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ABSTRACT
We study the volume-limited and nearly mass selected (stellar mass Mstars

>∼ 6 × 109 M�)
ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We
construct detailed axisymmetric dynamical models (JAM), which allow for orbital anisotropy,
include a dark matter halo, and reproduce in detail both the galaxy images and the high-
quality integral-field stellar kinematics out to about 1Re, the projected half-light radius. We
derive accurate total mass-to-light ratios (M/L)e and dark matter fractions fDM, within a
sphere of radius r = Re centred on the galaxies. We also measure the stellar (M/L)stars
and derive a median dark matter fraction fDM = 13% in our sample. We infer masses
MJAM ≡ L× (M/L)e ≈ 2×M1/2, where M1/2 is the total mass within a sphere enclosing
half of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in
the (MJAM, σe, R

maj
e ) coordinates system, which we call the Mass Plane (MP) has an ob-

served rms scatter of 19%, which implies an intrinsic one of 11%. Here Rmaj
e is the major axis

of an isophote enclosing half of the observed galaxy light, while σe is measured within that
isophote. The MP satisfies the scalar virial relation MJAM ∝ σ2

eR
maj
e within our tight errors.

This show that the larger scatter in the Fundamental Plane (FP) (L, σe, Re) is due to stellar
population effects (including trends in the stellar Initial Mass Function [IMF]). It confirms that
the FP deviation from the virial exponents is due to a genuine (M/L)e variation. However, the
details of how bothRe and σe are determined are critical in defining the precise deviation from
the virial exponents. The main uncertainty in masses or M/L estimates using the scalar virial
relation is in the measurement of Re. This problem is already relevant for nearby galaxies and
may cause significant biases in virial mass and size determinations at high-redshift. Dynamical
models can eliminate these problems. We revisit the (M/L)e − σe relation, which describes
most of the deviations between the MP and the FP. The best-fitting relation is (M/L)e ∝ σ0.72

e
(r-band). It provides an upper limit to any systematic increase of the IMF mass normalization
with σe. The correlation is more shallow and has smaller scatter for slow rotating systems
or for galaxies in Virgo. For the latter, when using the best distance estimates, we observe a
scatter in (M/L)e of 11%, and infer an intrinsic one of 8%. We perform an accurate empir-
ical study of the link between σe and the galaxies circular velocity Vcirc within 1Re (where
stars dominate) and find the relation max(Vcirc) ≈ 1.76 × σe, which has an observed scatter
of 7%. The accurate parameters described in this paper are used in the companion Paper XX
of this series to explore the variation of global galaxy properties, including the IMF, on the
projections of the MP.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation
– galaxies: structure – galaxies: kinematics and dynamics

1 INTRODUCTION

Scaling relations of early-type galaxies (ETGs, ellipticals E and
lenticulars S0) have played a central role in our understanding
of galaxy evolution, since the discovery that the stellar velocity
dispersion σ (Minkowski 1962; Faber & Jackson 1976) and the
galaxy projected half-light radius Re (Kormendy 1977) correlate
with galaxy luminosity L. An important step forward was made
with the discovery that these two relations are just projections of a
relatively narrow plane, the Fundamental Plane (FP) (Faber et al.
1987; Dressler et al. 1987; Djorgovski & Davis 1987), relating the
three variables (L, σe, Re). When the plane is used as a distance
indicator, as was especially the case at the time of its discovery, the
luminosity can be replaced by the surface brightness within Re as
Σe ≡ L/(2πR2

e) and the observed plane assumes the form

Re ∝ σ1.33Σ−0.82
e , (1)

where the adopted parameters are the median of the 11 independent
determinations tabulated in Bernardi et al. (2003).

? E-mail: cappellari@astro.ox.ac.uk

It was immediately realized that the existence of the FP could
be due to the galaxies being in virial equilibrium (e.g. Binney &
Tremaine 2008) and that the deviation (tilt) of the coefficients from
the virial predictionsRe ∝ σ2Σ−1

e , could be explained by a smooth
power-law variation of mass-to-light ratio M/L with mass (Faber
et al. 1987). The FP showed that galaxies assemble via regular pro-
cesses and that their properties are closely related to their mass.
The tightness of the plane gives constraints on the variation of stel-
lar population among galaxies of similar characteristics and on their
dark matter content (Renzini & Ciotti 1993; Borriello et al. 2003).
The regularity also allows one to use the FP to study galaxy evolu-
tion, by tracing its variations with redshift (van Dokkum & Franx
1996).

However, other reasons for the deviation of the coefficients are
possible: the constant coefficients in the simple virial relation only
rigorously apply if galaxies are spherical and homologous systems,
with similar profiles and dark matter fraction. But both galaxies
concentration (Caon et al. 1993) and the amount of random mo-
tions in their stars (Davies et al. 1983) were found to systematically
increase with galaxy luminosity.

The uncertain origin of the tilt led to a large number of inves-
tigations about its origin, exploring the effects of (i) the systematic
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The ATLAS3D project – XV. Dynamical models 3

variation in the stellar population or IMF (e.g. Prugniel & Simien
1996; Forbes et al. 1998), or (ii) the non-homology in the surface
brightness distribution (e.g. Prugniel & Simien 1997; Graham &
Colless 1997; Bertin et al. 2002; Trujillo et al. 2004) or (iii) the
kinematic (e.g. Prugniel & Simien 1994; Busarello et al. 1997), or
(iv) the variation in the amount of dark matter (e.g. Renzini & Ciotti
1993; Ciotti et al. 1996; Borriello et al. 2003), on the FP tilt and
scatter. Those works were all based on approximate galaxy spher-
ical models, trying to test general hypotheses and not reproducing
real galaxies in detail, which sometimes led to contrasting results.
What became clear however was that various effects could poten-
tially influence a major part of the FP tilt. Moreover it was found
that the small scatter in the FP implies a well regulated formation
for ETGs.

The next step forward came with subsequent studies, which
instead of testing general trends, used small samples of objects and
tried to push to the limit the accuracy of measuring galaxy central
masses, while reducing biases as much as possible. Those accurate
total masses could be directly compared to the simple virial ones,
testing for residual trends. Similar but independent studies were
performed using two completely different techniques, either stel-
lar dynamics (Cappellari et al. 2006) or strong gravitational lensing
(Bolton et al. 2007, 2008; Auger et al. 2010a). The results from
those efforts agree with each others, and showed that the tilt of the
FP is almost entirely due to a genuine M/L variation.

In this paper we investigate once more the origin of the FP
tilt. This new study is motivated by the dramatic increase in the
size and quality of our galaxy sample, with respect to any previ-
ous similar study. We have in fact state-of-the-art SAURON (Bacon
et al. 2001) stellar kinematics for all the 260 early-type galaxies of
the ATLAS3D sample (Cappellari et al. 2011a, hereafter Paper I),
which constitute a volume-limited and carefully selected sample
of ETGs, down to a stellar mass of about Mstars

>∼ 6 × 109 M�.
This fact, combined with detailed dynamical models for the entire
sample, allows us to test previous claims with unprecedented ac-
curacy. The new models also include a dark matter halo and give
constraints on the dark matter content in the centres of early-type
galaxies. These measurements will be used in the companion Cap-
pellari et al. (2013, hereafter Paper XX) to provide a novel view of
galaxy scaling relations.

In what follows, in Section 2 we present the sample and data,
in Section 3 we describe the methods used to extract our quantities,
in Section 4 we present our results on the FP tilt, dark matter and
the (M/L) − σ relation, and finally we summarize our paper in
Section 5.

2 SAMPLE AND DATA

2.1 Selection

The galaxies studied in this work are the 260 early-type galax-
ies which constitute the volume-limited and nearly mass-selected
ATLAS3D sample (Paper I). The object were morphologically se-
lected as early-type according to the classic criterion (Hubble 1936;
de Vaucouleurs 1959; Sandage 1961) of not showing spiral arms or
a disk-scale dust lane (when seen edge-on). The early-types are ex-
tracted from a parent sample of 871 galaxies of all morphological
types brighter than MK = −21.5 mag, using 2MASS photometry
(Skrutskie et al. 2006), inside a local (D < 42 Mpc) volume of
1.16× 105 Mpc3 (see full details in Paper I).

2.2 Comparison to previous samples: dynamics and lensing

Our goal is to measure total masses, or equivalently mass-to-light
ratios (M/L), in the central regions of galaxies.M/L of significant
samples of individual ETGs have been previously obtained via dy-
namical modelling (e.g. van der Marel 1991 [37 ETGs]; Magorrian
et al. 1998 [36 ETGs]; Gerhard et al. 2001 [21 ETGs]; Cappellari
et al. 2006 [25 ETGs]; Thomas et al. 2007b [16 ETGs]; Williams
et al. 2009 [14 ETGs]; Scott et al. 2009 [48 ETGs]) or strong gravi-
tational lensing (e.g. Rusin et al. 2003 [22 ETGs]; Koopmans et al.
2006 [15 ETGs]; Bolton et al. 2008 [53 ETGs]; Auger et al. 2010a
[73 ETGs]). An important, and perhaps not obvious, difference be-
tween the quantities obtained with the two techniques is that the
dynamical models provide masses enclosed within a spherical ra-
dius, while strong lensing measures the mass inside a cylinder with
axis parallel to the line-of-sight. Care has to be taken when compar-
ing the two methods. An illustration of this fact is given in figure 1
of Dutton et al. (2011a).

An advantage of the strong lensing technique is that the recov-
ered mass inside a cylinder with the radius of the Einstein ring is
nearly insensitive to the mass distribution, and completely indepen-
dent on the stellar dynamics. However, the requirement of a galaxy
to act as a strong lens, necessarily imposes biases in the objects se-
lection, and in particular limits mass measurements via strong lens-
ing to the most massive nearby ETGs (σ>∼ 200 km s−1 in Auger
et al. 2010a).

The dynamical modelling technique has the significant ad-
vantage that it can in principle be applied to any bound system
made of stars. However, it requires a detailed treatment of the ob-
served surface brightness and orbital distribution, in combination
with integral-field data, for robust and accurate values (e.g. Cappel-
lari et al. 2006).

In this paper we apply the stellar dynamical modelling tech-
nique to the ATLAS3D sample of 260 early-type galaxies. This in-
creases the sample size for which accurate total masses have been
measured by a factor of four. Moreover the sample is volume-
limited and statistically representative of the nearby galaxy pop-
ulation with stellar mass Mstars

>∼ 6 × 109 M� and in particular
includes ETGs with velocity dispersion as low as σe ≈ 40 km s−1

(see Paper I for an illustration of the characteristics of the sample).

2.3 Stellar kinematics and imaging

Various multi-wavelengths datasets are available for the sample
galaxies (see a summary in Paper I). In this work we make use of the
SAURON (Bacon et al. 2001) integral-field stellar kinematics within
about one half-light radius Re, which was introduced in Emsellem
et al. (2004), for the subset of 48 early-types in the SAURON survey
(de Zeeuw et al. 2002), and in Paper I for the rest of the ATLAS3D

sample. Maps of the stellar velocity for all the 260 galaxies were
presented in Krajnović et al. (2011, hereafter Paper II).

In this paper we are not interested in the shape of the stellar
line-of-sight velocity distribution (LOSVD), but we want to approx-
imate velocity moments which are predicted by the Jeans (1922)
equations. In Cappellari et al. (2007) we used semi-analytic models
to compute a set of realistic galaxy LOSVDs with known velocity
moments, using the Hunter & Qian (1993) formalism, as imple-
mented in Emsellem et al. (1999). The models LOSVDs were used
to broaden galaxy spectral templates and noise was subsequently
added. The kinematics was then extracted from the synthetic spec-
tra using pPXF Cappellari & Emsellem (2004) as done for the real
galaxies. We found that Vrms ≡

√
V 2 + σ2, where V and σ are the
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mean and standard deviation of the best fitting Gaussian provide
a better empirical approximation to the velocity second moment
〈v2los〉1/2 than an integral of a more general LOSVD described by
the Gauss-Hermite parametrization (van der Marel & Franx 1993;
Gerhard 1993). This is due to the large sensitivity of the moments to
the wings of the LOSVD, which are observationally ill determined.
For this reason all the kinematic quantities used in the paper are
extracted using a simple Gaussian LOSVD in the pPXF software
(keyword MOMENTS=2).

The photometry used in this work comes from the Sloan Dig-
ital Sky Survey (SDSS, York et al. 2000) data release eight (DR8
Aihara et al. 2011) for 225 galaxies and was supplemented by our
own photometry taken at the 2.5-m Isaac Newton Telescope in the
same set of filters and with comparable signal to noise for the rest
of the sample galaxies (Scott et al. 2013, hereafter Paper XXI).

3 METHODS

3.1 Measuring galaxy enclosed masses

3.1.1 Choosing the dynamical modelling approach

Various dynamical modelling techniques have been developed in
the past. They are all characterized by their ability to reproduce
in detail, in a non-parametric way, the characteristics of the galaxy
surface brightness. This contrasts with a more qualitative toy-model
approach (e.g. Tortora et al. 2009; Treu et al. 2010) that assume a
spherical shape and a simpler parametrization (e. g. Hernquist 1990
or Sersic 1968 profile) for the surface brightness of all galaxies. An
accurate description of the galaxy surface brightness is a necessary
requirement for quantitative and unbiased measurements of dynam-
ical quantities as much of the kinematic information on real galaxies
is contained in the photometry alone (Cappellari 2008). The state
of the art in the field is currently represented by Schwarzschild
(1979) orbit-superposition approach, which was originally devel-
oped to reproduce galaxy stellar densities and was later general-
ized to produce detailed fits to the stellar kinematics (Richstone &
Tremaine 1988; Rix et al. 1997; van der Marel et al. 1998) and
has been widely used for determinations of masses of supermas-
sive black holes (e.g. van der Marel et al. 1997; Gebhardt et al.
2000a; Cappellari et al. 2002; Valluri et al. 2004; Houghton et al.
2006), for galaxy mass determinations (e.g. Cappellari et al. 2006;
Thomas et al. 2007b) and to recover orbital distributions (e.g. Kra-
jnović et al. 2005; Cappellari et al. 2007; van den Bosch et al.
2008; Thomas et al. 2009). A close contender technique, but not as
widely used, is the particle-based made-to-measure method of (Syer
& Tremaine 1996) as implemented to reproduce kinematical ob-
servables by various groups (de Lorenzi et al. 2007; Dehnen 2009;
Long & Mao 2010). When the gravitational potential is assumed to
be known, and the particles are chosen to fully sample all integrals
of motion, the method effectively corresponds to a particle-based
analogue of Schwarzschild’s method, and is expected to provide
similar results. However, the method may be very useful when the
potential is derived from the particles in a self-consistent way. Not
much however is known about the convergence and uniqueness of
the solution in this case.

The sophistication and generality of the dynamical models has
reached a level that exceeds the amount of information that the ob-
servations of external galaxies can provide. As a result the obser-
vations are unable to uniquely constrain all the model parameters,
which suffer from degeneracies (Dejonghe & Merritt 1992; Ger-
hard et al. 1998; de Lorenzi et al. 2009; Morganti & Gerhard 2012).

A key degeneracy is in the deprojection of the observed surface
brightness into a three dimensional stellar mass distribution, which
has been proved to be of mathematical nature (Rybicki 1987; Ger-
hard & Binney 1996) and applies even when the galaxy is assumed
to be axisymmetric. However, similar degeneracies are likely to
exists when higher (than zero) moments of the velocity are con-
sidered. This is expected from dimensional arguments: the current
data provide at most a three-dimensional observable (an integral-
field data cube), which is the minimum requirement to constrain
the orbital distribution, which depends on three integrals of motion,
for an assumed potential and known light distribution. It is unlikely
for the data to contain enough information to constrain additional
parameters, like the dark matter halo shape and the viewing an-
gles (e.g. Valluri et al. 2004). Numerical experiments confirm that
even with the best available integral-field stellar kinematics, and as-
suming the gravitational potential is known and axisymmetric, not
even the galaxy inclination can be inferred from the data using gen-
eral Schwarzschild models (Krajnović et al. 2005; Cappellari et al.
2006; van den Bosch & van de Ven 2009). This implies that the
mass distribution is also quite poorly known.

The situation becomes even more problematic when one con-
siders the fact that the majority of early-type galaxies are likely to
have bars. 30% have obvious bars (Paper II) in the ATLAS3D sam-
ple, but more must be hidden by projection effects. Bars are char-
acterized by figure rotation which is ignored by most popular mod-
elling approaches. The treatment of bars could be included in the
models as demonstrated in the two-dimensional limit by (Pfenniger
1984) and as done to models the Milky Way in three dimension
(Zhao 1996; Häfner et al. 2000; Bissantz et al. 2004). However, no
applications to external galaxies exists. This is due to the extra de-
generacy that the addition of at least two extra model parameters,
the bar pattern speed and position angle, will produce on an already
degenerate problem. This combines with the dramatic increase in
the non-uniqueness of the mass deprojection expected in a triaxial
rather than axisymmetric distribution (Gerhard 1996) and in the ad-
ditional unavoidable biases introduced by observational errors. All
this is expected to further broaden the minima in the χ2 distribu-
tions of the fits and increase the uncertainties and covariances in
the recovered parameters.

We chose a different approach. Rather than allowing for the
full generality and degeneracies of the models, we adopt a mod-
elling method that makes empirically-motivated assumptions to re-
strict the range of model solutions and improve the accuracy of the
mass recovery. This is motivated by the finding that the kinematics
of real fast-rotator early-type galaxies in the SAURON sample (de
Zeeuw et al. 2002) is well approximated by models characterized
by a remarkably simple and homogeneous dynamics, character-
ized by a cylindrically-aligned and nearly oblate velocity ellipsoid
σφ ≈ σR>∼σz (Cappellari 2008), as previously suggested by more
general Schwarzschild’s models (Cappellari et al. 2007; Thomas
et al. 2009). The models are called Jeans Anisotropic MGE (JAM),
where MGE stands for the Multi-Gaussian Expansion method of
Emsellem et al. (1994), that is used to accurately describe the galaxy
photometry. The JAM models can reproduce the full richness of the
observed state-of-the-art SAURON integral-field kinematics of fast
rotator ETGs using just two free parameters (Cappellari 2008; Scott
et al. 2009; Cappellari et al. 2012), providing a compact description
of their dynamics. The JAM models are ideal for this work given
that the nearly-axisymmetric fast rotator ETGs constitute the 86%
of the ATLAS3D sample (Paper II; Emsellem et al. 2011, hereafter
Paper III). Moreover the JAM models only require the first two ve-
locity moments (V and σ), and not the full LOSVD, which is not
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The ATLAS3D project – XV. Dynamical models 5

available for about half of the sample (see Paper I). The JAM mod-
els do not have the freedom to actually fit small-scale details of
the kinematics, but they make a prediction based on an accurate de-
scription of the photometry and a couple of parameters. This consti-
tutes an advantage in presence of noise and systematics in the data,
as it makes spurious features easy to recognize and automatically
exclude from the fit. Moreover the approach is at least three orders
of magnitudes faster than Schwarzschild’s approach.

Not all ETGs are well described by the JAM models however:
some of the slow rotators in ATLAS3D are likely nearly spherical
in the region where we have stellar kinematics, but about 10% of
the sample galaxies are weakly triaxial or out of equilibrium (Pa-
per II). For those objects the modelling results should be treated
with caution. Errors of up to 20% can arise when measuring masses
of triaxial objects with axisymmetric models (Thomas et al. 2007a;
van den Bosch & van de Ven 2009) and this should be kept in mind
when interpreting our results. However, preliminary tests using real
galaxies in the SAURON sample indicate excellent agreement be-
tween the M/L recovery using axisymmetric models and triaxial
ones with identical data (van den Bosch 2008). Moreover, in what
follows, unless explicitly mentioned, we verified that all conclusion
are unchanged if we remove the slow rotator galaxies from the sam-
ple. Barred galaxies provide a further complication, which will be
discussed in the next Section.

