisfy
Eqn[3, and large enough to deliver lapbinaries, is the hardest constraint
for the model to satisfy.

4 We refer the reader 1o_Reipurth & Zinnedker (1993) for a dis@n of
different measures of multiplicity and their various meritse Dhe defined
in Egn. [9) is in &ect the multiplicity frequency, but we refer to it as the bi-
nary frequency because we are only considering binariepoikted out by
Hubber & Whitworth (2005), the multiplicity frequency hasetnice prop-
erty that it is insensitive to whether a binary system is abttua higher-
order multiple. We note parenthetically that there are inegal other stars
in each mass bin that are secondaries, but these do notilitect the
calculation of theop,.
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If mass-ratio bir/ of mass binrm containsC,,, systems, the corre-
sponding mass-ratio probability is
Cr
= == 10
Pme P (10)
The model can then be compared with the observational data.

6 QUALITY OFFIT

For each model (i.e. each Monte Carlo integration with aryset
of input parametergy., o, 7, N, 0, ), the quality of fit,Q, is
given by a sum of terms,
Wy (X = Vx)?
AQx = - ———,
X U)2<
representing how well the model prediction for output psgam
ter X (= pg, 0, bn[form= 1,2 3, 4], pw[form=3,4;¢ =
1, 2, 3, 4, 5]) matches with the observational constraints (see Ta-
ble[2). The overall quality of fit for a given model is then

Wus (:“s - Vus)z
2
U"'St

Wu's (O-s - V(rs)z
U2
()'S

B i‘ Wy (Brn = Vi)
Uz

m=1

m=4 ( (=5 W m _V - 2
_ Z{Z{ pmz(Pug ) }} (12)
m=3

=1 Pm¢

(11)

Qlue, 0. Ny, 0, @) = —

The first two terms on the righthand side of Eqn.l](12) meashee t
ability of the model to reproduce the observed IMF (with aara¥
weighting of 50%); the third term (involving a single sumina)
measures its ability to reproduce the observed binary &eguas
a function of primary mass (with an overall weighting of 25%)
and the fourth term (involving a double summation) measitees
ability to reproduce the distributions of mass ratio forteyss hav-
ing Sun-like and M-dwarf primaries (with an overall weigidgiof
25%). A notionally perfect fit corresponds & = 0, and|Q| can
be interpreted as the number of standard deviations by wvithich
model departs from a perfect fit.

7 MARKOV CHAIN
7.1 Rangeof u. and o

HERSCHEL has allowed much more robust evaluations of the
CMF. For example/ Konyves etlall_(2010) obtaip_,(c.) =
(-0.22 0.42) and €0.05,0.30) in — respectively — the entire Aquila
field and the main Aquila subfield. Previously, Enoch et 8002
have estimatedu(.,o.) = (—0.05+0.25,0.50+0.10) in Perseus;
Young et al. |(2006) have estimategl.(c.) = 0.3+0.7,0.5+0.4)

in Ophiuchus; and_Enoch etlal. (2008) have estimatedd ) =
0.00+0.04, 0.30+0.03) for an ensemble of cores from Perseus, Ser-
pens and Ophiuchus.

However, all these evaluations are convolved with a num-
ber of uncertainties. In particular, the use of greybodytéitesti-
mate mean dust temperatures, the mass opacifficdeats needed
to convert fluxes into masses, and the distances assumelefor t
star-formation regions, all introduce uncertainty inte ttherived
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masses, and hence into the-values. o.-values may be some-
what less susceptible to these factors, but #liected by the fact
that the cores on the low-mass side of the log-normal tenceto b
close to the completeness limit. Furthermore, we are here co
cerned with the values ofi. and o for the totality of all star
forming cores, rather than those for a single region.

To keep the problem tractable, we restrict the Markov Chain
to values ofu, in the range-0.2 < u. < +0.2. We discuss the
consequences of taking.-values outside this range, in Sectfdn 8.
For o, we restrict the Markov Chain to values of in the range
0.3<o <0.7. This choice is informed by the range of observation-
ally inferred values, and by the fact that cannot exceed.

