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ABSTRACT
We present a new method to identify and characterize the structure of the intracluster medium
(ICM) in simulated galaxy clusters. The method uses the median of gas properties, such as
density and pressure, which we show to be very robust to the presence of gas inhomogeneities.
In particular, we show that the radial profiles of median gas properties in cosmological simu-
lations of clusters are smooth and do not exhibit fluctuations at locations of massive clumps
in contrast to mean and mode properties. Analysis of simulations shows that distribution of
gas properties in a given radial shell can be well described by a log-normal probability density
function and a tail. The former corresponds to a nearly hydrostatic bulk component, accounting
for ∼99 per cent of the volume, while the tail corresponds to high-density inhomogeneities.
The clumps can thus be easily identified with the volume elements corresponding to the tail of
the distribution. We show that this results in a simple and robust separation of the diffuse and
clumpy components of the ICM. The full width at half-maximum of the density distribution in
simulated clusters is a growing function of radius and varies from ∼0.15 dex in cluster centre
to ∼0.5 dex at 2 r500 in relaxed clusters. The small scatter in the width between relaxed clusters
suggests that the degree of inhomogeneity is a robust characteristic of the ICM. It broadly
agrees with the amplitude of density perturbations found in the Coma cluster core. We discuss
the origin of ICM density variations in spherical shells and show that less than 20 per cent of
the width can be attributed to the triaxiality of the cluster gravitational potential. As a link to
X-ray observations of real clusters we evaluated the ICM clumping factor, weighted with the
temperature-dependent X-ray emissivity, with and without high-density inhomogeneities. We
argue that these two cases represent upper and lower limits on the departure of the observed
X-ray emissivity from the median value. We find that the typical value of the clumping factor
in the bulk component of relaxed clusters varies from ∼1.1–1.2 at r500 up to ∼1.3–1.4 at r200,
in broad agreement with recent observations.

Key words: methods: numerical – galaxies: clusters: intracluster medium – X-rays: galaxies:
clusters.

1 IN T RO D U C T I O N

Hot intracluster gas constitutes ∼10 per cent of the total gravitat-
ing mass of galaxy clusters and is the dominant baryonic compo-
nent. If the gravitational potential of a cluster is static then the gas
would eventually settle into a hydrostatic equilibrium (HSE) with
the density and temperature isosurfaces aligned with the equipoten-
tial surfaces. If in addition the potential is spherically symmetric,

� E-mail: izhur@mpa-garching.mpg.de

then all gas thermodynamic properties (e.g. density and pressure)
are functions of radius only, i.e. the intracluster medium (ICM) is
homogeneous within a narrow radial shell. In reality, both X-ray
observations and hydrodynamical simulations of galaxy clusters
show that the gas is continuously perturbed as a cluster forms and
the ICM is not perfectly homogeneous (see e.g. Mathiesen, Evrard
& Mohr 1999; Nagai & Lau 2011; Churazov et al. 2012). Among
plausible sources of the ICM inhomogeneities are non-sphericity
of the gravitational potential; fluctuations of the potential, e.g.
due to moving subhaloes associated with galaxies or subgroups;
low entropy gas lumps; presence of bubbles of relativistic plasma;
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turbulent gas motions and associated gas displacement; sound waves
and shocks, etc.

The properties of hot gas in clusters are used to determine the total
gravitating mass of clusters, which is very important for constrain-
ing cosmological parameters (see e.g. White et al. 1993; Haiman,
Mohr & Holder 2001; Allen et al. 2004; Vikhlinin et al. 2009). This
is usually done by assuming that the gas is in HSE and deriving mass
profiles from the temperature and gas density profiles or by using
calibrated mass proxies, such as YX parameter (Kravtsov, Vikhlinin
& Nagai 2006). The accuracy of both approaches is affected by gas
inhomogeneities. Therefore, it is crucial to understand the physical
origin of the inhomogeneities and to find a robust and unambiguous
way to characterize and exclude them from the bulk of the gas.

The level of the ICM inhomogeneity may also depend on the
microphysics, in particular, on the thermal conductivity and viscos-
ity of the gas and on the topology and magnitude of the magnetic
field. Therefore, the quantitative characterization of the ICM inho-
mogeneities could potentially serve as a proxy to these physical
processes.

In this theoretical study we propose a more detailed1 characteriza-
tion of the ICM in numerical simulations. The sample of simulated
clusters is described in Section 2. In Section 3, we introduce a
median radial profiles of the gas thermodynamic properties. The
median radial profiles are robust to local fluctuations and recover
the overall smooth radial trends that go through the peaks of the gas
density and temperature distributions in radial shells. We then in-
troduce an effective measure of the width of the density distribution
(Section 3.2) and split the ICM (Section 4) into a nearly hydrostatic
‘bulk’ component, accounting for ∼99 per cent of the volume, and
non-hydrostatic high-density inhomogeneities. The typical gas ve-
locities in both components and the clumping factor of the ICM are
discussed in Sections 5 and 6, respectively. The origin of the bulk
component inhomogeneities is discussed in Section 7. The sensi-
tivity of the results to the physics included in simulations is briefly
discussed in Section 8. We summarize our results in Section 9.

2 SI M U L ATI O N S A N D S A M P L E O F G A L A X Y
CLUSTERS

We use a sample of 16 simulated clusters of galaxies at z = 0
(Nagai, Vikhlinin & Kravtsov 2007a, Nagai, Kravtsov & Vikhlinin
2007b). The simulations were done using the Adaptive Re-
finement Tree N-body+gas-dynamics code (Kravtsov, Klypin &
Khokhlov 1997; Kravtsov, Klypin & Hoffman 2002). Parameters
of a flat � cold dark matter (�CDM) model are �m = 0.3, �b =
0.04286, h = 0.7 and σ 8 = 0.9. We use two sets of simulations
with the same initial conditions but with different physics involved
in simulations: non-radiative (NR) run without any radiative cool-
ing or star formation and cooling+star formation (CSF) run, which
includes metallicity-dependent radiative cooling, star formation, su-
pernova feedback and ultraviolet background. These 16 clusters
with virial masses ranging from ∼7 × 1013 to 2 × 1015 h−1 M�
were selected from low-resolution simulations and resimulated at
higher resolution. The initial selection was not aimed to balance
between relaxed and unrelaxed clusters. The division of the sample
into relaxed and unrelaxed subsamples (see Table 1) was done in
Nagai et al. (2007a) by visually examining the morphology of mock
X-ray images.