3.1.2 JAM models with dark halo

In practice the modelling approach we use in this paper starts by ap-
proximating the observed SDSS and INT r-band surface brightness
distribution of the ATLAS3D galaxies using the Multi-Gaussian Ex-
pansion (MGE) parametrization (Emsellem et al. 1994), with the
fitting method and MGE FIT SECTORS software package of Cappel-
lari (2002)1. The choice of the photometric band is a compromise
between the need of using the reddest band, to reduce the contam-
ination by dust, and the optimal signal-to-noise in the images. For
barred galaxies the Gaussians of the MGE models are constrained
to have the flattening of the outer disk, following Scott et al. (2009,
their fig. 4). Full details of the fitting approach and illustrations of
the quality of the resulting MGE fits are given in Paper XXI. The
MGE models are used as input for the JAM method1 (Cappellari
2008) which calculates a prediction of the line-of-sight second ve-
locity moments 〈v2los〉 for given model parameters and compare this
to the observed Vrms.

In Cappellari et al. (2006) it was shown that, when the sur-
face brightness distribution is accurately reproduced and good qual-
ity integral-field data are available, simple two-integral Jeans mod-
els measure masses nearly as accurate as those of Schwarzschild’s
models, with errors of 6%. The agreement can be further improved
by allowing for orbital anisotropy, in which case the two methods
give equally accurate results (Cappellari 2008). We have run an ex-
tensive set of tests using JAM to determine the M/L of realistic
numerical simulations (Lablanche et al. 2012, hereafter Paper XII).
We found that for unbarred galaxies, even when the anisotropy is
not accurately constant inside the region with kinematic data, the
M/L can be recovered with maximum biases as small as 1.5%.
The situation changes when the galaxies are barred. In this case bi-
ases of up to 15% can be expected for the typical bar strengths we
find in ETGs.

The models we use here were already presented in Cappellari

1 Available from http://purl.org/cappellari/idl

et al. (2012), where they were used to uncover a systematic variation
of the stellar IMF in ETGs. That paper (their table 1) describes six
sets of JAM models for all the ATLAS3D galaxies, making various
assumptions on the dark matter halo. Given that the SAURON data
are typically spatially limited to 1Re one cannot expect to be able
to robustly characterize the shape of the dark halo out to large radii
from them (Mamon & Łokas 2005). However, as long as the density
distribution of the halo is not the same as the one of the stars, we
can determine how much room the models allow for a dark matter
halo, within the region constrained by the kinematics. The models
were summarized in Cappellari et al. (2012), but we describe them
here in some more detail using the same lettering notation as that
paper:

(A) Self-consistent JAM model: Here we assume that the mass
distribution follows the light one as inferred from the de-
projected MGE. In this case the model has three free parame-
ters. Two parameters are non-linear: (i) the vertical anisotropy
βz = 1 − σ2

z/σ
2
R and (ii) the galaxy inclination i, which to-

gether uniquely specify the shape of the second velocity mo-
ment 〈v2los〉, which is then linearly scaled by the (M/L)JAM

to fit the two-dimensional Vrms data. We emphasize that,
even though the models do not include a dark halo explic-
itly, (M/L)JAM does not represent the stellar M/L, as some-
times incorrectly assumed, but the total one, within a spherical
region which has the projected size of our data (see discus-
sion in Section 4.1.2). This set of models, like all others, has
a central supermassive black hole with mass predicted by the
MBH−σ correlation (Gebhardt et al. 2000b; Ferrarese & Mer-
ritt 2000), or a black holes mass as published, when available.
The supermassive black hole has a minimal effect on M/L in
nearly all cases, but we still exclude the central R < 2′′ from
the fits, for maximum robustness. Examples of mass-follows-
light JAM models are shown in Fig. 1. The inclination and
(M/L)JAM of the best fitting models are given in Table 1.

(B) JAM with NFW dark halo: This set of models adopted the
approach introduced by Rix et al. (1997) to reduce the halo
to a one-parameter family of models. This approach was al-
ready used with axisymmetric JAM models of disk galaxies,
as done here, by Williams et al. (2009) and to construct spher-
ical toy models of various stellar systems (Napolitano et al.
2005; Tollerud et al. 2011). We assume the halo is spheri-
cal and characterized by the two-parameters double power-law
NFW profile (Navarro et al. 1996). We then adopt the halo
mass-concentrationM200− c200 relation (Navarro et al. 1996)
as given by Klypin et al. (2011) to make the halo profile a
unique function of its mass M200. The latter is not a critical
assumption: our observations only sample a region well inside
the predicted halo break radius, so that all our conclusion are
unchanged if we describe the halo with a simple power law
density profile ρ(r) ∝ r−1, as we numerically verified. The
resulting JAM models have in this case four parameters: (i)
The galaxy inclination i (ii) the anisotropy βz , (iii) the stel-
lar (M/L)stars, assumed spatially constant and (iv) the halo
virial mass M200, defined as the mass within the spherical ra-
dius r200 at which the average density is equal to 200 times
the critical density of the Universe. The (M/L)stars and dark
matter fraction fDM (r = Re) of the best fitting models are
given in table 1 of Paper XX.

(C) JAM with contracted NFW dark halo: These models in-
clude a halo which is originally assumed to be of NFW form,
with concentration specified by its mass via the M200 − c200

c© 2013 RAS, MNRAS 000, 1–35
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Figure 1. Mass-follows-light JAM models of the ATLAS3D sample. In each panel, the top plot shows the by-symmetrized and linearly interpolated SAURON
Vrms ≡

√
V 2 + σ2, where V is the mean stellar velocity and σ is the stellar velocity dispersion. Vrms ranges are printed. Ticks are separated by 10′′. The

observed galaxy surface brightness is overlaid, in steps of 1 mag. The bottom plot shows the best-fitting JAM model, and the adopted MGE surface brightness.
These models (A) have just two free non-linear parameters, the inclination and the global anisotropy (i, βz), to reproduce the shape of the observed Vrms. Yet,
once the surface brightness is given, most of the variety in our maps can be reproduced. Nearly all significant deviations between data and models are due to
bars, recognizable from the asymmetries in the observed surface brightness, dust, which affects both the mass model and the kinematics, or inferior data. The
predictive power of these simple JAM models qualitatively suggest that the assumed total potential is not significantly in error, which implies dark matter is
unimportant (or accurately follows the light). The good fits also show that ETGs have a simple dynamics within 1Re.

c© 2013 RAS, MNRAS 000, 1–35
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Figure 1. — continued
c© 2013 RAS, MNRAS 000, 1–35
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Figure 1. — continued c© 2013 RAS, MNRAS 000, 1–35
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relation as in (B). However, during the fitting process, for ev-
ery choice of the model parameters, the halo is contracted
according to the enclosed stellar mass distribution, which
is defined by the (circularized) MGE and the correspond-
ing (M/L)stars parameter. For the contraction we used the
prescription of Gnedin et al. (2011), which is an update of
Gnedin et al. (2004). We verified that our IDL code pro-
duces the same output as the C language software CON-
TRA by Gnedin et al. (2004), when the same input is given.
The resulting JAM model has the same four free parameters
(i, βz, (M/L)stars,M200) as in (B).

(D) JAM with general dark halo (gNFW): These models in-
clude a dark halo that generalizes the NFW profile (see also
Barnabè et al. 2012), with density:

ρDM(r) = ρs

(
r

rs

)γ (1

2
+

1

2

r

rs

)−γ−3

. (2)

The density has the same large-radii asymptotic power-law
slope β = −3 as the NFW halo, but it allows for a variable in-
ner slope, which we constrained to the bounds−1.6 < γ < 0,
by assigning zero probability to the prior P (model) = 0 (Sec-
tion 3.1.3) outside this parameters range. The ranges include a
flat inner core γ = 0 and the NFW γ = −1 as special cases.
The upper bound was chosen as the nearly maximum slope we
measured for all contracted halos in (C) (top panel of Fig. 2).
However, recent simulations suggest that baryonic effects pro-
duce flatter halos than these predictions for a broad range of
galaxy masses (Duffy et al. 2010; Governato et al. 2010; In-
oue & Saitoh 2011; Pontzen & Governato 2012; Laporte et al.
2012; Macciò et al. 2012; Martizzi et al. 2012). Note that our
adopted maximum halo slope is still generally more shallow
than the typical ‘isothermal’ average power slope γ′ = 2.0
the we measure for the stellar density alone within 1Re (bot-
tom panel of Fig. 2). This fact is important to avoid model de-
generacies between the stellar and halo densities. This model
is the most general of all six and it includes any of the other
five models as special cases. It has five free parameters: (i) the
galaxy inclination, (ii) the anisotropy βz , (iii) the stellar mass
Mstars, (iv) the halo inner slope γ and (v) the halo density
ρs at rs, which we parametrized using the dark matter frac-
tion fDM (r = Re) to reduce the strong correlation between
ρs and γ during the parameter estimation. The break radius
rs of the halo was not included as a free parameter given that
it is (in models E) generally 3–5 times larger than Re and it
is completely unconstrained by our data. We fixed rs = 20
kpc, which is the median value for all models E, but we ver-
ified that nearly identical results are obtained if we describe
the halo with a simple power-law density profile ρ(r) ∝ r−γ .
Examples of model fits are shown in Fig. 3;

(E) JAM with fixed NFW dark halo: The halo has a NFW pro-
file without any free parameter. During the fitting process the
halo mass M200 is determined from the enclosed stellar mass
Mstars, which is given by the total luminosity of the MGE
model multiplied by its current (M/L)stars. This is done using
theM200−Mstars relation derived by Moster et al. (2010) (see
also Moster et al. 2012), which matches the observed galaxy
luminosity functions to the simulated halos mass function.
However, negligible differences would have been obtained us-
ing e.g. the similar relations derived by Behroozi et al. (2010)
or Guo et al. (2010). For a given halo mass, the concentra-
tion is specified by the M200 − c200 relation as in (B). The
only free model parameters are the three of the stellar com-
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Figure 2. Inner slope of contracted dark halos and luminous matter. Top
Panel: Histogram of the halo slope of contracted halos for all 260 ATLAS3D

galaxies in model (C). The slopes were determined by fitting a power law
relation ρDM(r) ∝ rγ inside the radius r < rs/4, where we verified the
contracted halo profiles are accurately described by a power law. Bottom
Panel: Histogram of the slope of the deprojected stellar mass density distri-
bution from the MGE models. The slope was fitted inside a spherical radius
r = Re. Although the stellar density ρ?(r) ∝ rγ

′
inside that radius is not

always accurately described by a power-law, on average the stellar slope
peaks with high accuracy at at the ‘isothermal’ value γ′ ≈ 2.0, with an
intrinsic scatter of just σ = 0.24 for our entire sample.

ponent (i, βz, (M/L)stars) as in (A). This fixed-halo assump-
tion, in combination however with equally fixed spherical and
isotropic Hernquist (1990) galaxy models, was also used by
Auger et al. (2010b) and Deason et al. (2012).

(F) JAM with fixed contracted dark halo: The halo has a con-
tracted profile without any free parameter. For a given stel-
lar mass, the halo has initially the same NFW form as in (E),
but the profile is contracted as in (C) using the prescription
of Gnedin et al. (2011). The only free model parameters are
the three of the stellar component (i, βz, (M/L)stars) as in
(A). This fixed-halo assumption, in combination however with
equally fixed spherical and isotropic Hernquist (1990) galaxy
models, was also used by Auger et al. (2010b).

c© 2013 RAS, MNRAS 000, 1–35



10 M. Cappellari et al.

3.1.3 Bayesian inference of the JAM model parameters

The determination of the JAM model parameters for the 260
ATLAS3D galaxies in Cappellari et al. (2012) was done using
Bayesian inference (Gelman et al. 2004). The same approach was
adopted using JAM models in Barnabè et al. (2012) in combination
with gravitational lensing. From Bayes theorem, the posterior prob-
ability distribution of a model, with a given set of parameters, given
our data is

P (model |data) ∝ P (data |model)× P (model). (3)

Here we make the rather common assumption of Gaussian errors,
in which case the probability of the data, for a given model is given
by

P (data |model) ∝ exp

(
−χ

2

2

)
, (4)

with

χ2 =
∑
j

(
〈v2los〉

1/2
j − Vrms,j

∆Vrms,j

)2

. (5)

We further assume a constant noninformative prior P (model) for
all variables within the given bounds.

The calculation of the posterior distribution is performed us-
ing the adaptive Metropolis et al. (1953) (AM) algorithm of Haario
et al. (2001). The AM method adapts the multivariate Gaussian pro-
posal distribution during the Markov chain Monte Carlo sampling,
in such a way that the Gaussian proposal distribution has the same
non-diagonal covariance matrix as the posterior distribution accu-
mulated so far by the algorithm. This natural idea is similar to what
is routinely done e.g. in the determination of cosmological parame-
ters, where the covariance matrix of the posterior is calculated after
a burn-in phase (e.g. Dunkley et al. 2005). However, the adaptive
approach converges much more rapidly as the proposal distribu-
tion starts approaching the posterior already after a few points have
been sampled. We found the adaptive approach absolutely critical
for the speed up of our calculation by orders of magnitudes, given
the strong degeneracies between the model parameters producing
inclined and narrow posterior distributions. Some examples of the
posterior distributions obtained with our approach are shown in
Fig. 3. Although the adaptive nature of the AM algorithm makes
the resulting chain non-Markovian, their authors have proven that
it has the correct ergodic properties (Haario et al. 2001) and for
this reason it can be used to estimate the posterior distribution as in
standard Markov chain Monte Carlo methods (Gilks et al. 1996).

Moreover, to basically eliminate the burn-in phase of the AM
method, we use the efficient and extremely robust DIRECT de-
terministic global optimization algorithm of Jones et al. (1993) to
find the starting location without the risk for the Metropolis stage
to be stuck in a possible secondary minimum in multi-dimensional
parameter space.

An important addition to the fitting process is an iterative
sigma clipping of the kinematics, to remove spurious features in the
data like stars or problematic bins at the edge of the SAURON field
of view. This is important for a sample of the size of ATLAS3D,
where the quality of every Voronoi bin cannot be assessed manu-
ally for all galaxies. After an initial fit the few bins deviating more
than 3σ of the local rms noise are excluded from the fit and a new
fit is iteratively performed, until convergence.

3.2 Robust fitting of lines or planes to the data

3.2.1 Goodness of fit criteria

The apparently simple task of fitting linear relations or planes to
a set of data with errors does not have a well defined and obvious
solution and for this reason has continued to generate significant
interest. A number of papers have discussed the solution of the cor-
responding least-squares problem (Isobe et al. 1986; Feigelson &
Babu 1992; Akritas & Bershady 1996; Tremaine et al. 2002; Press
et al. 2007), while more recent works have addressed the problem
using Bayesian methods (Kelly 2007; Hogg et al. 2010). A popu-
lar method is the least-squares approach by Tremaine et al. (2002),
which is an extension of the FITEXY procedure described in Press
et al. (2007, section 15.3). The method defines the best fit of the
linear relation y = a + b(x − x0) to a set of N pairs of quanti-
ties (xj , yj), with symmetric errors ∆xj and ∆yj , as the one that
minimizes the quantity

χ2 =

N∑
j=1

[a+ b(xj − x0)− yj ]2

(b∆xj)2 + (∆yj)2 + ε2y
. (6)

Here x0 is an adopted reference value, close to the middle of the
xj values, adopted to reduce uncertainty in a and the covariance
between the fitted values of a and b. While εy is the intrinsic scat-
ter in the y coordinate, which is iteratively adjusted so that the χ2

per degree of freedom ν = N − 2 has the value of unity expected
for a good fit. As recognized by Weiner et al. (2006), minimizing
the above χ2 corresponds to maximizing the likelihood of the data
for an assumed intrinsic probability distribution of the observables
described by the linear relation y = a + b(x − x0) + εy , where
εy is the Gaussian scatter projected along the y coordinate, and one
assumes a uniform prior in the x coordinate. equation (6) is only
rigorously valid when the errors in x and y are Gaussian and uncor-
related (have zero covariances). A term−2bCov(xj , yj) should be
included in the denominator if the covariances are known and non-
zero (e.g. Falcón-Barroso et al. 2011). The 1σ confidence interval in
εy can be obtained by finding the values for which χ2 = ν ±

√
2ν

as done by Novak et al. (2006). The apparent asymmetry of equa-
tion (6) with respect to the x and y variables does not imply we
assume only the y variable has intrinsic scatter. In fact the assumed
intrinsic distribution has a Gaussian cross section along any direc-
tion non parallel to the ridge line y = a+ b(x− x0). The value εy
merely specifies the dispersion along the arbitrary y direction. The
formula would give completely equivalent results by interchanging
the x and y variables if the distribution of x values was uniform and
infinitely extended as assumed. Any difference in the fitting results
when interchanging the x and y coordinates are due to the breaking
of the uniformity assumptions.

equation (6) can be generalized to plane fitting by defining the
best-fitting plane z = a + b(x − x0) + c(y − y0) to a set of N
triplets of quantities (xj , yj , zj), with symmetric errors ∆xj , ∆yj
and ∆zj , as the one that minimizes the quantity

χ2 =

N∑
j=1

[a+ b(xj − x0) + c(yj − y0)− zj ]2

(b∆xj)2 + (c∆yj)2 + (∆zj)2 + ε2z
, (7)

Here x0 and y0 are adopted reference values, close to the middle
of the xj and yj values respectively, adopted to reduce uncertainty
in a and the covariance between the fitted values of a, b and c.
While εz is the intrinsic scatter in the z coordinate, which is itera-
tively adjusted so that the χ2 per degrees of freedom ν = N − 3
has the value of unity expected for a good fit. As in the two-
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Figure 3. Examples of JAM dynamical modelling with general dark halo using an Adaptive Metropolis approach. Each panel shows the corner-plots of
the posterior probability distribution for the non-linear model parameters (q, βz , fDM, γ), of galaxy models (D), marginalized over two dimensions (colour
contours) and one dimension (blue histograms). The symbols are coloured according to their likelihood: white corresponds to the maximum value and dark
blue to a 3σ confidence level. The vertical dashed green line indicates the maximum allowed q, which corresponds to an edge-on view. For each combination
of the non-linear parameters, the linear parameter (M/L)stars is fit to the data. We assumed ignorant (constant) priors on all model parameters. The name
of the galaxies is written at the top of each panel. The symmetrized Vrms SAURON data, and the best-fitting model are shown on the right (as in Fig. 1). This
plot illustrates a variety of situations and shapes of the kinematic field: (i) some models (NGC 2685, NGC 3610, NGC 3674, NGC 4350) have best fitting
halo parameters within the explored parameters boundaries; (ii) others (NGC 2974, NGC 3607, NGC 3630, NGC 4179, NGC 4435, NGC 4461, NGC 4473,
NGC 5493) prefer a flat γ ≈ 0 inner halo slope; (iii) others (NGC 4638, NGC 4660) have nearly unconstrained halo slope; (iv) others (NGC 2549, NGC 4452)
prefer steep halo slopes at the boundary γ = −1.6 of our allowed parameter range. In all cases the halo slope is weakly constrained by the SAURON data, but
the dark matter fraction is tightly constrained by the data to be small (fDM

<∼ 25% in these examples). Only allowing the inner dark halo slope to be as steep as
the characteristic stellar density slope γ′ ≈ −2.0 (Fig. 2) could significant dark matter be included within 1Re in some of the models, while still reproducing
the kinematic observations.

c© 2013 RAS, MNRAS 000, 1–35
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dimensional case the minimization of equation (7) is equivalent to
the maximization of the likelihood of the data, for an underlying
probability distribution of the observables described by the relation
z = a+ b(x− x0) + c(y− y0) + εz , where εz is the dispersion of
the Gaussian intrinsic scatter in the plane, projected along the z co-
ordinate, for a uniform prior in the x and y coordinates and assum-
ing uncorrelated and Gaussian errors in the x, y and z observables
(zero covariances). equation (7) reduces to the so called orthogonal
plane fit when the measurements errors are ignored and one simply
assumes ∆xj = ∆yj = ∆zj . This latter form is the one gener-
ally used when fitting the Fundamental Plane (e.g. Jorgensen et al.
1996; Pahre et al. 1998; Bernardi et al. 2003). Contrary to the popu-
lar approach, equation (7) allows for intrinsic scatter in the relation,
which is important to deriving unbiased parameters (Tremaine et al.
2002).