7.2 Rangeof nand N

We restrict the Markov Chain to values gin the range &r <2,
and values ofV, in the range K N, <7. Evidently, if a core ac-
cretes very rapidly on the way to forming stars, higheglues are
possible, but this turns out to be unlikely. The argumengs@nted
in Sectior[ 4.2 suggest that higher values\gf are inadmissible —
unless each core spawns more than one long-lived biaadthe
efficiency is increased still further (see Secfiod 4.1).

7.3 Rangeof o, and

We restrict the Markov Chain to values of, in the range 0<
o, <0.5, on the grounds that, has to be smaller than,, and is
probably also smaller than..

We restrict the Markov Chain to values @fin the range-2<
a<5. This choice is informed by numerical work on the dissoluti
of smallN clusters (e.d. van Albalda 196€&.b; McDonald & Clarke
[1993: | Sterzik & Durisen_1998; Hubber & Whitworth 2005, and
references therein), which suggests that, if the dissoiudf a core-
cluster involves pure gravitational interaction betwees $tars, a
single long-lived binary is the most likely outcome and iually
comprises the two most massive stars, which implies 1. Con-
versely, if there is dissipation — for example, because thies are
attended by massive discs (McDonald & Clérke 1995) — othier pa
ings become more likely, which implies a smallervalue. Flat
mass-ratio distributions translate into a preferencerfwalba.

2.0

354 45555 020250303504 -1 0 1 2
No Oy a

7.4 Markov Chain

The ranges detailed above define the input parameter spateya
prior is that all values in these ranges are equally probablee
Markov Chain then starts at an arbitrary point in this spacel
makes a biased random walk around the space. The compofients o
a step are generated from Gaussian distributions. A stdwéys
taken ifAQ = Q,, — Q,,, > 0 (i.e. if it results in an improvement

to the fit). If AQ < 0, the code generates a linear random deviate,
L, on (0 1), and only takes the stepMQ > In(£) (i.e. steps that
produce a deterioration in the fit are less likely to be takerlarger

the deterioration). The size of a step is scaled so that tguwgtif

of all putative steps are not taken.

8 RESULTS

From the Markov Chain, there is a single well defir@geak in
the parameter space explored, and the best fit is obtained wit

He = -003z 010, (13)
o. = 047004, (14)
n = 101027, (15)
N, = 434043, (16)
o, = 030z 003, 17)
a = 087064, (18)
Q = -033, (19)

i.e. 0330 overall diference between the model and the observa-
tions.

The parameters of the CME(, o) are compatible with those
obtained from observation, although has a rather large uncer-
tainty, and we return to this point below.

The eﬂiciency @) is much higher than the values normally es-
timated (e.d. Alves et i Z) is also only just compatlbleat the
high end of the range calculated theoretically k de
M) but in their model these high values arise in corasaha
intrinsically flattened (so that outflows can escape witlswaeep-
ing up much core mass), rather than as a consequence of fprmin
many stars. High notionalfigciencies may be an indication that
cores grow in mass whilst they collapse and fragment to faamss
(e.g @1).

The mean number of stars formed from a single cavg)(

© 2002 RAS, MNRAS000, [IHI0
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Figure 2. Iso-Q plots on principal planes through the befitmodel. On each row the ordinate (vertical axis) is the saméel input parameter, from top to
bottom in the ordey., o, 1, Ny, o anda. Along each row the abscissa (horizontal axis) cycles tjindhe remaining model input parameters, in the same
order. By scanning along a row one can see both which paresretetightly constrained by the model, and which pararaeter correlated. The false colour
encodes the value @ (see bar on right of plot), and the contours correspor@+d, 2, 3, 4, 5.
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is also higher than the values normally invoked. Matheradyic
this follows from the large; (see Eqnlll), but physically it also
derives — inevitably, in a self-similar mapping — from theedeo
form binaries with a frequency that increases with prima@sm
(see discussion in Sectibn ¥.2).

