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ABSTRACT

Context. Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 M�. Because of the young age of
the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in
the radio, X–ray, ultraviolet (UV) and, sometimes, in the optical domains.
Aims. In this paper we present ultraviolet, optical and near infrared observations of five type II SNe, namely SNe 2009dd, 2007pk,
2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous type II events. We investigate
the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral
evolutions, in order to find some traces of CSM-ejecta interaction.
Methods. We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and
spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity
in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the
properties of the progenitor stars.
Results. The light curves have luminous peak magnitudes (−16.95 < MB < −18.70). The ejected masses of 56Ni for three SNe span a
wide range of values (2.8 × 10−2M�<M(56Ni)< 1.4 × 10−1M�), while for a fourth (SN 2010aj) we could determine a stringent upper
limit (7 × 10−3M�). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the
photospheric spectra of SNe 2009dd and 1996W. For SN 2007pk we observe a spectral transition from a type IIn to a standard type
II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus
thermal energies of about 0.2–0.5 foe, initial radii of 2–5×1013 cm and ejected masses of ∼5.0–9.5 M�.
Conclusions. These values suggest moderate-mass, super-asymptotic giant branch (SAGB) or red super-giants (RSG) stars as SN
precursors, in analogy with other luminous type IIP SNe 2007od and 2009bw.

Key words. supernovae: general - supernovae: individual: SN 2009dd - supernovae: individual: SN 2007pk - supernovae: individual:
SN 2010aj - supernovae: individual: SN 1995ad - supernovae: individual: SN 1996W

1. Introduction

Type II Supernovae (SNe) are a very heterogeneous class of stel-
lar explosions that stem from the collapse of the core of massive
stars (ZAMS mass &8 M�, e.g. Smartt 2009; Pumo et al. 2009,
and reference therein), in most cases a red supergiant (RSG).

? This paper is based on observations made with the following facili-
ties: the Italian Telescopio Nazionale Galileo, the Liverpool Telescope,
the North Optical Telescope, the William Herschel (La Palma, Spain),
the Copernico telescope (Asiago, Italy), the Calar Alto Observatory
(Sierra de los Filabres, Spain), the orbital Telescope SWIFT (NASA),
the Hale Telescope at the Palomar Observatory, and the ESO Telescopes
at the La Silla and Paranal Observatories.
?? E-mail: c.inserra@qub.ac.uk (CI)

Stars with H-rich envelope at the explosion are thought to pro-
duce type II “plateau” (IIP) SNe (Barbon et al. 1979), which
show a nearly constant luminosity (plateau phase) lasting up to 4
months, during which the envelope recombines, releasing the in-
ternal energy. The length of the plateau primarily depends on the
envelope mass (e.g. Pumo & Zampieri 2011). If the H envelope
mass is very low, the light curve shows a linear, uninterrupted de-
cline after maximum. These SNe are historically called as type II
“linear” (SNe IIL, Barbon et al. 1979). Intermediate cases have
been found with light curves showing less pronounced plateaus,
e.g. SNe 1992H (Clocchiatti et al. 1996).

A common feature of SN IIP and IIL is the linear tail of the
late light curve powered by the energy release of the radioac-
tive decay of 56Co to 56Fe with the characteristic slope of 0.98
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mag/100d, indicating complete γ-ray and e+ trapping. In some
cases the observed decline rate is significantly modified by dust
formation within the ejecta, which absorbs light at optical wave-
lengths and re-emits photons in the near infrared (NIR), by the
interaction of the ejecta with the circum-stellar medium (CSM)
which converts kinetic energy into radiation, or by incomplete
γ-ray trapping.

During the first few days after the explosion the spec-
tra of most SNe IIP and IIL approximate a black-body from
UV through IR wavelengths. The spectra become progressively
dominated by broad P-Cygni profiles of Balmer lines with a
strong Hα emission, while metal lines arise during the plateau.
The late-time spectra are dominated by relatively narrow emis-
sion lines of H and prominent forbidden transitions of Ca ii, O i,
Fe ii and MgI (e.g. Turatto 2003).

A different subclass of type II SNe is constituted by objects
showing narrow emission lines already at early phases (SNe IIn,
Schlegel 1990). Their spectral appearance and slow luminosity
evolution are attributed to the interaction of the fast ejecta with a
slowly expanding, dense CSM which generates a forward shock
in the CSM and a reverse shock in the ejecta. The shocked ma-
terial emits energetic radiation whose spectrum depends primar-
ily on the density and velocity of both the CSM and the ejecta
(Chevalier & Fransson 1994). Thus the study of SNe IIn pro-
vides clues to the mass-loss history of their progenitors. Typical
mass loss rates are of the order of 10−6 − 10−5 M�yr−1, but this
value can increase significantly and exceed 10−4 M�yr−1 (e.g. in
SNe 1988Z and 1995N, Chugai 1994; Zampieri et al. 2005).

Sometimes normal SNe II, most often of the linear sub-
type, e.g. SNe 1979C (Milisavljevic et al. 2009, and refer-
ences therein), 1980K (Milisavljevic et al. 2012, and references
therein), 1986E (Cappellaro et al. 1995) show the onset of ejecta-
CSM interaction at late stages, after an otherwise normal evolu-
tion from the photospheric to nebular phase. This is interpreted
as evidence that the ejecta, after a phase of free expansion, reach
a dense gas shell ejected by the progenitor a few 102−103 yr be-
fore the explosion. Recently also a few SNe with overall normal
spectral features have shown weak but unequivocal evidence of
ejecta-CSM interaction from early times, reviving the interest for
the studies of interacting SNe. Among them we recall the type
IIP SNe 1999em and 2004dj (Chugai et al. 2007) or the atypical
type II SN 2007od (Inserra et al. 2011) and SN 2009bw (Inserra
et al. 2012a), the last two belonging to the bright tail of the type
IIP SN luminosity distribution.

In this paper we present the spectroscopic and photo-
metric observations of five bright objects, the type II SNe
2009dd, 2007pk and 2010aj, plus unpublished archival data of
SNe 1995ad and 1996W. The plan of the paper is the following:
in Sect. 2 we introduce the SNe and their host galaxy proper-
ties, estimating distances and reddening. Photometric data, light
and colour curves as well as the estimates of 56Ni masses are
presented in Sect. 3; in Sect. 4 we describe and analyse the spec-
tra; a discussion is presented in Sect. 5, while a short summary
follows in Sect. 6.

Throughout the paper we adopt H0 = 73 km s−1Mpc−1, Ωm =
0.27 and Ωλ = 0.73.

2. SNe and their host galaxies

In this Section the selected SNe and their host galaxies are pre-
sented individually.

1. SN 2009dd (Fig. 1) was discovered in the Sbc galaxy
NGC 4088 (Hakobyan et al. 2012) by Cortini & Dimai

Fig. 1. R band image of SN 2009dd in NGC 4088 obtained with
CAHA+CAFOS on November 19th, 2009. The sequence of stars
used to calibrate the optical and NIR magnitudes is indicated.

(2009) on 2009 April 13.97. Elias-Rosa et al. (2009) clas-
sified the object as a young type II SN with strong Na ID
interstellar features suggesting significant absorption inside
the parent galaxy.
Prompt observations with Swift+XRT revealed an X-ray
source at the optical position of the SN with 4.5σ signifi-
cance (Immler, Russell, & Brown 2009). Over the course of
the Swift XRT observations, which lasted a month, the X-
ray source continuously brightened from 8 × 1038 erg s−1 to
1.7 × 1039 erg s−1 (in the range 0.2-10 keV, Immler, Russell,
& Brown 2009). During the same period no radio emission
was detected at the SN position with 3σ upper limits of 0.35
mJy at 1.3 cm, and of 0.15 mJy at 3.5 cm (Stockdale et al.
2009).
NED provides the velocity of the host galaxy corrected for
Virgo infall, vVirgo = 1025 ± 15 km s−1 (from Mould et al.
2000), corresponding to a distance modulus µ = 30.74±0.15
mag (d∼14.0 Mpc).
The coordinates of SN 2009dd, measured on our astromet-
rically calibrated images on two different epochs, are α =
12h05m34s.10 ± 0s.05, δ = +50◦32′19′′.40 ± 0′′.05 (J2000).
The object is located in the galaxy inner region, 1′′.5 West
and 4′′ South of the nucleus of NGC 4088. This position,
slightly revised with respect to the previous determination
(Cortini & Dimai 2009), corresponds to a linear distance of
∼0.3 kpc from the nucleus, deprojected as in Hakobyan et al.
(2009).
The Galactic reddening toward NGC 4088 is Eg(B-V) = 0.02
mag (Ag(B) = 0.085 mag, Schlegel et al. 1998). In our best
resolution optical spectra (cfr. Sect. 3.2.1), the interstellar
Na iD (λλ5890,5896) lines of the Galaxy are seen with av-
erage EWg(Na iD)∼0.13 Å. According to Turatto, Benetti,
and Cappellaro (2003) this corresponds to a galactic redden-
ing Eg(B-V)∼0.02 mag, exactly the same as the Schlegel et
al. (1998) estimate. With the same method we estimate the
reddening inside the parent galaxy. The corresponding inter-
stellar Na ID components have an average equivalent width
EWi(Na iD)∼ 2.7 Å, providing an Ei(B-V)∼0.43 mag or
Ai(B) ∼1.81 mag. We may notice, that while there have been
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Fig. 2. R band image of SN 2007pk in NGC 579 obtained with
NOT+ALFOSC on January 11th, 2008. The sequence of stars in
the field used to calibrate the optical magnitude of the 2007pk is
indicated.

conflicting reports on the reliability of the NaID line as tracer
of dust extinction, a most recent analysis of Poznanski et al.
(2012), on a large sample of SDSS galaxy spectra, basically
confirmed the strong correlation between the two quantities.
Therefore we have adopted a total reddening to SN 2009dd
Etot(B-V)= 0.45 mag, consistent with the position of the SN
inside the parent galaxy and what reported in Elias-Rosa et
al. (2009).
A reasonable assumption to estimate the metallicity is to
consider that the SN has the same metallicity of the clos-
est H ii region. Extracting the spectrum of the region close
to SN from the latest, deep observation of SN 2009dd, we
have determined the N2 index (Pettini & Pagel 2004) to
be N2= −0.54. The relation (1) of Pettini & Pagel (2004)
then provides the O abundances which turns out to be 12 +
log(O/H) = 8.59±0.06±0.41 (where the first error is statis-
tical and the second is the 95% spread of the N2 index cali-
bration relation), close to the solar abundance (8.69, Asplund
et al. 2009).

2. SN 2007pk (Fig. 2), discovered in the Scd galaxy NGC 579
(Hakobyan et al. 2012) on 2007 November 10.31 UT, has
been classified as a young “peculiar” type IIn SN resembling
SN 1998S at early phases (Parisky et al. 2007). Immler et al.
(2007) reported a bright X-ray source within 23′′.5 from the
SN position although, due to the large point-spread-function
of the XRT instrument (18′′ half-power diameter at 1.5 keV)
the error box include the galaxy nucleus. An X-ray flux of
(2.9 ± 0.5) × 10−13 erg cm−2 s−1 and a luminosity of (1.7 ±
0.3) × 1040 erg s−1 have been calculated. No radio emission
has been detected with VLA in the 8.46 GHz band (Chandra
& Soderberg 2007).

NED provides a recession velocity of NGC 579 corrected for
Virgo infall of vVirgo = 5116 ± 16 km s−1 (from Mould et al.
2000) corresponding to a distance modulus µ = 34.23±0.15
mag.
The coordinates of SN 2007pk, α = 01h31m47s.07 ± 0s.04
and δ = +33◦36′54′′.70±0′′.04 (J2000) measured on our as-
trometrically calibrated images are in fair agreement (∆(δ) =
0′′.6) with those provided by Parisky et al. (2007). The object
is located in an inner region of the spiral parent galaxy, 7′′.4
East and 1′′.6 South (slightly revised with respect to the de-
termination of Parisky et al. 2007) from the nucleus of NGC
579. The position of SN corresponds to a linear deprojected
distance of ∼2.5 kpc from the nucleus (cfr. Hakobyan et al.
2009).
The Galactic reddening toward NGC 579 was estimated as
Eg(B − V) = 0.05 mag (Ag(B) = 0.22 mag, Schlegel et
al. 1998). We have measured the intensity of the interstel-
lar Na iD lines of the Galaxy in our best resolution spectra,
finding an average EWg(Na ID)∼0.57 Å. This corresponds
to a galactic reddening of Eg(B-V)∼0.09 mag (Ag(B)∼0.38
mag) according to Turatto, Benetti, and Cappellaro (2003),
1.8 times larger than the above-mentioned estimate but
still within the large uncertainty of the method. In anal-
ogy we estimated the reddening inside the parent galaxy
with the Na iD components of the host galaxy. The de-
rived EWi(Na iD)∼0.33 Å corresponds to reddening Ei(B-
V)∼0.05 mag or Ai(B)∼0.22 mag, about three times less
than the admittedly crude estimate of Pritchard et al. (2012).
Throughout this work we have adopted a total reddening to
SN 2007pk Etot(B − V) = 0.10 mag.
As for SN 2009dd we have measured the emission lines of
the region adjacent to the SN along the slit and determined
the index N2 = −0.70 corresponding to 12 + log(O/H) =
8.50 ± 0.05 ± 0.41, again close to the solar value.

3. SN 2010aj was discovered in the Sc galaxy (Hakobyan et
al. 2012) MGC-01-32-035 by Newton et al. (2010) on 2010
March 12.39 UT and was classified as a young type II SN
resembling the type IIP SN 2006bp near maximum bright-
ness (Cenko et al. 2010). The recession velocity of MGC-
01-32-035 corrected for the Virgo infall is vVirgo = 6386 ±
20km s−1(Mould et al. 2000, from NED), corresponding to a
distance modulus µ = 34.71 ± 0.15 mag.
The coordinates of SN 2010aj have been measured on our
images at α = 12h40m15s.16 ± 0s.05, δ = −09◦18′14′′.30 ±
0′′.05 (J2000). The object is located 12′′.4 West and 11′′.7
South of the centre of the SABbc: parent galaxy, (Fig. 3).
The SN is centred on an H II region that becomes dominant
after 350d, as clearly seen from the SN spectral evolution in
Sec. 4. The linear deprojected distance is ∼ 7.2 kpc from the
nucleus.
The Galactic reddening in the direction to MGC -01-32-035
was estimated as Eg(B-V)= 0.036 mag (Ag(B)= 0.148 mag,
Schlegel et al. 1998). The available spectra do show neither
the Na iD lines of the parent galaxy nor those of the Galactic
component. Throughout this paper, we will adopt a total red-
dening to SN 2010aj of Etot(B-V)= Eg(B-V)= 0.036 mag,
entirely due to the Galaxy.
Also for this SN we measured the N2 index,
N2(SN 2010aj)= −0.47, providing a metallicity of
12 + log(O/H) = 8.63± 0.06± 0.41, close to the solar value.