Recently Kelly (2007) proposed a Bayesian method to treat
the linear regression of astronomical data in a statistically rigorous
manner, allowing for intrinsic scatter, covariance between measure-
ments and providing rigorous errors on the parameters in the form
of random draws from the posteriori distribution (see also Hogg
et al. 2010). He pointed out that the Tremaine et al. (2002) approach
to linear fitting can lead to biased results in some circumstances.
For this reason in all our fits we used both the results and errors
derived from equation (6) and (7), and the corresponding results
obtained with the Bayesian method and software by Kelly (2007),
which was kindly made available as part of the IDL NASA Astron-
omy Library (Landsman 1993). In all cases differences between the
two method where found to be insignificant, in both the fitted val-
ues and the errors, confirming the near conceptual equivalence of
the two technically very different approaches.

3.2.2 Least Trimmed Squares robust fits

A general issue when fitting linear relations to data using least-
squares methods is the presence of outliers, which can dominate the
χ2 and bias the parameter recovery. This is the reason why a num-
ber of previous studies have determined the parameters of the Fun-
damental Plane using the more robust method of minimizing abso-
lute instead of squared deviations (e.g. Jorgensen et al. 1996; Pahre
et al. 1998), at the expense of decreasing the statistical efficiency,
namely larger errors on the fitted parameters. An alternative simple
solution, which maintains the efficiency of the least-squares method
for Gaussian distributions, consists of removing outliers by itera-
tively clipping points deviating more than 3σ from the currently
best-fitting relation. A problem with the σ-clipping approach is that
it is not guaranteed to converge to the desired solution in the pres-
ence of significant outliers. Alternative robust methods have been
proposed (see Press et al. 2007, section 15.7). However, they com-
plicate the error estimation and like the standard σ-clipping do not
always converge.

After some experimentation with different robust approaches
the only fully satisfactory solution we found is the Least Trimmed
Squares (LTS) regression approach of Rousseeuw & Leroy (1987).
The reason for its success is that the method, as opposed to other
robust approaches, finds a global solution. The approach consists of
finding the global minimum to

χ2
h =

h∑
j=1

(r2)j:N , (8)

where (r2)1:N ≤ (r2)2:N ≤ . . . ≤ (r2)N :N are the ordered square
residuals from the linear regression of a subset of N/2 < h <

N data points. In other words the LTS method consists of finding
the subset of h data points providing the smallest χ2

h, among all
possible h-subsets. It’s easy to realize that this approach is robust to
the contamination of up to half of the data points, when h ≈ N/2.
This is a computational very expensive combinatorial problem for
which however a fast and nearly optimal solution (FAST-LTS) has
recently been proposed by Rousseeuw & Van Driessen (2006).

In our implementations2, which we called LTS LINEFIT and
LTS PLANEFIT for the line and plane case respectively, we combine
the robust approach to outliers with a fitting method which allows
and fits for intrinsic scatter. We proceed as follows:

(i) We adopt as initial guess ε = 0 for the intrinsic scatter in the y
(for LTS LINEFIT) or z coordinate (for LTS PLANEFIT);

(ii) We start by default with h = (N + p+ 1)/2, where p is the data
dimension, and use the FAST-LTS algorithm to produce a least-
squares fit3. to the set of points characterized by the smallest χ2

h

(defined by equation 6 or 7);
(iii) We compute the standard deviation σ of the residuals for these h

values and extend our selection to include all data point deviating
no more than 2.6 σ from the fitted relation (99% of the values for a
Gaussian distribution);

(iv) We perform a new linear fit to the newly selected points;
(v) We iterate steps (iii)–(iv) until the set of selected points does not

change any more;
(vi) We calculate the χ2 for the fitted points;

(vii) The whole process (i)–(vi) is iterated varying ε using Brent’s
method (Press et al. 2007, section 9.3) until χ2 = ν.

(viii) The errors on the coefficients are computed from the covariance
matrix;

(ix) The error on ε is computed by increasing ε until χ2 = ν −
√

2ν
(we do not decrease it to avoid problems when ε ≈ 0).

This method was used to produce all fits in this paper and auto-
matically exclude outliers. Note that although the approach may ap-
pear similar to the standard σ clipping one, and produces similar re-
sults in simple situations, the key difference is that in LTS LINEFIT

and LTS PLANEFIT the clipping is done from the inside-out instead
of the opposite. This was found to be the essential feature for the
resulting extreme robustness, which was essential in particular to
objectively select Virgo members in Fig. 16. Once the outliers are
removed, the same set of points was used as input to Kelly (2007)
Bayesian algorithm.

3.3 Measuring scaling relations parameters

3.3.1 Determination of L, Re and r1/2 from the MGE

Galaxy photometric parameters are generally determined using
three main approaches: (i) fitting growth curves, where one con-
structs profiles of the enclosed light within circular annuli and ex-
trapolates the outermost part of the galaxy profile to infinite ra-
dius, typically using the analytic growth curve of theR1/4 (de Vau-
couleurs 1948) profile (e.g. the Seven Samurai: Burstein et al. 1987
and Faber et al. 1989; the RC3: de Vaucouleurs et al. 1991 and Jor-
gensen et al. 1995a); (ii) fitting an R1/n (Sersic 1968) profile (e.g.
Graham & Colless 1997), possibly including an exponential disk

2 Available from http://purl.org/cappellari/idl
3 In all the nonlinear fits the minimization was performed with the IDL pro-
gram MPFIT by Markwardt (2009), which is in an improved implementation
of the MINPACK Levenberg-Marquardt nonlinear least-squares algorithm
by Moré et al. (1980)
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(e.g. Saglia et al. 1997), to the circularized profiles and finding the
half-light from the models; (iii) fitting flattened two-dimensional
models directly to the galaxy images, where the profile of the mod-
els is again parameterized by an R1/4 (e.g. Bernardi et al. 2003), or
by an R1/4 bulge plus exponential disk (e.g. Gebhardt et al. 2003;
Saglia et al. 2010; Bernardi et al. 2010).

Here we have MGE photometric models for all the galaxies in
the sample based on the SDSS+INT photometry (Paper XXI). Due
to the large number of Gaussians used to fit the galaxy images, the
MGE models provide a compact and essentially non-parametric de-
scription of the galaxies surface brightness, which reproduces the
observations much more accurately than the simpler bulge and disk
models, but more robustly than using the images directly. Our MGE
fitting approach is in fact analogue to the popular GALFIT (Peng
et al. 2002) software, when it is used to match every detail of a
galaxy image using multiple components. Here we use the MGE
models to measure the photometric parameters (L and Re) in our
scaling relations as done in Cappellari et al. (2009). A key differ-
ence between this MGE approach and all the ones previously men-
tioned is that it does not extrapolate the galaxy light to infinite radii.
Outside three times the dispersion 3×max(σj) of the largest MGE
Gaussian, the flux of the model essentially drops to zero. No at-
tempt is made to infer the amount of stellar light that we may have
observed if we had much deeper photometry. For this reason thisRe

must be necessarily smaller than the ones obtained via extrapolation
to infinite radii.

The extrapolation method depends on the assumed form of
the unobservable galaxy profile out to infinite radii. One may ar-
gue that an extrapolation of the galaxy profile using a Sersic (1968)
function should provide a better estimate of the total luminosity
(andRe) than the observed luminosity. This is in general likely cor-
rect, however the accuracy of the extrapolation depends on galaxy
properties in a unknown systematic manner. Our volume-limited
sample of ETGs is dominated by fast rotators (Paper II; Paper III),
characterized by the presence of disks (Krajnović et al. 2013, here-
after Paper XVII) and closely linked to spiral galaxies (Cappellari
et al. 2011b, hereafter Paper VII; Paper XX). Given the variety in
the outer profiles of spiral galaxies (van der Kruit & Searle 1981;
Pohlen & Trujillo 2006) it is unclear how profiles should be extrap-
olated. Using Re and luminosities derived via extrapolation makes
any derived trend necessarily assumption dependent. As we show in
Section 4.4, the differences between different assumptions are quite
significant. One can obtain different trends in scaling relations and
reach different conclusions about their interpretation.

We argue that to make progress one should base conclusions
on directly observable quantities. So for this work define Re as
the radius containing half of the observed light, not half of the
ill-defined amount of total light we think the galaxy may have. Of
course even our approach does not solve the problem of determining
an absolute normalization of Re, and our sizes appear well repro-
ducible only in a relative sense. The only real solution to the prob-
lem is to obtain deeper photometry so that Re values converge and
become essentially independent on the adopted profiles (Kormendy
et al. 2009; Ferrarese et al. 2012). However for massive galaxies in
clusters the distinction between galaxy light and intra-cluster light
may become an issue. Earlier indications using deeper MegaCam
photometry, which we have acquired for many of the galaxies in
our sample (Duc et al. 2011, hereafter Paper IX), confirm that Re

determinations depend sensitively on the depth of the adopted pho-
tometry as expected.

If the x-axis is aligned with the galaxy photometric major axis,
and the coordinates are centered on the galaxy nucleus, the surface

brightness of an MGE model at the position (x′, y′) on the plane of
the sky, already analytically deconvolved for the atmospheric seeing
effects, can be written as (Emsellem et al. 1994)

Σ(x′, y′) =

M∑
j=1

Σj exp

[
− 1

2σ2
j

(
x′2 +

y′2

q′2j

)]
, (9)

where M is the number of the adopted Gaussian components, hav-
ing peak surface brightness Σj , observed axial ratio 0 ≤ q′k ≤ 1
and dispersion σk along the major axis. The total luminosity of the
MGE model is then:

L =

M∑
j=1

Lj =

M∑
j=1

2πΣjσ
2
j q
′
j , (10)

where Lj are the luminosities of the individual Gaussians.
In Cappellari et al. (2009) the effective radius of the MGE

model was obtained by circularizing the individual Gaussians of
the MGE, while keeping their peak surface brightness. This was
achieved by replacing (σj , q

′
j) with (σ

√
q′j , 1) . The luminosity of

the circularized MGE enclosed within a cylinder of projected radius
R is then

L(R) =

M∑
j=1

Lj

[
1− exp

(
− R2

2σ2
j q
′
j

)]
. (11)

The circularized effective (half-light) radius Re was found by solv-
ing L(R) = L/2, using a quick interpolation over a grid of
logR values. When the MGE has constant axial ratio q′j = q′

for all Gaussians, this approach finds the circularized radius Re =√
ab = a

√
q′ of the elliptical isophote containing half of the ana-

lytic MGE light, where a is the major axis of the isophote. This is
the quantity almost universally used for studies of scaling relations
of ETGs. When the axial ratios of the different Gaussians are not all
equal, the approach finds an excellent approximation for the radius
Re =

√
Ae/π of a circle having the same area Ae as the isophote

containing half of the MGE light. In fact we verified that for all the
MGE of the ATLAS3D sample the two determinations agree with
an rms scatter of just 0.17% and only for four of the flattest galaxies
the difference is larger than 3%.

Hopkins et al. (2010) pointed out the usefulness of adopting
as size parameter the major axis Rmaj

e of the half-light isophote in-
stead of the circularized radius Re, when analysing results of sim-
ulations. The motivation is that Rmaj

e is more physically robust and
less dependent on inclination. Here we also calculate Rmaj

e for our
observed galaxies as follows.

(i) We construct a synthetic galaxy image from the MGE using equa-
tion (9), with size max(σj) × max(σj) (only one quadrant is
needed for symmetry);

(ii) We sample a grid of surface-brightness values µk = µ(xk, 0)
along the MGE major axis, and for each value we calculate the light
enclosed within the corresponding isophote;

(iii) We find the surface brightness µe of the isophote containing half
of the analytic MGE total light by solving L(µ) = L/2 using linear
interpolation;

(iv) Rmaj
e is the maximum radius enclosed inside the isophote µe (the

largest x coordinate).

We also calculate the circularized effective radius of the isophote
Re =

√
A/π of area A and the effective ellipticity εe of the MGE

model inside that isophote as (Cappellari et al. 2007)
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Figure 4. Different definitions of Re as a function of the galaxy ellipticity.
The red filled diamonds are the projected radii Re of a cylinder with the
same area of the half-light isophote. The blue filled circles are the radii r1/2
of a sphere with the same volume as the half-light iso-surface. In both cases
the radii are normalized to Rmaj

e , which is the projected semi-major axis of
the half-light isophote, having ellipse of inertia of ellipticity εe. The red and
blue dashed lines are the relations f(εe) = 1.42

√
εe and f(εe) =

√
εe

respectively. The horizontal dashed line marks the theoretical value 4/3,
which approximately applies to a number of simple theoretical profiles.

(1− εe)2 = q′2e =
〈y2〉
〈x2〉 =

∑P

k=1
Fk y

2
k∑P

k=1
Fk x2k

, (12)

where Fk is the flux inside the k-th image pixel, with coordinates
(xk, yk) and the summation extends to the pixels inside the chose
isophote. A similar quantity was calculated from the original galaxy
images in Paper III, but we use here this new determination for max-
imum consistency between our εe and the ellipticity of the MGE
models in the tests of Fig. 4.

We studied the dependence on inclination of the two defini-
tions of effective radii using the photometry of real galaxies. For
this we selected the 26 flattest galaxies in our sample, all hav-
ing axial ratio q′ < 0.4. These galaxies are likely to be close to
edge-on. We assume they are exactly edge-on and we then use the
MGE formalism (equations 9, 13 and 14) to deproject the surface
brightness and calculate the intrinsic luminosity density. We then
project it back on the sky plane at different inclinations, from edge
on (i = 90◦) to face on (i = 0◦). At every inclination we calculate
the two effective radiiRe andRmaj

e (Fig. 5). The comparison shows
that, as expected, the Re of flattened objects can be much smaller
when objects are edge-on than face-on, with a median decrease of
43% (0.24 dex). The opposite is true forRmaj

e , but the variations are
dramatically smaller, with a median increase of 5% (0.02 dex). The
two effective radii of course are the same for intrinsically spherical
objects. The use of Rmaj

e instead of Re is especially useful when
one considers that 86% of the galaxies in ATLAS3D (and in the
nearby Universe) are disk like (Paper II, III and VII).

In what follows we also need the radius r1/2 of a sphere en-
closing half of the galaxy light. For this we need to derive the in-
trinsic galaxy luminosity density from the MGE, assuming the best
fitting inclination of the JAM models. A possible deprojection of
the observed MGE surface brightness can be derived analytically
by deprojecting the individual Gaussians separately (Monnet et al.
1992). The solution is only unique when the galaxy is edge-on (Ry-
bicki 1987). The deprojected luminosity density ν is given by
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0.0

0.5

1.0

1.5
Inclination dependence of effective radius

0 20 40 60 80
Inclination [deg]

0.0

0.5

1.0

1.5

ra
tio

Re/Re(0
°)

Re
maj/Re

maj(0°)

Figure 5. Inclination dependence for different definitions of the effective
radius. The red lines show the change in the measured circularized Re, nor-
malized to the face-on value, when the inclination is changed from edge-on
(i = 90◦) to face-on, for the 26 flattest ATLAS3Dgalaxies. The blue di-
amond marks the median (43%) of the maximum variation. The blue lines
show the same variation with inclination of the major axisRmaj

e of the half-
light isophote. The red circle is the median (5%) of the maximum variation.

ν(R, z) =

M∑
k=1

Σjq
′
j√

2π σjqj
exp

[
− 1

2σ2
j

(
R2 +

z2

q2j

)]
, (13)

where the individual components have the same dispersion σj as in
the projected case (9), and the intrinsic axial ratio of each Gaussian
becomes

qj =

√
q′2j − cos2 i

sin i
, (14)

where i is the galaxy inclination (i = 90◦ being edge-on). To cal-
culate r1/2 from the intrinsic density of equation (13) one can pro-
ceed analogously to the approach used to measure the circularized
Re. This is done by making the three-dimensional MGE distribu-
tion spherical, while keeping the same total luminosity and peak
luminosity density of each Gaussian. This is achieved by replac-
ing (σj , qj) with (σ q

1/3
j , 1). The light of this new spherical MGE

enclosed within a sphere of radius r is given by

L(r) =

M∑
j=1

Lj
[
erf(hj)− 2hj exp(−h2

j )/
√
π
]
, (15)

with hj = r/(
√

2σj q
1/3
j ) and erf the error function. And the half-

light spherical radius r1/2 is obtained by solving L(r) = L/2 by
interpolation. As in the projected case, when all Gaussians have
the same qj = q, which means the density is stratified on similar
oblate spheroids, the method gives the geometric radius r1/2 =

(abc)1/3 = a q1/3, where a is the semi-major axis of the spheroid.
While when the qj are different, this radius provides a very good
approximation to the radius r1/2 = [3Ve/(4π)]1/3 of a sphere that
has the same volume Ve of the iso-surface enclosing half of the total
galaxy light.

In Fig. 4 we compare the three definitions of Re as a func-
tion of the observed effective ellipticity εe of the MGE, for all the
galaxies in the ATLAS3D sample. Even though the galaxy isophotes
are in most cases not well approximated by ellipses, and the galax-
ies are intrinsically not oblate spheroids, the ratio between Re and
Rmaj
e follows the relation for elliptical isophotes. When the galaxies
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are very close to circular on the sky Re and Rmaj
e agree by defini-

tion. The situation is very different regarding the relation between
r1/2 and Rmaj

e . In this case, when the galaxy is edge-on, there is
a simple ratio r1/2/Re ≈ 1.42, but when the galaxies have lower
inclinations, large variations in the ratio are possible, so that r1/2
cannot be inferred from the observations, without the knowledge
of the galaxy inclination, which generally require dynamical mod-
els. The situation is of course much simpler for spherical objects, in
which case r1/2/Re ≈ 1.42 as in the edge-on case. For comparison
Hernquist (1990) found the theoretical value r1/2/Re ≈ 1.33 for
his spherical models, while Ciotti (1991) has shown that for aR1/m

model the ratio is confined between 1.34–1.36, when m = 2− 10,
and the same applies to other simple profiles (Wolf et al. 2010). As
expected our ratio is slightly larger, given that our models, like real
galaxies, do not extend to infinite radii. For flatter models the cylin-
drical and spherical circularized radii are approximately related as
Re/R

maj
e =

√
εe, which one would expect for elliptical isophotes

while the ratio r1/2/Re remains approximately constant.

3.3.2 Comparing effective and gravitational radius

For an isolated spherical system in steady state one obtains from the
scalar virial theorem (Binney & Tremaine 2008)

M =
rg〈v2〉∞

G
, (16)

where rg is defined as the gravitational radius, which depends on
the total and luminous mass distribution, M is the galaxy total lu-
minous plus dark mass and 〈v2〉∞ is the mean-square speed of the
galaxy stars, integrated over the full extent of the galaxy. In the
spherical case 〈v2〉∞ = 3〈σ2

los〉∞ and

M = 3
rg〈σ2

los〉∞
G

. (17)

This formula is rigorously independent of anisotropy and only de-
pends on the radial profiles of luminous and dark matter (Binney &
Tremaine 2008, section 4.8.3).