1 Compared to the standard mean radial profiles.

Table 1. Properties of simulated clusters in our
sample at z = 0.

Cluster ID r500c (h−1 Mpc) Relaxed (R)
Unrelaxed (U)

CSF/NR CSF/NR

CL101 1.16/1.14 U/U
CL102 0.98/0.95 U/U
CL103 0.99/0.99 U/U
CL104 0.97/0.97 R/R
CL105 0.94/0.92 U/U
CL106 0.84/0.84 U/U
CL107 0.76/0.78 U/U

CL3 0.71/0.70 R/R
CL5 0.61/0.61 R/U
CL6 0.66/0.61 U/R
CL7 0.62/0.60 R/R
CL9 0.52/0.51 U/U

CL10 0.49/0.47 R/R
CL11 0.54/0.44 U/R
CL14 0.51/0.48 R/R
CL24 0.39/0.39 U/U

Instead of using full adaptive mesh refinement (AMR) hierarchy,
for convenience we sample the hydrodynamical data using 4 × 107

random data points within the sphere of radius of 5 Mpc h−1 centred
on the cluster centre, defined as the position of the most bound
particle in the simulation box. The simulated volume is sampled
with a weight ∝1/r2, where r is the distance from the centre. This
sampling is uniform in azimuthal and polar directions and provides
equal number of points per spherical shell of a given thickness. As
the result the 3D density of sampling points is highest at the centre.

Using these data we generated probability density function (PDF)
of the ICM thermodynamic quantities in a set of radial shells for
all clusters in the CSF and NR runs. The examples of the PDF for
the relaxed cluster CL7 and unrelaxed cluster CL107 are shown
in Fig. 1. The colour changing from red to dark blue characterizes
the increasing volume-weighted probability of finding gas with a
given density (or pressure/temperature) at a given radius. Overall
radial trends of all thermodynamic properties are apparent from
these plots. Moderate amplitude fluctuations of the ICM properties
around these trends are visible as blue/green bands, which become
broader with radius. Typically these bands account for ∼99 per cent
of a shell volume. Below we refer to these bands as a volume-filling
bulk component of the gas. Finally, high-density inhomogeneities,
occupying very small fraction of volume, are seen as red spikes.
Another representation of both components is shown in the left-
hand panel in Fig. 2.

3 C H A R AC T E R I Z I N G T H E BU L K
C O M P O N E N T O F TH E I C M

3.1 Median profiles

First, we would like to characterize overall radial profiles of the ICM
thermodynamic properties, representing the bulk volume-filling
component of the ICM. A primary application of these profiles
is the cluster mass measurements via HSE equation.

Usually hot gas is characterized by the mean radial profiles of
density and pressure obtained under the assumption of spherical
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Figure 1. Probability density function (PDF) of the ICM density, pressure and temperature in radial shells as a function of distance from the cluster centre.
Colour coding: black colour corresponds to the highest probability, red colour – to the lowest probability. PDFs are calculated for the relaxed galaxy cluster CL7
in CFS (first column) and NR (second column) runs and for unrelaxed galaxy cluster CL107 in CSF (third column) and NR (fourth column) runs. The integral
of the PDF in each radial shell is equal to unity. White curves plotted on the top of the PDF show the median values of density, pressure and temperature,
respectively (see Section 3.1). Strong deviations from the overall smooth trend are associated with high-density inhomogeneities in the ICM. The width of
distributions is substantial and increases with radius. Note that the width of distributions is larger in unrelaxed clusters.

symmetry. These profiles are used to determine the mass of the
cluster using the HSE equation:

1

ρ

dP

dr
= −GM

r2
, (1)

where ρ and P are radial profiles of gas density and pressure, re-
spectively, and M is the total gravitating mass of the cluster. If
the pressure is due to the thermal gas pressure, then P = nkT and
ρ = μmpn, where μ is the mean atomic weight of the gas particles,
mp is the proton mass, k is the Boltzmann constant and n is the total
particles density. Throughout the paper we use μ = 0.588. This pro-
cedure requires differentiation of the pressure over the radius. Thus
the issue of a robust way of calculating radial pressure profiles is
especially important. Various high-density inhomogeneities affect
the measurements of the mean radial profiles. Moreover, while the
bulk of the gas may be close to the HSE in the cluster potential, the
high-density inhomogeneities are obviously far from equilibrium.
Therefore, in order to avoid spurious variations of the mean profiles
due to high-density inhomogeneities one has to excise them from
the data. Often, when analysing simulated data, the high-density gas
clumps are removed by introducing some threshold values in the
density/temperature values and excising the regions where the ICM
parameters violate these thresholds (e.g. Lau, Kravtsov & Nagai
2009; Fabjan et al. 2011; Vazza et al. 2011). The radial profiles are
then calculated by averaging the density (or pressure/temperature),
over the remaining volume. However, the resulting mean profiles
are sensitive to the particular procedure of clump removal. High-
density inhomogeneities can significantly shift the mean density or
temperature, causing distortions in the mean pressure. We instead
are seeking a method which will be robust with respect to the pres-

ence of inhomogeneities and does not require fine tuning of the
clump removal procedure.