4. SN 1995ad (Fig. 4) was discovered by Evans et al. (1995)
on 28.8 UT of September in the SBc galaxy NGC 2139
(Hakobyan et al. 2009a). Based on a spectrum collected the
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Fig. 3. R band image of SN 2010aj in MGC-01-32-035 obtained
with TNG+DOLORES on May 22th, 2010. The sequence of
stars in the field used to calibrate the optical and NIR magni-
tudes of SN 2010aj is indicated.

day after with the ESO 1.5-m telescope in La Silla it was
classified as a type II close to maximum because of broad
P-Cygni profiles of Balmer and He I lines lying on a blue
continuum (Tbb ∼ 13000 K, Evans et al. 1995). NED pro-
vides a heliocentric radial velocity of NGC 2139 corrected
for the Virgo Infall of vVirgo = 1674± 14 km s−1, from which
we infer a distance modulus µ = 31.80 ± 0.15 mag.
The coordinates of the SN, measured on our astrometri-
cally calibrated images on two different epochs, are α =
06h01m06s.21 ± 0s.05 and δ = −23◦40′28′′.90 ± 0′′.05
(J2000). The object is located in an arm of the host galaxy,
25′′ West and 5′′ South of the nucleus of NGC 2139. This
position, slightly revised with respect to a previous determi-
nation (McNaught & Pollas 1995), corresponds to a depro-
jected distance of ∼ 2.8 kpc from the nucleus.
The Galactic reddening has been estimated as Eg(B-V)=
0.035 mag (i.e. Ag(B)= 0.145 mag, Schlegel et al. 1998).
The Na ID interstellar lines associated to the parent galaxy
are not visible in the SN spectra. Therefore, hereafter, we
consider only the Galactic contribution.
To obtain the metallicity of the environment of this SN, we
analysed the spectra obtained at the ESO1.5m telescope on
February 19 and 20, 1996 because of the better resolution
than the latest available spectra. We measured the O3N2 and
N2 indices (Pettini & Pagel 2004) of an H ii region close to
the SN. The average relations then provide 12 + log(O/H) =
8.60 ± 0.05 ± 0.41, very close to solar.

5. SN 1996W (Fig. 5) was discovered on April 10 UT and
confirmed the following night at the Beijing Astronomical
Observatory (BAO) (Li et al. 1996) as a type II SN soon af-
ter the explosion, showing a blue continuum with strong and
broad Hα (v ∼ 14300 km s−1) and Hβ. The recession velocity
of the host SBc galaxy (Hakobyan et al. 2009a) NGC 4027
corrected for Virgo infall is vVirgo = 1779±29 km s−1(Mould
et al. 2000, from NED), corresponding to a distance modulus
µ = 31.93 ± 0.15 mag.

Fig. 4. R band image of SN 1995ad in NGC 2139 obtained with
ESO 3.6m+EFOSC1 on December 29th, 1995. The sequence of
stars in the field used to calibrate the optical magnitudes of SN
1995ad is indicated.

The coordinates of SN 1996W, measured on our astro-
metrically calibrated images on two different epochs, are
α = 11h59m28s.98 ± 0s.05 and δ = −19◦15′21′′.90 ± 0′′.05
(J2000). The object is located in an arm of the host galaxy,
17′′ West and 34′′ North of the nucleus of the parent galaxy
NGC 4027. This position, slightly revised with respect to
previous determination (Suntzeff et al. 1996), corresponds
to a deprojected distance of ∼3.0 kpc from the nucleus.
The Galactic reddening has been estimated as Eg(B-V)=
0.044 mag (Ag(B)= 0.145 mag Schlegel et al. 1998). In the
spectra of SN 1996W the absorption features due to interstel-
lar Na ID lines both from our Galaxy and of the host galaxy
have been identified, suggesting a reddening Eg(B-V)∼ 0.05
and Ei(B-V)= 0.187 mag (Ai(B) = 0.77 mag), respectively.
The total extinction Etot(B-V)= 0.23 mag (Atot(B)= 0.95
mag) was adopted.
For the metallicity of the underlying H ii region as represen-
tative of the metallicity of the SN, we obtained an oxygen
abundance of 12 + log(O/H) = 8.60 ± 0.06 ± 0.41, also in
this case very close to solar.

3. Photometry

3.1. Data summary

Optical observations of SNe 2009dd, 2007pk, 2010aj, 1995ad
and 1996W were obtained with ground based telescopes and the
SWIFT satellite (see Table 1).

Observations were reduced following standard procedures
in the IRAF1 environment. Instrumental magnitudes were mea-
sured on the images corrected for overscan, bias and flat field.

1 Image Reduction and Analysis Facility, distributed by the
National Optical Astronomy Observatories, which are operated by the
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Fig. 5. R band image of SN 1996W in NGC 4027 obtained with
the Dutch 0.9m telescope on May 13th, 1996. The local se-
quence of stars used to calibrate the optical magnitude is indi-
cated.

Photometric zero points and colour terms were computed for
all photometric nights through observations of Landolt standard
fields (Landolt 1992). The average magnitudes of the local se-
quence stars were computed and used to calibrate the photomet-
ric zero points for the non-photometric nights. Magnitudes of the
local sequence stars are reported in Tabs. A.1, A.2, A.3, A.4 and
A.5 along with their r.m.s. (in brackets). The calibrated optical
magnitudes of the SNe are reported in Tabs. 2, 3, 4, 5 and 6.

The i-band filter used at the 2.56-m Nordic Optical Telescope
(NOT) is an interference filter with central wavelength 7970 Å,
slightly different from the classical Gunn or Cousins I and more
similar to Sloan i. In our analysis, however, it was calibrated as
Cousins I. Also, for the LT Sloan photometry we subsequently
applied an S-correction (Stritzinger et al. 2002; Pignata et al.
2004) to convert the SN magnitudes to the standard Johnson-
Cousins photometric system, finding an average correction of
∆U ∼ 0.04, ∆R ∼ 0.01 and ∆I ∼ −0.10. In the case of
SN 2009dd the discovery magnitude reported in Cortini & Dimai
(2009) has been revised and reported as R band in Tab. 2.

Swift U, B, V aperture magnitudes were transformed to
Johnson system through the colour transformations by Li et al.
(2006). After comparison with optical ground-based data, offsets
were applied when necessary (cfr. Sect. 3.2). The magnitudes of
the SNe were obtained through a point spread function (PSF) fit-
ting sometimes applied after template subtraction, depending on
the background complexity and the availability of suitable tem-
plate images. The uncertainties reported for each optical band in
Tabs. 2, 3, 4, 5 and 6 were estimated by combining in quadrature
the errors of photometric calibration and those on the instrumen-
tal magnitudes. The latter were obtained through artificial star
experiments. When the object was not detected, limiting magni-
tudes were estimated by placing artificial stars of different mag-

Association of Universities for Research in Astronomy, Inc, under con-
tract to the National Science Foundation.

nitudes at the expected SN position. Only significant limits are
presented in Figs. 6, 7, 8, 9 and 10.

Ultraviolet (uvw2, uvm2, uvw1; see Poole et al. 2008) ob-
servations, obtained by UVOT on board of the SWIFT satellite
are available for twenty-four epochs in a period of 160d in the
case of SN 2009dd and for ten epochs in 23d for SN 2007pk.
We reduced these data using the HEASARC2 software. For each
epoch all images were co-added, and then reduced following the
guidelines presented by Poole et al. (2008).

The NIR images of the SN fields were obtained combining
several sky-subtracted, dithered exposures. Photometric calibra-
tion was achieved relative to the 2MASS photometry of the same
local sequence stars as used for the optical calibration. NIR pho-
tometry was obtained just at a single epoch for SNe 2009dd,
2010aj and 1995ad. In the case of SN 2009dd the K’ filter was
used but was calibrated as K band.

The follow-up coverage of individual SNe is not exceptional.
However, these objects taken together provide a fairly complete
picture of the photometric evolutions of luminous type II SNe.

3.2. Light curves

In this Section we present the photometric information for the
full SN sample. The main data are reported in Tab. 9.

3.2.1. SN 2009dd

The optical monitoring of SN 2009dd started on April 14, 2009,
the day after the discovery, and continued until October 2010.
Because of the location of the SN very close to the galaxy nu-
cleus, the optical photometric measurements of SN 2009dd were
performed using the template subtraction technique (Tab. 2).

By comparing space and ground-based UBV magnitudes,
computed interpolating the light curves with low-order polyno-
mials at corresponding epochs, we found average differences
(ground–space) ∆U ∼ 0.20 ± 0.03, ∆B ∼ 0.06 ± 0.03, ∆V ∼
0.10 ± 0.03. These corrections have been applied to all UVOT
magnitudes and the resulting values are reported in Tab. 2.

In Fig. 6 the uvw2, uvm2, uvw1, U, B, V, R, I light curves of
SN 2009dd are plotted. NIR magnitudes are not shown because
available at a single epoch. The light curves do not constrain the
explosion epoch, that was determined through a comparison of
the early spectra with a library of SN spectra performed with the
GELATO code (Harutyunyan et al. 2008), and was found to be
JD 2454925.5±5.0 (April 04 UT).

Assuming the distance and extinction discussed in Sect. 2,
we find Mmax

U ≤ −18.22 ± 0.25, Mmax
B ≤ −17.61 ± 0.27, Mmax

V ≤

−17.46±0.23, Mmax
R ≤ −17.38±0.21 and Mmax

I ≤ −17.09±0.18,
where the reported errors include both measurement errors and
the uncertainties on the distance modulus.

An initial rapid decline is visible from U to V during the first
30 days (∆m(B) ∼ 1.2 mag). It was followed by a plateau last-
ing about 50–70 days, more clearly visible in the R and I bands.
The luminous peak, mV∼15.5 corresponding to MV ∼ −16.6 is
slightly higher than the average for SNIIP (MV ∼ −15.9, Patat et
al. 1994; Li et al. 2011) and fainter than the luminous IIP 1992H
(MV ∼ −17.3, Clocchiatti et al. 1996), 2007od (MV ∼ −17.4,
Inserra et al. 2011) or 2009bw (MV ∼ −17.2, Inserra et al.
2012a). The rapid post plateau decline occurring at about 100d
signals the onset of the nebular phase. The drop in magnitude
between the photospheric and the nebular phase is ∆m(V) ∼1.4

2 NASA’s High Energy Astrophysics Science Archive Research
Center
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Table 1. Instrumental configurations.

Telescope Primary mirror Camera Array CCD pixel scale field of view
m arcsec/pix arcmin

Ekar 1.8 AFOSC 1024 x 1024 TK1024AB 0.46 8.1
TL512† 512 x 512 TK512 0.34 2.9
B&C† 576 x 384 TH7882 0.29 2.8

TNG 3.6 DOLORES 2048 x 2048 EEV 42-40 0.25 8.6
NICS 1024 x 1024 HgCdTe Hawaii 0.25 4.2

LT 2.0 RATCam 2048 x 2048 EEV 42-40 0.13 4.6
NOT 2.5 ALFOSC 2048 x 2048 EEV 42-40 0.19 6.4
CAHA 2.2 CAFOS 2048 x 2048 SITe 0.53 16.0
SWIFT 0.3 UVOT 2048 x 2048 intensified CCD 0.48 17.0
NTT 3.6 EFOSC2 2048 x 2048 Loral/Lesser 0.16 5.2

SOFI 1024 x 1024 Hawaii HgCdTe 0.29 4.9
ESO 1.5 1.5 B&C 2048 x 2048 Loral 0.82 8.0
MPG-ESO 2.2 2.2 EFOSC2 1024 x 1024 THX31156 0.34 5.7
ESO 3.6 3.6 EFOSC1 512 x 512 Tek512 0.61 3.6 x 5.76
Dutch 0.9 CCD phot. 512 x 512 Tek512 0.48 3.8
Danish 1.5 DFOSC 2052 x 2052 W11-4 Loral/Lesser 0.39 13.3

Ekar = Copernico Telescope (Mt. Ekar, Asiago, Italy); TNG = Telescopio Nazionale Galileo (La Palma, Spain); LT = Liverpool Telescope (La
Palma, Spain); NOT = Nordic Optical Telescope (La Palma, Spain); Caha = Calar Alto Observatory 2.2m Telescope (Sierra de los Filabres,
Andalucia, Spain); SWIFT by NASA; NTT = New Technology Telescope (La Silla, Chile); ESO 1.5 = ESO 1.5m Telescope (La Silla, Chile);
MPG-ESO 2.2 = MPG-ESO 2.2m Telescope (La Silla, Chile); ESO 3.6 = ESO 3.6m Telescope (La SIlla, Chile); Dutch = Dutch 0.9m Telescope
(La Silla, Chile); Danish = Danish 1.5m Telescope (La Silla, Chile)
† Instruments used until 1998

Table 2. Ultraviolet, optical and infrared photometry of SN 2009dd.