When the spherical system is self-consistent (L(r) ∝ M(r))
the gravitational radius can be easily calculated as

rg =
2L2∫∞

0
[L(r)/r]2dr

. (18)

Here we evaluate this expression using a single numerical quadra-
ture via equation (15), from the same spherical deprojected MGE
we used in the previous Section to calculate r1/2. The MGE is
obtained by deprojecting the observed surface brightness at the
JAM inclination and subsequently making the MGE spherical while
keeping the same peak stellar density and luminosity of every Gaus-
sian. In this way our calculation of rg is rigorously accurate when
the MGE is already spherical, while the formula provides a good
approximation for flattened galaxies.

In Fig. 6 we plot the ratio r1/2/rg , for the full ATLAS3D sam-
ple as a function of the non-parametric Third Galaxy Concentra-
tion (TGC) defined in Trujillo et al. (2001) as the ratio between the
light L(Re) = L/2 enclosed within an isophote of radius Re and
the one L(Re/3) enclosed within an isophote with radius Re/3.
Graham et al. (2001) have shown that this choice leads to a more
robust measure of concentration than popular alternatives (e.g. Doi
et al. 1993). We compute the TGC from the circularized MGE us-
ing equation (11), as done for Re. We find a trend in the ratio for
the galaxies in our sample that varies between r1/2/rg ≈ 0.3−0.4
for the range of galaxy concentrations we observed. For comparison
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Figure 6. The black filled circles mark the ratio r1/2/rg between the radius
of the half-light sphere and the gravitational radius for all the galaxies in
the sample. For comparison the solid red line indicates the same ratio for a
spherical galaxy with anR1/m surface brightness profile. From left to right
the red diamonds mark the locations m = 1, 2, 4, 6, 8, 10 respectively. The
green dashed horizontal line indicates the theoretical value for a Hernquist
(1990) profile.

we also calculate the TGC and the corresponding rg for spherical
models described by theR1/m profile (Sersic 1968). This was done
by constructing analytic profiles, truncating them to R < 4Re, to
mimic the depth of the SDSS photometry, before fitting them with
the one-dimensional MGE-fitting procedure of Cappellari (2002).
Both TGC and r1/2/rg span the ranges predicted for profiles with
m = 2− 6. Our trend in the ratio is more significant than the gen-
erally assumed near constancy around 0.40 ± 0.02, first reported
by Spitzer (1969) for different polytropes, which agrees with the
theoretical value r1/2/rg = (1 +

√
2)/6 ≈ 0.402 for a Hernquist

(1990) profile (Mamon 2000; Łokas & Mamon 2001). However,
the variation is indeed rather small, being only at the ±15% level
around a median value of 0.35 in our sample.

The relatively small variations of the ratio between the gravi-
tational and intrinsic r1/2 or projected Re half-light radii, explain
the usefulness of the latter two parameters in measuring dynamical
scaling relations of galaxies. This fact, combined with the rigorous
independence on anisotropy, also explains the robustness of a mass
estimator like

M1/2 = k
r1/2〈σ2

los〉∞
G

, (19)

when the stellar systems can be assumed to be spherical and kine-
matics is available over the entire extent of the system, as pointed
out by Wolf et al. (2010). Assuming the measured ratio r1/2/rg ≈
0.4 for galaxies with the approximate concentration of anR1/4 pro-
file, already in the self-consistent limit the expected coefficient is
k ≈ 3/0.4/2 = 3.75, which is close, but 25% larger than the
corresponding coefficient k = 3 proposed by Wolf et al. (2010).
However, the ratio r1/2/rg we empirically measured on real galax-
ies, does not assume the outermost galaxy profiles are known and
can be extrapolated to infinity, so it weakly depends on the depth of
the photometry. For example, for a spherical galaxy that follows the
R1/4 profile to infinity, we obtain r1/2/rg = 0.456, which would
imply k = 3.29 in the self-consistent limit. The remaining 10%
difference from Wolf et al. (2010) is easily explained by the small
increase of 〈σ2

los〉∞ due to the inclusion of a dark halo.
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3.3.3 Determination of σe

Unfortunately the quantities 〈v2los〉∞, or 〈σ2
los〉∞ are currently

only observable via discrete tracers in objects like nearby dwarf
spheroidal (dSph) galaxies (e.g. Walker et al. 2007), but it is still not
a directly observable quantity in early-type galaxies. Nonetheless
Cappellari et al. (2006) showed that in practice 〈v2los〉e, as approxi-
mated by σ2

e , which can be empirically measured for large samples
of galaxies, can still be used to derive robust central masses when
applied to real, non-spherical ETGs, with kinematics extended to
about 1Re:

(M/L)(r = Re) ≈ 5.0× Reσ
2
e

GL
, (20)

where (M/L)(r = Re) is estimated inside an iso-surface of vol-
ume V = 4πR3

e/3 (a sphere of radius Re if the galaxy is spher-
ical), and σe is the velocity dispersion calculated within a pro-
jected circular aperture of radius Re. In this paper we improve
on the previous approach by measuring σe inside an effective el-
lipse instead of a circle. The ellipse has area A = πR2

e and ellip-
ticity εe. The measurement is done by co-adding the luminosity-
weighted spectra inside the elliptical aperture and measuring the
σ of that effective spectrum using pPXF (Cappellari & Emsellem
2004) and assuming a Gaussian line-of-sight velocity distribution
(keyword MOMENTS=2). Due to the co-addition, the resulting
spectrum has extremely high S/N (often above 300) and this makes
the measurement robust and accurate. When the SAURON data do
not fully cover Re we correct the σe to 1Re using equation (1)
of Cappellari et al. (2006). σe has the big advantage over 〈v2los〉e
that it can also be much more easily measured at high redshift, as
it does not require spatially resolved kinematics. Integrated stel-
lar velocity dispersions have started to become measurable up to
redshift z ≈ 2 (Cenarro & Trujillo 2009; Cappellari et al. 2009;
van Dokkum et al. 2009; Onodera et al. 2010; van de Sande et al.
2011). Moreover the advantage of σe over the traditional central
dispersion σc, is that it is empirically closer to the true second ve-
locity moment 〈v2los〉∞ that appears in the virial equation (17) and
is directly proportional to mass. Making the good approximation
(M/L)(r = Re) ≈ (M/L)(r = r1/2), where r1/2 ≈ 1.33Re,
one can rewrite equation (20) in a form that is directly comparable
to equation (19)

M1/2 ≈ 2.5× Reσ
2
e

G
≈ 1.9×

r1/2 σ
2
e

G
. (21)

Note that the empirical coefficient 1.9 is significantly smaller than
the value around 3.0 one predicts when using 〈σ2

los〉∞ in equa-
tion (19) and we will come back to this point in Section 4.3.

4 RESULTS

4.1 Uncertainty in the scaling relations parameters

4.1.1 Errors in L, Re and σ

In the study of galaxy scaling relations formal errors onL,Re and σ
are often adopted, as given in output by the program used for their
extraction. These errors assume the uncertainties are of statistical
nature. However, in many realistic situations the systematic errors
are significant, but difficult to estimate. In this work, the availability
of a significant sample of objects, with similar quantities measured
via independent data or methods, allow for a direct comparison of
quantities. This external comparison permits us to include system-
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Figure 7. Testing the relative accuracy of size measurements. Comparison
between theRe from 2MASS plus RC3, matched to RC3 as described in Pa-
per I, and the Re from the MGEs. For a good match the MGE values have
been increased by a significant factor 1.35. In what follows the effective
radii will always already include this multiplicative factor. The coefficients
of the best-fitting relation y = a + b(x − x0) and the corresponding ob-
served scatter ∆ in y are shown at the top left of the plot. The two red
dashed and dotted lines mark the 1σ bands (enclosing 68% of the values
for a Gaussian distribution) and 2.6σ (99%) respectively. The outliers auto-
matically excluded from the fit by the LTS LINEFIT procedure are shown as
green diamonds.

atic errors into our adopted errors, instead of just using formal or
Monte Carlo errors.

In Paper XXI we compare the total magnitudeMr of the MGE
model, as derived from the SDSS+INT r-band photometry to var-
ious other sources in the literature. We conclude that our total Mr

are accurate at the 10% level, in the relative sense. This is the error
we adopted in what follows. This accuracy is comparable to other
state-of-the-art photometric surveys.

A comparison between the circularized half-light radii Re of
Paper I and the circularized Re from the r-band MGE is shown in
Fig. 7. In this case the rms scatter is of ∆ = 0.058 dex, which
would imply errors of ∆/

√
2 = 10% in the individual Re. This

is the error we adopt for our Re determination. This must still be
a firm upper limit to the errors, given that any relative variations,
among galaxies, in the colour gradients in r and Ks will increase
the scatter. Remarkably in this case our scatter between SDSS r-
band and 2MASS Ks bands, for the entire sample, is as small as
the best agreement (0.05 dex) reported by Chen et al. (2010, their
fig. 8), when comparing their determinations versus those of Janz
& Lisker (2008), using the very same SDSS g-band photometry
and curve-of-growth technique. We are not aware of other published
independent Re determinations from different data that agree with
such a small scatter, and for such a large sample. The rms scatter
we measure is twice smaller that the Chen et al. (2010) comparison
in the same band between SDSS and ACSVCS. Our scatter is also
twice smaller than a similar comparison we performed in Paper I
between the Re of 2MASS and RC3. We interpret the excellent
reproducibility of our MGE Re values, and the agreement with the
values of Paper I, to the fact that in both 2MASS and our MGE
models the total luminosities are not computed via a extrapolation
of the profile to infinity, but simply measured from the data. This
result is a reminder of the fact that extrapolation is a dangerous
practice, which should be avoided whenever possible.
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A very important feature of Fig. 7 is the significant offset by
a factor 1.35 between the MGE Re and the values of Paper I, with
the MGE values being smaller. In what follows all our MGE effec-
tive radii will always already include this multiplicative factor. The
values of Paper I where determined from a combination of 2MASS
(Skrutskie et al. 2006) and RC3 (de Vaucouleurs et al. 1991) Re

measures. But they were scaled to match on average the values of
the RC3 catalogue, which were determined using growth curves ex-
trapolated to infinity. The RC3 normalization agree within 5% with
the SAURON determinations in (Cappellari et al. 2006; Kuntschner
et al. 2006; Falcón-Barroso et al. 2011). Part of the 1.35 offset is
simply due to the extrapolated light in an r1/4 profile, outside the
region where our galaxy extend on the SDSS or INT images. But
the source of the remaining offset is unclear and confirms the diffi-
culty of determining Re. For comparison in Paper I we showed that
the 2MASS and RC3 values correlate well, but have an even more
significant offset of a factor 1.7!

Various comparisons of the accuracy of kinematic quantities
have been performed in the literature (e.g. Emsellem et al. 2004).
The general finding is that the measurements of the galaxies veloc-
ity dispersion can be reproduced at best with an accuracy of ≈ 5%,
mainly due to uncertainties in the stellar templates and various sys-
tematic effects that are difficult to control. Here in Fig. 8 we test
the internal errors of our kinematic determination by comparing
σe against the velocity dispersion σkpc measured within a circu-
lar aperture of radius R = 1 kpc (close to the radius R = 0.87 kpc
adopted in Jorgensen et al. 1995b). This aperture is always fully
contained in the observed SAURON field-of-view. We measure an
rms scatter of ∆ = 0.025 dex between the two quantities, which
corresponds to a 1σ error of 4% in each value. The two values do
not measure the same quantity, as the two adopted apertures and
fitted spectra are different, and for this reason both the actual ve-
locity dispersion and the stellar population change in the two pPXF
fits. For this reason the observed scatter provides a firm upper limit
to the true internal uncertainties in σe. However, in what follows
we still assume a conservative error of 5% in σe and σkpc, to ac-
count for possible systematics. The same choice was made e.g.
in Tremaine et al. (2002) and Cappellari et al. (2006). We further
compared our σkpc values againts the literature σ compilation in
the HyperLEDA database (Paturel et al. 2003), for 207 galaxies in
common with our sample. A robust fit between the logarithm of the
two quantities eliminating outliers with LTS LINEFIT gives an ob-
served rms scatter of 9% (∆ = 0.038 dex), likely dominated by the
heterogeneity of the HyperLEDA values, and no significant offset
(1%) in the overall normaliztion. Apart from placing a very firm
upper limit to our errors, this provides an external estimate of the
typical uncertainties in the HyperLEDA values.

4.1.2 Errors in mass or M/L

To obtain an estimate of our mass and M/L errors for the full
sample, we proceed similarly to Cappellari et al. (2006), namely
we compare mass determinations using two significantly different
modelling approaches. In Section 3.1.2 we described the six mod-
elling approaches that were presented in Cappellari et al. (2012)
and we also use in this paper. For this test we compare the self-
consistent model (A) and the models (B) which include a NFW halo
with mass as free parameter. For the model with NFW halo we then
compute the (M/L)e ≡ (M/L)(r = Re) by numerically integrat-
ing the luminous and dark matter distribution of the models. The
total M/L enclosed within an iso-surface of volume V = 4πR3

e/3
is defined as follows
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Figure 8. Testing the relative accuracy of σe determinations. Top Panels:
Same as in Fig. 7 for the comparison between the dispersion σe, as measured
with pPXF from the spectrum inside an elliptical aperture of area A =
πR2

e , and the quantity σkpc measured on a spectrum extracted inside a fixed
circular aperture of radius R = 1 kpc. Bottom Panels: Same as in the top
panel, for the comparison between our σkpc and the central σ provided by
the HyperLeda database.

(M/L)(r = Re) ≡
L(Re)× (M/L)stars +MDM(Re)

L(Re)
, (22)

whereMDM is the mass in the dark halo. This quantity is compared
with the (M/L)JAM of the self-consistent model in the top panel
of Fig. 9. The agreement is excellent, with no offset or systematic
trend, and an rms scatter ∆ = 0.038 dex, consistent with errors
of ∆/

√
2 = 6% in each quantity. This value is the same we esti-

mated as modelling error in Cappellari et al. (2006) and confirms
the original estimate of the random modelling uncertainties. There
is no evidence for any significant trend or systematic offset.

Importantly this result clarifies a misconceptions regarding the
use of self-consistent models to measure the M/L inside r ≈ Re

in galaxies. Self-consistent models, like the one used in Cappellari
et al. (2006), do not underestimate the totalM/L as it is sometimes
stated (e.g. Dutton et al. 2011b, section 3.7). Even though the model
with dark halo has a total galaxy mass typically an order of magni-
tude larger inside the virial radius, and has a dramatically different
mass profile at large radii, the model still measures an unbiased to-
tal M/L within a sphere of radius r ≈ Re, corresponding to the
projected extent of the kinematical data. The robustness in the re-
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Figure 9. Accuracy of M/L and mass. Top Panel: Same as in Fig. 7 for
the comparison between the (M/L)JAM of the best-fitting self-consistent
(total mass follows light) models, and the (M/L)e, integrated within an
iso-surface of volume V = 4πR3

e/3 (for a spherical galaxy a sphere of
radius r = Re), including the contribution of both the stellar and the dark
matter component. There is no bias or systematic offset between the two
determinations, which are consistent with an error of ∆/

√
2 = 6% in each

quantity. Bottom Panel: Same as the top panel for the comparison between
the total mass of the self-consistent JAM model and twice the mass M1/2

within the half-light iso-surface, for the model with dark matter halo.

covery of the enclosed total mass, in the region constrained by the
data, even in the presence of degeneracies in the halo profile, was
already pointed out by Thomas et al. (2005) and is demonstrated
here with a much larger sample.

Of course the self-consistent (M/L)JAM is larger than the
purely stellar one (M/L)stars if dark matter is present, according
to the relation

(M/L)JAM ≈ (M/L)(r = Re) =
(M/L)stars

1− fDM(r = Re)
, (23)

where the fraction of dark matter contained within an iso-density
surface of mean radius Re is defined as

fDM(r = Re) ≡
MDM(Re)

L(Re)× (M/L)stars +MDM(Re)
. (24)

The difference between (M/L)JAM and the stellar M/L inferred
from population models can then be used to give quantitative con-
straints on the dark matter content and the form of the IMF, as done

in Cappellari et al. (2006). Moreover the self-consistent models do
not imply or require the dark mass to be negligible inside r ≈ Re

as sometimes stated (e.g. Thomas et al. 2011). Although a number
of galaxies has non-negligible dark matter fraction, the total (lumi-
nous plus dark)M/Lwithin 1Re is still accurately recovered by the
simple self-consistent models, without detectable bias. This makes
the self-consistent models well suited to determine unbiased total
M/L within 1Re at high redshift (van der Marel & van Dokkum
2007; van der Wel & van der Marel 2008; Cappellari et al. 2009),
where high-quality integral-field stellar kinematics still cannot be
obtained and dark matter fractions cannot be extracted.

Using integral-field data the error in this measure of enclosed
mass is as small as the one that can be obtained from strong lens-
ing studies. The important difference between the two techniques
is that the lensing results measure the total mass inside a projected
cylinder (or elliptical cylinder), while the stellar kinematics gives
the total mass inside a spherical (or spheroidal) region. The lens-
ing mass should be larger than the dynamical one if dark matter is
present in the galaxy. The difference between these two quantities
provides a measure of the dark matter content along the LOS and
can be exploited to get some constraints on the dark matter profiles
(Thomas et al. 2011; Dutton et al. 2011a).

In the bottom panel of Fig. 9 we compare the mass MJAM ≡
L× (M/L)JAM, which we use extensively in this and in other pa-
pers of this ATLAS3D series, with the total mass M1/2 enclosed
within an iso-surface enclosing half of the total light, which is
sometimes advocated to compare observations to galaxy simula-
tions (e.g. Wolf et al. 2010). The plot illustrates the equivalence of
the two quantities, for all practical purposes. It clarifies the physical
meaning of MJAM:

MJAM ≈ 2×M1/2. (25)

The JAM models with dark halo additionally provide an es-
timate of the dark matter fraction fDM (equation (24)) enclosed
within the region constrained by the data r = Re. For the galax-
ies where our kinematics does not cover 1Re, our fDM will be
more uncertain. The results is presented, as a function of galaxy
stellar mass Mstars in Fig. 10 for the set of models (B), with a
NFW halo, with mass as free parameter, and for the set of models
(E), which have a cosmologically-motivated NFW halo, uniquely
specified by Mstars. We find a median dark matter fraction for
the ATLAS3D sample of fDM = 15% for the full sample and
fDM = 9% for the best (qual > 1 in Table 1) models (B) and
17% with models (E). These value are broadly consistent, but on
the lower limit, with numerous previous stellar dynamics determi-
nations inside 1Re from much smaller samples and larger uncer-
tainties: Gerhard et al. (2001) found fDM = 10− 40% from spher-
ical dynamical modelling of 21 ETGs; Cappellari et al. (2006) in-
ferred a median fDM ≈ 30% by comparing dynamics and popu-
lation masses of 25 ETGs, and assuming a universal IMF; Thomas
et al. (2007b, 2011) measured fDM = 23 ± 17% via axisymmet-
ric dynamical models of 16 ETGs; Williams et al. (2009) measured
a median fraction fDM = 15% with JAM models of 15 ETGs, as
done here, but with more extended stellar kinematics to ≈ 2 − 3
Re; The results of Tortora et al. (2009) are not directly compara-
ble, as they used spherical galaxy toy models and inhomogeneous
literature data from various sources, however they are interesting
because they explored a sample of 335 ETGs, comparable to ours,
and report a typical fDM = 30% by comparison with stellar popu-
lation.