We propose to use median radial profiles of density, temperature
and pressure instead of their mean quantities as is most commonly
done. Given N particles in a radial shell the calculation of the median
is reduced to sorting particles in ascending/descending order and
taking the value corresponding to a particle with index N/2.2 White
curves in Figs 1 and 3 show resulting median radial profiles. These
median profiles can be favourably compared (Fig. 3) to the mean
and mode profiles. The median profile is smooth and follows well
the peak of the PDF even when contamination by high-density gas
inhomogeneities is very severe. Of course, this is true only as long
as the fraction of volume occupied by the high-density component
is small. The mean density profile is reasonably smooth, but it is
strongly affected by clumps, which drive it well above the PDF
peak. The mode value by definition coincides with the peak of the
PDF, but it is not smooth. Its fluctuations reflect (possibly small)
variations of the PDF near the maximum.

Clearly the median value is an optimal choice if one thinks of
using it for the HSE equation. It can be calculated straightforwardly
from the PDFs in spherical shells without need to select or tune
procedure of high-density clumps removal. It characterizes directly

2 In our case all particles are uniformly distributed over the volume and
median is calculated with unit weight, automatically giving us volume-
weighted median. In the case of SPH simulations one should use weights
inversely proportional to local density to obtain volume-weighted median
instead of the mass-weighted median, since particles are distributed non-
uniformly: the denser the region is the more particles it contains.
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Figure 2. Left: sketch of ICM description used in the paper. The PDF of the density in a radial shell at 1.1–1.2 r500 in the relaxed cluster CL7 (CSF run)
is shown with the solid curve. The solid vertical line shows the median value of the density (see Section 3.1). The ICM is divided (see Section 4) into two
components (hatched regions): bulk, volume-filling component and high-density inhomogeneities, occupying small fraction of the shell volume. The bulk
component in the paper is characterized by two main parameters: (1) the median value of the density and (2) by the width of the density distribution. The
separation of the components is based on the width of the bulk component and on the deviation of the density from the median value (see Section 4). Right:
log-normal approximation of the density PDF. The solid curves show the density PDF in three radial shells: 0.9–1r500, 1.1–1.2 r500 (same as in the left-hand
panel) and 1.6–1.8r500. For comparison the dashed curves show the log-normal distribution centred at the median density value. The full width at half-maximum
of the log-normal distribution is calculated as W10(ne) = log10

ne,2
ne,1

, where the interval from ne, 1 to ne, 2 corresponds to 76 per cent of the shell volume (see
Section 3.2). With these definitions a log-normal distribution provides good approximation of the bulk component PDF in each radial shell.

the properties of the bulk component of the ICM and is not affected
by the presence of high-density inhomogeneities, as long as their
volume fraction is small. The median pressure profile is a smooth
function of radius, making it very suitable for the HSE equation.

3.2 Width of density and pressure distributions

We now proceed with the evaluation of the width of the bulk com-
ponent distribution. Fig. 2 (the right-hand panel) shows the ICM
density PDF in several radial shells. In some shells the density dis-
tributions are very asymmetric due to the presence of high-density
tails. However, if we exclude tails, the remaining distribution can
be reasonably well described by a log-normal distribution around
the median value

P (ln x)d ln x = 1√
2πσ

e
− (ln x−ln x0)2

2σ2 d ln x, (2)

where x0 is the median value, as illustrated in Fig. 2 (see also
Kawahara et al. 2007). Even if we exclude high-density tails, the
distributions are quite broad, especially at large r. In Section 7, we
argue that the contribution of the overall ellipticity of the potential
to the calculated width of the distribution does not exceed 20 per
cent in relaxed clusters. We therefore refer to the broadening of the
ICM density distribution in a radial shell around the medial values
as ‘perturbations’.

Let us calculate the width of the density and pressure distribu-
tions – another important characteristic of the bulk component. We
are seeking the procedure which is not very sensitive to the pres-
ence or absence of high-density tail in the distribution. While the

shape of the PDF of the bulk component is close to log-normal,
small deviations are present. We therefore introduced an ‘effective
full width at half-maximum (FWHM)’, W10, as a proxy to the dis-
tribution width. The value of W10 is calculated as follows. For each
radial shell we find the value of density ne, 1 such that 12 per cent
of points (volume) in this shell have the density smaller than ne, 1.
Similarly we find ne, 2 such that 12 per cent of points (volume) have
higher density than ne, 2. W10 is then defined as

W10(ne) = log10

ne,2

ne,1
. (3)

W10 characterizes the logarithmic interval (10 based), which contain
76 per cent of points. Clearly, for a pure log-normal distribution W10

is equal to FWHM (log10 based). This definition is also convenient,
since numerically W10 = 2

√
2 ln 2

ln 10 σ ≈ 1.02σ , where σ is the standard
deviation (natural log based) of the log-normal distribution. With
this definition of the width, the log-normal distribution, centred at
the median value, provides reasonably good approximation of the
bulk component PDF (see Fig. 2).

Fig. 4 shows the width of the distributions W10(ne) and W10(P)
averaged over a sample of relaxed and unrelaxed galaxy clusters
in CSF and NR runs. First we note a strong increase of the width
with radius r, which indicates that the gas is more inhomogeneous
towards cluster outskirts. Scatter in the width from cluster to cluster
is relatively small (especially for relaxed clusters). Pressure distri-
butions are broader than density distributions at r > r500, while at
r < r500 their widths are similar. Strong growth of the pressure width
can be an indication of the gas deceleration at these radii. We refer
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Figure 3. PDF (colour coded) of the ICM density in radial shells as a function of distance from the centre of the CL106 cluster (NR run). Superposed white,
green and red curves show the median, mean and mode values of density, respectively. The mode, median and mean radial profiles of density are calculated
on logarithmic grid over r with ri + 1 = rif, where increment f = 1.01. The median closely follows the peak of the PDF, is a smooth function of radius and
does not show any wiggles at the radii, where prominent high-density inhomogeneities are present. The mean density is reasonably smooth, but it is strongly
affected by clumps, which drive it well above the PDF peak. The mode value on the other hand by definition coincides with the peak of the PDF, but is not
smooth. Its fluctuations reflect small variations of the PDF near the maximum. Clearly the median value is an optimal choice if one thinks of using it for the
HSE equation. Indeed, on physical grounds one can claim that only the bulk component has a chance to be in the HSE. From the numerical perspective the
median is insensitive to the presence of inhomogeneities and is smooth, simplifying the calculation of the derivatives, needed for the HSE equation.

readers to Section 7 for discussion on possible physical origin of
the width of density and pressure distributions.