Date JD uvw2 uvm2 uvw1 U B V R I J H K’ Inst.†
yy/mm/dd (+2400000)
09/04/13 54935.61 - - - - - - 13.88 (.10) - - - - 99
09/04/14 54936.67 - - - 14.74 (.02) 15.07 (.06) 14.87 (.06) 14.60 (.06) 14.62 (.04) - - - 1
09/04/15 54936.63 - - - - - - - - 14.32 (.04) 14.25 (.05) 14.12 (.06) 2
09/04/15 54937.12 16.97 (.07) 16.88 (.05) 15.66 (.05) 14.76 (.09) 15.20 (.08) 14.85 (.08) - - - - 5
09/04/16 54938.40 - - - 14.86 (.03) 15.27 (.05) 14.83 (.06) 14.62 (.06) 14.64 (.05) - - - 4
09/04/17 54939.08 17.44 (.13) - 16.00 (.04) 14.96 (.06) 15.31 (.06) 14.76 (.06) - - - - - 5
09/04/19 54940.87 17.25 (.08) 17.39(.09) - 15.19 (.05) 15.32 (.06) 14.83 (.04) - - - - - 5
09/04/21 54943.00 17.53 (.07) 17.51 (.09) 16.63 (.08) 15.49 (.06) 15.44 (.08) 14.90 (.04) - - - - - 5
09/04/25 54946.62 18.10 (.11) 18.01 (.10) 16.82 (.09) 16.06 (.06) 15.61 (.05) 14.90 (.04) - - - - - 5
09/05/10 54961.54 19.55 (.08) 19.11 (.08) - 17.18 (.06) 16.31 (.05) 15.20 (.04) - - - - - 5
09/05/11 54963.29 - 19.46 (.09) - - - - - - - - - 5
09/05/19 54971.58 - - - 17.99 (.10) 16.87 (.02) 15.48 (.01) 14.67 (.04) 14.57 (.05) - - - 2
09/07/05 55017.50 20.17 (.15) 20.18 (.12) 19.29 (.10) 19.21 (.06) 17.83 (.05) 16.15 (.04) - - - - - 5
09/07/15 55028.21 - - 19.52 (.11) - - - - - - - - 5
09/07/16 55028.54 - - - 19.72 (.06) - - - - - - - 5
09/07/19 55032.12 - - 19.91 (.13) - - - - - - - - 5
09/07/20 55032.54 > 20.1 - > 20.1 19.92 (.13) - - - - - - - 5
09/07/20 55033.41 - - - 20.01 (.13) 18.21 (.09) 16.28 (.06) 15.45 (.05) 15.17 (.04) - - - 2
09/07/21 55034.31 - - - - 18.20 (.06) 16.35 (.01) 15.47 (.02) 15.14 (.02) - - - 3
09/07/23 55036.39 - - - - 18.36 (.02) 16.38 (.01) 15.53 (.05) 15.19 (.07) - - - 3
09/07/26 55038.62 - > 20.4 - - - - - - - - - 5
09/07/27 55039.62 - - > 20.2 - - - - - - - - 5
09/07/30 55042.40 - - - - 18.81 (.06) 16.88 (.05) 15.95 (.05) 15.70 (.07) - - - 4
09/08/02 55046.00 > 20.3 > 20.3 - - - - - - - - - 5
09/08/03 55046.75 - > 20.2 - - - - - - - - - 5
09/08/09 55052.50 > 20.4 - - > 19.2 - - - - - - - 5
09/08/12 55056.50 - - - - 19.63 (.04) 17.79 (.09) 16.74 (.02) 16.66 (.05) - - - 1
09/08/20 55064.36 - - - - 19.73 (.20) 17.92 (.03) 16.84 (.08) 16.72 (.02) - - - 3
09/09/04 55079.31 - - - - - 18.20 (.04) 17.04 (.19) 16.99 (.20) - - - 4
09/09/13 55088.50 - - > 20.3 - - - - - - - - 5
09/09/14 55089.50 - - - > 19.2 - - - - - - - 5
09/09/16 55091.58 - > 20.4 - - - - - - - - - 5
09/09/21 55095.46 - - > 20.5 > 19.3 - - - - - - - 5
09/11/19 55155.65 - - - - 20.82 (.03) 18.92 (.10) 17.76 (.09) 17.36 (.06) - - - 4
09/11/21 55157.70 - - - - 20.93 (.04) 18.98 (.12) 17.83 (.10) 17.44 (.04) - - - 2
10/01/19 55216.20 - - - - - 19.73 (.20) 18.83 (.20) - - - - 3
10/05/17 55334.43 - - - - > 20.7 > 20.1 > 19.8 > 19.3 - - - 2
10/10/25 55495.67 - - - - > 20.7 > 20.6 > 19.9 > 20.0 - - - 4

† 1 = NOT, 2 = TNG, 3 = Ekar, 4 = CAHA, 5 = Swift, 99 = CBET 1764 (revised measure) where instruments are coded as in Tab.1.
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C. Inserra et al.: Moderately luminous type II Supernovae

Table 3. Ultraviolet and optical photometry of SN 2007pk.

Date JD uvw2 uvm2 uvw1 U B V R I Inst.†
yy/mm/dd (+2400000)
07/11/10 54415.30 - - - - - - 17.00 ( - ) - 99
07/11/11 54416.40 - - - - 16.25 (.02) 16.37 (.02) 16.37 (.03) 16.45 (.03) 1
07/11/12 54417.50 - - - - 16.00 (.15) 16.17 (.17) 16.20 (.18) 15.89 (.19) 1
07/11/13 54417.66 - - 14.50 (.04) - - - - - 6
07/11/14 54418.65 14.54 (.06) 14.46 (.06) 14.64 (.05) 15.13 (.05) 16.05 (.06) 16.15 (.04) - - 6
07/11/15 54420.24 14.92 (.05) 14.69 (. 05) 14.78 (.04) 15.17 (.05) 16.07 (.06) 16.09 (.04) - - 6
07/11/16 54420.66 15.14 (.06) 14.84 (.06) 14.87 (.05) 15.19 (.05) 16.08 (.06) 16.09 (.04) - - 6
07/11/16 54421.50 - - - 15.20 (.04) 16.14 (.04) 16.20 (.03) 15.88 (.04) 15.99 (.03) 2
07/11/17 54421.68 15.45 (.06) 15.11 (.06) 15.08 (.05) 15.22 (.06) 16.14 (.06) 16.23 (.05) - - 6
07/11/20 54425.08 16.03 (.06) 15.73 (.06) 15.48 (.05) - - - - - 6
07/11/25 54429.65 16.91 (.07) 16.74 (.07) 16.32 (.08) 15.69 (.06) 16.28 (.06) 16.23 (.04) - - 6
07/11/29 54433.91 17.85 (.09) 17.58 (.09) 17.02 (.08) 16.13 (.06) 16.42 (.07) 16.27 (.05) - - 6
07/12/02 54436.96 18.44 (.10) 18.59 (.14) 17.64 (.09) 16.45 (.06) 16.57 (.06) 16.27 (.05) - - 6
07/12/04 54439.39 - - - - 16.62 (.24) 16.31 (.24) 16.14 (.27) 16.01 (.29) 1
07/12/06 54440.81 19.01 (.10) - 18.07 (.10) 16.61 (.06) 16.69 (.07) 16.32 (.05) - - 6
07/12/08 54443.50 - - - 16.65 (.03) 16.86 (.02) 16.43 (.02) 16.23 (.02) 16.00 (.02) 3
07/12/13 54448.40 - - - - - 16.51 (.02) 16.38 (.09) 16.00 (.04) 1
07/12/14 54449.50 - - - 17.29 (.03) 17.21 (.03) 16.62 (.03) 16.36 (.03) 16.01 (.03) 3
07/12/17 54451.65 - - - 17.39 (.06) 17.27 (.07) 16.68 (.05) - - 6
07/12/24 54459.50 - - - 18.02 (.10) 17.65 (.04) 16.82 (.03) 16.41 (.03) 16.19 (.02) 3
07/12/27 54462.01 - - - 18.20 (.08) 17.78 (.08) 16.95 (.05) - - 6
07/12/28 54463.29 - - - - 17.92 (.12) 16.96 (.10) 16.53 (.05) 16.26 (.04) 1
08/01/08 54474.09 - - - 18.52 (.08) 18.11 (.10) 17.09 (.06) - - 6
08/01/09 54475.39 - - - - 18.14 (.23) 17.13 (.23) 16.63 (.18) - 1
08/01/11 54477.40 - - - 18.73 (.05) 18.34 (.03) 17.19 (.02) 16.69 (.03) 16.40 (.03) 4
08/01/28 54494.36 - - - - 18.49 (.93) 17.46 (.16) 17.04 (.16) 16.69 (.13) 1
08/09/04 54714.64 - - - - - > 19.8 >19.6 > 19.4 2
08/09/14 54723.69 - - - - >19.8 > 20.1 >19.6 - 5

† 1 = Ekar, 2 = TNG, 3 = LT, 4 = NOT, 5 = CAHA, 6 = Swift, 99 = CBET 1129, where instruments are coded as in Tab.1.
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Fig. 6. Synoptic view of the light curves of SN 2009dd in uv and
optical bands. Magnitude shifts for the different bands are in the
legend.

mag in ∼20d in the V band, somewhat lower than the value of
2 mag in normal SNe IIP. The late decline rates in the various
bands are similar. During the 120–280 d interval the V band de-
cline rate is 1.15 mag (100d)−1, marginally higher than the de-
cline rate expected from 56Co to 56Fe decay (0.98 mag (100d)−1)
in case of complete γ-ray trapping.

3.2.2. SN 2007pk

The optical photometric monitoring of SN 2007pk started on
November 11th, 2007 and continued until January 2008. SN
observations during the nebular phase turned out with only up-
per limits. Because of the proximity to the nucleus of the host
galaxy and a nearby H ii region, also in this case the SN op-
tical photometry was measured using the template subtraction
technique. The Swift data have been treated as for SN 2009dd.
The comparison of space and ground-based photometry at cor-
responding epochs pointed out systematic average differences
(ground–space) ∆(U) ∼ 0.20 ± 0.05, ∆(B) ∼ 0.06 ± 0.02,
∆(V) ∼ 0.07 ± 0.03. As before, Tab. 3 reports the corrected
magnitudes. Our estimates of the Swift ultraviolet (uvw2, uvm2,
uvw1) and optical (u, b, v, before transformation to the Johnson–
Cousins system) photometry are in agreement with those pre-
sented by Pritchard et al. (2012).

The light curves are plotted in Fig. 7. The very early ob-
servations show a rise to maximum. The somewhat slower rise
and late peak in the R band might be an effect of the large
errors affecting the measurements of Nov. 12, 2007. The B-
band peak (JD 2454417.5±1.0) is consistent with the phases de-
rived from the spectral comparison performed with GELATO
(Harutyunyan et al. 2008). Therefore, hereafter we will adopt
JD 2454412.0±5 (November 7.5 UT) as the best estimate for the
explosion epoch.

Having adopted the distance and the extinction (Sect. 2), we
can determine the absolute magnitudes at maximum: Mmax

B =
−18.70 ± 0.23, Mmax

V = −18.44 ± 0.24, Mmax
R = −18.64 ± 0.25

and Mmax
I = −18.52 ± 0.26, where the associated errors include

the uncertainty on the distance modulus and measurement er-
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C. Inserra et al.: Moderately luminous type II Supernovae

Table 4. Optical and infrared photometry of SN 2010aj.

Date JD U B V R I J H K Inst.†
yy/mm/dd (+2400000)
10/03/12 55268.50 - - - 17.1 ( - ) - - - - 99
10/03/13 55269.50 - - - 17.0 ( - ) - - - - 99
10/03/24 55280.50 - 17.92 (.06) 17.75 (.03) 17.55 (.03) 17.34 (.05) - - - 1
10/03/27 55282.95 - 18.30 (.04) 17.78 (.03) 17.57 (.02) 17.33 (.04) - - - 1
10/04/16 55303.50 - 18.72 (.13) 18.16 (.03) 17.82 (.03) 17.45 (.06) - - - 2
10/04/18 55305.50 - - - - - 19.42 (.04) 20.19 (.08) 20.21 (.05) 2
10/04/24 55311.52 - 19.30 (.11) 18.29 (.04) 17.83 (.03) 17.54 (.03) - - - 3
10/05/05 55321.90 20.21 (.17) 19.55 (.09) 18.47 (.06) 17.99 (.03) 17.85 (.03) - - - 1
10/05/07 55324.00 20.27 (.21) 19.65 (.12) 18.62 (.07) 18.11 (.04) 17.81 (.06) - - - 1
10/05/18 55334.95 20.36 (.25) 19.90 (.12) 18.83 (.07) 18.24 (.05) 18.13 (.08) - - - 1
10/05/22 55339.38 20.44 (.23) 19.97 (.10) 18.93 (.07) 18.32 (.05) 18.23 (.06) - - - 3
10/05/26 55342.92 20.81 (.23) 20.30 (.15) 19.17 (.07) 18.53 (.06) 18.43 (.06) - - - 1
10/06/09 55356.93 - 22.82 (.24) - 21.01 (.19) 20.74 (.30) - - - 1
10/06/12 55359.89 - >20.7 21.91 (.30) 21.16 (.28) 21.03 (.20) - - - 1
10/06/16 55363.94 - >20.7 22.28 (.21) 21.18 (.11) 21.11 (.11) - - - 1
10/06/17 55365.14 - - >20.6 > 20.2 >20.0 - - - 2
10/06/21 55368.91 - >20.5 >20.5 21.25 (.14) 21.17 (.12) - - - 1
10/06/24 55371.91 - >20.7 >20.7 21.58 (.04) 21.31 (.14) - - - 1
10/07/08 55386.46 - >20.9 >20.6 >20.1 >20.4 - - - 3
11/01/01 55563.31 - >20.5 >20.6 >20.2 >20.0 - - - 2
11/01/25 55587.30 - >20.6 >20.6 >20.3 >20.5 - - - 2

† 1 = LT, 2 = NTT, 3 = TNG, 99 = CBET 2201, where instruments are coded as in Tab.1.

Table 5. Optical and infrared magnitudes of SN 1995ad.