The quite small fDM that we measure seems also consistent
with the fact that the strong lensing analysis of the about 70 galax-
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Figure 10. Dark matter fraction for ATLAS3D galaxies. The open circles
indicate the fraction fDM of dark matter enclosed within the iso-surface of
volume V = 4πR3

e/3 (in the spherical case within a sphere of radius Re),
for the best-fitting JAM models, as a function of the galaxy stellar mass
Mstars inferred by the models. The blue filled circles are for the subset of
103 galaxies with the best models and data (qual > 1 in Table 1), while
the red crosses indicate less good model fits or inferior data. The Top Panel
corresponds to the results for models (B), with a NFW halo having mass as
free parameter. The median is fDM = 13% for the full sample and fDM =
9% for the best models. In a number of cases the model without dark matter
is preferred. The solid green line indicates the mean for four mass bins. The
Bottom Panel is the same as the top one, for the set of models (E) which has
a cosmologically-motivated NFW halo. The median fDM = 17% for all
models. The green line is a robust parabolic fit (written in the figure) to all
the data. The robust result is that dark matter fractions are small, for halo
slopes not steeper than NFW. fDM < 21% in 90% of the best models.

ies of the SLACS sample Bolton et al. (2006) finds a logarithmic
slopes for the total (luminous plus dark matter) density close to
isothermal. Subsequent re-analyses of their data all confirmed a
trend ρtot(r) ∝ r−2.0, with an intrinsic scatter of ≈ 0.2 (Koop-
mans et al. 2006, 2009; Auger et al. 2010a; Barnabè et al. 2011). In
Fig. 2 we derive the same slope and intrinsic scatter for the stellar
density alone, inside a sphere of radius r = Re. This fact seems to
suggest that dark matter does not play a significant role in galaxy
centres and that the measured isothermal density slope is essentially
due the stellar density distribution. Only a very steep dark matter
slope close to isothermal ρDM(r) ∝ r−2.0 like the average stellar
distribution could allow for significant dark matter fractions, while

still being consistent with these observations. We are not aware of
any theoretical or empirical evidence for these very steep dark mat-
ter cusps in galaxies.

4.2 The classic Fundamental Plane

Since the discovery of the Fundamental Plane (FP) relation between
luminosity, size, and velocity dispersion, in samples of local ellip-
tical galaxies (Faber et al. 1987; Dressler et al. 1987; Djorgovski &
Davis 1987), numerous studies have been devoted to the determi-
nation of the FP parameters either including fainter galaxies (Nieto
et al. 1990), fast rotating ones (Prugniel & Simien 1994), or lentic-
ular galaxies (Jorgensen et al. 1996). The dependency of the FP
parameters have been investigated as a function of the photomet-
ric band (Pahre et al. 1998; Scodeggio et al. 1998) or redshift (van
Dokkum & Franx 1996). Moreover galaxy samples of more tha 104

galaxies have been studied (Bernardi et al. 2003; Graves et al. 2009;
Hyde & Bernardi 2009). In this section, before presenting our re-
sult, we study the consistency of our FP parameters with previous
studies.

Nearly all previous studies have used as variables the loga-
rithm of the effective radius Re, the effective surface brightness Σe
and the (central) velocity dispersion σ. One of the reasons for this
choice comes from the emphasis of the FP for distance determina-
tions. Both Σe and σ are distance independent, so that all the dis-
tance dependence can be collected into theRe coordinate by writing
the FP as

logRe = a+ b log σ + c log Σe. (26)

In the top panel of Fig. 11 we present the edge-on view of our
ATLAS3D FP, obtained with the LTS PLANEFIT routine, where we
use as velocity dispersion σe (Section 3.3.3) as done in Cappellari
et al. (2006) and Falcón-Barroso et al. (2011), but here measured
within an elliptical rather than circular isophote. Our best-fitting
parameters b = 1.063 ± 0.041 and c = −0.765 ± 0.023 are for-
mally quite accurate, but significantly different from what is gen-
erally found by other studies: the median of the 11 determinations
listed in table 4 of Bernardi et al. (2003) is b = 1.33 and c = −0.82,
with an rms scatter in the values of σb = 0.12 and σc = 0.03. The
observed scatter we measure ∆ ≈ 0.091 dex in logRe is very close
to what has been found by other studies (e.g. Jorgensen et al. 1996
find 0.084).

To understand the possible reason of this disagreement we test
the sensitivity of our estimate to the sample selection and the size of
the kinematical aperture used for the σ determinations. For this we
measure the velocity dispersion σkpc inside a circular aperture with
radius R = 1 kpc (close to the radius R = 0.87 kpc adopted in the
classic study by Jorgensen et al. 1995b). We also select the massive
half of our sample by imposing a selection σkpc > 130 km s−1.
The resulting FP is shown in the middle panel of Fig. 11, and now
both the fitted values and the observed scatter agree with previous
values. For comparison we also show in the bottom panel of Fig. 11
the determination of the FP parameters, when using σe instead of
σkpc, but keeping the same selection of the massive half of our
ATLAS3D sample σe > 130 km s−1. These values are also con-
sistent with the literature. This illustrates the importance of sample-
selection and σ extraction in the derivation of FP parameters. The
increase of b as a function of the lower σ cut-off of the selection is
fully consistent with the same finding by Gargiulo et al. (2009) and
Hyde & Bernardi (2009) and we refer the reader to the latter paper
for a more complete study of the possible biases in the FP param-
eters due to sample selection. The reason for the sensitivity of the
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Figure 11. Classic fundamental plane. Top Panel: edge-on view of the FP
for all the ATLAS3D galaxies. The coefficients of the best-fitting plane
z = a + bx + cx and the corresponding observed scatter ∆ are shown at
the top left of the plot. The two dashed lines mark the 1σ bands (enclosing
68% of the values for a Gaussian distribution) and 2.6σ (99%). The outliers
excluded from the fit by the LTS PLANEFIT procedure are shown with green
symbols. The errors are the projection of the observational errors, excluding
intrinsic scatter. Middle Panel: Same as in the top panel, with σkpc mea-
sured within a circle of radius R = 1 kpc. Only galaxies with σkpc > 130
km s−1 are included. Bottom Panel: Same as in the top panel using σe, but
with Only including galaxies with σe > 130 km s−1.

FP parameters to the selection, is a result of the fact that the FP is
not a plane, but a warped surface, as we demonstrate in Paper XX
by studying the variation of the (M/L)JAM on the MP. So that the
FP parameters depend on the region of the surface one includes in
the fitting. This was also tentatively suggested by D’Onofrio et al.
(2008).

Having shown that with our sample and method we can de-
rive results that are consistent and at least as accurate as previous
determinations, we now proceed to study the Mass Plane, by replac-
ing the traditionally used stellar luminosity with the total dynami-
cal mass. A similar study was performed by Bolton et al. (2007,
2008), and updated by Auger et al. (2010a), using masses derived
from strong lensing analysis. They also call their plane the “Mass
Plane”. Although our studies are closely related, one should keep
in mind that, while the lensing masses are measured within a pro-
jected cylinder of radius R = Re/2, parallel to the LOS, and for
this reason they include a possible contribution of dark matter at
large radii, our dynamical masses are measured within a sphere of
radius r = Re.

4.3 From the Fundamental Plane to the Mass Plane

The classic form for the FP is ideal when the FP is used to determine
distances. However, a different form seems more suited to studies
where the FP is mainly used as a mass or M/L estimator. For this
we rewrite the FP as

log

(
L

L�,r

)
= a+b log

(
σe

130 km s−1

)
+c log

(
Re

2 kpc

)
.(27)

Here we normalized the σe and Re values by the approximate me-
dian of the values for our sample, to reduce the covariance in the fit-
ted parameters and the error in a. Using L instead of Σe has the ad-
vantage that it reduced the covariances between the pairs of observ-
ables (Σe, Re). Here in fact, as opposed to when Σe ≡ L/(2πR2

e)
is used, there is no explicit dependence between the three axes,
which become independently measured quantities. The new fit to
the FP is shown in the top panel of Fig. 12. In agreement with all
previous authors the fitted parameters are very different from the
values b = 2 and c = 1 expected in the case of the virial equa-
tion (20). The relation shows a negligible increase in the observed
rms scatter, from ∆ = 0.091 dex (23%) to ∆ = 0.10 (26%). This
may be due to the reduced covariances between the adopted quanti-
ties: the new scatter is now a better representation of the true scatter
in the FP relation.

In the bottom panel of Fig. 12 we show for comparison the
relation obtained by replacing the total galaxy luminosity with the
dynamical mass

MJAM ≡ L× (M/L)JAM ≈ 2×M1/2 ≈Mstars, (28)

where (M/L)JAM is the total (luminous plus dark) dynamical
M/L obtained using self-consistent JAM models (A), L is the to-
tal galaxy luminosity and M1/2 is the total mass within a sphere of
radius r1/2 enclosing half of the total galaxy light, where r1/2 ≈
1.33Re (Hernquist 1990; Ciotti 1991; Wolf et al. 2010; Fig. 4). The
correctness of the MJAM ≈ 2×M1/2 approximation is illustrated
in the bottom panel of Fig. 9. While the 2 ×M1/2 ≈ Mstars ap-
proximation is due to the relatively small amount of dark matter en-
closed within r = r1/2 (Fig. 10). This is only approximately true,
generally within 20%, but much larger errors are generally made
when determining stellar masses from stellar population models,
due the assumption of a universal IMF, which was recently shown
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Figure 12. From the Fundamental Plane to the Mass Plane. Top Panel: Edge
on view of the FP. Symbols and lines are as in Fig. 11. Middle Panel: Edge-
on view of the MP. Note the decrease in the scatter, when making the substi-
tutionL→M , and the variation in the coefficients, starting to approach the
virial ones b = 2 and c = 1. Bottom Panel: Same as in the middle panel,
but using as effective radius the major axis Rmaj

e of the effective isophote
rather than the circularized radius. The scatter increases slightly, but the tilt
is further decreased and now is consistent with the virial prediction.

not to represent real galaxies (van Dokkum & Conroy 2010; Cap-
pellari et al. 2012). None of our conclusions is affected by the last
approximation, which only serves to allow for comparisons of our
results to previous similar studies that use stellar mass as parameter.

Two features are obvious from the plot: (i) There is a dra-
matic reduction of the observed scatter from ∆ = 0.10 (26%) to
∆ = 0.062 (15%). This shows without doubt that a major part of
the scatter in the FP is due to variations in the M/L, in agreement
with independent results from strong lensing (Auger et al. 2010a);
(ii) The b coefficient substantially increase and is now much closer
to the virial value b = 2, while the c coefficient remains nearly
unchanged. The coefficients become consistent with the virial ones
when using the effective radius Rmaj

e , which is insensitive to pro-
jection effects, instead of Re. This confirms that much of the de-
viation of the FP from the virial predictions is due to a systematic
variation in M/L along the FP, not to non-homology in the lumi-
nosity profiles or kinematics, also in agreement with previous dy-
namical (Cappellari et al. 2006) and strong lensing results (Bolton
et al. 2008; Auger et al. 2010a).

Galaxies are seen at random orientations so that projection ef-
fects should affect the measured σe. Given that the velocity ellip-
soid in ETGs is generally not too far from a sphere (Gerhard et al.
2001; Cappellari et al. 2007; Thomas et al. 2009), the velocity dis-
persion changes weakly with inclination, while the LOS velocity
varies as V = v sin i, where i is the galaxy inclination and v is the
edge-on (i = 90◦) velocity. In this work we have an estimate of the
galaxy inclination for every galaxy in our sample, as measured via
the JAM models. Although the inclination may not be always ac-
curate, Cappellari (2008) showed that it agrees with the inclination
inferred from dust disks, for a sample of four galaxies. Here we ex-
tend the comparison to an additional sample of 22 galaxies with reg-
ular dust disks. The JAM inclination is found to always agree within
the relative errors, with the inclination inferred from the dust disks,
assumed to be circular and in equilibrium in the galaxies equatorial
plane. Moreover our tests using JAM to recover the inclination of
N-body simulated galaxies also shows excellent agreement between
the recovered values and the known ones (Paper XII). Our estimator
of the ‘deprojected’ second velocity moment is then defined as

〈v2rms〉e = 〈v2 + σ2〉e ≡
∑P

k=1
Fk(V 2

k / sin2 i+ σ2
k)∑P

k=1
Fk

, (29)

where i is the inclination of the best-fitting JAM models (A), Vk
and σk are the stellar velocity and dispersion, extracted via pPXF
adopting a Gaussian line-of-sight velocity distribution, and Fk is
the flux contained within that bin, for the P Voronoi bins (Cap-
pellari & Copin 2003) falling within the ‘effective’ ellipse of major
axisRmaj

e and ellipticity εe (Table 1). We found that 〈v2rms〉e agrees
with σe with an rms scatter of ∆ = 0.025 dex, consistent with our
random errors. 〈v2rms〉e did not improve any of our correlations with
respect to the much simpler and robust σe, which also has the key
advantage of not requiring spatially-resolved IFU kinematics. For
this reason we will not present any relation using 〈v2rms〉e.

The result of this exercise clearly shows that the existence of
the FP is due to the fact that galaxies can be remarkably well ap-
proximated by virialized stellar systems with an M/L that varies
systematically with their properties. These facts have been clearly
realized since the discovery of the FP (Faber et al. 1987) and have
been generally assumed in most recent studies (see Ciotti 2009, for
a full discussion). The new findings on the tilt of the FP agree with a
similar study of scaling relations in ETGs using accurate dynamical
models and integral-field kinematics of a sample of just 25 galaxies
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Figure 13. Accuracy of the simple virial estimate. Comparison between the
virial estimator of Cappellari et al. (2006) and the more accurate JAM val-
ues. The inferred rms errors in the estimation of M/L are 15%. Symbols
and lines are as in Fig. 11.

(Cappellari et al. 2006) and with independent confirmations using
strong gravitational lensing (Bolton et al. 2007, 2008; Auger et al.
2010a). Galaxy structural non-homology has a minor effect at best,
when the determination of galaxy scaling parameters is pushed to
the maximum accuracy and an attempt is made to remove the most
important biases.

The level of accuracy at which the simple structural and dy-
namical homology approximation holds is not entirely expected
however, given the apparent complexity of galaxy photometry and
kinematics. Of course the dynamical models assume equilibrium
and rigorously satisfy the virial equations. One may think that a
tight relation is a necessary feature of the approach. This is how-
ever not correct. It is true in fact that the models satisfy the scalar
virial equation 2T+W = 0 by construction, where T is the total ki-
netic energy andW is the total potential energy. However, given the
complex multi-component nature of galaxies, the presence of bars,
the importance of projection and the fact that the potential energy
should include dark matter, it is far from obvious that one should
be able to define any simple empirical measure of projected radius
on the galaxy, and a measure of velocity dispersion within a limited
region, so that the virial equation can be written in the simple form
M1/2 = k σ2R/G (designed for spherical homologous systems),
with fixed exponents and nearly constant coefficient for the entire
population!

4.4 Simple mass estimators

In Fig. 13 we present a direct comparison between the new
(M/L)JAM estimates, which approximate the totalM/L within an
iso-surface with volume V = 4πR3

e/3, and the simple virial esti-
mate of equation (20) from Cappellari et al. (2006). Considering the
modelling errors of 5% inM/L estimated in this paper, we infer an
error of 15% in the virial estimates. This shows that, although the
virial estimates do not suffer from strong biases, they provide errors
about a factor 3 larger, even when using our good data.

Our finding does not seem to agree with the small systematic
offsets recently reported by Thomas et al. (2011). The disagreement
may be an effect of small sample statistics and larger errors, given
that they studied only 16 objects and did not use integral-field data.

However, even more likely is that the difference they find may be
due to a systematic difference in their Re determination, with re-
spect to the SAURON ones. Our new empirical confirmation of the
scaling of the coefficient in Cappellari et al. (2006), even in the
presence of dark matter, also emphasizes the importance of using
virial coefficients that are calibrated to the extent of the available
kinematic data. The coefficient k = 3.75 given by Spitzer (1969)
or k = 3 proposed by Wolf et al. (2010) for equation (19) should
not be used to estimate central masses in early-type galaxies, where
stellar kinematics out to at most a couple of Re is available and the
corresponding value k ≈ 1.9 of equation (21) applies. The differ-
ence of the two coefficients is due to the fact that, while the estima-
tor of Wolf et al. (2010) is a theoretical one, designed for spherical
geometry, very extended kinematics, and assumes galaxy profiles
are known to infinite radii, the one by Cappellari et al. (2006) is
an empirical one, designed for quantitative measures of masses in
the central regions of ETGs. Both estimators are useful in their own
range of applicability, but they should not be used interchangeably,
unless one can tolerate systematic biases of ≈ 60% in the absolute
mass normalization.

In Fig. 14 we compare the ability of different simple mass esti-
mators Mvir, all based on the scalar virial equation, to properly re-
produce MJAM. We show trends as a function of the Sersic (1968)
index n obtained for our galaxies by fitting a single Sersic profile to
the entire galaxy (for both E and S0 galaxoes) and given in table C1
of Paper XVII. Our preferred estimator, which uses a fixed virial co-
efficient and the semi-major axisRmaj

e of the effective isophote, re-
producesMJAM better than any alternative one. It has no detectable
trend with the Sersic index and presents the smallest scatted (0.08
dex rms; top left panel). The best-fitting coefficient of this estimator
is smaller that the value 5.0 determined in Cappellari et al. (2006).
This accounts for the fact thatRmaj

e is systematically larger than the
circularized radiusRe. In the bottom left panel we change the virial
coefficient β(n) according the the predictions of spherical isotropic
models with a Sersic profile (e.g. Prugniel & Simien 1997; Bertin
et al. 2002). For this we adopt the expression in equation (20) of
Cappellari et al. (2006), which was calculated for σe measured in
an aperture of radius Re as adopted here. The plot shows a clear
trend as a function of n, with a systematic bias of up to a factor
three for the largest n. This confirms that when Re is measured
without extrapolation of the data as done here, or in the ‘classic’
way (Burstein et al. 1987; Jorgensen et al. 1995a; Cappellari et al.
2006), using growth curves with fixed n = 4, a constant virial co-
efficient performs better than one that changes with n.

The opposite is true when RSer
e is the value obtained from

Sersic fits of the galaxy profile, assuming the galaxy is described
by that functional form out to infinite radii (from table C1 of Pa-
per XVII). These Re can be significantly different from the non-
extrapolated values. Given that for both theRSer

e andRmaj
e determi-

nations we used the very same images, the differences are entirely
due to the assumed functional form of the surface brightness beyond
the region where we have data. In this situation, adopting a fixed
virial coefficients causes severe biases. The systematic bias in the
virial estimator can be essentially removed adopting for β(n) the
analytic prediction of Cappellari et al. (2006). However the scatter
in this estimator is significantly larger (0.13 dex rms) than the non-
extrapolated one. Moreover deviations are particularly large (up to
a factor three) at the largest n, where a larger fraction of the total
galaxy light is not actually observed on the images, but just ex-
trapolated. Also note that an extra factor 0.70 is needed in addition
to the theoretically predicted coefficient β(n). This factor must be
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Figure 14. Comparing simple mass estimators. The ratio between the mass
predicted by different estimators (written in blue in the panels), all based
on the scalar virial equation, is compared to the rigorous determination us-
ing JAM models, and plotted as a function of the Sersic index n from Pa-
per XVII. The best estimator is the one in the top left panel, which measures
Re from the data without extrapolation, and uses a fixed virial coefficient.
When Re is measured from a Sersic fit to the profile extrapolated to infinite
radii, the virial coefficient β(n) needs to vary as a function of n, but the
scatter in the recovered mass is large, especially for large n (bottom right
panel). Here we used the theoretical prediction for β(n) of equation (20) in
Cappellari et al. (2006)

calibrated empirically and makes the absolute normalization of the
masses determined with this simple estimator rather uncertain.