One can note the tendency of unrelaxed clusters to have broader
distribution of density and pressure than the relaxed clusters. This
is not surprising, since any strong merger should perturb the den-
sity distribution. This tendency is even more clear if one looks at
the histogram of W10(ne) at certain distance from the centre. Fig. 5
shows the corresponding histogram calculated at r500 for relaxed
and unrelaxed clusters in CSF run. Even though samples are small,
the significance of the difference in width between two samples is
∼2.5σ . It suggests a possibility of using the width W10 at certain
radius (e.g. r500) as a criterion for an automatic division of clusters
into broad relaxed/unrelaxed groups. Note that this way of classifi-
cation is independent of the projection effects. Classification of all
clusters into relaxed or unrelaxed objects in Nagai et al. (2007b) is
based on the visual inspection of the mock X-ray images (see their
section 2). Further inspection of CL6 and CL9 clusters, identified
as unrelaxed in Nagai et al. (2007b), but having relatively narrow
density distribution (W10 ≤ 0.3) shows that these objects can equally
well be attributed to a class of relaxed objects within r500.

4 M E T H O D TO S E L E C T H I G H - D E N S I T Y
I N H O M O G E N E I T I E S

Once we know the median density profile and the width of density
distribution it is easy to separate the bulk component from the tails

of the distribution. It additionally allows to study the properties of
both components separately. We propose to use the following cri-
terion of separation: particles with log10 ne > log10{ne} + fcutσ10

are assigned to the high-density tail, while all remaining particles
belong to the bulk component. Here {ne} is the median value of the
density and σ10 = W10

2
√

2 ln 2
is the standard deviation (log10 based) of

the density distribution. The choice of fcut is rather arbitrary. Exper-
iments with simulated galaxy clusters in our sample show that fcut =
3.5 works well for both NR and CSF simulations. Clearly, by vary-
ing fcut one can select only the densest clump cores or the clumps
together with the surrounding elevated density regions. These points
are illustrated in Fig. 6, where we show density distributions and
projected density maps obtained assuming different values of fcut =
∞ (initial maps), 4.5, 3.5 and 2.5. In the case of fcut = 2.5 we select
not only ‘bona fide’ high-density tails, but also partially exclude
particles, which belong to log-normal density distribution and char-
acterize the bulk of the gas. In the case of fcut = 4.5 we separate only
the top of the densest clumps and attribute some of the substructure
clearly related to clumps to the bulk gas.

Here it is important to point out that the median profiles of the
bulk component are essentially insensitive to the fcut value in com-
parison with the mean profiles. Fig. 7 illustrates this point for
one cluster from the sample. We calculate median and mean ra-
dial profiles of the density in shells, removing different fractions
of dense clumps (varying fcut). Fig. 7 shows the mean and me-
dian values of the density of gas from simulations ne,all (both bulk
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Figure 4. Width W10 of the density (top panels) and pressure (bottom panels) distributions in a radial shell as a function of distance from the cluster centre
for CSF (left-hand column) and NR (right-hand column) simulations. The width is averaged over the sample of relaxed (black solid curves) and unrelaxed (red
dashed curves) clusters. Thick solid and dashed curves correspond to the sample-averaged value and thin dotted curves show the scatter from cluster to cluster.

gas and inhomogeneities) and the density of gas with excluded
high-density tail ne,bulk at r500 as a function of cut-off fcut. We see
that once the fcut ≥ 3, the median is less sensitive to the presence
of inhomogeneities and to various ways to exclude them than the
mean.

5 G A S M OT I O N S O F TH E BU L K C O M P O N E N T
A N D T H E H I G H - D E N S I T Y
I N H O M O G E N E I T I E S

After splitting the ICM into two components it is easy to calculate
characteristic velocities of the bulk component and of the high-

density inhomogeneities. As the reference velocity we use velocity
averaged over the cluster core. Since in the present simulations
the central ∼300 kpc region is strongly affected by the excessive
gas cooling (e.g. Lau et al. 2012) that produces unphysical clumps
moving with very high velocity, the average gas velocity within
a wide radial shell at 400 < r < 500 kpc was subtracted from the
velocity field. Our experiments with different choices of region used
to calculate the reference velocity have shown that final results are
only weakly sensitive to this choice. The rms velocity amplitude

was calculated as
√

〈V 2
x + V 2

y + V 2
z 〉, where 〈〉 denotes averaging

over the particles within a shell. Fig. 8 shows the ratio of the rms
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Figure 5. Histogram of the width of the gas density distribution W10(ne)
at r500 for the CSF sample of relaxed clusters (cyan solid) and unrelaxed
clusters (blue dashed). One can see two peaks in the distribution. The signif-
icance of the difference in width between two samples is ∼2.5σ . The width
W10 ∼ 0.3 at r500 divides clusters into relaxed/unrelaxed samples. This way
of classification is independent of the projection effects.