Date JD B V R I J H K Inst.†
yy/mm/dd (+2400000)
95/09/22 49983.29 - - 15.70 ( - ) - - - - 98
95/09/28 49989.30 - 14.25 (.25) - - - - - 99
95/09/29 49989.80 14.77 (.20) 14.73 (.15) 14.67 (.15) - - - - 1
95/10/02 49992.88 15.17 (.01) 15.03 (.01) 14.85 (.01) 14.75 (.01) - - - 2
95/10/14 50004.90 - 15.29 (.02) 14.98 (.02) - - - - 2
95/11/24 50045.53 16.90 (.03) 15.81 (.02) 15.30 (.02) - - - - 3
95/12/26 50077.71 - - 16.92 (.03) - - - - 4
95/12/26 50077.73 19.79 (.01) 17.96 (.06) 16.93 (.03) 16.37 (.02) - - - 4
96/12/29 50080.74 - 18.00 (.09) 17.07 (.07) - - - - 2
96/01/17 50100.42 19.83 (.30) 18.32 (.19) 17.35 (.12) - - - - 3
96/01/19 50102.45 19.91 (.25) 18.35 (.12) 17.38 (.10) 16.89 (.10) - - - 5
96/02/18 50131.63 19.94 (.10) 18.59 (.05) - - - - - 4
96/02/22 50135.65 20.08 (.30) 18.51 (.15) 17.61 (.10) 17.15 (.10) - - - 5
96/02/23 50136.65 19.96 (.30) 18.53 (.15) 17.61 (.10) 17.18 (.10) - - - 5
96/04/20 50193.52 20.16 (.35) 19.14 (.20) 18.20 (.15) 17.76 (.15) - - - 5
96/04/21 50194.55 - 19.07 (.20) 18.19 (.15) 17.75 (.15) - - - 5
96/04/29 50203.50 - - - - 17.69 (.20) 17.67 (.30) 17.13 (.50) 2
96/05/14 50217.50 >20.5 19.54 (.25) 18.58 (.20) - - - - 5
96/10/02 50358.87 >23.0 22.42 (.55) 20.21 (.15) - - - - 6
96/11/19 50406.85 - - 20.79 (.40) - - - - 5
97/02/19 50489.53 - - >21.5 - - - - 2

† 1 = ESO 1.5, 2 = ESO 3.6 , 3 = Ekar, 4 = MPG-ESO 2.2, 5 = Dutch, 6 = Danish, 98 = IAUC 6852, 99 = IAUC 6239, where instruments are
coded as in Tab.1.

rors. Therefore, SN 2007pk is a bright SN II according to the
criteria of Patat et al. (1994) and Li et al. (2011). The average de-
cline rate in the first 100 days post maximum is βB

100(07pk)∼ 3.6
mag (100d)−1, closer to those of type IIL than to those of type
IIP SNe (Patat et al. 1994). On the contrary, βV

100(07pk)∼ 1.8
mag (100d)−1is typical of type IIP, making SN 2007pk a transi-
tional object between the two subclasses.

3.2.3. SN 2010aj

Our observations (cfr. Tab. 4 and Fig. 8) cover a period of almost
one year, although the SN has been detected only until ∼100
days after discovery. Because of the complex background, the
late time photometry was performed using the template subtrac-
tion. The large errors, estimated with the artificial stars method,
are due to non ideal sky conditions.

The early magnitudes reported in the CBET, give a weak in-
dication that the R band peak occurred around JD 2455269.5
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C. Inserra et al.: Moderately luminous type II Supernovae

Table 6. Optical magnitudes of SN 1996W.

Date JD U B V R I Inst.†
yy/mm/dd (+2400000)
96/04/10 50183.50 - - 16.00 ( - ) - - 6
96/04/11 50184.50 - - 16.00 ( - ) - - 6
96/04/13 50186.60 - - 15.10 ( - ) - - 6
96/04/16 50190.40 - 15.53 (.02) 15.18 (.02) 14.77 (.04) - 1
96/04/18 50192.40 - 15.51 (.02) 15.26 (.01) 14.79 (.01) - 1
96/04/18 50192.41 - - 15.26 (.01) - - 1
96/04/19 50192.50 - 15.45 (.03) 15.15 (.01) 14.77 (.01) 14.60 (.02) 2
96/04/20 50193.50 - 15.51 (.03) 15.12 (.01) 14.75 (.01) 14.59 (.02) 2
96/04/25 50198.54 15.21 (.30) 15.53 (.15) 15.20 (.10) 14.79 (.10) 14.62 (.15) 3
96/05/09 50212.50 - 15.89 (.20) 15.22 (.15) 14.74 (.10) 14.49 (.15) 3
96/05/11 50215.63 - 15.95 (.20) 15.24 (.15) 14.76 (.10) 14.49 (.15) 3
96/05/13 50217.50 16.75 (.05) 16.12 (.03) 15.25 (.03) 14.79 (.03) 14.49 (.03) 2
96/05/14 50218.50 16.82 (.07) 16.15 (.03) 15.26 (.03) 14.79 (.03) 14.50 (.04) 2
96/05/19 50222.54 16.90 (.03) 16.32 (.01) 15.31 (.01) 14.79 (.01) 14.49 (.02) 4
96/12/15 50432.81 - 19.24 (.13) 18.34 (.12) 17.38 (.06) 17.02 (.05) 4
97/01/30 50478.80 - 19.33 (.11) 18.55 (.08) 17.76 (.09) 17.41 (.05) 5
97/02/12 50491.50 18.64 (.20) 19.40 (.20) 18.74 (.20) 17.96 (.10) 17.65 (.05) 4
97/03/31 50538.50 - 19.77 (.20) 19.25 (.20) 18.34 (.20) 17.91 (.10) 2

† 1 = Ekar, 2 = Dutch, 3 = ESO 1.5, 4 = MPG-ESO 2.2, 5 = Danish, 6 = IAUC 6379, where instruments are coded as in Tab.1.
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Fig. 7. Synoptic view of the light curves of SN 2007pk in all
available bands. The magnitude shifts with respect to the values
reported in Tab. 3 are listed in the insert.

(March 13 UT), in agreement with the spectral age reported by
Cenko et al. (2010) and with the epoch provided by the GELATO
comparisons. Then we adopted JD 2455265.5±4.0 (March 10
UT) as epoch of the explosion.

The maximum absolute magnitudes are: Mmax
B ≤ −16.95 ±

0.18, Mmax
V ≤ −17.08±0.17, Mmax

R = −17.80±0.16 and Mmax
I ≤

−17.44±0.16, where the reported errors include the uncertainties
in our photometry, in the adopted distance modulus, and in the
interstellar reddening. Note that only in the R band the reported
value is the absolute magnitude at maximum, while in the other
bands they are the brightest measured magnitudes.

The early post maximum decline in the R band is about
0.55 mag in 11d. After about 15 days, the V, R and I light
curves settle in a long slanted plateau with average magnitudes
V∼ 18.2, R∼ 17.8 and I∼ 17.5 (MV ∼ −16.6 , MR ∼ −17.0
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Fig. 8. Light curves of SN 2010aj in optical bands. The magni-
tude shifts with respect to the values reported in Tab. 4 are in the
legend.

and MI ∼ −17.3), while the B band shows a monotonic de-
cline. The plateau of SN 2010aj is, therefore, relatively luminous
when compared with those of more typical SNe IIP and similar
to those of SNe 2009bw (MV ∼ −17.2, Inserra et al. 2012a) and
2009dd (MV ∼ −16.6, cfr. 3.2.1). The tail has been observed in
the V, R, I bands and, with a single data point, in the B band.
However, because of the early phase and short time baseline the
measured decline rates, γR ∼ 3.0 and γI ∼ 2.1 mag (100d)−1, are
not indicative of the true decline in the tail. The drop between the
photospheric and the nebular phase is ∆(R) ∼ 2.5 mag in ∼16d,
similar to that of SN 2009bw (∼2.2 mag in ∼13d).
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Fig. 9. Light curves of SN 1995ad in uv and optical bands. The
magnitude shifts with respect to the original value reported in
Tab. 5 are in the insert.

3.2.4. SN 1995ad

Observations of SN 1995ad started the day after the discovery
by Evans et al. (1995, V ∼ 14.25,), about one week after the first
(pre-discovery) detection (R ∼ 15.7, Broughton 1998), and span
a period of more than 400 days. SN magnitudes are reported in
Tab. 5 and shown in Fig. 9. The pre-discovery detection together
with spectroscopic constraints allow us to estimate the explosion
epoch to about JD 2449981.0 ± 3 (on September 20).

Considering the adopted extinction and distance (Sect. 2),
the SN reached at maximum Mmax

B = −17.18 ± 0.26, Mmax
V =

−17.67±0.22, Mmax
R = −17.22±0.22 and Mmax

I = −17.12±0.15.
The light curves show a steep decline from the maximum

to the plateau, the latter lasting about 50 days (with an average
MV ∼ −16.6) resembling those of SN 2007od, SN 1992H and
SN 2010aj. Between day 60 and 90 the SN abruptly faded reach-
ing the radioactive tail, marked by a decline very close to the
56Co to 56Fe decay rate (γV ∼ 0.93 mag (100d)−1 between 95-
220d). The available very late time photometry (t>300d) shows
an increase of the luminosity decline, being larger in V than in
the R band. This may be due to dust formation, as suggested
by the detection of CO emission in the late-time NIR spectra
(Spyromilio & Leibundgut 1996).

3.2.5. SN 1996W

Our photometric observations started a few days after the dis-
covery. The SN magnitudes are reported in Tab 6 along with
photometry reported in the IAUC; the light curves are shown in
Fig. 10. The early discovery magnitudes and the spectral com-
parison with GELATO agree in dating the explosion shortly be-
fore the discovery. Thus we adopt as epoch of the explosion JD
2450180.0 ± 3.

Assuming the distance and extinction values discussed in
Sect. 2, we find Mmax

B = −17.59 ± 0.26, Mmax
V = −17.51 ± 0.22,

Mmax
R = −17.77 ± 0.20 and Mmax

I ≤ −17.78 ± 0.18.
The available observations show a flat and bright (MV ∼

−17.5) plateau in the VRI bands during the first ∼40 days and
instead a linear decline in the U and B bands until the SN dis-
appeared behind the Sun. The SN was recovered after day 250.
The late time decline rates in the various bands are γB ∼ 0.50,

0 50 100 150 200 250 300 350
phase [from maximum JD= 2450186.6]

10

12

14

16

18

m
a
g

    I  -4
    R -3
    V -2
    B -1
    U -0

Fig. 10. Light curves of SN 1996W in all available bands. Shifts
compared to the original values reported in Tab. 6 are in the leg-
end.

Table 7. Main parameters of the SNe II used as reference.

SN µ∗ E(B–V) Mpl
V
∗ Parent Galaxy References

1979C 31.16 0.01 - NGC4321 1
1987A 18.49 0.19 - LMC 2
1992H 32.38 0.03 -17.3 NGC 5377 3
1998S 31.08 0.23 - NGC 3877 4

1999em 29.47 0.10 -15.6 NGC 1637 5,6
2004et 28.85 0.41 -17.0 NGC 6946 7
2005cs 29.62 0.05 -15.0 M 51 8
2005gl 34.03 0.30 -17.7‡ NGC 266 9
2007od 32.05 0.04 -17.4 UGC 12846 10
2009bw 31.53 0.31 -17.2 UGC 2890 11
2009kf 39.69 0.31 -18.3 SDSS J16 12

∗ Reported to a H0 = 73 km s−1 Mpc−1 distance scale
‡ unfiltered
REFERENCES: 1 - Balinskaia et al. (1980), 2 - Arnett et al. (1989), 3
- Clocchiatti et al. (1996), 4 - Fassia et al. (2001), 5 - Elmhamdi et al.
(2003), 6 - Baron et al. (2000), 7 - Maguire et al. (2010), 8 - Pastorello
et al. (2009), 9 - Gal-Yam et al. (2007), 10 - Inserra et al. (2011), 11 -
Inserra et al. (2012a), 12 - Botticella et al. (2010).

γV ∼ 0.86, γR ∼ 0.92 and γI ∼ 0.86 mag (100d)−1, not dissimilar
from that of the 56Co to 56Fe.

3.3. Colour evolution

The colour curves of the five SNe, valuable to test their de-
gree of homogeneity, are reported in Fig. 11 along with those of
SN 1987A, the faint SN 2005cs, the normal SN 1999em and the
luminous SNe 2004et, 2007od and 2009bw (Tab. 7). All these
SNe IIP show quite similar colour evolutions with a rapid in-
crease of the (B–V) colour as the SN envelope expands and cools
down. After about 40 days the colour varies more slowly as the
cooling rate decreases, reaching a value of ∼1.5 mag at ∼100d.
The remarkable exceptions to this uniform trend are SN 1987A,
faster at early times, and SN 2005cs having a red spike at about
120d, which seems to be a common feature in low-luminosity
SNe IIP (Pastorello et al. 2004). After 150 days all SNe show
a slow turn to bluer colours. Among the SNe presented in this
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Fig. 11. Comparison of the dereddened colours of our sample of
SNe and those of SNe 1987A, 2005cs, 1999em, 2004et, 2007od
and 2009bw. The phase of SN 1987A is with respect to the ex-
plosion date.

paper, the (B–V) colour curve of SN 2009dd seems redder al-
though this might be related to an underestimate of the colour
excess.

The (V–I) colour increases for all SNe II during the first days
past explosion; it remains roughly constant during the plateau
phase (V − I ∼ 0.7) and has a further increase during the post-
plateau drop. Then it is fairly constant during the nebular phase
(Fig. 11 bottom). The objects of our sample have similar colours
at all epochs as other type II SNe.

3.4. Bolometric light curves and Ni masses

Because of the incomplete UV-optical-NIR coverage, it is im-
possible to obtain true bolometric light curves. We computed
the quasi-bolometric light curves by integrating the fluxes of
the available UBVRI photometry (B to I for SN 1995ad).
Broad band magnitudes were converted into fluxes at the ef-
fective wavelengths, then were corrected for the adopted ex-
tinctions (cfr. Sect. 2), and finally the resulting Spectral Energy
Distributions (SED) were integrated over wavelengths, assuming
zero flux at the integration limits. Fluxes were then converted to
luminosities using the distances adopted in Sect. 2. The emitted
fluxes were computed at phases in which R or V observations
were available. When observations in other bands were unavail-
able in a given night, the magnitudes were obtained by inter-
polating the light curves using low-order polynomials, or were
extrapolated using constant colours. Pre-maximum estimates are
based mainly on single R- or V-band observations and should be
regarded as most uncertain. The quasi-bolometric light curves of
our sample are displayed in Fig. 12 along with those of the ref-
erence SNe of Tab. 7. We notice that the possible contribution
to the total flux in the nebular phase from the NIR bands (likely
15% − 20%, Inserra et al. 2011) was neglected.