The spread of stellar masses from a single core-cluster(
0.29 + 0.07) is such that, if the stars are paired randomly, between
33 and 56% of the resulting systems have mass ratio below 0.5.
Thus, in order to produce a flat distribution of mass ratibs,dy-
namical biasing parameter should not be too large, andshigat
the model infers¢ = 0.6 + 1.0).

In Fig.[I we plot those values &f generated along the Markov
Chain that exceed1 (i.e. those models that deliver output parame-
ters that are collectively withindt of the observations), against the
different model input parameters. These plots show that theibest
model input parameters are all well defined, apart frgmFor-
tunatelyy, is already quite well constrained by observation, and
likely to become better constrained in the futureu|f were in-
creased, theficiency,n, would have to be reduced proportionately
(or each core would have to produce more than one long-lived b
nary) — andvice versa

Fig.[2 illustrates howQ varies on planes through the best-fit
solution, i.e. if just two of the model input parameters aaeied.
These plots are generated with a regular two-dimensioridlagr
models, and 10stars per model. On each row, the ordinate is the
same for all five plots, and the abscissa cycles through thaire
ing five input parameters. From the plots in the first row wethae
H. is weakly constrained, and also, from the second plot albisg t
row, that if 4. is increasedy must be reduced proportionately. In
all other cases, an horizontal scan of the plots in a row fs\that
the parameter concerned (the ordinate) is very well, anguety,
constrained by the observations.

Fig.[3d presents the binary frequency as a function of primary
mass, for the best-fit model, generated usingstars, along with
the observational data used to constrain the model. Weatstthat
we do not use the two higher-mass points, only the four lawass
points. Notwithstanding, the model fits all six points well.

Fig.[4 presents the mass ratio distributions for binaries ha
ing primaries in mass-bins 3 and 4. We see that there is auept
agreement. The largest divergence occurs in the extrerse s
is not surprising, given that, in the model, the componehts lu-
nary system are drawn from a log-normal distribution of reass
with a power-law weighting.

9 DISCUSSION
9.1 Critiqueof the modd

The critical assumption of the model is that each core spaams
average, exactly one long-lived binary system, i.e. onarisys-
tem that survives to populate the field. If this assumptionewe-
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Figure 3. The boxes represent the observational estimates of nicittypl
frequency in diferent primary-mass intervals, as detailed in the text, and
summarised in Tablgl 2. The error bars represent the obger@htincer-
tainties. The dashed line shows the multiplicity frequeasya function of
primary mass for the best-fit model. The unruly points atddvy are due

to small-number statistics.
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Figure 4. The distribution of mass ratios for binaries having prirearin
mass-bins 3 and 4. The plotted symbols with error bars reptése obser-
vationally inferred expectation values and uncertaint@ange plus signs
for mass-bin 3, and blue crosses for mass-bin 4. The histograpresent
the model results: orange solid line for mass-bin 3, ancedditue line for
mass-bin 4.

of low-mass field stars (i.e. binaries with primaries in thage
(0.02 2.0) M,)) were to increase, this would redusg,, and conse-

laxed, in the sense that a core might spawn more than one long-quentlyrn. For example, if the observed overall binary frequency of

lived binary system (say, on averageinary systems), themand
N, would have to be increased (in proportion8p Conversely, if
not all cores were to spawn a binary systerand N, would have
to be reduced, but it would then becomes impossible to rejsed
the variation of binary frequency with primary mas§M,) —
unless one were to introduce an additional parameter tw dhe
efficiency to be much higher for cores that spawn binaries than fo
those that don't.

If the observed estimate for the overall binary frequency

low-mass field stars were increased 6,@he model would require
N, ~3andn~0.8+0.2.

It is difficult to see how the various standard deviations could
change much, unless, is very diferent from the Chabrier (2005)
value. Ifog were largerg. ando, could also be larger, andce
versa

If the distribution of mass ratios were skewed in favour af-sy
tems with comparable mass, idg,/dq > 0, theno, would need
to be reduced, ardr « increased (more dynamical biasing).