Figure 6. Splitting of the ICM into high-density inhomogeneities and bulk
component of gas assuming different criteria of separation. Particles with
log10 ne > log10{ne} + fcutσ10, where σ 10 is the width of density distribu-
tion at each radial bin, are assigned to the high-density component (Section
4). Remaining particles are assigned to the bulk component. Columns from
the left to the right: fcut = ∞(total gas), 4.5, 3.5, 2.5. Top row: projected
density maps of the bulk component of gas; second row: PDF of the ICM
density of the bulk component in radial shells as a function of distance
from the cluster centre; third row: density maps of the high-density inhomo-
geneities; bottom row: density distributions of the high-density component
in radial shells as a function of distance from the cluster centre. The fig-
ure suggests that fcut = 3.5 provides an optimum threshold for the division
into bulk component and high-density inhomogeneities – it removes only
small fraction of particles and at the same time does not leave any obvious
inhomogeneous features in the PDF.

Figure 7. Sensitivity of the median (black) and mean (red) values of the
density to the cut-off value, used to separate the bulk and high-density
components. Dashed curves show the mean and median values of the to-
tal density from simulations 〈ne,all〉 at r500. Dotted and solid curves show
density of the bulk gas at r500 as a function of fcut. Large fcut excludes only
the densest inhomogeneities, while very small fcut can exclude in addition
slightly overdense gas, belonging to the bulk component (see Fig. 6). Close-
ness of the black curves over a broad range of fcut implies that the median
is not sensitive to the particular value of the cut-off, unless it is very low. In
contrast, the value of the mean density is much more strongly affected by
the presence of rare high-density inhomogeneities and by the choice of the
threshold fcut used to excise the inhomogeneities.

velocity and the sound speed evaluated at r500

cs,500 =
√

γ kT500

μmp
, (4)

where T500 is the gas temperature at r500, γ is the adiabatic index
(for ideal monoatomic gas it is 5/3), k is the Boltzmann constant,
μ is the mean atomic weight and mp is the proton mass. One can
note that (i) rms velocity of the bulk component has a very regular
behaviour with distance from the cluster centre, while the veloc-
ities of the high-density component vary strongly; (ii) the scatter
of the velocities between individual clusters is small for the bulk
component and is on the contrary very large for the dense inhomo-
geneities; (iii) on average dense clumps move faster than the bulk
component. Such behaviour of the rms velocity in both components
is not surprising. The bulk component is close to the HSE, while
high-density inhomogeneities are far from equilibrium. Note that
for high-density inhomogeneities Vrms

cs,500
≈ 1 at r500. This means that

the clumps’ kinetic energy is about the same as the thermal energy
per unit mass in the bulk component. This is expected for the gas
that has been heated by the thermalization of the bulk gas motions
with velocities comparable to the observed velocities of the strongly
overdense clumps (Felten et al. 1966).
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Figure 8. Ratio of the rms velocity amplitude (averaged in shells) and the sound speed at r500 as a function of distance from the cluster centre. The sound
speed at r500 is calculated as cs,500 = √

γ kT500/μmp (see Section 5 for details). Solid coloured curves: ratio for the dense inhomogeneities only, different
colours correspond to different clusters. Dotted black curves: ratio for the bulk gas component. Thick solid black curves: ratio for bulk component of gas,
averaged over the sample of relaxed (left-hand panel) or unrelaxed (right-hand panel) clusters. Note that on average clumps are moving with larger velocity
than the gas in the bulk component.

We also gauge how strongly high-density inhomogeneities affect
the ratio of thermal pressure and the ‘pressure’ due to stochastic gas
motions. The ratio of pressures is given by

Pmotions

Pthermal
= 〈 1

3 ρV 2
amp〉

{nkT } , (5)

where Vamp is the rms velocity amplitude (see Fig. 8), 〈〉 and {}
denote mean and median values of pressure, respectively. As an
example, we show this ratio as a function of r for relaxed CSF
clusters in Fig. 9. Contribution of the pressure due to gas motions
to the thermal pressure is ∼5 per cent in the cluster centre and
increases with radius. Exclusion of high-density inhomogeneities
leads to a significantly smaller ratio at r > r500. Once again this
demonstrates that the bulk component is much closer to the HSE
than the ICM inhomogeneities. Comparison with previous results
from Lau et al. (2009) shows a broad agreement (dotted and dashed
curves in Fig. 9). Small discrepancies in radial profiles are mostly
due to different ways to subtract the mean velocity from the total
velocity field. We subtract the mean velocity in radial shell 400 <

r < 500 kpc as described above, while Lau et al. (2009) subtract
mean velocity in each radial shell. Also discrepancies in pressure
ratio are due to different procedures of clump exclusion and slight
distinction between median and mean thermal pressures.

6 C L U M P I N G FAC TO R W I T H A N D W I T H O U T
D E N S E IN H O M O G E N E I T I E S

We calculated the clumping factor, which characterizes distortions
in the X-ray flux from a given shell, relative to the flux calculated
using the median temperature and density values in the same shell.
This factor is

CX = 〈�(T )n2
e〉

{
√

�(T )ne}2
, (6)

Figure 9. Ratio of the pressure due to gas motions and the gas thermal
pressure as a function of distance from the cluster centre, averaged over
a sample of relaxed clusters in the CSF run. Dashed curve: pressure ratio
for total gas distribution (bulk plus high-density inhomogeneities) from
simulations. Solid curve: the ratio for the bulk component. Grey shadow:
scatter of the ratio for the bulk component. Dotted curve: pressure ratio from
Lau et al. (2009). See Section 5 for details.
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Figure 10. Clumping factor (equation 6) as a function of radius, averaged
over our samples of relaxed/unrelaxed clusters. Dashed: full gas distribution
(bulk plus inhomogeneities); solid: bulk component. Dotted: clumping factor
from Nagai & Lau (2011). See Section 6 for details.

where �(T) is emissivity in a given energy band as a function of
temperature, and 〈〉 and {} denote mean and median values, respec-
tively. The emissivity as a function of temperature was calculated for
the 0.5–2 keV energy band – where the sensitivity of current X-ray
observatories is close to maximal for a typical cluster spectrum.