The quasi-bolometric peaks of SN 2007pk, SN 2010aj and
SN 1995ad are reached close to the R maximum and those of
SN 2009dd and SN 1996W closer to the V maximum. The quasi-

bolometric luminosities at maximum light are reported in Tab. 9.
They range between 1.5 and 6.3 × 1042 erg s−1. The peak lu-
minosities for all objects are moderately bright, only slightly
fainter than those of the luminous SNe 2007od, 2004et, 1992H.
Four out of five objects have long and bright plateaus, compa-
rable in luminosity to that of SN 2009bw. Fig. 12 points out the
early transition (∼80d–100d) to the radioactive tail of SN 2010aj,
SN 2009dd and SN 1995ad (the end of the plateau of SN 1996W
was missed). Instead SN 2007pk shows a peak luminosity higher
than other objects of our sample and a linear decline during the
photospheric phase though with a rate that is smaller than for the
prototypical type IIL SN 1979C.

The tails of the quasi-bolometric light curves of SN 2009dd,
SN 1995ad and SN 1996W have slopes close to that of the decay
of 56Co to 56Fe (cfr. Tab. 9) allowing the determination of the
ejected 56Ni mass. The observations of SN 2010aj ended just at
the beginning of the radioactive tail, thus we feel confident to
provide only an upper limit to the 56Ni mass, while not even this
is available for SN 2007pk.

The 56Ni mass has been derived by comparing the late quasi-
bolometric light curves integrated over the same wavelength
range as SN 1987A, assuming a similar γ-ray deposition frac-
tion

M(56Ni)SN = M(56Ni)87A ×
LSN

L87A
M� (1)

where the mass of 56Ni ejected by SN 1987A is M(56Ni)87A =
0.075 ± 0.005 M� (Arnett 1996), and L87A is the quasi-
bolometric luminosity at comparable epoch. The comparisons
give M(56Ni)09dd ∼ 0.029 M�, M(56Ni)95ad ∼ 0.028 M� and
M(56Ni)96W ∼ 0.14 M�. With the same assumption on the full
thermalization of the γ−rays, we cross-checked these results
with the formula

M(56Ni)SN =
(
7.866 × 10−44

)
Ltexp

[
(t−t0)/(1+z)−6.1

111.26

]
M� (2)

from Hamuy (2003), where to is the explosion epoch, 6.1d is
the half-life of 56Ni, and 111.26d is the e-folding time of the
56Co decay (Cappellaro et al. 1997; Woosley et al. 1989). This
method yields M(56Ni)09dd ∼ 0.027 M�, M(56Ni)95ad ∼ 0.025
M� and M(56Ni)96W ∼ 0.13 M�, in agreement with the above
determinations. For SN 2010aj we estimated an upper limit
M(56Ni)10aj < 0.007 M�, based on the last epoch in which the
SN was detected.

4. Spectroscopy

In this Section we present and discuss the spectral evolution of
the five SNe of our sample (Tab. A.6).

The data were reduced (trimming, overscan, bias correction
and flat-fielding) using standard IRAF routines. Optimal extrac-
tion of the spectra was adopted to improve the signal-to-noise
(S/N) ratio. Wavelength calibration was performed using spec-
tra of comparison lamps acquired with the same configurations
as the SN observations. Atmospheric extinction correction was
based on tabulated extinction coefficients for each telescope site.
Flux calibration was done using spectro-photometric standard
stars observed in the same nights with the same set-up as the
SNe. The flux calibration was checked against the photometry,
integrating the spectral flux transmitted by standard BVRI filters
and adjusted by a multiplicative factor when necessary. The re-
sulting flux calibration is accurate to within 0.1 mag. The spec-
tral resolutions in Tab. A.6 were estimated from the full widths
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Fig. 12. Comparison of quasi-bolometric light curves of our sample (UBVRI-integrated for SN 2009dd, SN 2007pk, SN 2010aj and
SN 1996W and BVRI-integrated for SN 1995ad) with those of other type II SNe; most of them are bright and thus different from
the general distribution in luminosity of type II SNe. The phase is with respect to the maximum, only for SN 1987A is with respect
to the explosion epoch. Minor misalignments in the epoch of maxima are due to the different epochs adopted for the maxima of the
reference band light curve and the quasi-bolometric curve. On the right a blow up of the SNe of our sample in the first 80d.

at half maximum (FWHM) of the night sky lines. Whenever pos-
sible we used the spectra of standard stars to remove telluric fea-
tures in the SN spectra.

4.1. Individual properties

In the following we will discuss the spectroscopic properties
of the individual SNe showing relatively normal behaviors for
four objects, with some evidences of weak ejecta-CSM interac-
tion, and more marked signatures of interaction during the first
months for SN 2007pk.

4.1.1. SN 2009dd

Seven spectra are available for this object tracing the evolution
from about 11d post explosion to about 14 months (Fig. 13).
The first spectrum shows a blue continuum comparable to that of
other young SNe II. It is characterised by the P-Cygni features
of the H Balmer series, He i λ5876, Fe iimultiplets (e.g. λλ4924,
5018, 5169) and H&K of Ca ii. On the blue side of the Hα emis-
sion, at about 6200Å, three absorption features are present. The
bluest absorption, at ∼6174Å is possibly identified as Si ii, with
an expansion velocity comparable to those of the other metal
ions. This line was also identified in other type II SNe (e.g.
SN 1992H, SN 2007od, SN 2009bw; Inserra et al. 2011, 2012a,
and references therein). The middle feature is probably Fe ii
λ6456 but the line strength would indicate a much higher optical
depth than usual for metal lines at this stage. Alternatively, this
line might be a high velocity component (HV) of Hα. Actually
a tiny absorption blue ward of Hβ is visible at ∼4620Å but the
resulting expansion velocity is larger than the putative Hα com-
ponent (HV(Hα)= 13800 km s−1 vs. HV(Hβ)= 14800 km s−1).
The presence of a HV feature could be a signature of early inter-
action of the ejecta with the CSM (Chugai et al. 2007), consistent
with the X-ray detection (cfr. Sect. 2). Unfortunately, we do not

have other spectra at similar epochs to confirm this line iden-
tification. The reddest observed component is the Hα P-Cygni
absorption, indicating an expansion velocity of ∼ 11000 km s−1.

The third spectrum was taken during the plateau phase. It
shows well-developed P-Cygni profiles of the Balmer series and
a number of metal lines, including Fe ii at ∼4500Å and Sc ii
λ5031 on the red side of Hβ. Fe i and Sc ii are visible at about
5500Å, while Na iD has now replaced He i λ5876. Other promi-
nent metal lines are Ba ii λ6142 and Sc ii λ6245. In the red
(λ > 7000 Å) the Ca ii near-IR triplet is one of the strongest
spectral features. In addition, O i at ∼7774Å and N ii at ∼8100Å
are possibly detected. The same features are visible in the fourth
(late-photospheric) spectrum (+108d).

The series of three nebular spectra (230d-409d) show emis-
sions of Na iD, [O i] λλ6300, 6364, Hα, [Fe ii] λ7155, [Ca ii]
λλ7291, 7324 doublet and the Ca IR triplet. In the latest spec-
trum (409d) SN emission features are still visible (namely [O i],
[Fe ii] and [Ca ii] features) though heavily contaminated by nar-
row emission lines of an underlying H ii region (Hα, [N ii],
[S ii]).

4.1.2. SN 2007pk

Fig. 14 shows the photospheric evolution from a few days post
explosion (∼4d) to about 3 months. Two spectra at 10 and 11
months were also obtained when the SN was barely visible and
narrow lines from the underlying H ii region are mostly detected.

The first spectra (4d-8d) show a blue continuum with Hα and
Hβ emission and no prominent absorption features. As reported
in Parisky et al. (2007), these are the characteristics of type IIn
SN spectra. The prominent feature bluer of Hβ is identified as
He ii λ4686 possibly blended with C iii/N iii like in the case of
SN 1998S (Fassia et al. 2001). Broad Balmer absorptions begin
to emerge on day 8 (although they are still weak).
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Fig. 13. The complete spectral evolution of SN 2009dd. Wavelengths are in the observer’s rest-frame. The phase for each spectrum
is relative to the adopted explosion date (JD 2454925.5), late spectra have been multiplied by a factor 5 to emphasise the nebular
lines. The ⊕ symbols mark the positions of the strongest telluric absorptions. The ordinate refers to the top spectrum; the other
spectra are shifted downwards by 4 × 10−15 (second and third) and 1.4 × 10−15 (others) erg s−1 cm−2 Å−1.

The spectrum at 27d shows well-developed P-Cygni lines of
metal elements such as Fe ii at ∼4500Å and Sc ii λ503. Also
the Fe ii multiplet λλ4924, 5018, 5169 and Sc ii λ6245 are visi-
ble. The Na iD feature is blended with He i λ5876. The Hα and
Hβ still show a dominant emission component with an absorp-
tion component comparable with those of other SNe II at the
same phase. Nevertheless, the absorption profiles display flat,
blue shoulders, possibly an evidence of a residual interaction of
the SN ejecta with the CSM (see Chevalier 1982; Chevalier &
Fransson 1994). For this reason, the 27d spectrum may repre-
sent the rare snapshot of the spectral transition from a type IIn to
a normal, non-interacting type II SN.

The last set of photospheric spectra (51d-85d) show the evo-
lution of a canonical type II during the H recombination phase.
Fe i λ4541, Sc ii λ5527, Ba ii λ6142, Na iD, O i λ7774 are visible
as well as the Ca ii near-IR triplet (λλ8498, 8542, 8662). P-Cygni
line profiles of the Paschen series, in particular Paβ, Paγ and Paδ
are visible in the day 66 NIR spectrum (Fig. 15). Paγ is blended
with He i λ10830.

The two late-time spectra (302d to 330d) do not show un-
equivocal SN features. The narrow unresolved emissions, i.e. Hα

(∆v∼800 km s−1), [N ii] λ6583 and the [S ii] λλ6717, 6731 dou-
blet, are probably related to the underlying H ii region.

4.1.3. SN 2010aj

The spectral evolution of SN 2010aj shown in Fig. 16 spans ∼2
months during the photospheric phase, complemented by an ad-
ditional observation in the nebular phase, about one year after
the explosion.

The first spectrum shows the H Balmer lines (the P-Cygni
profile has a weak absorption component), He i λ5876, Ca ii
H&K, Fe ii lines (λλ4924, 5018, 5169), and possibly Si ii λ6355,
O i λ7774 and the Ca ii IR triplet. In the following three spectra
(38d - 73d) other metal lines become prominent, including Ti ii
around 4100Å, while Fe ii and Ba ii contribute to the feature at
∼4930Å. Fe i and Sc ii lines are also clearly detected at about
5500Å, as well as Sc ii λ6245. The Na iD feature replaces He i
λ5876. The H Balmer lines develop well-designed P-Cygni pro-
files, always contaminated by the strong narrow components due
to an underlying H ii region. We cannot perform a more detailed
analysis because of the sparse temporal sampling.
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Fig. 14. The spectral evolution of SN 2007pk. Wavelengths are in the observer’s rest frame. The phase reported for each spectrum
is relative to the explosion date (JD 2454412), late spectra have been multiplied by a factor 40 to emphasise the nebular lines. The
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Fig. 15. The NIR spectrum of SN 2007pk at ∼ 66d after the ex-
plosion date (JD 2454412). Wavelengths are in the observer’s
rest-frame.

The late-time spectrum does not show evidence of broad
lines due to the SN. The Hα, Hβ, [O ii] and [S ii] unresolved
(∆λ = 17Å) lines are related to the host galaxy H ii region.

4.1.4. SN 1995ad

The available spectra cover the period from one week to over 500
days after the explosion (see Fig. 18). The continuum is very
blue at the first epoch and progressively becomes redder and
the most prominent features are those usually detected in type
II SNe during the photospheric phase (H Balmer, He i/Na ID,
Fe ii, Ca ii, Sc ii and other metal lines). Also the line profiles
evolve in standard fashion, from broad P-Cygni profiles at the
early epochs to narrow emissions during the nebular phase. The
Hα profile in the early phase (9d-24d) is reminiscent of that of
SN 2007od at a similar stage with flat-topped emission and sig-
nificant absorption only after day 24. Though one may argue that
the flat profile is due to the CSM-ejecta interaction similar to
SN 2007od (Inserra et al. 2012b, 2011), most likely the peculiar
profile is the result of blending of the blue-shifted SN emission
with the narrow emissions from the H II region. Searching for
possible signatures of interaction, we have investigated several
high signal-to-noise spectra for the possible presence of HV fea-
tures of Hα and Hβ with no conclusive results.
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Fig. 16. The spectral evolution of SN 2010aj. Wavelengths are in the observer’s rest frame. The phases reported to the right are
relative to the explosion epoch (JD 2455265.5), The late spectrum has been multiplied by a factor 4 to emphasise the features. The
⊕ symbols mark the positions of the strongest telluric absorptions. The ordinate refers to the top spectrum; other spectra are shifted
downwards with respect to the previous one by 2 × 10−16 and 6 × 10−16 (only the third) erg s−1 cm−2 Å−1.

The line identification during the plateau is shown in Fig. 17
for both SN 1995ad and SN 1996W, using spectra of high signal-
to-noise and good resolution (FWHM∼ 10 Å). The spectra of
SN 1995ad show the possible contribution of Ti ii lines in the
bluer part (<4500 Å) of the spectrum. Also prominent are the
lines of Ba ii, Fe ii and Sc ii around 5000 Å, the strong Sc ii
λ5527 (possibly blended with Ba i λ5535) and λ6245, as well as
the Ba ii λ5854 and λ6142. In the red wavelength, in addition to
the evident Ca ii NIR triplet, we identify lines of O i λ7774, N i
at ∼8120 Å and O i λ9260. By comparison with SN 2009bw the
absorption feature at 9030 Å may be due to C i. The presence of
O lines becomes more evident in the subsequent spectra. Finally
we note that [O i] and [Ca ii] emission of the SN are clearly vis-
ible in the nebular spectra despite the contamination of nebular
lines from the underlying H ii region.

4.1.5. SN 1996W

The observations (cfr. Fig. 19) cover the first couple of months
after the explosion, until the SN went behind the Sun. The object
was recovered during the nebular phase (252 − 312 days).