© 2002 RAS, MNRASD00, [THI0
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9.2 Previoustheoretical work of a simple free-fall argument, and Larson’s scaling relagi this
might be taken into the reckoning wigh = +0.25.

(i) We have explored models in which thdfieiency of star
formation in a prestellar core depends on its mass accoitding
n, o MY, This is equivalent to including feedback from massive
stars. Star formation is promoted by feedback from masdaes s
if x, is positive, and suppressedxif is negative. However, it is
not known what the sense of feedback from massive stars thgon
scale of a single core.

(i) We have explored models in which the number of stars
formed from a prestellar core depends on its mass according t
Ny o« Mé("’. Negative values of,, (a) skew the IMF towards high
masses, and (b) increase the multiplicity frequency of tmgiss
stars and reduce the multiplicity frequency of low-masssstaos-
itive values ofy,, have the oppositefiects. It is dificult to believe
that N does not increase with core mass (positiyg. However,
this would completely undermine the original argument feeH-
similar mapping between CMF and IMF, namely that the higtssna
slopes of the CMF and IMF appear to be indistinguishable.eMor
over, in practice, the observational constraints can maséyeac-
commodate thefects of negativey,, . Either way, non-zerg, -
values are not actually needed to fit the observational waings
we have invoked..

(iv) We have explored models in which the logarithmic ranfje o
stellar masses formed from a prestellar core depends onai$s m
according too, o« M{. It is probably the case that only posi-
tive values ofy,, could be justified (i.e. higher-mass cores spawn-
ing a greater logarithmic spread of stellar masses), batishinot
needed to fit the observational constraints. Moreover,gpeesses
the high-mass end of the IMF, which — in this purely log-norma
model — is already too low.

(v) We have explored the possibility that there is some vaea

Some of the consequences of a self-similar mapping are cplo
by|Clarke (1996), but with diierent distribution functions, and less
emphasis on observational constraints.

Swift & Williams (2008) develop a similar model to ours, but
one which includes a power-law extension to the CMF at high
masses, based on the analysis of Padoan & Nordlund|(2002), an
which invokes somewhat flerent model parameters. They explore
the consequences of varying the prescriptions for gemeratiul-
tiple systems, and for sub-fragmentation of a core, but therk
differs from ours in that they do not explore in depth the question
of multiplicity and its variation with primary mass, and yheéo not
draw any firm conclusions on thefieiency, or on the number of
stars spawned by a single core.

Goodwin et al.|(2008) explore the consequences of multiplic
ity for the mapping from the CMF into the IMF, and in particula
the dfect of multiplicity on the extremes of the IMF. Their pre-
ferred model presumes that all cores spawn multiple systeitis
the number of stars in a system increasing very slightly hith
mass of the progenitor core (the model is therefore nottistself-
similar), and it has quite a lowfiéciency,n, = 0.27. They do not
explore the issue of how such systems might subsequentlyesvo
to produce singles, so they cannnot exploit the observedtiar
of binary fraction with primary mass.

Goodwin & Kouwenhoven| (2009) demonstrate that the map-
ping from a log-normal CMF into an approximately log-normal
System Mass Function (SMF) and from the SMF into an approxi-
mately log-normal IMF admits a wide range of prescriptioms(f)
how the dficiency, varies with the core masg;.)), (ii) whether
the probability that a core spawns a single or a binary depend
its mass (&ectively N(M..)), (iii) and the distribution of mass ra-

tios in such binaries. This concurs with our conclusion Seetion .
[B:3) that, whilst there are many theoretical arguments lfowing in, for example N, s that wher, = 3 (say) not all cores spawn
! exactly three stars. However, firstly this introduces anitamal

the input parameters of the mapping to dt_apgnd on the core MasSodel parameter, which should be avoided if possible, aed se
(thereby rendering the mapping non self-similar), tfect on the

) . ondly it makes no significant fierence to the results, unless the
IMF is so subtle that these dependencies cannot usefullyphe c Yy Em g ) L )

. - ; variance is extremely large, so we do not include it in theidas
strained by the existing observations.

model.