The choice of the emissivity-weighted clumping factor CX in-
stead of the ‘classical’ clumping 〈n2

e〉/〈ne〉2 is motivated mainly by
the two reasons. First, emissivity factor automatically takes care of
the exclusion of the densest and coldest gas clumps present in simu-
lations. Thus we do not need to introduce a cut over the temperature
to calculate clumping for X-ray-emitting gas (e.g. Nagai & Lau
2011). Secondly, median value in denominator in equation (6) is
characteristics of the hydrostatic component in the ICM. Therefore,
clumping factor CX reflects the increase of the surface brightness
due to inhomogeneities in the ICM relative to the surface brightness
in an ideal hydrostatic situation. We conclude that calculation of the
clumping factor using equation (6) has good physical motivation.

Fig. 10 shows clumping factor calculated for the total gas in
simulations and for the bulk nearly hydrostatic component. As ex-
pected, the exclusion of high-density inhomogeneities significantly
modifies the clumping factor: clumping factor becomes smaller, es-
pecially at r > r500 and smoother with radius. Both curves determine
the upper and lower limits on the boost of X-ray flux over the flux in
the bulk gas we expect to find in X-ray observations. Nagai & Lau
(2011) calculated the clumping factor for gas with T > 106 K. Such
a temperature cut partially excludes high-density inhomogeneities
in the ICM. Comparison shows that the clumping factor from Na-
gai & Lau (2011) is in between dashed and solid curves. As an
example, we show their measurements for relaxed clusters in CSF
simulations with dotted curve in Fig. 10.

The clumping factor, calculated using equation (6), directly char-
acterizes the increase of the surface brightness in the 0.5–2 keV
band due to overall ellipticity and inhomogeneities in the ICM. In-

spection of the mock images suggests that very bright and localized
regions are responsible for high values of CX when the bulk and
high-density components are considered together (dashed line in
Fig. 10). This means that simple cleaning of X-ray images from
the most obvious bright spots should bring the clumpiness factor
down to the value characteristic for the bulk component (solid line
in Fig. 10).

For hot clusters the temperature dependence of the emissivity
is usually neglected and the increase of the surface brightness di-
rectly translates into the overestimation of the density by a fac-
tor

√
CX . This quantity is especially important when the resulting

density profile is used to infer the gas mass or the ratio of the
gas mass to the total mass, i.e. fgas. From this point of view it
is interesting to compare the results of the simulations with the
suggested overestimation factor of the gas density from the X-
ray observations. For the Perseus cluster this factor is ∼1–1.6 at
r500 and increases to ∼3–3.4 by 1.5r500 (Simionescu et al. 2011).
Corresponding value in terms of CX is the square of this factor,
i.e. CX ≈ 1–2 and ≈9–12 at these two radii, respectively. For the
PKS 0745−191 cluster clumping factor CX ≈ 1–3 and 2–9 at r500

and 1.5 r500, respectively (Walker et al. 2012). Since the most promi-
nent high-density peaks were excluded from the X-ray images of
both clusters, these values of the clumping factor should be close
to the values for the bulk gas in simulations. Table 2 shows values
of the clumping factor from the simulated clusters in our sam-
ple at r500 and 1.5 r500. One can note that there is an agreement
between simulations and observations at r500. At 1.5 r500 simula-
tions are marginally consistent with clumping factor in the PKS
0745−191 cluster. However, values for the Perseus cluster are larger
at 1.5 r500 than found in simulations especially if relaxed sample is
considered.

The difference between observations and simulations can be due
to several reasons. The high clumping factor in the Perseus clus-

Table 2. Clumping factor calculated using equation (6) for
total gas from simulations and bulk gas only at r500 and
1.5 r500. See also Fig. 10. For comparison, we show clumping
factors in PKS 0745−191 (Walker et al. 2012) and Perseus
(Simionescu et al. 2011) clusters calculated from the ob-
served overestimation factor of the gas density.

Gas component CX CX

at r500 at 1.5 r500

CSF REL
Total 1.2 1.6
Bulk 1.1 1.3

NR REL
Total 1.6 3.1
Bulk 1.2 1.4

CSF UNREL
Total 1.6 1.9
Bulk 1.4 1.6

NR UNREL
Total 2.2 2.7
Bulk 1.7 1.8

PKS 0745−191 ∼1–3 ∼2–9

Perseus ∼1–3 ∼9–12
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ter was inferred from a narrow stripe along the NW arm of the
cluster. Hydrodynamical simulations indicate that the distribution
of gas clumps is highly anisotropic; azimuthal scatter of the clump-
ing factor is large (Eckert et al. 2012). It is therefore possible that
the clumping factor along the given direction is larger than the
azimuthally averaged value. We note that clumping factor for the
PKS 0745−191 is averaged over five directions and is in a better
agreement with simulations. Another possible reason of the higher
clumping factor in the X-ray data is the contamination by unresolved
sources in low surface brightness regions. The spatial resolution of
Suzaku is limited and it is difficult to properly model the contri-
bution of background (active galactic nuclei) which could lead to
contamination and hence the overestimate of the gas density in low
surface brightness regions in cluster outskirts. Indeed, it was shown
recently that the clumping factor measured in simulations is suf-
ficient for describing the excess of the gas density measured with
ROSAT observatory in cluster outskirts (Eckert et al. 2012). Clearly,
more work from both simulations and observations is needed to
resolve the issues discussed above.