The evolution matches fairly well that of normal type IIP
SNe, although the line velocities and the continuum tempera-
tures are somewhat higher than in canonical SNe IIP at a com-
parable phase (see Table 9 and Section 4.2). Hα, Hβ and He i are
visible in the early spectra and metal lines are detected since the
19d spectrum. Also for this object the Hα profile appears flat-
topped. However, contrary to SN 1995ad, in this case we have
detected HV features of Hα and Hβ (cfr. Sect. 5.1). Fig. 17 shows
the line identifications on the spectrum of day 67, which turn out
very similar to those of SN 1995ad at a similar epoch.

Three late-time spectra sample the evolution in the nebular
phase with the progressive growth of forbidden lines over per-
mitted counterparts (e.g. [Ca ii] λλ7291-7324 doublet vs. Ca ii
IR triplet).
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Fig. 18. Spectral evolution of SN 1995ad. Wavelengths are in the observer’s rest frame. The phase reported for each spectrum is
relative to the explosion date (JD 2449981), late spectra have been multiplied by a factor 5 and 60 to emphasise the features. The
⊕ symbol marks the positions of the most significant telluric absorptions. The second and third spectra are shifted upwards by
1 × 10−15; the other ones are shifted downwards with respect to the previous by 0.7 × 10−15 erg s−1 cm−2 Å−1.

4.2. Velocity and temperature evolution

The expansion velocities provide key information on the ener-
getics of the explosion and the position of the photosphere inside
the ejecta. In Fig. 20 we show the evolution of the expansion
velocities for our SN sample as inferred from the positions of
the minima of the P-Cygni profiles for some representative lines
(Hα, Hβ, He i λ 5876, Fe ii λ5169 and Sc ii λ6246). The mea-
sured expansion velocities are listed in Tab. 8. In all cases the ve-
locities of Hα are systematically higher than those of Hβ. At very
early epochs the Hα velocities are over 10000 km s−1 in SNe
1995ad, 1996W and 2009dd, and decline very fast. The deter-
mination of the expansion velocity is problematic in SN 2007pk
because of the lack of absorptions (cfr. Sect. 4.1). The early ve-
locities of the Balmer lines reported in Tab. 8 are derived from
the FWHM of the emissions visible up to day +8.

The velocity of He i line, when visible, is significantly
smaller than that of Hα. Fe ii and Sc ii are good indicators of the
photospheric velocity and their values are the smallest among
those measured. Sc ii remains always slower than Fe ii with
vSc II ∼ 0.9× vFe II.

SN 1996W has metal line (photospheric) velocities that are
a factor 1.5 higher than those of other SNe whilst the veloci-

ties deduced from H and He i (outer ejecta) are not remarkably
different. The presence of a weak interaction could explain this
behaviour (for details see Inserra et al. 2012b) and is supported
by the presence of HV Hα at 11500 km s−1 during the entire
photospheric evolution (cfr. Sect. 5.1).

In Fig. 21 we show the comparison of the Hα velocity evo-
lutions in our SN sample with those of other classical SNe II.
All SNe show a similar behavior, with the exception of the low-
luminosity SN 2005cs, that is clearly an outlier. In any case
SN 1996W and SN 2009dd show the highest velocities at early
epochs while during the mid-late photospheric phase all objects
appear to be confined in a narrow strip of ±1000 km s−1.

The bottom panel of the same figure reports the tempera-
ture evolution, as derived from the black-body fits to the spectral
continua (see Tab. 8). The objects showing possible evidence of
early interaction have, during the first 20d, higher temperatures
than the other SNe II. After 40d the measured temperature re-
mains constant (T∼5500 K) for all objects.
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Fig. 19. The overall spectral evolution of SN 1996W. Wavelengths are in the observer’s rest frame. The phase reported for each
spectrum is relative to the explosion date (JD 2450180), late spectra have been multiplied by a factor f5 and 20 to emphasise the
features. The ⊕ symbol marks the positions of the most important telluric absorptions. The spectra are shifted with respect to the
first one.

4.3. Comparative evolution

In panel a) of Fig. 22 we compare the early spectra of the SNe
in our sample with those of other type II events. SNe 1995ad
and 1996W show flat-topped profiles which may be due to con-
tamination of the narrow emission from underlying H II re-
gions (favoured for SN 1995ad, Sect. 4.1) or to interaction (as
in SN 2007od, Inserra et al. 2011, 2012b). In the case of
SN 1996W the latter is supported by the simultaneous pres-
ence of HV features (cfr. Sect. 5.1). The emission profile of
SN 2009dd is roundish and similar to that seen in SN 1999em.
However, on the blue side of the Hα emission in SN 2009dd
spectrum, three absorptions are clearly detected. To our knowl-
edge, similar features have not been seen in other type II SNe
(at least with this strength). The bluest component was identified
with Si ii λ6355 as in SN 2007od (Inserra et al. 2011, 2012b) and
SN 2009bw (Inserra et al. 2012a). The central component might
be a HV feature of Hα with v = 13800 km s−1 or, alternatively,
Fe ii λ6456 with an unusually high optical depth. Although there
are no other clear spectral evidences, such as HV Hβ, the X-ray
detection at early times (cfr. Sect. 2) may support the interac-
tion scenario. Also, the weak features on the blue side of the Hα
and Hβ of SN 1996W could be related to HV layers at ∼11500
km s−1.

In panel (b) we compare the plateau phase spectra of the
same objects. At this stage also SN 2009bw and SN 1999em
show HV Hα at ∼7300 km s−1 (Inserra et al. 2012a) and ∼8200
km s−1 (Chugai et al. 2007), respectively. The weak HV Hα com-
ponents of SN 2009dd and SN 1996W appear at velocity ∼13800
and ∼11500 km s−1, respectively, remaining steady during the
early phases.

Panels c) and d) show the early and late photospheric spec-
tra of SN 2007pk, the only SN of the sample with a clear evi-
dence of interaction at early times. We compare the spectra with
those of the type IIn SN 1998S, the weakly interacting type IIP
SN 2007od and the type IIn SN 2005gl, which have similar spec-
tral evolution. The narrow H Balmer lines of SN 2007pk and the
double-horned line at ∼4600Å, possibly related to highly ionised
elements such as C iii/N iii or C iv, stand out over a very blue
continuum. The similarity with SN 1998S is remarkable, but
also SN 2005gl shared the same features. The weakly interacting
SN 2007od had instead a definitely different spectral features.

As mentioned in Sect. 4.1, the spectrum of SN 2007pk
evolves rapidly and already on day 50, during the plateau, it
resembles closely those of standard type IIPs. In panel (d) we
compare late photospheric spectra of the same objects about two
months past explosion. SN 2007pk and SN 2005gl have evolved
in a similar fashion. Both show well-developed absorption com-
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Table 8. Observed continuum temperatures and line velocities for the objects of our sample.

JD Phase† T v(Hα) v(Hβ) v(He i) v(Fe ii) v(Sc ii)
+2400000 (days) (K) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1)

SN 2009dd
54936.7 11.2 14700 ± 2000 10970 ± 150 9500 ± 370 8500 ± 700 9000 ± 500
54938.4 12.9 14000 ± 2000 9970 ± 150 8800 ± 400 7900 ± 600 8700 ± 500
54971.6 46.1 5500 ± 200 7680 ± 250 6600 ± 100 5500 ± 500 5040 ± 100
55033.4 107.9 5300 ± 700 6500 ± 300 5120 ± 230 3400 ± 1000 2200 ± 200

SN 2007pk
54416.3 4.3 14500 ± 2000 1800 ± 200∗ 1800 ± 200∗
54417.5 5.5 13500 ± 1000 2300 ± 100∗
54421.4 8.4 12000 ± 1000 2800 ± 500∗ 2000 ± 200∗
54439.5 27.5 8500 ± 300 8100 ± 800 7400 ± 100 5860 ± 250
54463.3 51.3 5500 ± 500 7060 ± 100 6040 ± 200 4875 ± 400 4040 ± 100
54477.4 65.4 5500 ± 300 6515 ± 180 5700 ± 300 4540 ± 100 3900 ± 180
54494.3 82.3 5600 ± 600 6100 ± 100 4940 ± 500 4000 ± 500 3400 ± 400

SN 2010aj
55287.6 22.1 8000 ± 500 8370 ± 200 7600 ± 300 6930 ± 1000 5900 ± 700
55303.3 37.8 5600 ± 500 7780 ± 700 7300 ± 350 4700 ± 200 4240 ± 500
55311.5 46.0 5800 ± 500 7090 ± 300 6700 ± 300 4400 ± 200 4050 ± 200
55338.5 73.0 5200 ± 400 6080 ± 300 4750 ± 380 2890 ± 250 2500 ± 200

SN 1995ad
49989.8 8.8 16000 ± 1500 11500 ± 1100 8610 ± 600 8321± 600
49992.9 11.9 9900 ± 400 10930 ± 580 8120 ± 520 7850 ± 400 5500 ± 1500
50004.9 23.9 8200 ± 600 7960 ± 270 7500 ± 200 7150 ± 300 5100 ± 350 4900 ± 300
50040.8 59.9 6900 ± 500 6820 ± 200 5600 ± 100 2970 ± 100 2700 ± 100
50041.8 60.8 6900 ± 600 6810 ± 210 5550 ± 100 2880 ± 120 2650 ± 100
50077.8 96.8 5400 ± 600 6160 ± 190 4400 ± 300 1800 ± 200
50080.8 99.8 5300± 900 5970 ± 360 4000 ± 500 1730 ± 400
50103.7 122.7 5700 ± 400 5720 ± 380 1580 ± 210
50131.7 150.7 5500 ± 900 5570 ± 220 1280 ± 190
50132.7 151.7 6700 ± 1500 5470 ± 290 1210 ± 200
50133.7 152.7 7200 ± 1300 5320 ± 205

SN 1996W
50191.6 11.6 10400 ± 300 11570 ± 500 10650 ± 500 9510 ± 500
50192.6 12.6 10200 ± 300 11330 ± 500 10030 ± 500 9040 ± 500
50195.4 15.4 10000 ± 200 10890 ± 500 9930 ± 400
50198.4 18.1 9600 ± 300 10470 ± 500 9420 ± 400
50198.6 18.5 9500 ± 300 10340 ± 500 9180 ± 400 8710 ± 400
50212.5 32.5 6800 ± 300 8880 ± 300 7250 ± 300 6150 ± 300
50215.6 35.6 6700 ± 300 8770 ± 300 7100 ± 300 5720 ± 300
50222.6 42.6 6600 ± 300 7750 ± 300 6310 ± 300 5010 ± 300
50247.5 67.5 6400 ± 500 5600 ± 300 4450 ± 300 3930 ± 250 3700 ± 200
50432.8 252.8 3700 ± 200 2830 ± 200
50478.5 298.5 3600 ± 200

† with respect to the explosion epochs (cfr. Tab. 9)
∗ the velocities are the FWHM of the narrow emissions

ponents for the lines of all ions and deeper absorptions of the
Balmer lines with respect to SN 1998S, while the lines of the
ions of the inner ejecta like Fe ii and Sc ii seem to have the
same strengths. The absorption component of Hα is significantly
stronger in SN 2007od than in other objects.

5. Discussion

In previous Sections we presented new photometric and spectro-
scopic data of five SNe II and discussed their evolution from the
photospheric to the nebular phase.

The SNe of our sample are relatively bright, with an average
absolute peak magnitude MV ≤ −16.95 (i.e. Lpeak ∼ 3 × 1042

erg s−1), above the average for SN II (Patat et al. 1994; Li et al.
2011). The light curves are characterized by extended plateaus,
although SN 2007pk may be considered a transitional object be-

tween IIP and IIL. The expansion velocities of the ejecta, rang-
ing from 10000−12000 km s−1 at early phases to ∼5000 km s−1at
the end of the photospheric phase, are similar to those of other
SNe II, with the objects showing signs of interaction being mod-
erately faster. The same is true for the temperature. There is a
high degree of individuality in the shape of the light curve with
the transition to the nebular stage occurring at different epochs
and with different magnitude drops from the plateau. Also the in-
ferred 56Ni masses span over one order of magnitude (1.4×10−1

to 7×10−3M�, cfr. Sect. 3.4).

5.1. Signatures of interaction

SN 2009dd shows three absorption components in the blue side
of Hα emission. The middle one 6235 Å is likely an HVHα com-
ponent with v∼13800 km s−1. Alternative identifications with
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Table 9. Main information on the SN sample.

2009dd 2007pk 2010aj 1995ad 1996W
α (J2000.0) 12h05m34s.10 01h31m47s.07 12h40m15s.16 06h01m06s.21 11h59m28s.98
δ (J2000.0) +50o32’19”.40 +33o36’54”.70 -09o18’14”.30 -23o40’28”.9 -19o15’21”.9
host galaxy NGC 4088 NGC 579 MGC -01-32-035 NGC 2139 NGC 4027
galaxy type Sbc Scd Sc SBc SBc
offset from nucleus 1”.5 W, 4”.0 S 7”.4 E, 1”.6 S 12”.4 W, 11”.7 S 25” W, 5” S 17” W, 34” N

local metallicity [12+log(O/H)] 8.59 8.50 8.63 8.60 8.60
adopted recession velocity† [km s−1] 1025 ± 15 5116 ± 16 6386 ± 20 1674 ± 14 1779 ± 29
adopted distance modulus (µ) 30.74 ± 0.15 34.23 ± 0.15 34.71 ± 0.15 31.80 ± 0.15 31.93 ± 0.15
adopted reddening, Etot(B-V) 0.45 0.11 0.04 0.04 0.23

observed B peak magnitude 15.07 ± 0.06 16.00 ± 0.15 17.92± 0.06 14.77 ± 0.20 15.45 ± 0.03
absolute B peak magnitude ≤ −17.61 ± 0.27 −18.70 ± 0.23 ≤ −16.95 ± 0.18 −17.18 ± 0.26 −17.59 ± 0.26
explosion epoch (JD) 2454925.5 ± 5 2454412 ± 5 2455265.5 ± 4 2449981.0 ± 3 2450180.0 ± 3
Lbol peak [×1042 erg s−1] 2.16 6.26 2.68 1.55 1.85
light curve peak (JD) 2454937 ± 4 2454420 ± 2 2455269 ± 4 2449989 ± 4 2450186 ± 4
late decline γV [mag (100d)−1] 1.15 – 3.0∗ 0.93 0.86
M(56Ni)[M�] 0.029 – <0.007 0.028 0.14

M(ejecta)[M�] 8.0 – 9.5 5.0 –
explosion energy (×1051 erg) 0.20 – 0.55 0.20 –
progenitor radius [cm] 5 × 1013 – 2 × 1013 4 × 1013 –

interaction evidences X, HVHα X, blue continuum, – – HV Hα & Hβ
narrow CS Hα

mass loss [M� yr−1] & 10−6 & 10−5 – – ∼ 10−6

† corrected for Virgo infall
∗ in R band, short baseline
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Fig. 17. Spectra of SN 1995ad at ∼61d and SN 1996W at ∼67d
post explosion. The spectra were corrected for extinction and
reported to the SN rest frame. The most prominent absorptions
are labelled.
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those of other SNe II. Bottom: Comparison of the continuum
temperature evolutions

metal lines (e.g. Si ii, Sc ii, Ba ii) are unlikely because the po-
sition of the absorption minimum would imply too low veloci-
ties (e.g. half of the Fe ii velocity). The putative HVHα feature,
between the Si λ6355 (v∼9000 km s−1) and the main Hα absorp-
tion, mimic an unusual triple absorption profile.