We reiterate that we are not arguing that these additional ef
fects do not occur in nature. We are simply pointing out (&} th
We have considered the following refinements to the mode-Ho  they are not justified by the currently available observatiaon-
ever, none of them is justified, since none of them, eitheividd straints, that is, one can obtain a good fit to the obsenatidgthout
ually or in combination, produces a significant improventerthe them; and (b) that they would corrupt a self-similar mapping
fit; in respect of items (ii), (iii) and (iv), Goodwin & Kouwdroven
(2009) reached essentially the same conclusion, but orettie bf
a very diferent model and less restrictive observational consgaint 10 CONCLUSIONS

Necessarily, all these refinements would corrupt the selftarity
of the mapping. We have developed a simple model to describe the mappingeof th

CMF onto the IMF.

9.3 Additional model parameters

(i) We have explored models in which the lifetime of a prestel

lar core (i.e. the time during which a prestellar core is cietg as e The model has four assumptions: the central portions of the
such) depends on its mass accordingtex MXt. Negative val- CMF and IMF are both log-normal; the mapping from the CMF
ues ofy; skew the IMF towards high masses, because low-mass onto the IMF is self-similar; if a core forms more than one st
cores are over-represented in the CMF. Conversely, pesiti- of the stars end up in a long-lived binary; and the probabdita

ues ofy; skew the model IMF towards low masses, because high- star of masdvl being in this binary is proportional tel“.

mass cores are over-represented in the CMF. There is nortarse e The model has six input parametegs: ando. are the loga-

on this.| Hatchell & Fuller|(2008) have argued that more nvassi  rithmic mean and standard deviation of the log-normal Ci]Fis
cores evolve faster than less massive ones, and are tretefder- the dficiency (i.e. the fraction of a core’s mass that ends up in new
represented in the CMF; this might be taken into the reclgnin stars);N, is the mean number of stars spawned by a single core;
with y; = —0.25. Conversely, Clark, Klessen, & Bonmell (2007) o, is the standard deviation of the log-normal distributiomedé-
have argued that massive cores, being mdfask have longer life- tive stellar masses spawned by a single coreaisdhe dynamical
times, and are therefore over-represented in the CMF; ohahis biasing parameter.

© 2002 RAS, MNRAS000, [THI0
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e This model is able to fit the observed IMF, the observed bi-
nary frequency as a function of primary mass, and the obderve
distributions of mass ratio for binaries having Sun-liked avi-
dwarf primaries. The best fit requirgg = -0.03+ 0.10, o =
0.47+0.04, n =1.01+0.27, N, = 4.34+0.43, o, = 0.30+0.03,
anda = 0.87 + 0.64.. It fits the observations to withinZbo.

We have not demonstrated, nor do we advocate, that the map-

ping is necessarily self-similar, only that, if one assursef-
similarity, there is a simple mapping that fits the obseoral con-
straints well and therefore — on the basis of Occam’s Razbould
be given consideration.

Moreover, if the mapping is not (at least, approximately}-se
similar, then the notion that the shape of the IMF is inhérftem
the CMF must be abandoned.

Either way, there is a question to be answered beyond under-

staning the origin of the CMFeither why is the mapping self-
similar, or why does the mapping, despite not being self-similar,
produce an IMF with the same shape as the CMF?

The self-similar model suggests that thféaency of star for-
mation within a prestellar core is significantly higher, (~ 1.0 +
0.3) than has previously been proposed (g0~ 0.3, |Alves et al.
2007). It also suggests that most stars, including singlesporn
in small groups of- 4. This contrasts with the conclusion|of Lada
(2006) that most stars, being single, are born in isolatinerest-
ingly INakamura et all (2012) have recently reported evidghet
prestellar cores are more fragmentated than had previdiesn
thought. If cores spawn many stars, we may see multiple oflo

from some cores (e.q. Wu etlal. 2009), but these outflows do not

have to disperse a large fraction of the core’s initial mass, can
simply punch holes in the residual envelope.
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