These tests illustrate the extreme sensitivity of the reliability of
masses estimated using the scalar virial equation, on the technique
adopted to measure Re. They also show the difficulty of obtaining
masses that are properly normalized. Ultimately the general unreli-
ability and poor reproducibility of effective radii determined from
photometry of different quality is the main limiting factor to a quan-
titative use of the scalar virial relations to measure accurate masses
or M/L, when a proper absolute normalization is essential, like in
IMF studies of distant galaxies (Cappellari et al. 2009). If differ-
ent methods or extrapolations, applied to different, but high-quality
photometric data of local galaxies, can produce revisions in Re by
as much a s a factor of two (Kormendy et al. 2009; see also Chen
et al. 2010), more significant biases should be expected when com-
paring local and high-redshift observations, as already pointed out
by Mancini et al. (2010). When biases in Re are present, only dy-
namical models can still provide robust central masses and M/L,
due to the near insensitivity of the models to the shape of the outer
mass and light profiles (van der Marel & van Dokkum 2007; van
der Wel & van der Marel 2008; Cappellari et al. 2009).

4.5 The (M/L)− σe relation

In the previous sections we showed that the existence of the Funda-
mental Plane can be accurately explained by the virial relation com-
bined with a smooth variation of theM/L. Here we study the previ-
ously reported correlation (M/L) ∝ σ0.8

e (in the I-band) between
the effective velocity dispersion and the dynamical M/L within a
sphere of radius Re (Cappellari et al. 2006; van der Marel & van
Dokkum 2007). This relation was previously found to provide the

tightest relation among other parameters of scaling relations (dy-
namical mass, luminosity or size), with an observed scatter of 18%
and an inferred intrinsic one of just ∼13%, when using integral-
field kinematics.

The (M/L) − σe relation for the full ATLAS3D sample is
shown in the top-left panel of Fig. 15. Our new relation has an ob-
served scatter of 29%, from which we infer an intrinsic scatter of
23%, when combining our 5% errors in the models with the dis-
tance errors for the various subsamples as described in section 2.2
of Paper I. We adopted as distance errors the median one for each
given class of determinations reported in Paper I, instead of the in-
dividual errors, which are not easy to trust in every case, and that are
likely dominated by systematics. The scatter is significantly larger
than the previously reported one. The new relation has a formally
accurate power slope of b = 0.720±0.043, which is a bit shallower
than the previous one, based on a sample ten times smaller than the
current one.

To understand the reason for the differences between our
(M/L) − σe slope and previous determinations, in the top-right
panel Fig. 15 we plot the (M/L) − σe relation for the subset of
78 galaxies with SBF distances from Tonry et al. (2001), as done
in both Cappellari et al. (2006) and van der Marel & van Dokkum
(2007). The relation for this subset now steepens and becomes even
steeper than the previous determinations. The reason for this is
likely related to the fact that the Tonry et al. (2001) subsample is
biased towards elliptical galaxies, which tend to be the brightest
in our sample. A change in slope is then expected from the curva-
ture of the (M/L)− σe relation, which is not clearly visible in our
range of σ values, but is implied by the deviations from our relation
when other classes of objects with smaller of larger σ are considered
(Zaritsky et al. 2006, 2008; Tollerud et al. 2011). A small but sys-
tematic increase in the slope is indeed visible when we select sub-
samples within different σ ranges from our ATLAS3D sample. We
conclude that the minor difference between our newly fitted value
and the previous works is due to the difference in the sample selec-
tion. The present sample is not only much large than the one used
in previous studies, but also volume-limited so it provides a sta-
tistically representative view of the scaling relations in the nearby
Universe.

In the middle-left panel of Fig. 15 we show the (M/L) − σe
of the 36 slow rotator ETGs defined in Paper III and for the fast ro-
tators. We confirm a detectable offset in the relation, with the slow
rotators having slightly largerM/L than fast rotators, as previously
reported in Cappellari et al. (2006). However, the difference is just
at the 9% level. There is also a change in the slope, with the slow
rotators defining a more shallow relation that the full population.
We also confirm the smaller scatter in the relation, as reported by
Falcón-Barroso et al. (2011) for the colour-σ and FP relations. The
slow rotators have an observed scatter of 22%, and an inferred in-
trinsic one of 15% in the (M/L) − σe relation. This is likely due
to the fact that significant amounts of cold gas and star formation,
which affect the M/L but not σ, are in fast rotators (Paper IV,
McDermid et al. in preparation). The relation for the fast rotators
(middle-right panel) agrees with the global one, as expected from
the fact that they dominate the ATLAS3D sample.

The dependence of the slope and zero point of the (M/L)−σe
relation on environment effects is shown in the bottom panels of
Fig. 15. As discussed in Paper VII, most of the environmental dif-
ferences in the ATLAS3D sample can be characterized by whether
a galaxy belongs to the Virgo cluster or not. The left panel shows
the 58 ATLAS3D galaxies in Virgo. They follow the same shallow
relation as the slow rotators, but with the zero point of the global
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Figure 15. The (M/L)e−σe relation. From left to right and from top to bottom the relation is shown (i) for all ATLAS3D galaxies; (ii) for the subset in Tonry
et al. (2001); (iii) for the subset of slow rotators (from Paper III); (iv) for the subset of fast rotators (from Paper III); (v) for the subset of galaxies in the Virgo
cluster; (vi) for subset not in the Virgo cluster. In all plots the blue symbols are fast rotators , while red symbols are slow rotators. Green symbols are outliers
excluded from the fit by LTS LINEFIT.

relation. The observed scatter decreases to just 14%, in part due to
the accurate distances from ACSVCS (Mei et al. 2007). However,
the intrinsic scatter ∆(M/L) also further decreases to just 10%.
This is consistent with the intrinsic scatter measured by Cappellari
et al. (2006), using a radically different set of models and different

distance estimates (no ACSVCS), but on a sample that, contrary to
the ATLAS3D sample, was dominated by Virgo galaxies. The de-
crease in the scatter must be related to the decrease in the fraction
of young objects in Virgo (Kuntschner et al. 2010; McDermid et al.
in preparation). It again confirms that the scatter of the (M/L)−σe
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relation is dominated by stellar population (including IMF) effects,
as previously demonstrated for the FP. The two results are two ways
of looking at the same thing, given that the (M/L)− σe relation is
the projection of the differences between the FP and MP along the
σe axis. For completeness we also show in the bottom-right the re-
lation for non-Virgo galaxies, which dominate the sample and again
are consistent, albeit a bit steeper, than the global relation.

In the top panel of Fig. 16 we show how the tightness of the
(M/L)−σe relation can be used to cleanly select galaxies belong-
ing to the Virgo cluster. Here we selected all ATLAS3D galaxies
contained within a cylinder of radius of R = 12◦ centred on the
Virgo cluster (approximately at the location of the galaxy M87) and
assigned to all of them the cluster distance of D = 16.5 Mpc from
Mei et al. (2007). We then used the LTS LINEFIT routine to fit a
line. Even in the presence of 20 dramatic outliers out of 79 objects,
the method is able to robustly converge to a clean relation.4 The
method selects 59 galaxies within the 99% (2.6σ) confidence bands
from the best-fitting relation. The plot reveals a tight sequence in
the (M/L) − σe, which corresponds to galaxies in the Virgo clus-
ter, with an observed scatter of ∆(M/L) = 0.071 (18%). It is re-
assuring to see that this relation, which uses no individual distance
information for the galaxies, agrees both in the slope and zeropoint
with the ones for all ATLAS3D galaxies, even though it has smaller
scatter. Galaxies above the relation lie in the background of Virgo,
and their difference in distance modulus from Virgo is 2.5× the dif-
ference in log(M/L) from the best-fitting relations. In this fit we
assume that the distance error are due to the 1σ depth of the Virgo
cluster. Adopting the value of σD = 0.6 ± 0.1 from Mei et al.
(2007) we derive an intrinsic scatter in M/L of εM/L = 0.063 dex
(16%).

When we select only the galaxies with SBF distances from the
ACSVCS (Mei et al. 2007) (bottom panel of Fig. 16), we find a
relation with the same slope, but a decreased observed scatter of
∆(M/L) = 0.047 (11%). For this relatively small, but still statis-
tically significant sample of 32 galaxies, the inferred intrinsic scat-
ter in M/L would be a mere 8%! Considering that ETGs appear
to have very small fractions of dark matter in their central region
(Fig. 10), a small scatter in dynamical M/L should be expected
from the extreme tightness of the colour-magnitude relation in clus-
ters (Bower et al. 1992) and specifically for the ACSVCS galaxies
(Chen et al. 2010), given that colour is a direct tracer of the M/L
of the stellar population (Bell & de Jong 2001). Our small scatter
finding confirms the remarkable accuracy of the ACSVCS SBF dis-
tances and their ability to resolve the cluster structure as claimed. It
shows that the intrinsic (M/L)−σe relation is extremely tight, but
its study is limited in our sample by the distance errors. It would be
valuable to perform a similar analysis as in the top panel of Fig. 16,
with integral-field data and accurate models, in a cluster like Coma,
sufficiently close that good stellar kinematics can be obtained, but
sufficiently far that errors in the distance can be virtually ignored.
The smaller intrinsic scatter inferred for this sample, with respect
to the one in the top panel, suggests that, either they are not drawn
from the same population, or the ACSVCS sample in Mei et al.
(2007) spans a slightly smaller set of distances within the Virgo
cluster, than the ATLAS3D Virgo sample. The tightness of this cor-
relation also places stringent constraints on the possible intrinsic
scatter on the IMF − σ trend that we discuss in Paper XX. Any

4 Other robust method like (i) minimizing the absolute deviation, (ii) us-
ing iterated biweight estimates or (iii) M-estimates (Press et al. 2007, sec-
tion 15.7), failed to provide a sensible solution to this problem.
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Figure 16. Scatter in the (M/L)e−σe relation in the Virgo galaxy cluster.
Top Panel: All ATLAS3D galaxies within 12◦ of the center of the Virgo
cluster have been assigned a fixed distance of D = 16.5 Mpc. The mea-
sured M/L naturally defines a clean (M/L)e − σe relation for galaxies
belonging to the cluster. The scatter in this relation is due to a combina-
tion of the cluster depth and the intrinsic scatter in M/L. Bottom Panel:
(M/L)e − σe relation for the galaxies in Mei et al. (2007). The accurate
distances produce a quite significant decrease in the observed scatter, down
to just 11%, indicating that both the (M/L)JAM and the SBF distances are
significantly more accurate than this value and confirming that the SBF dis-
tances are able to resolve the spatial structure of Virgo, along the LOS, as
claimed.

IMF trend must satisfy the small scatter that we observe in this re-
lation.

4.6 Relation between σe and the maximum circular velocity

Previous studies (Zaritsky et al. 2006, 2008; McGaugh et al. 2010;
Dutton et al. 2011b) have tried to unify dynamical scaling relations
of spiral galaxies and early-type galaxies. For spirals one can mea-
sure the rotation velocity of the gas, which appears in the Tully
& Fisher (1977) relation between galaxy luminosity (or mass) and
its maximum (asymptotic) circular velocity max(Vcirc), typically
measured from the kinematics of the neutral gas at large radii. For
early-type galaxies one can measure the velocity dispersion, which
enters the Faber & Jackson (1976) and Fundamental Plane relations.
Unification of the scaling relations is done by converting velocity
dispersion into the circular velocity Vcirc(R

maj
e ) at the half-light
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Figure 17. Circular velocity Vcirc versus σe. Top Panel: correlation be-
tween the circular velocity Vcirc(1Re) inferred from our models at 1Re,
and σe. Bottom Panel: correlation between the peak circular velocity
max(Vcirc) (within 1Re) and σe.

radius or into the maximum one max(Vcirc) adopting constant fac-
tors.

Typical conversion factors for Vcirc(R
maj
e ) used in the liter-

ature range from
√

2 to
√

3 (Courteau et al. 2007). For example
Padmanabhan et al. (2004) estimates k ≈ 1.65. While Schulz et al.
(2010) adopts k ≈ 1.7 and Dutton et al. (2011b) uses k ≈ 1.54.

Our dataset provides accurate σe for all galaxies, together with
circular velocities from our dynamical models. This allows for a
robust empirical calibration of the relation. The correlation between
σe and Vcirc(R

maj
e ) is shown in Fig. 17 and the best-fitting relation

has the form

Vcirc(R
maj
e ) ≈ 1.51× σe. (30)

Considering the variety of photometric profile and galaxy flattening
in our complete sample of ETGs, it is remarkable that the relation
has a scatter of just 8%, with a weak dependency on σe.

Even slightly tighter is the correlation between σe and
max(Vcirc), which has the form

max(Vcirc) ≈ 1.76× σe, (31)

and an observed scatter of 7%. Importantly this coefficient show es-
sentially no variation with σe (the exponent is one within the small
errors). The max(Vcirc) defined here is the peak in the rotation
curve within the region where we have stellar kinematics, which
is generally within 1Re. As shown in Fig. 18, the inner maximum
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Figure 18. Histogram for the distribution of the radius R/Re at which the
maximum circular max(Vcirc) is reached, as a fraction of the galaxy effec-
tive radius Re.

in the circular velocity max(Vcirc) is almost always reached well
inside 1Re, with 85% of the peaks happening at a radius smaller
thanRe/2 and a median radius of justRe/5. At these radii the con-
tribution of the stellar mass totally dominates the total mass. For
this reason max(Vcirc) should not be confused with the asymptotic
value of the circular velocity at large radii, where dark matter dom-
inates. The latter is generally used in the Tully & Fisher (1977) re-
lation (but see Davis et al. 2011). Although the so-called bulge-halo
conspiracy (van Albada & Sancisi 1986) seems to generally make
the two peak velocity values similar (e.g. see Williams et al. 2009),
this fact has never robustly established for a significant sample of
ETGs.

5 SUMMARY

We construct detailed dynamical models (JAM), based on the Jeans
equations and allowing for orbital anisotropy, for the volume-
limited and essentially mass-selected ATLAS3D sample of early-
type galaxies. The models fit in detail the two-dimensional galaxy
images and reproduce in detail the integral-field stellar kinematics
obtained with SAURON out to about 1Re, the projected half-light ra-
dius. We derive accurate total mass-to-light ratios (M/L)e and dark
matter fractions fDM, within a sphere of radius r = Re centred on
the galaxies. We infer massesMJAM ≡ L× (M/L)e ≈ 2×M1/2,
whereM1/2 is the mass within a sphere enclosing half of the galaxy
light. We also measure stellar (M/L)stars.

We test the accuracy of our mass determinations by running
models with and without dark matter and we find that the enclosed
total (M/L)e is a robust quantity, independent of the inclusion of a
dark-matter halo, with an rms accuracy of 5% and negligible bias.
In other words, even using simple mass-follow-light models, one
recovers the total enclosed (M/L)e with good accuracy and small
bias. We illustrate the tecniques we use to measure radii and global
kinematical quantities from our data, and to robustly fit linear re-
lations or planes to the data, even in the presence of outliers and
significant intrinsic scatter. We stress the difficulty of measuring
absolutely calibrated effective radii Re, and we argue againt ex-
trapolation in the profiles, for more reproducible results. System-
atic offsets in Re determinations are the main limitation for the use
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of the scalar virial relation for mass estimates, and may affect size
comparisons as a function of redshift.

We find that the thin two-dimensional subset spanned by
galaxies in the (MJAM, σe, R

maj
e ) coordinates system, which we

call the Mass Plane (MP) has an observed rms scatter of 19%,
which would imply an intrinsic one of just 11%. The MP satis-
fies the scalar virial relation MJAM ∝ σ2

eR
maj
e within our tight

errors. However, this is only true if one pays special attention to the
methodology employed to determine the galaxy global parameters
and in particular, (i) one uses as scale radius the major axisRmaj

e of
the ‘effective’ isophote enclosing half of the total projected galaxy
light (without extrapolating the profile beyond the data), and (ii)
one measures the velocity dispersion σe (which includes rotation
and random motions) from a spectrum derived inside that effec-
tive isophote. This confirms with unprecedented accuracy previous
claims (Cappellari et al. 2006; Bolton et al. 2008) that galaxies ac-
curately satisfy the virial relations and that the existence of the FP is
entirely explained by virial equilibrium plus a systematic variation
in the total (M/L)e.

We revisit the (M/L)e − σ relation and measure a marginally
shallower observed slope than previously reported. The minor dif-
ference can be explained by selection of the sample of galaxies pre-
viously used to fit the relations. We find that the correlation depends
both on galaxy rotation and environment, in the sense that both for
the subsamples of the galaxies in Virgo, or for the subsample of
slow rotators, the relation is more shallow and has a reduced scat-
ter. In the best case, when the most accurate distances are used, the
observed scatter drops to 11% and the intrinsic one is estimated to
be a mere 8%.

We study the correlation between σe and the circular velocity
from the dynamical models. We find that Vcirc(R

maj
e ) ≈ 1.51×σe

and max(Vcirc) ≈ 1.76×σe. The relations have an observed scatter
of 7–8% and the coefficient is independent on σe.

The accurate global dynamical scaling parameters for the
ETGs in the ATLAS3D sample are used in the companion Paper XX
to explore different projection of the Mass Plane and the variation
of galaxy physical parameters.
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Table 1. Scaling relations and mass-follows-light JAM models parameters for the ATLAS3D sample of 260 early-type galaxies.