Two of the SNe of our sample, 2007pk and 2009dd were
detected in X-ray, that is a bona fide indicator of ejecta-CSM
interaction. The spectral evolution of SN 2007pk, with the de-
tection of a narrow Hα in pure emission, suggests that interac-
tion began very early after explosion but ended one month later.
To our knowledge the only other object having a similar evolu-

tion was SN 2005gl (Gal-Yam et al. 2007; Gal-Yam & Leonard
2009). Considering the strong X-ray emission of SN 2007pk, 10
times larger than those of SN 2009dd and SN 1999em (Immler,
Russell, & Brown 2009; Elmhamdi et al. 2003), we argue that
the ejecta-CSM interaction was also quite strong.

In general, the shock produces soft X-ray or far-UV emis-
sion depending on the ejecta density profile, with flatter profiles
leading to higher shock velocity, higher post-shock temperature
and hence greater emission at higher frequency (Chevalier &
Fransson 1994). Exploiting the fact that both SN 2009dd and
SN 2007pk have been monitored by SWIFT, we could compute
the UV contribution to the bolometric emission. This is shown
in Fig. 23 in which the corresponding values for the mildly in-
teracting SN 2007od and the non-interacting SN 2008in (Roy et
al. 2011) are reported for comparison. At early times, when the
X-ray flux was higher, the UV contribution of SN 2007pk was
twice as strong as that of SN 2009dd, that can be attributed to a
flatter density profile. However, the UV flux decreased rapidly,
and on day 20 was comparable to that of other objects, a sign that
the dense CSM material probably was already swept away at that
time. Much slower is the evolution of the UV flux in SN 2009dd,
that always remained significantly higher than in the other ob-
jects.

HV absorption components were identified on the spectra
of a few SNe, e.g. SNe 1999em, 2004dj, 2007od and 2009bw.
Chugai et al. (2007) have shown that the interaction of the ejecta
of a SN IIP with an average RSG wind can produce absorptions
(shoulders) on the blue wings of H lines due to enhanced exci-
tation of the gas in the outer un-shocked ejecta. In the previous
Sections we noted that similar features are present in SN 1996W.
Their velocity evolution as shown in Fig. 24 remains constant
with time. While the line positions at the earliest epochs are
compatible with an Fe ii identification, the lack of velocity evolu-
tion, contrasting with the behaviour of the main Hα absorption,
favours the HV identification.

Finally, two other objects, SNe 1995ad and 2010aj, did not
show unequivocal signs of interaction.

5.2. Explosion and progenitor parameters

Using the well-tested approach applied to other CC-SNe
(e.g. SNe 2007od, 2009bw, and 2009E; see Inserra et al. 2011,
2012, and Pastorello et al. 2012), we estimate the physical pa-
rameters describing the progenitors at the explosion (e.g. the
ejected mass, the progenitor radius, and the explosion energy)
by performing a model/observation comparison for our sample
of CC-SNe. This is based on a simultaneous χ2 fit of the main
CC-SN observables (namely, the bolometric light curve, the evo-
lution of the photospheric velocity and the continuum tempera-
ture at the photosphere). We do not considered SNe 2007pk and
1996W because the observational data are not sufficient for ob-
taining reliable estimates of the ejecta parameters. In particular,
their light curves do not cover the critical transition from the
plateau to the radioactive tail.

Two codes are employed to calculate the parameters. The
first is the semi-analytic code described in Zampieri et al. (2003),
which is used to perform preparatory studies to explore the pa-
rameter space describing the CC-SN progenitor at the explosion.
The second, used to compute a denser grid of more accurate
models, is a new general-relativistic, radiation-hydrodynamics
Lagrangian code (for details see Pumo et al. 2010; Pumo &
Zampieri 2011). Its main features are: 1) an accurate treatment
of radiative transfer coupled to relativistic hydrodynamics, 2)
a self-consistent treatment of the evolution of ejected material
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Fig. 22. Panel a): Comparison between early spectra of SN 1995ad, SN 1996W and SN 2009dd, and those of the interacting SNe
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plateau phase. Panel c): Comparison among early spectra of SN 2007pk, with those of other strongly- (SNe 1998S and 2005gl) and
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has been adopted from Gal-Yam et al. (2007).

taking into account both the gravitational effects of the com-
pact remnant and the heating effects linked to the decays of
the radioactive isotopes synthesized during the CC-SN explo-
sion, and 3) a fully implicit Lagrangian approach to the solution
of the coupled non-linear finite difference system of relativistic
radiation-hydro equations.

The modelling with these two codes is appropriate if the
emission from the CC-SN is dominated by the expanding ejecta.
As we mentioned before for some of the SNe of our sample,
there may be contamination from interaction. In the follow-
ing we assume that this effect does not dominate the quasi-
bolometric luminosity and therefore the modelling produces rea-
sonable estimates of the main physical parameters of the explo-
sive events, although it may not be possible to precisely repro-
duce all the observed features (see below).

The best-fitting models for each SN are reported in Figs. 25,
26, 27, and their parameters are listed in Tab. 9.

The agreement between the models and the observed light
curves and photospheric temperatures are quite satisfactory, ex-
cept at early epochs (. 20-40 d). Such discrepancies at early
times are caused both by approximate initial density profiles
used in the simulations, which do not reproduce accurately the
radial profiles of the outermost high-velocity shells of the ejecta
formed after shock breakout (cfr. Pumo & Zampieri 2011) and,
possibly, by ejecta-CSM interaction leading to luminosity ex-
cesses (see also Inserra et al. 2012a, and references therein). For

these reasons, we do not include in the χ2 fit the line velocity
measurements taken during the first 20-40 d.
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SN 2009dd compared to the weakly interacting SN 2007od and
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The agreement between the observed velocity evolution and
our best-fit models is less satisfactory. This may be related to
a systematic shift between the true photospheric velocity and
the value estimated from the observed P-Cygni line profiles (see
Dessart & Hillier 2005), according to which the optical depth in
the lines seems to be higher than that in the continuum, mov-
ing the line photosphere to a larger radius. Such effect may be
enhanced in case of ejecta/CSM interaction. We noticed that
in the case of SN 2009dd in which evidence for interaction is
stronger, the discrepancy is larger, ∼ 3000 km s−1(blue dashed
line in Fig. 25).

Taking in mind these caveats, we may elaborate on the phys-
ical parameters for the modelled SNe. The parameters of SN
2010aj (moderate ejecta mass, low amount of 56Ni, and low ex-
plosion energy), may be consistent with a scenario of explosion
and mass loss from a massive super-asymptotic giant branch3

(SAGB) stars with an initial (ZAMS) mass close to the upper
limit for this class of stars (∼ 11M�; see Pumo et al. 2009,
for details). For SN 1995ad, the values of the inferred param-
eters may be consistent with both SAGB progenitors and Fe CC
progenitors with initial masses close to the lower limit. Both
scenarios may be plausible, even if the former poorly explains
the relatively high amounts of 56Ni (compared to what expected
in SNe from SAGB progenitors; e.g. Wanajo et al. 2009) and

3 We remind that these stars, after having ignited H-, He-, and C-
burning, are able to form a degenerate Neon-Oxygen core (e.g. Pumo
2006, 2007, and references therein), where the physical conditions can
be suitable for triggering electron-capture reactions on 24Mg and other
nuclei which are present in trace amounts in the core, leading to a so-
called electron-capture supernova (EC-SN) event (e.g. Pumo et al. 2009,
and references therein).
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Fig. 24. Blow-up of the 4600Å (left-hand panel) and 6200Å
(right-hand panel) spectral regions during the plateau phase of
SN 1996W. The x-axes are in expansion velocity coordinates
with respect to the rest-frame position of Hβ and Hα, respec-
tively. To guide the eye, two dash-dotted lines are drawn in the
spectra marking the position of minima of the strongest absorp-
tion features, while red dashed lines, at comparable velocities,
follow the HV Hα and Hβ features (∼11500 km s−1). The blue
dashed lines are tied to the second HV feature at ∼12500 km s−1,
which is visible only in the Hα region.

the latter may not account for the relatively low ejecta mass of
SN 1995ad and the CO molecules observed during the nebular
phase (Spyromilio & Leibundgut 1996).

In this context it can be useful to compare the results of the
SN data modelling with those derived from an independent di-
agnostic. In nebular spectra of CC-SNe, the flux ratio R = [Ca ii]
λλ7291,7324 / [O i] λλ6300,6364 is a useful tool for guessing
the mass of the core and, consequently, that of the progenitor.
As a genearal trend, small R ratios correspond to higher core
masses and, hence, to higher main sequence masses (Fransson
& Chevalier 1989, 1987). For the two peculiar type IIP SNe
1987A and 2005cs the R ratios are R ∼ 3 (Elmhamdi et al. 2003)
and R ∼ 4.2 (Pastorello et al. 2009), respectively, while for the
canonical type IIP SNe 1992H and 1999em we find R ∼ 1.6
and R ∼ 4.7, respectively. These measurements would suggest
higher core masses for SNe 1987A and 1992H, and lower masses
for SNe 2005cs and 1999em. In addition, other indicators (e.g.
SN data modelling, study of the progenitors in pre-explosion im-
ages) suggest that the two former objects have MZAMS of about
20 M�, whilst the latter (SNe 2005cs and 1999em) have lower
mass precursors (∼10 M�, Smartt et al. 2009). We estimated the
ratio R also for SN 1995ad and SN 1996W, obtaining R ∼ 4.0
and R ∼ 2.3, respectively. This would point toward a somewhat
more massive progenitor for SN 1996W, and a lower mass for
the precursor of SN 1995ad, that would be quite similar to those
of SNe 2005cs and 1999em, and in good agreement with that
indicated by the above modelling. We have to remark, however,
that these measurements have to be taken with caution, since
Maguire et al. (2012) have recently questioned the robustness of
the relation between the progenitor mass and the observed flux
ratio R.

Fig. 25. Comparison of the evolution of the main observables of
SN 2009dd with the best-fit models computed with the general-
relativistic, radiation-hydrodynamics code (total energy ∼ 0.2
foe, initial radius 5×1013 cm, envelope mass 8 M�). Top, middle,
and bottom panels show the quasi-bolometric light curve, the
photospheric velocity (the blue dashed line refers to the model
plus an additive constant to match the data), and the photospheric
temperature as a function of time. To estimate the photospheric
velocity from observations, we used the value inferred from the
Fe ii lines (see text for further details). The x−axes refer to days
since explosion.
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6. Conclusions

In this paper we have presented photometric and spectroscopic
observations of three recent type II SNe (2007pk, 2009dd and
2010aj) and previously unpublished data of SNe 1995ad and
1996W. Together with SNe 2007od and 2009bw (recently stud-
ied by our group, Inserra et al. 2011, 2012a) they belong to a
group of moderately bright type II SNe.

The light curves show peak magnitudes between MB ≤

−16.95 and durations of the plateau, between 30 and 70 days.
At late times three objects follow the decline rates of 56Co to
56Fe, allowing us to determine the ejected masses of 56Ni (be-
tween 0.028 and 0.140 M�). For another object, SN 2010aj, the
observations ended before the final onset of the radioactive tail,
thus allowing us to derive only an upper limit M(56Ni)< 0.007
M�. No late-time observations are available for SN 2007pk.

Fig. 26. As for Fig. 25, but for SN 2010aj. The best-
fit model evaluated using the general-relativistic, radiation-
hydrodynamics code has an initial radius of 2 × 1013 cm, a total
energy ∼ 0.55 foe, and an envelope mass of 9.5 M�.

Fig. 27. As for Fig. 25, but for SN 1995ad. The best-
fit model evaluated using the general-relativistic, radiation-
hydrodynamics code has an initial radius of 4 × 1013 cm, a total
energy ∼ 0.2 foe, and an envelope mass of 5 M�.

With the noticeable exception of SN 2007pk during the ear-
liest epochs, the spectra of all the objects evolve like normal
type II SNe in terms of spectral features, expansion velocities,
and blackbody temperatures. SN 2007pk was somewhat differ-
ent, showing after the discovery a featureless blue continuum,
resolved narrow Balmer line in emission, significant X-ray flux
and UV excess, all pointing toward relatively strong ejecta-CSM
interaction. After one month the evidences of interaction ceased,
and the SN followed afterward a normal evolution. SN 2007pk
reached the brightest absolute magnitude (MB = −18.70) among
the objects studied here and showed the fastest luminosity de-
cline, intermediate between SNe IIL and SNe IIP.

Hints of interaction with the CSM have been found for other
two objects, SN 2009dd and SN 1996W. SN 2009dd was de-
tected by Swift XRT in the 0.2–10 keV range, at a luminos-
ity lower than that of SN 2007pk. It also showed an high UV
contribution to the bolometric luminosity. SN 1996W was pho-
tometrically and spectroscopically a normal SN IIP. The ex-
tended coverage at late time has allowed us to derive an ejected
M(56Ni)= 0.14 M� for this object, which is the largest in our
sample.