7 O R I G I N O F TH E D E N S I T Y FL U C T UAT I O N S
I N T H E BU L K C O M P O N E N T

Gas density inhomogeneities should cause observable fluctuations
of the surface brightness in the X-ray images of galaxy clusters.
For hot T > 3 keV gas the X-ray emissivity weakly depends on
temperature or metal abundance. Therefore, X-ray surface bright-
ness fluctuations are a direct proxy for the density inhomogeneities.
Recent analysis of the surface brightness fluctuations in the Coma
cluster shows that the typical amplitude of density perturbations
(rms) on scales from 30–500 kpc ranges from 5 to 10 per cent
(Churazov et al. 2012). This is in a reasonably good agreement with
the amplitude of density fluctuations we see in simulations (Fig. 4)
in relaxed clusters. While Coma is not very relaxed cluster, the
central part studied with Chandra and XMM–Newton is reasonably
relaxed. Broad agreement between simulations and observations is
encouraging and suggests that the simulations might correctly cap-
turing the physics responsible for the density fluctuations. We now
proceed with the discussion of the key properties of the density
inhomogeneities in the simulations.

In the majority of radial shells the density distribution has two
distinct components: (i) log-normal distribution with a substantial
width and (ii) a high-density tail. The latter component is often
associated with the cold and dense gas in subhaloes. This component
is more prominent in the CSF simulations. This is not surprising
given that the radiative cooling time of the dense gas can be short.

The width of the log-normal ‘bulk’ component is substantial (see
Figs 2 and 4) – the mean value of W10 at r500 varies between 0.15 and
0.5 in most of the relaxed cluster. Clearly, the width is expected to be
zero if the potential is spherical and static, the gas is in equilibrium
and radial shells are infinitely narrow. An interesting question is
to understand the properties of the density fluctuations in the bulk
component that cause broadening of the density distributions. Below
we analyse the properties of these fluctuations.

7.1 Finite thickness of radial shells

We first address the question if the observed spread of densities in
a shell is a spurious effect of the shell finite thickness. Assuming
that locally the number density is a power-law function of radius

ne(r) ∝ r−α , the upper limit on the total width (from the minimal to
the maximal value) is

Wtot = log10

[
n(r)

n(r + 	r)

]
≈ α 	r

r

ln 10
. (7)

In our calculations 	r
r

≈ 0.01 and the slope α of the gas density
varies from ≈1 in the centre to ≈3 at 2 r500. Therefore, in this
case an upper limit on W10 < Wtot due to the finite thickness of
shells is ∼1 per cent. We conclude that no significant contribution
to the width of the density distribution is caused by the shell finite
thickness.

7.2 Ellipticity and perturbations of the potential

Another plausible reason for the observed variations of the gas
density in a spherical shell is the overall ellipticity/asphericity of the
cluster. One can use the known gravitational potential of the cluster,
created by dark matter and baryons, as a proxy to the underlying
ellipticity. For instance, one can imagine a situation when essentially
hydrostatic gas is sitting in an elliptical potential well.

For the isothermal gas in HSE the number density ne is re-
lated to the static potential φ through the Boltzmann distribution

ne ∝ e− φμmp
kT . Let us calculate a correlation coefficient C between

density δ ln ne and potential δφ variations in a shell. We define the
correlation coefficient C(x, y) between two variables x and y in a
usual way:

C(x, y) = C(y, x) = 〈xy〉
σxσy

=
∑
i

xiyi√∑
i

xixi

√∑
i

yiyi

, (8)

where σ x and σ y are the dispersions of x and y, respectively; both
variables are assumed to have zero mean; 〈〉 denotes averaging over
all particles in the shell.

Fig. 11 shows the correlation coefficient C(ln ne, φc) (hereafter
φc = φ

μmp

kTmed
) between density and potential fluctuations for the CF

and NR runs averaged over samples of relaxed and unrelaxed clus-
ters. Clearly, if the isothermal gas is in equilibrium in a static grav-
itational potential, then δ ln ne = −φ

μmp

kTmed
and the correlation co-

efficient is −1. In the opposite case C = 1. However, we see that
in simulations the correlation coefficient in most cases is between
≈− 0.6 and ≈− 0.4, except for relaxed clusters in the NR sim-
ulations, where the correlation coefficient reaches ≈−0.86 in the
central r ≤ 0.5r500. This means that the asphericity of the potential
cannot alone at a given moment of time explain all observed density
variations. For instance, non-isothermality of the gas in shells could
contribute to the density variations.

Knowing the correlation coefficient between the density and po-
tential one can calculate the width of the density distribution W10, φ

corrected for the potential variations in the shell. Indeed, let us as-
sume that we want to account for correlation between variables x
and y and construct new variable y′ = y − R(x, y) × x with minimal
dispersion. We seek the regression coefficient R(x, y) which mini-
mizes 〈y′2〉. This regression coefficient is (assuming again that both
variables have zero mean)

R(x, y) =
∑

xiyi∑
xixi

. (9)
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Figure 11. Radial profiles of the correlation coefficient (equation 8) be-
tween the density fluctuations ln(ne) and fluctuations of potential φc =
φ

μmp
kTmed

(solid curves) or temperature ln(T) (dashed curves). The data are
averaged over subsamples of NR/CSF and relaxed/unrelaxed clusters. See
Sections 7.2 and 7.3 for details.

The dispersion of y′ is then σ 2
y′ = σ 2

y − C(x, y)2σ 2
y . Thus, one can

calculate the width of the density distribution W10, φ through the
correlation coefficient between the density and potential as

W10,φ = W10

√
1 − C(ln ne, φc)2. (10)

Therefore, from the value of the correlation function
|C(ln ne, φc)| = 0.4–0.6 it follows that accounting for the poten-
tial variations in a shell reduces the width of the log-normal
density distribution by a factor of W10−W10,φ

W10
= 1 − √

1 − C2 ≈ 8–
20 per cent.