Galaxy log σe R(σ)/Re log σkpc inc log(M/L)JAM log V max
circ qual logRmaj

e logRe log r1/2 log rg conc εe logL

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (′′) (′′) (′′) (′′) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

IC0560 1.879 0.97 1.885 73 0.486 2.114 2 1.352 1.154 1.248 1.659 0.458 0.577 9.566
IC0598 1.996 1.00 1.964 75 0.439 2.215 2 1.148 0.956 1.109 1.551 0.397 0.567 9.828
IC0676 1.806 0.81 1.825 49 0.550 2.059 0 1.460 1.396 1.477 1.989 0.366 0.259 9.660
IC0719 2.108 0.98 2.019 77 0.938 2.341 3 1.301 1.027 1.155 1.663 0.268 0.716 9.697
IC0782 1.870 1.00 1.827 67 0.670 2.086 1 1.303 1.207 1.339 1.853 0.361 0.301 9.645
IC1024 1.892 0.99 1.825 88 0.696 2.133 2 1.332 1.078 1.276 1.807 0.236 0.687 9.471
IC3631 1.551 1.00 1.647 70 -0.155 1.833 0 1.235 1.062 1.188 1.635 0.388 0.535 9.742
NGC0448 2.047 1.00 2.021 90 0.523 2.276 2 1.235 1.002 1.203 1.664 0.375 0.656 9.919
NGC0474 2.160 0.69 2.205 51 0.618 2.418 1 1.511 1.472 1.608 2.003 0.519 0.163 10.314
NGC0502 1.989 1.00 2.058 20 0.465 2.251 1 1.171 1.160 1.191 1.651 0.475 0.041 9.952
NGC0509 1.852 0.92 1.846 90 0.530 1.958 0 1.393 1.168 1.373 1.931 0.314 0.633 9.512
NGC0516 1.843 0.95 1.766 89 0.528 2.006 2 1.408 1.142 1.328 1.862 0.287 0.691 9.609
NGC0524 2.343 0.79 2.370 20 0.857 2.598 0 1.572 1.564 1.613 2.119 0.377 0.038 10.544
NGC0525 1.902 1.00 1.949 70 0.711 2.158 1 1.088 1.029 1.117 1.593 0.347 0.210 9.457
NGC0661 2.251 1.00 2.272 87 0.958 2.489 1 1.284 1.210 1.369 1.805 0.457 0.294 9.974
NGC0680 2.262 0.99 2.292 86 0.750 2.508 1 1.284 1.239 1.401 1.813 0.487 0.178 10.276
NGC0770 2.038 0.99 2.048 88 0.516 2.248 0 0.921 0.857 1.004 1.503 0.320 0.260 9.767
NGC0821 2.254 0.69 2.285 75 0.822 2.484 2 1.641 1.541 1.703 2.117 0.471 0.369 10.273
NGC0936 2.225 1.00 2.288 37 0.719 2.576 2 1.749 1.724 1.516 1.989 0.490 0.090 10.594
NGC1023 2.222 0.74 2.262 74 0.532 2.479 3 1.666 1.546 1.639 2.130 0.436 0.398 10.287
NGC1121 2.225 1.00 2.204 82 0.824 2.435 2 1.000 0.814 0.997 1.415 0.408 0.530 9.737
NGC1222 1.958 0.97 1.900 50 0.700 2.305 0 1.218 1.188 1.303 1.743 0.451 0.120 9.804
NGC1248 1.906 1.00 1.923 42 0.324 2.168 2 1.191 1.148 1.026 1.535 0.405 0.178 9.894
NGC1266 1.898 0.98 1.917 51 0.597 2.163 0 1.330 1.280 1.376 1.921 0.319 0.214 9.814
NGC1289 2.095 0.98 2.130 89 0.634 2.382 1 1.339 1.233 1.407 1.777 0.495 0.384 10.083
NGC1665 1.958 0.94 1.996 59 0.498 2.220 1 1.526 1.400 1.445 1.888 0.414 0.431 10.102
NGC2481 2.224 1.00 2.200 81 0.698 2.422 2 1.186 0.962 1.146 1.579 0.367 0.567 9.999
NGC2549 2.152 0.94 2.149 89 0.782 2.381 3 1.466 1.280 1.475 1.859 0.456 0.539 9.653
NGC2577 2.293 0.97 2.293 70 0.874 2.470 3 1.347 1.197 1.242 1.713 0.426 0.467 10.047
NGC2592 2.282 1.00 2.291 48 0.882 2.504 1 1.148 1.086 1.182 1.573 0.482 0.241 9.796
NGC2594 2.224 0.99 2.229 90 0.731 2.412 1 0.999 0.856 1.011 1.412 0.501 0.461 9.736
NGC2679 2.005 0.85 1.986 90 0.486 2.183 0 1.448 1.389 1.537 1.953 0.452 0.234 9.914
NGC2685 2.019 0.99 1.991 76 0.455 2.212 3 1.572 1.344 1.488 1.928 0.432 0.628 9.857
NGC2695 2.257 0.99 2.292 47 0.736 2.509 2 1.312 1.237 1.235 1.690 0.465 0.283 10.199
NGC2698 2.285 0.99 2.280 73 0.749 2.528 3 1.278 1.092 1.227 1.646 0.454 0.503 10.075
NGC2699 2.104 1.00 2.118 36 0.568 2.350 1 1.078 1.046 1.099 1.548 0.418 0.147 9.819
NGC2764 2.029 0.98 1.948 69 0.648 2.247 2 1.365 1.171 1.267 1.767 0.290 0.594 9.989
NGC2768 2.297 0.45 2.313 90 0.933 2.523 1 1.948 1.778 1.976 2.434 0.402 0.526 10.601
NGC2778 2.121 1.00 2.141 41 0.855 2.395 2 1.236 1.185 1.169 1.573 0.451 0.216 9.642
NGC2824 2.105 1.00 2.109 53 0.628 2.443 0 0.953 0.904 0.977 1.410 0.485 0.211 9.889
NGC2852 2.196 1.00 2.203 39 0.835 2.461 1 0.931 0.901 0.977 1.410 0.488 0.118 9.622
NGC2859 2.212 0.77 2.247 59 0.568 2.485 2 1.463 1.441 1.578 1.965 0.517 0.104 10.404
NGC2880 2.121 0.92 2.124 51 0.680 2.378 1 1.389 1.312 1.346 1.816 0.453 0.259 9.936
NGC2950 2.193 1.00 2.198 58 0.588 2.450 1 1.306 1.237 1.361 1.756 0.501 0.265 9.887
NGC2962 2.162 0.68 2.233 74 0.814 2.442 1 1.591 1.463 1.611 2.054 0.445 0.434 10.284
NGC2974 2.355 0.88 2.364 57 0.981 2.567 3 1.547 1.441 1.424 1.893 0.443 0.391 10.152
NGC3032 1.914 0.96 1.963 38 0.310 2.307 0 1.316 1.282 1.363 1.603 0.587 0.147 9.687
NGC3073 1.794 0.93 1.750 80 0.249 1.937 0 1.325 1.304 1.451 1.897 0.437 0.090 9.701
NGC3098 2.101 0.98 2.055 90 0.677 2.322 0 1.351 1.013 1.218 1.669 0.294 0.703 9.815
NGC3156 1.837 0.95 1.831 68 0.382 2.074 1 1.403 1.257 1.384 1.850 0.360 0.491 9.690
NGC3182 2.052 0.89 2.049 80 0.589 2.255 0 1.390 1.350 1.493 1.954 0.409 0.170 10.100
NGC3193 2.252 0.73 2.292 83 0.558 2.488 2 1.463 1.439 1.582 1.993 0.465 0.117 10.595
NGC3226 2.183 0.57 2.223 57 0.873 2.402 2 1.601 1.566 1.697 2.161 0.420 0.153 10.120
NGC3230 2.256 0.96 2.292 69 0.767 2.484 2 1.368 1.224 1.324 1.757 0.407 0.453 10.345
NGC3245 2.248 0.80 2.257 64 0.637 2.461 3 1.505 1.367 1.491 1.881 0.476 0.461 10.173
NGC3248 1.944 0.95 1.973 59 0.474 2.239 2 1.394 1.289 1.364 1.789 0.486 0.371 9.805
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Table 1 (cont’d)

Galaxy log σe R(σ)/Re log σkpc inc log(M/L)JAM log V max
circ qual logRmaj

e logRe log r1/2 log rg conc εe logL

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (′′) (′′) (′′) (′′) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC3301 2.045 0.96 2.068 76 0.402 2.339 3 1.411 1.270 1.415 1.775 0.442 0.449 10.078
NGC3377 2.108 0.52 2.129 89 0.580 2.327 1 1.734 1.591 1.766 2.163 0.474 0.487 9.888
NGC3379 2.269 0.60 2.294 88 0.706 2.519 3 1.705 1.673 1.820 2.221 0.487 0.130 10.209
NGC3384 2.140 0.55 2.161 62 0.473 2.412 3 1.643 1.563 1.575 1.970 0.531 0.294 10.091
NGC3400 1.888 1.00 1.883 58 0.619 2.116 2 1.250 1.163 1.188 1.675 0.362 0.319 9.512
NGC3412 1.967 0.66 1.984 58 0.404 2.274 1 1.560 1.475 1.516 1.899 0.497 0.254 9.758
NGC3414 2.277 0.63 2.327 87 0.779 2.513 1 1.558 1.484 1.642 2.042 0.459 0.226 10.326
NGC3457 1.861 1.00 1.867 64 0.307 2.122 0 1.068 1.067 1.203 1.598 0.444 0.010 9.534
NGC3458 2.182 1.00 2.193 52 0.664 2.470 2 0.991 0.973 1.073 1.469 0.463 0.064 9.952
NGC3489 2.005 0.86 2.009 61 0.260 2.256 2 1.430 1.353 1.378 1.828 0.431 0.273 9.927
NGC3499 1.856 1.00 1.857 26 0.425 2.204 0 0.907 0.891 0.977 1.320 0.370 0.081 9.489
NGC3522 1.993 1.00 1.997 89 0.705 2.271 0 1.278 1.147 1.324 1.718 0.470 0.430 9.600
NGC3530 2.068 1.00 2.052 90 0.718 2.281 0 1.013 0.777 0.974 1.422 0.341 0.628 9.573
NGC3595 2.129 0.99 2.163 66 0.602 2.355 1 1.287 1.155 1.248 1.688 0.448 0.431 10.064
NGC3599 1.804 0.73 1.860 26 0.263 2.117 0 1.450 1.449 1.560 1.949 0.475 0.004 9.732
NGC3605 1.923 1.00 1.932 63 0.460 2.142 1 1.225 1.113 1.220 1.677 0.415 0.394 9.542
NGC3607 2.315 0.61 2.360 46 0.681 2.580 2 1.693 1.658 1.773 2.175 0.460 0.161 10.661
NGC3608 2.228 0.68 2.253 88 0.710 2.457 0 1.528 1.472 1.631 2.039 0.462 0.221 10.246
NGC3610 2.260 1.00 2.266 90 0.496 2.484 3 1.335 1.230 1.397 1.786 0.497 0.391 10.248
NGC3613 2.294 0.77 2.318 89 0.772 2.523 2 1.554 1.394 1.575 2.021 0.416 0.496 10.456
NGC3619 2.157 0.63 2.195 42 0.693 2.446 1 1.527 1.504 1.631 2.001 0.509 0.106 10.212
NGC3626 2.118 0.81 2.119 66 0.437 2.394 1 1.542 1.391 1.513 1.867 0.513 0.495 10.102
NGC3630 2.195 1.00 2.185 83 0.663 2.443 3 1.233 1.022 1.207 1.607 0.403 0.485 9.957
NGC3640 2.246 0.69 2.263 68 0.603 2.474 2 1.627 1.585 1.728 2.183 0.432 0.188 10.620
NGC3641 2.150 1.00 2.165 26 0.949 2.493 0 1.086 1.067 0.937 1.405 0.561 0.084 9.543
NGC3648 2.224 1.00 2.218 57 0.829 2.475 2 1.195 1.085 1.072 1.494 0.474 0.378 9.910
NGC3658 2.101 0.93 2.169 42 0.573 2.427 3 1.378 1.326 1.232 1.652 0.538 0.199 10.109
NGC3665 2.335 0.63 2.354 51 0.796 2.568 2 1.692 1.640 1.750 2.207 0.425 0.218 10.760
NGC3674 2.268 1.00 2.273 76 0.843 2.504 2 1.126 0.973 1.105 1.529 0.400 0.443 9.984
NGC3694 1.941 1.00 1.930 42 0.565 2.273 0 1.045 0.984 0.903 1.381 0.361 0.245 9.750
NGC3757 2.128 1.00 2.121 50 0.673 2.397 0 0.918 0.897 1.022 1.459 0.414 0.103 9.631
NGC3796 1.916 1.00 1.914 68 0.460 2.185 0 1.151 1.051 1.195 1.602 0.469 0.371 9.527
NGC3838 2.125 1.00 2.113 79 0.589 2.363 2 1.195 0.974 1.150 1.551 0.423 0.553 9.772
NGC3941 2.081 0.82 2.089 57 0.400 2.322 1 1.502 1.396 1.487 1.878 0.453 0.378 9.940
NGC3945 2.249 0.90 2.289 46 0.628 2.534 1 1.506 1.473 1.587 1.954 0.487 0.165 10.394
NGC3998 2.350 0.82 2.360 38 0.971 2.638 2 1.421 1.380 1.352 1.806 0.472 0.174 9.967
NGC4026 2.195 0.89 2.199 84 0.675 2.433 2 1.483 1.291 1.464 1.865 0.418 0.535 9.906
NGC4036 2.260 0.78 2.258 75 0.698 2.478 2 1.619 1.410 1.498 1.954 0.366 0.589 10.463
NGC4078 2.264 1.00 2.250 90 0.876 2.453 1 1.169 0.940 1.134 1.573 0.402 0.631 9.941
NGC4111 2.213 0.92 2.208 84 0.652 2.415 2 1.443 1.194 1.382 1.823 0.302 0.639 9.973
NGC4119 1.838 0.65 1.806 71 0.510 2.064 3 1.837 1.614 1.699 2.240 0.336 0.631 9.849
NGC4143 2.252 0.99 2.250 64 0.749 2.488 1 1.349 1.255 1.332 1.740 0.453 0.324 9.911
NGC4150 1.915 0.92 1.914 52 0.416 2.180 3 1.365 1.282 1.337 1.748 0.469 0.305 9.521
NGC4168 2.232 0.58 2.241 87 0.902 2.483 0 1.566 1.537 1.681 2.175 0.398 0.109 10.398
NGC4179 2.224 0.87 2.222 86 0.772 2.455 3 1.518 1.282 1.463 1.884 0.404 0.580 9.981
NGC4191 2.095 1.00 2.109 90 0.658 2.366 1 1.231 1.156 1.311 1.728 0.440 0.295 10.046
NGC4203 2.111 0.53 2.155 85 0.537 2.347 0 1.603 1.585 1.753 2.126 0.505 0.100 10.067
NGC4215 2.124 0.94 2.142 90 0.609 2.401 2 1.402 1.171 1.368 1.747 0.424 0.600 10.126
NGC4233 2.288 1.00 2.313 66 0.834 2.538 2 1.244 1.205 1.251 1.682 0.414 0.148 10.238
NGC4249 1.901 0.99 1.880 85 0.540 2.122 0 1.174 1.167 1.295 1.740 0.432 0.037 9.671
NGC4251 2.110 0.86 2.104 80 0.405 2.324 1 1.499 1.316 1.468 1.942 0.371 0.492 10.211
NGC4255 2.203 0.99 2.206 70 0.811 2.483 3 1.142 1.030 1.176 1.555 0.457 0.294 9.905
NGC4259 2.036 1.00 2.025 89 0.641 2.242 0 1.099 0.907 1.093 1.529 0.396 0.543 9.681
NGC4261 2.424 0.46 2.466 89 0.929 2.671 1 1.687 1.651 1.808 2.229 0.456 0.169 10.793
NGC4262 2.207 1.00 2.201 26 0.753 2.563 2 1.076 1.066 1.087 1.462 0.468 0.061 9.726
NGC4264 2.029 1.00 2.027 38 0.603 2.280 0 1.161 1.126 1.172 1.693 0.350 0.151 9.952
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Table 1 (cont’d)

Galaxy log σe R(σ)/Re log σkpc inc log(M/L)JAM log V max
circ qual logRmaj

e logRe log r1/2 log rg conc εe logL

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (′′) (′′) (′′) (′′) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC4267 2.092 0.70 2.138 26 0.598 2.384 1 1.581 1.576 1.494 1.915 0.583 0.025 9.975
NGC4268 2.188 0.99 2.174 88 0.853 2.408 1 1.250 1.104 1.299 1.709 0.407 0.426 9.889
NGC4270 2.096 0.97 2.145 80 0.541 2.284 1 1.396 1.232 1.416 1.859 0.373 0.503 10.204
NGC4278 2.328 0.79 2.358 88 0.829 2.561 1 1.542 1.524 1.672 2.084 0.458 0.087 10.247
NGC4281 2.357 0.81 2.379 71 0.956 2.584 2 1.564 1.389 1.536 1.959 0.435 0.542 10.263
NGC4283 2.000 1.00 1.994 26 0.570 2.242 1 1.078 1.076 1.192 1.656 0.381 0.022 9.457
NGC4324 1.956 0.95 1.945 66 0.476 2.207 1 1.389 1.280 1.355 1.814 0.389 0.349 9.735
NGC4339 1.980 0.69 2.044 26 0.685 2.275 0 1.489 1.475 1.553 1.974 0.444 0.068 9.748
NGC4340 2.027 0.74 2.044 53 0.600 2.293 0 1.590 1.565 1.680 2.065 0.483 0.133 9.966
NGC4342 2.384 0.99 2.374 90 1.017 2.610 3 0.975 0.757 0.954 1.345 0.411 0.558 9.504
NGC4346 2.104 0.89 2.101 77 0.635 2.357 3 1.466 1.272 1.410 1.810 0.448 0.503 9.756
NGC4350 2.242 0.86 2.223 89 0.771 2.472 3 1.502 1.229 1.435 1.860 0.393 0.662 9.949
NGC4365 2.345 0.43 2.403 88 0.741 2.565 2 1.839 1.778 1.945 2.380 0.452 0.250 10.784
NGC4371 2.158 0.60 2.171 76 0.705 2.382 1 1.559 1.544 1.685 2.165 0.419 0.106 10.106
NGC4374 2.412 0.50 2.453 88 0.816 2.658 1 1.803 1.787 1.928 2.368 0.462 0.082 10.769
NGC4377 2.092 1.00 2.093 41 0.514 2.344 0 1.190 1.162 1.279 1.641 0.503 0.120 9.732
NGC4379 1.994 0.96 2.007 58 0.600 2.253 1 1.335 1.273 1.410 1.845 0.412 0.245 9.669
NGC4382 2.253 0.31 2.269 90 0.629 2.512 0 1.978 1.918 2.067 2.530 0.416 0.240 10.819
NGC4387 1.998 0.99 2.004 71 0.574 2.195 1 1.295 1.181 1.325 1.794 0.350 0.397 9.608
NGC4406 2.280 0.21 2.342 89 0.754 2.519 1 2.154 2.095 2.267 2.713 0.440 0.239 10.846
NGC4417 2.133 0.90 2.130 84 0.644 2.360 2 1.486 1.291 1.480 1.901 0.404 0.541 9.904
NGC4425 1.918 0.79 1.915 90 0.606 2.089 0 1.619 1.349 1.552 2.032 0.331 0.683 9.612
NGC4429 2.248 0.56 2.298 70 0.788 2.458 0 1.819 1.690 1.834 2.319 0.398 0.443 10.379
NGC4434 1.999 1.00 2.038 43 0.417 2.223 1 1.175 1.163 1.297 1.710 0.441 0.067 9.793
NGC4435 2.184 0.80 2.177 68 0.592 2.402 3 1.530 1.371 1.478 1.940 0.422 0.479 10.096
NGC4442 2.231 0.83 2.259 72 0.672 2.469 3 1.472 1.377 1.485 1.932 0.404 0.344 10.145
NGC4452 1.901 0.73 1.864 88 0.705 2.165 3 1.676 1.257 1.459 1.970 0.277 0.840 9.554
NGC4458 1.947 0.90 1.967 84 0.527 2.136 1 1.359 1.332 1.474 1.900 0.433 0.119 9.505
NGC4459 2.199 0.63 2.231 48 0.646 2.441 1 1.680 1.634 1.730 2.152 0.451 0.187 10.273
NGC4461 2.106 0.86 2.124 71 0.642 2.368 3 1.476 1.356 1.461 1.861 0.438 0.385 9.910
NGC4472 2.398 0.28 2.460 43 0.746 2.657 1 2.059 2.019 2.107 2.559 0.448 0.168 11.029
NGC4473 2.271 0.81 2.277 81 0.715 2.517 2 1.604 1.473 1.652 2.048 0.481 0.436 10.213
NGC4474 1.930 0.78 1.944 89 0.502 2.185 2 1.587 1.330 1.504 1.936 0.429 0.590 9.685
NGC4476 1.880 0.99 1.886 88 0.464 2.115 0 1.318 1.222 1.384 1.855 0.407 0.367 9.537
NGC4477 2.173 0.46 2.213 27 0.721 2.464 1 1.659 1.643 1.649 2.105 0.469 0.069 10.222
NGC4478 2.140 0.98 2.156 41 0.714 2.424 3 1.241 1.198 1.259 1.735 0.327 0.189 9.854
NGC4483 1.941 0.99 1.939 70 0.630 2.171 1 1.336 1.256 1.394 1.824 0.405 0.289 9.508
NGC4486 2.422 0.39 2.487 84 0.858 2.647 2 1.917 1.897 2.043 2.522 0.403 0.083 10.869
NGC4486A 2.091 1.00 2.089 42 0.656 2.345 1 0.979 0.935 1.000 1.474 0.365 0.159 9.535
NGC4489 1.832 0.88 1.818 87 0.442 2.059 0 1.377 1.356 1.502 1.929 0.435 0.088 9.424
NGC4494 2.176 0.59 2.196 86 0.599 2.394 1 1.704 1.670 1.813 2.283 0.403 0.148 10.394
NGC4503 2.128 0.73 2.140 67 0.733 2.362 3 1.593 1.449 1.571 2.035 0.417 0.468 9.955
NGC4521 2.269 0.97 2.237 90 0.851 2.466 3 1.368 1.168 1.356 1.811 0.346 0.553 10.269
NGC4526 2.320 0.64 2.368 77 0.748 2.539 1 1.749 1.610 1.741 2.195 0.396 0.447 10.495
NGC4528 2.007 1.00 2.001 57 0.583 2.264 2 1.149 1.064 1.073 1.541 0.376 0.254 9.540
NGC4546 2.274 0.86 2.273 69 0.736 2.501 3 1.518 1.347 1.474 1.908 0.437 0.515 10.021
NGC4550 2.062 0.93 2.036 81 0.706 2.289 3 1.434 1.195 1.374 1.836 0.296 0.653 9.690
NGC4551 1.971 0.96 1.986 63 0.697 2.235 2 1.310 1.236 1.367 1.853 0.351 0.287 9.565
NGC4552 2.351 0.49 2.388 90 0.811 2.606 2 1.629 1.613 1.752 2.153 0.493 0.073 10.391
NGC4564 2.189 0.90 2.184 76 0.683 2.397 3 1.486 1.288 1.450 1.870 0.427 0.555 9.900
NGC4570 2.223 0.88 2.217 88 0.689 2.472 3 1.503 1.253 1.460 1.859 0.410 0.621 10.073
NGC4578 2.028 0.81 2.023 48 0.640 2.281 1 1.596 1.521 1.574 2.006 0.483 0.287 9.811
NGC4596 2.099 0.50 2.165 37 0.677 2.392 2 1.767 1.730 1.660 2.157 0.450 0.160 10.237
NGC4608 2.040 0.43 2.100 26 0.633 2.310 2 1.676 1.666 1.523 1.997 0.561 0.029 9.985
NGC4612 1.935 0.83 1.936 58 0.403 2.194 0 1.506 1.459 1.577 2.020 0.432 0.191 9.862
NGC4621 2.296 0.57 2.330 88 0.765 2.526 3 1.750 1.649 1.812 2.227 0.453 0.368 10.354
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Table 1 (cont’d)