The remaining two objects, SN 2010aj and SN 1995ad, did
not show evident signs of interaction. SN 2010aj showed the
largest drop from the plateau and a decline rate in the earliest part
of the radioactive tail that may be attributed to early dust forma-
tion. Unfortunately, the available observations can not prove the
dust formation hypothesis. If the observed luminosity at about
100d is governed only by the 56Ni decay, the ejected mass of
56Ni is M(56Ni)≤ 0.007 M�. SN 1995ad has been extensively
observed both at early and late time and behaved like a normal
non-interacting SN II. Dust formation has been suggested at late
times (t> 200d) because of an increase in the slope of the light
curve and of the detection of CO.

The modeling with our code (Sect. 5.2) has allowed the de-
termination of the main parameters of the explosions and of the
progenitors for SNe 2009dd, 2010aj and 1995ad, (reported in
Tab. 9). The masses of the ejecta are in the range of 5.0–9.5
M�, corresponding to total masses at the moment of the explo-
sion of the order of 7.0–11.5 M�. A low mass progenitor for
SN 1995ad is also indicated by the high value of flux ratio R
of [Ca ii] over [O i] (Sect. 5.1). Despite some discrepancy with
the fits (see Sect. 5.2), the results are consistent with either SNe
from SAGB stars or RSGs exploded as Fe CC-SNe. The SAGB
scenario seems more appropriate for SN 2010aj because of the
moderate ejected mass, the low amount of 56Ni and the low ex-
plosion energy. Both progenitor scenarios are equally plausible
for the other two objects. While there is evidence of interac-
tion for SN 2009dd, some weak interaction for SN 1995ad and
SN 2010aj could explain the disagreement found in the velocity
evolution with respect to the theoretical models.

Our models could not be applied to SN 2007pk and
SN 1996W because the available data do not cover the crucial
feature of the light curves, i.e. the transition from the plateau
to the radioactive tail that marks the end of the recombination
phase. Observations of SN 2007pk cover the first few months
when the object transformed from a strongly interacting type IIn
with a linear light curve to a normal type II. Nothing can be said
on the nature of the progenitor because the interaction with the
CSM is governed by recent episodes of mass-loss. Indication on
the mass of the progenitor of SN 1996W comes from the large
ejected 56Ni mass (0.14M�) and from the flux ratio of [Ca ii] over
[O i], both pointing to a relatively large initial mass (15−20M�).

Altogether these objects share the common property of hav-
ing relatively bright peak luminosity, which is not -anyway- as
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extreme as the peculiar SN 2009kf (Botticella et al. 2010) that,
indeed, pointed toward different explosion mechanisms. The
light curves of these mildly luminous objects can be different as
to shape (linear vs. plateau), drop to the radioactive tail and late
time luminosity. In addition, their spectral characteristics show
some individuality, e.g. transition from type IIn to normal type
II or peculiar line profiles. In a few cases, thanks to a deeper in-
vestigation, the presence of HV features or dust formation has
been revealed. All of this indicates a significant heterogeneity in
luminous SNe II, and the only possible common property seems
to be some minor signs of weak ejecta-CSM interaction.
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Table A.1. Magnitudes of the local sequence stars in the field of SN 2009dd (cfr. Fig. 1). The errors in brackets are the r.m.s.

ID U B V R I
1 16.24 (.07) 17.01 (.02) 16.34 (.01) 16.11 (.01) 15.76 (.02)
2 15.64 (.05) 15.23 (.01) 14.26 (.02) 13.63 (.01) 13.19 (.01)
3 - 19.07 (.02) 17.72 (.02) 16.89 (.01) 16.28 (.02)
4 16.97 (.01) 16.41 (.02) 15.48 (.02) 15.04 (.01) 14.59 (.01)
5 - 19.75 (.02) 19.09 (.02) 18.68 (.02) 18.48 (.03)
6 - 19.91 (.03) 19.06 (.02) 18.32 (.02) 17.77 (.02)
7 - 21.07 (.03) 19.60 (.02) 18.39 (.01) 16.84 (.02)
8 - 20.47 (.02) 19.57 (.02) 18.99 (.02) 18.40 (.02)
9 18.58( - ) 17.66 (.02) 16.25 (.03) 15.61 (.01) 14.96 (.02)
10 19.80 ( - ) 19.00 (.02) 17.95 (.03) 17.52 (.01) 17.12 (.02)

Table A.2. Magnitudes of the local sequence stars in the field of SN 2007pk (cfr. Fig. 2).

ID U B V R I
1 17.00 (.02) 17.11 (.02) 16.53 (.02) 16.21 (.02) 15.82 (.02)
2 19.12 (.02) 18.61 (.03) 17.71 (.01) 17.08 (.03) 16.70 (.02)
3 17.26 (.03) 17.08 (.02) 16.34 (.02) 15.80 (.03) 15.52 (.02)
4 14.70 (.02) 14.79 (.02) 14.35 (.03) 13.85 (.01) 13.54 (.02)
5 16.16 (.02) 16.20 (.02) 15.56 (.02) 15.22 (.03) 14.77 (.03)
6 18.22 (.02) 17.89 (.03) 16.95 (.02) 16.56 (.03) 16.13 (.02)
7 15.81 (.03) 15.86 (.03) 15.26 (.01) 14.93 (.02) 14.69 (.01)
8 15.05 (.02) 14.40 (.03) 13.42 (.03) 12.84 (.02) 12.38 (.01)
9 17.14 (.02) 16.92 (.02) 16.41 (.02) 16.13 (.02) 15.86 (.01)
10 17.54 (.02) 17.48 (.04) 16.79 (.01) 16.45 (.02) 16.14 (.02)
11 17.40 (.02) 17.40 (.03) 16.68 (.01) 16.37 (.02) 16.18 (.05)
12 20.50 (.03) 19.42 (.03) 18.20 (.02) 17.47 (.03) 16.82 (.02)
13 19.20 (.03) 18.76 (.02) 17.90 (.01) 17.42 (.02) 16.90 (.03)

Table A.3. As Tab. A.1 but for SN 2010aj (cfr. Fig. 3).

ID U B V R I
1 19.14 (.06) 18.52 (.03) 17.62 (.01) 16.99 (.01) 16.48 (.01)
2 17.72 (.06) 17.68 (.02) 17.09 (.04) 16.80 (.01) 16.42 (.02)
3 19.00 ( - ) 17.91 (.05) 16.39 (.02) 16.31 (.01) 16.07 (.02)
4 18.72 ( - ) 17.74 (.04) 16.58 (.04) 15.94 (.01) 15.37 (.01)
5 16.90 (.01) 16.77 (.01) 16.05 (.02) 15.62 (.02) 15.24 (.01)
6 14.97 ( - ) 15.03 (.02) 14.48 (.01) 14.17 (.01) 13.81 (.01)
7 18.89 ( - ) 18.72 (.01) 17.69 (.07) 17.26 (.01) 16.66 (.07)
8 18.95 ( - ) 19.27 (.02) 18.66 (.02) 18.37 (.01) 17.83 (.08)
9 18.87 ( - ) 18.06 (.02) 17.35 (.05) 16.76 (.01) 16.64 (.01)
10 17.91 ( - ) 18.44 (.04) 17.92 (.01) 17.63 (.01) 17.01 (.08)

Table A.4. Magnitudes of the local sequence stars in the field of SN 1995ad (cfr. Fig. 4).

ID B V R I
1 17.92 (.02) 17.31 (.01) 16.96 (.01) 16.65 (.01)
2 17.98 (.01) 17.61 (.01) 17.28 (.01) 16.89 (.01)
3 16.25 (.01) 15.29 (.01) 14.78 (.01) 14.29 (.01)
4 15.88 (.01) 15.39 (.01) 15.11 (.01) 14.78 (.01)
5 17.93 (.02) 17.33 (.01) 16.97 (.01) 16.62 (.04)
6 18.63 (.02) 18.08 (.01) 17.74 (.01) 17.43 (.01)
7 19.21 (.06) 17.72 (.08) 16.56 (.07) 15.17 (.06)
8 18.80 (.02) 18.30 (.07) 18.01 (.05) 17.73 (.02)
9 19.59 (.04) 18.14 (.08) 17.23 (.05) 16.32 (.04)

11 17.78 (.03) 17.16 (.05) 16.80 (.03) 16.40 (.07)
12 16.74 (.01) 16.18 (.05) 15.86 (.06) 15.47 (.10)
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Table A.5. Magnitudes of the local sequence stars in the field of SN 1996W (cfr. Fig. 5).

ID U B V R I
2 19.18 (.02) 18.28 (.01) 17.29 (.01) 16.71 (.01) 16.22 (.01)
3 16.90 (.04) 15.94 (.01) 14.90 (.01) 14.28 (.01) 13.76 (.01)
4 19.08 (.02) 18.94 (.02) 18.14 (.01) 17.76 (.01) 17.39 (.02)
5 19.22 (.02) 19.36 (.03) 18.77 (.02) 18.40 (.01) 18.04 (.02)
6 20.03 (.03) 19.88 (.04) 19.29 (.03) 18.83 (.01) 18.47 (.02)
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Table A.6. Journal of spectroscopic observations of the SNe in our sample.

Date JD Phase∗ Instrumental � Range Resolution†

+2400000 (days) configuration (Å) (Å)
SN 2009dd

09/04/14 54936.7 11.2 NOT+ALFOSC+gm4 3480-7500 13
09/04/16 54938.4 12.9 CAHA+CAFOS+b200 3400-8700 11.3
09/05/20 54971.6 46.1 TNG+DOLORES+LRB,LRR 3700-9220 15
09/07/20 55033.4 107.9 TNG+DOLORES+LRB,LRR 3800-10100 15
09/11/19 55155.7 230.2 CAHA+CAFOS+g200 4000-9700 9.5
09/11/21 55157.7 232.2 TNG+DOLORES+LRR 5100-9300 10.3
10/05/18 55334.5 409.0 TNG+DOLORES+LRR 5030-9270 9.8

SN 2007pk
07/11/11 54416.3 4.3 Copernico + AFOSC+gm4 3650-7800 24
07/11/12 54417.5 5.5 Copernico + AFOSC+gm2 5320-9080 36
07/11/16 54421.4 8.4 TNG+DOLORES+LRB,LRR 3400-9000 14
07/12/05 54439.5 27.5 Copernico +AFOSC+gm4,gm2 3700-9050 25
07/12/28 54463.3 51.3 Copernico +AFOSC+gm4,gm2 3780-9180 23
08/01/11 54477.4 65.4 NOT+ALFOSC+gm4 3580-9120 14
08/01/12 54478.4 66.4 TNG+NICS+IJ 8660-13480 18
08/01/28 54494.3 82.3 Copernico +AFOSC+gm4 3670-7770 23
08/02/01 54497.4 85.4 WHT+ISIS+R300B,R158R 3500-9800 10
08/09/05 54714.5 302.5 TNG+DOLORES+LRR 5150-10230 16
08/10/02 54741.7 329.7 Palomar+DBSP+red 5800-9990 17

SN 2010aj
10/03/30 55287.6 22.1 WHT+ISIS+R300B,R158R 3130-11130 5.4-6.3
10/04/17 55302.8 37.8 NTT+EFOSC2+gm11 3800-7500 13
10/04/24 55311.5 46.0 TNG+DOLORES+LRB,LRR 3380-9900 10
10/05/21 55338.5 73.0 TNG+DOLORES+LRB,LRR 3500-9700 10
11/02/12 55604.8 338.8 NTT+EFOSC2+gm13 3650-9300 17

SN 1995ad
95/09/29 49989.8 8.8 ESO 1.5+B&C+gr2 3930-7790 5
95/10/02 49992.9 11.9 ESO 3.6+EFOSC1+B300,R300 3750-9920 14+17
95/10/14 50004.9 23.9 ESO 3.6+EFOSC1+B300 3750-6940 19
95/11/19 50040.8 59.9 ESO 1.5+B&C+gr2 3100-10710 10
95/11/20 50041.8 60.8 ESO 1.5+B&C+gr2 3100-10710 14
95/12/26 50077.8 96.8 MPG-ESO 2.2+EFOSC2+gr3,gr5,gr1 3720-9040 11+11+60
95/12/29 50080.8 99.8 ESO 3.6+EFOSC1+B300,R300 3740-9910 14+17
96/01/21 50103.7 122.7 ESO 1.5+B&C+gr2 3460-11100 9
96/02/18 50131.7 150.7 MPG-ESO 2.2+EFOSC2+gr5,gr6 3350-8980 11+11
96/02/19 50132.7 151.7 ESO 1.5+B&C+gr2 3040-10000 9
96/02/20 50133.7 152.7 ESO 1.5+B&C+gr2 3040-10000 9
97/02/11 50490.6 509.6 ESO 3.6+EFOSC1+R300 6000-9850 23

SN 1996W
96/04/18 50191.6 11.6 ESO 1.5+B&C+gr2 3160-10650 9
96/04/19 50192.6 12.6 ESO 1.5+B&C+gr2 3160-10650 9
96/06/21 50195.4 15.4 Copernico+B&C+150tr. 4250-8600 29
96/04/24 50198.4 18.1 ESO 1.5+B&C+gr2 3130-10430 9
96/04/25 50198.6 18.5 ESO 1.5+B&C+gr2 3130-10430 9
96/05/09 50212.5 32.5 ESO 1.5+B&C+gr2 3120-10590 9
96/05/12 50215.6 35.6 ESO 1.5+B&C+gr2 3120-10590 9
96/05/19 50222.6 42.6 MPG-ESO 2.2+EFOSC2+gr5,gr6 2850-9050 7+7
96/06/12 50247.5 67.5 ESO 1.5+B&C+gr2 2900-10460 9
96/12/15 50432.8 252.8 MPG-ESO 2.2+EFOSC2+gr6 3840-7980 10
97/01/30 50478.5 298.5 Danish 1.54+DFOSC+gr5 5000-10180 8
97/02/13 50492.7 312.7 MPG-ESO 2.2+EFOSC2+gr5 5220-9280 9

* with respect to the explosion epochs (cfr. Tab. 9)
� coded as in Tab. 1
† measured from the full-width at half maximum (FWHM) of the night sky lines
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