Galaxy log σe R(σ)/Re log σkpc inc log(M/L)JAM log V max
circ qual logRmaj

e logRe log r1/2 log rg conc εe logL

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (′′) (′′) (′′) (′′) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC4623 1.884 0.82 1.856 89 0.657 2.076 1 1.582 1.315 1.520 1.986 0.350 0.684 9.513
NGC4624 2.090 0.46 2.140 27 0.635 2.357 1 1.780 1.768 1.828 2.294 0.474 0.057 10.233
NGC4636 2.259 0.27 2.297 89 0.905 2.502 0 2.034 1.972 2.133 2.601 0.432 0.231 10.491
NGC4638 2.134 0.95 2.114 78 0.469 2.309 3 1.411 1.167 1.304 1.780 0.371 0.650 9.939
NGC4643 2.171 0.56 2.205 25 0.682 2.490 2 1.565 1.555 1.671 2.051 0.459 0.050 10.210
NGC4649 2.428 0.35 2.488 47 0.838 2.687 2 1.932 1.884 1.987 2.444 0.446 0.196 10.881
NGC4660 2.263 1.00 2.259 74 0.688 2.475 2 1.242 1.111 1.252 1.666 0.442 0.409 9.811
NGC4684 1.847 0.85 1.840 75 0.365 2.078 2 1.523 1.320 1.456 1.893 0.352 0.607 9.622
NGC4690 1.991 0.97 2.036 51 0.590 2.264 1 1.352 1.290 1.388 1.846 0.421 0.247 10.030
NGC4694 1.728 0.67 1.760 69 0.148 1.929 0 1.659 1.478 1.585 2.052 0.384 0.558 9.751
NGC4697 2.229 0.39 2.256 70 0.704 2.439 3 1.959 1.851 1.990 2.429 0.433 0.400 10.364
NGC4710 2.020 0.75 2.014 88 0.647 2.265 1 1.870 1.507 1.721 2.201 0.283 0.784 10.114
NGC4733 1.717 0.78 1.739 88 0.339 1.909 0 1.567 1.554 1.682 2.205 0.331 0.076 9.538
NGC4753 2.241 0.47 2.267 58 0.604 2.467 1 1.852 1.762 1.828 2.336 0.382 0.321 10.784
NGC4754 2.204 0.85 2.231 60 0.679 2.446 2 1.551 1.486 1.542 2.008 0.462 0.260 10.132
NGC4762 2.126 0.66 2.095 90 0.563 2.419 3 2.018 1.545 1.780 2.222 0.396 0.855 10.543
NGC4803 2.023 1.00 2.011 89 0.685 2.277 0 1.044 0.943 1.094 1.591 0.328 0.376 9.753
NGC5103 2.046 0.98 2.025 90 0.540 2.284 0 1.320 1.082 1.258 1.671 0.447 0.598 9.747
NGC5173 1.986 1.00 1.993 44 0.413 2.270 0 1.082 1.050 1.157 1.592 0.433 0.140 10.002
NGC5198 2.228 0.86 2.296 35 0.793 2.481 1 1.388 1.357 1.409 1.871 0.390 0.137 10.393
NGC5273 1.824 0.70 1.851 35 0.517 2.159 1 1.620 1.580 1.454 1.931 0.389 0.165 9.732
NGC5308 2.315 0.92 2.327 86 0.814 2.549 3 1.475 1.171 1.375 1.795 0.367 0.675 10.343
NGC5322 2.351 0.58 2.391 90 0.688 2.589 1 1.730 1.646 1.813 2.233 0.464 0.318 10.844
NGC5342 2.189 1.00 2.177 74 0.836 2.417 0 1.038 0.867 1.004 1.454 0.382 0.475 9.760
NGC5353 2.449 0.89 2.427 80 0.838 2.642 2 1.474 1.278 1.438 1.931 0.342 0.557 10.665
NGC5355 1.943 1.00 1.944 69 0.553 2.186 0 1.083 1.043 1.180 1.639 0.377 0.170 9.765
NGC5358 1.938 1.00 1.897 81 0.678 2.189 0 1.105 0.935 1.112 1.581 0.351 0.456 9.598
NGC5379 1.956 0.92 1.840 89 0.875 2.153 1 1.438 1.240 1.422 1.960 0.294 0.598 9.557
NGC5422 2.197 0.88 2.209 90 0.785 2.450 1 1.486 1.251 1.453 1.852 0.417 0.584 10.164
NGC5473 2.257 0.87 2.297 39 0.684 2.532 0 1.385 1.351 1.378 1.811 0.494 0.142 10.404
NGC5475 2.061 0.96 2.010 79 0.678 2.291 2 1.410 1.153 1.319 1.731 0.380 0.644 9.887
NGC5481 2.085 0.87 2.134 53 0.776 2.379 0 1.401 1.348 1.450 1.854 0.486 0.203 9.837
NGC5485 2.223 0.69 2.241 87 0.847 2.443 0 1.511 1.461 1.617 2.078 0.409 0.206 10.208
NGC5493 2.296 0.95 2.248 76 0.471 2.460 3 1.389 1.161 1.291 1.695 0.458 0.626 10.494
NGC5500 1.924 0.99 1.937 88 0.713 2.171 0 1.266 1.212 1.360 1.808 0.429 0.221 9.618
NGC5507 2.216 0.99 2.235 63 0.825 2.472 3 1.117 1.078 1.086 1.501 0.441 0.157 9.904
NGC5557 2.306 0.71 2.386 88 0.662 2.531 1 1.480 1.449 1.598 2.010 0.459 0.139 10.671
NGC5574 1.907 0.99 1.913 89 0.399 2.100 0 1.307 1.120 1.301 1.784 0.355 0.571 9.705
NGC5576 2.191 0.70 2.242 62 0.453 2.442 2 1.526 1.448 1.587 1.976 0.513 0.306 10.426
NGC5582 2.170 0.69 2.172 55 0.722 2.418 1 1.551 1.461 1.563 1.944 0.508 0.336 10.140
NGC5611 2.138 0.99 2.125 74 0.697 2.360 3 1.114 0.936 1.082 1.488 0.437 0.528 9.652
NGC5631 2.176 0.79 2.196 87 0.626 2.439 0 1.434 1.408 1.552 1.931 0.481 0.119 10.261
NGC5638 2.160 0.70 2.188 66 0.667 2.387 0 1.472 1.455 1.593 2.054 0.415 0.077 10.260
NGC5687 2.216 0.74 2.244 87 0.907 2.454 1 1.537 1.420 1.602 1.995 0.489 0.397 10.064
NGC5770 1.905 0.99 1.933 26 0.385 2.213 0 1.205 1.205 1.354 1.687 0.473 0.003 9.603
NGC5813 2.324 0.51 2.355 89 0.875 2.589 0 1.792 1.727 1.884 2.322 0.440 0.247 10.717
NGC5831 2.158 0.85 2.204 86 0.667 2.380 0 1.468 1.441 1.587 2.021 0.445 0.129 10.203
NGC5838 2.350 0.81 2.391 70 0.900 2.592 3 1.483 1.374 1.424 1.886 0.449 0.362 10.257
NGC5839 2.098 0.98 2.131 88 0.720 2.360 0 1.270 1.256 1.400 1.763 0.529 0.079 9.700
NGC5845 2.357 1.00 2.327 63 0.695 2.530 3 0.764 0.706 0.825 1.278 0.353 0.254 9.792
NGC5846 2.349 0.52 2.364 89 0.908 2.558 1 1.787 1.773 1.919 2.398 0.407 0.059 10.665
NGC5854 2.020 0.96 2.009 74 0.421 2.223 3 1.375 1.200 1.303 1.751 0.368 0.502 10.025
NGC5864 2.035 0.85 2.044 74 0.570 2.260 3 1.525 1.283 1.397 1.849 0.323 0.647 10.136
NGC5866 2.196 0.52 2.212 76 0.665 2.428 0 1.775 1.582 1.743 2.224 0.335 0.579 10.336
NGC5869 2.224 0.89 2.242 80 0.849 2.462 1 1.405 1.343 1.505 1.899 0.471 0.247 10.033
NGC6010 2.202 0.91 2.179 90 0.772 2.428 1 1.454 1.147 1.377 1.759 0.415 0.687 10.045
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Table 1 (cont’d)

Galaxy log σe R(σ)/Re log σkpc inc log(M/L)JAM log V max
circ qual logRmaj

e logRe log r1/2 log rg conc εe logL

(km s−1) (km s−1) (◦) (M�/L�r) (km s−1) (′′) (′′) (′′) (′′) (L�r)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC6014 1.946 0.85 1.951 32 0.649 2.273 0 1.398 1.372 1.232 1.746 0.369 0.114 9.929
NGC6017 2.051 1.00 2.058 74 0.447 2.257 1 1.072 0.922 1.067 1.483 0.442 0.481 9.734
NGC6149 2.021 1.00 2.016 66 0.663 2.271 0 1.119 1.039 1.191 1.611 0.427 0.305 9.772
NGC6278 2.295 1.00 2.307 66 0.741 2.526 0 1.274 1.149 1.296 1.646 0.493 0.411 10.283
NGC6547 2.257 1.00 2.231 84 0.824 2.520 1 1.264 1.023 1.231 1.617 0.459 0.598 10.091
NGC6548 2.153 0.65 2.210 19 0.867 2.430 1 1.562 1.554 1.551 2.028 0.558 0.030 10.001
NGC6703 2.178 0.63 2.236 18 0.776 2.468 1 1.489 1.485 1.604 1.976 0.474 0.020 10.200
NGC6798 2.114 1.00 2.121 84 0.660 2.349 2 1.226 1.093 1.267 1.729 0.404 0.415 10.028
NGC7280 2.024 0.92 2.039 58 0.545 2.322 1 1.423 1.331 1.470 1.809 0.514 0.350 9.853
NGC7332 2.097 0.97 2.106 84 0.336 2.339 1 1.426 1.194 1.385 1.778 0.413 0.590 10.201
NGC7454 2.058 0.85 2.065 88 0.733 2.272 0 1.462 1.379 1.530 2.017 0.388 0.330 9.894
NGC7457 1.873 0.67 1.870 74 0.482 2.065 1 1.712 1.574 1.736 2.278 0.348 0.462 9.736
NGC7465 1.981 1.00 1.991 88 0.373 2.213 0 1.054 0.964 1.119 1.588 0.356 0.311 9.827
NGC7693 1.763 1.00 1.766 42 0.588 2.045 1 1.150 1.092 1.039 1.541 0.384 0.214 9.409
NGC7710 1.957 1.00 1.954 77 0.536 2.173 1 0.960 0.784 0.903 1.399 0.302 0.487 9.523
PGC016060 2.043 1.00 1.963 77 0.651 2.240 2 1.203 0.940 1.016 1.486 0.277 0.661 9.795
PGC028887 2.109 1.00 2.122 90 0.876 2.373 0 1.085 1.012 1.183 1.554 0.525 0.297 9.658
PGC029321 1.822 1.00 1.802 32 0.492 2.078 0 0.860 0.837 0.908 1.317 0.336 0.113 9.350
PGC035754 2.015 1.00 2.031 58 0.578 2.264 1 1.009 0.942 1.064 1.469 0.491 0.291 9.658
PGC042549 2.009 1.00 1.992 54 0.500 2.278 1 1.003 0.921 0.954 1.398 0.429 0.318 9.806
PGC044433 2.087 1.00 2.075 89 0.790 2.355 1 0.936 0.762 0.957 1.374 0.373 0.466 9.643
PGC050395 1.909 1.00 1.860 86 0.574 2.146 0 1.058 0.996 1.147 1.594 0.430 0.248 9.571
PGC051753 1.949 1.00 1.912 89 0.686 2.156 1 1.103 0.926 1.095 1.596 0.291 0.548 9.535
PGC054452 1.803 0.98 1.800 41 0.562 2.061 1 1.173 1.121 1.091 1.601 0.379 0.212 9.429
PGC056772 1.932 1.00 1.915 64 0.621 2.163 1 1.129 0.982 1.062 1.559 0.324 0.486 9.623
PGC058114 2.004 1.00 2.021 – – – – – – – – – – –
PGC061468 1.884 1.00 1.823 86 0.841 2.141 0 1.090 1.029 1.188 1.781 0.280 0.248 9.397
PGC071531 1.979 1.00 1.968 – – – – – – – – – – –
PGC170172 1.836 1.00 1.901 88 0.245 2.072 0 0.893 0.835 0.978 1.379 0.461 0.250 9.559
UGC03960 1.919 0.88 1.939 87 0.738 2.171 0 1.396 1.340 1.498 1.910 0.475 0.203 9.652
UGC04551 2.219 1.00 2.223 76 0.687 2.445 2 0.936 0.902 1.024 1.477 0.326 0.146 9.878
UGC05408 1.781 1.00 1.780 26 0.197 2.086 0 0.768 0.765 0.729 1.227 0.429 0.012 9.655
UGC06062 2.125 1.00 2.148 60 0.764 2.362 1 1.069 1.018 1.133 1.595 0.409 0.216 9.864
UGC06176 1.984 0.99 1.991 63 0.685 2.320 0 1.014 0.988 1.005 1.504 0.398 0.102 9.751
UGC08876 2.105 1.00 2.114 90 0.759 2.405 1 0.984 0.835 1.040 1.413 0.440 0.421 9.686
UGC09519 2.001 1.00 1.990 68 0.559 2.239 1 1.008 0.870 1.007 1.425 0.427 0.451 9.504

Note. — Column (1): The Name is the principal designation from LEDA (Paturel et al. 2003), which is used as standard designation for our project.
Column (2): Effective stellar velocity dispersion (1σ error of 5% or 0.021 dex). This is measured by co-adding all SAURON spectra contained within the
‘effective’ ellipse with area Ae = πR2

e (column 10) and ellipticity εe (column 14), with major axis aligned along the kinematic position angle PAkin

from Table D1 of Paper II. The velocity dispersion is measured on that single spectrum using pPXF. For this reason σe includes both the effects of stellar
rotation and random motions. Column (3): R(σ)/Re ≡

√
Aobs/Ae, where Aobs ≤ Ae is the area of the effective ellipse covered by the SAURON

observations. When this ratio is < 1 then σe was corrected with equation (1) of Cappellari et al. (2006). Column (4): same as in column 2 (same error as
σe), for the σ measured within a fixed circular aperture of radius R = 1 kpc. Column (5): Inclination of the best fitting mass-follow-light JAM models.
Errors are dominated by systematics and difficult to asses on an individual basis. For good models (column 8) the inclination errors are generally smaller
than 5◦ (also see Paper XII). Column (6): Mass-to-light ratio (1σ error of 6% or 0.027 dex) of the best-fitting self-consistent JAM model (A) for the
assumed distance and extinction of table 3 of Paper I. This the scaling factor by which the surface brightness in solar luminosities has to be multiplied,
to best reproduce the observed stellar kinematics. (M/L)JAM ≈ (M/L)(r = Re) approximates the total M/L measured within a spherical region
of radius Re (Section 4.1.2). By definition the quantity MJAM ≡ (M/L)JAM × L (column 15). Column (7): Maximum value of the circular velocity
predicted by the best-fitting mass-follow-light JAM model. Although the model does not explicitly include dark matter, Vcirc is due to the total mass
density, not by the stars alone. Column (8): Visual description of the quality of the self-consistent JAM model fit (see Fig. 1). qual = 0 indicates inferior
data quality (low S/N ) or a problematic model (e.g. due to the presence of a strong bar or dust, or genuine kinematic twists). The (M/L)JAM may
be less accurate in this case (see Paper XII). qual = 1 indicates and acceptable fit to the Vrms. qual = 2 indicates a good fit to the Vrms. Every
feature of the data is accurately predicted by the JAM model. qual = 3 indicates that not only the data and the fit to the Vrms are good, but also both
V and σ (not shown) can be accurately predicted by the JAM model, without more free parameters. Column (9): Maximum dimension (major axis) of
the isophote containing half of the analytic total light of the MGE models of Paper XXI (1σ error of 10% or 0.041 dex). Column (10): Re ≡

√
Ae/π

where Ae is the area of the effective isophote containing half of the analytic total light of the MGE models (same error as Rmaj
e ). Column (11): Radius

r1/2 = [3Ve/(4π)]1/3 of a sphere that has the same volume Ve of the iso-surface enclosing half of the total galaxy light. Column (12): Gravitational
radius calculated from the MGE model using equation (18). Column (13): Galaxy concentration conc ≡ L(Re/3)/L(Re) (Trujillo et al. 2001), where
L(R) is the light of the circularised MGE model contained within the radiusR. Column (14): Ellipticity of the galaxy light distribution. This is calculated
from the moment of inertia of the MGE model within the effective isophote using equation (12). Column (15): Analytic total luminosity (1σ error of
10% or 0.041 dex) of the MGE model in the SDSS r-band at the assumed distance and extinction given in table 3 of Paper I, for an assumed absolute
solar magnitude M�r = 4.64 mag (Blanton & Roweis 2007). Table 1 is also available from our project website http://purl.org/atlas3d.
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http://purl.org/atlas3d

	1 Introduction
	2 Sample and data
	2.1 Selection
	2.2 Comparison to previous samples: dynamics and lensing
	2.3 Stellar kinematics and imaging

	3 Methods
	3.1 Measuring galaxy enclosed masses
	3.2 Robust fitting of lines or planes to the data
	3.3 Measuring scaling relations parameters

	4 Results
	4.1 Uncertainty in the scaling relations parameters
	4.2 The classic Fundamental Plane
	4.3 From the Fundamental Plane to the Mass Plane
	4.4 Simple mass estimators
	4.5 The (M/L)-e relation
	4.6 Relation between e and the maximum circular velocity

	5 Summary