Overall ellipticity of the mass distribution is not the only reason
for potential variations in a spherical shell. The variations can also
be caused by the presence of subhaloes. However, the cores of the
most prominent and gas-rich subhaloes have been excluded as high-
density inhomogeneities, leaving only outer regions of the subhaloes
as a possible contributor to the bulk component density variations.
The above estimate includes both types of variations and can be
used as an upper limit on the variations induced by the ellipticity.

The bottom line of this exercise is that in the simulations only
a small part of the density variations in spherical shells can be
attributed to the ellipticity/asphericity of the underlying potential,
under the assumption that it is static.

7.3 Adiabatic and isobaric fluctuations

We now address the question if the observed density variations in
the bulk gas component are predominantly adiabatic or isobaric.
Adiabatic fluctuations arise from sound waves or weak shocks (and
can be associated with the variations of the potential with a shell),
while isobaric fluctuations naturally appear when gases with differ-

Figure 12. Radial profiles of the regression coefficient (equation 9) be-
tween the density fluctuations and temperature or pressure fluctuations. The
profiles are averaged over a sample of relaxed CSF clusters. Dotted lines
show the regression coefficient in cases of pure adiabatic and pure iso-
baric fluctuation. The sample-averaged regression coefficients do not show
the values characteristic for pure adiabatic or pure isobaric fluctuations of
density. See Section 7.3 for details.

ent entropies are brought to contact, e.g. by ram pressure stripping
or turbulent gas motions.

To answer this question we calculate the regression coefficient R
defined by equation (9) between density variations and temperature
or pressure variations (Fig. 12). If density fluctuations are purely
adiabatic, then the regression coefficient R(ln ne, ln T) = 1/(γ −
1) = 1.5 and R(ln ne, ln P) = 1/γ = 0.6. In the case of pure isobaric
density fluctuations, R(ln ne, ln T) = −1 and, obviously, R(ln ne,
ln P) = 0. One can see in Fig. 12 that the sample-averaged (over
sample of relaxed CSF clusters) regression coefficient does not
correspond to the value characteristic for pure adiabatic or isobaric
density fluctuations. This conclusion remains valid for unrelaxed
clusters and for NR runs as well. In individual clusters the scatter
in the regression (and correlation) coefficients is large. The value
of R(ln ne, ln T) varies from −0.8 up to 0.5, i.e. in some cases
R approaches values characteristic for pure isobaric fluctuations.
Inspection of individual clusters shows that these low/high values
of C(ln ne, ln T ) at some radii are often driven by some distinct
feature, like an outskirt of a subhalo or a moderately strong shock.

7.4 General comments on the density variations

As we discussed above the asphericity of the gravitational poten-
tial at a given moment can account up to 20 per cent of the bulk
component density variations in narrow radial shells.

Another likely reason for the density variations is directly related
to gas motions. From Fig. 8 it is clear that the gas motions in the bulk
component are predominantly subsonic. We are therefore dealing
with a weakly compressible case. Any given velocity field can be
decomposed into solenoidal and compressible parts, both of which
can contribute to the observed variations of density and pressure. A
crude estimate of the density variations caused by variations of the
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square of the gas velocity is possible using Bernoulli’s equation:
δP
P

∝ M2, where M is a characteristic Mach number of isotropic

turbulent gas motions M2 = 〈v2
x+v2

y+v2
z 〉

c2
s

(Landau & Lifshitz 1959).

Assuming that the density fluctuations are adiabatic, i.e. δn
n

∝ 1
γ

δP
P

,

one can expect δn
n

≈ α
3 M2, where α is of the order of unity. For

an order-of-magnitude estimate one can adopt the value of α ≈
0.7, calculated for incompressible gas (e.g. Hinze 1975). The Mach
number evaluated for the bulk flow is ∼0.55 at r500 for relaxed
clusters in both CSF and NR simulations (see Fig. 8). Therefore,3

W10 ≈ δn
n

≈ 0.07 at r500. This means that variations of the square
of the gas velocity can explain ∼30 per cent of the width of density
distribution found in simulations.

The contribution of pure compressible motions to the density
variations scales linearly with the Mach number M. To evaluate
it properly one has to make Helmholtz decomposition of the ve-
locity field. This is beyond the scope of this paper. We instead
note that both solenoidal and compressible modes in the subsonic
case should lead to adiabatic relation between density and pressure
(or temperature) fluctuations. As we saw above (Section 7.3) the
mean density/temperature regression coefficient (see Fig. 11) is not
close to 1.5. We further estimated the mean correlation coefficient
C(ln ne, ln P ) ∼ 0.7 between the density and pressure fluctuations
at r500 for a sample of relaxed clusters. This corresponds to ∼30 per
cent of the observed density variations, placing constraints on both
solenoidal and compressible modes together. Therefore, pure adia-
batic fluctuations alone are not able to explain the density variations
found in simulations and substantial contribution should be associ-
ated with the entropy variations.

Indeed, time variations of the potential and gas motions can also
be responsible for inhomogeneity of the gas in radial shells, when
the gas with an entropy different from the mean/median gas entropy
at a given radius is advected to this radius. One can identify two fla-
vors of this process. First, the motion of a subhalo can be responsible
for the transportation of the gas. This process is also accompanied by
a ram pressure stripping and partial mixing of the gas with the ICM.
Secondly, the gas motions themselves can displace lumps of gas
with different entropies from their ‘equilibrium’ radius. The mor-
phology of a moderately overdense gas component, corresponding
to 2σ–3σ deviations from the median value (see Section 4) traces
the distribution of subhaloes, suggesting the first mechanism as a
primary contributor. At smaller density contrasts ≤1 σ it is diffi-
cult to draw firm conclusion. Most likely both mechanisms play a
role in producing non-uniform density in radial shells. Inspection of
Fig. 11 suggests that at least in the central region r < r500 apparent
anticorrelation of the density and temperature variations is driven
by these mechanisms.

8 SENSITIVITY OF RESULTS TO PHYSICS
I N C L U D E D IN SI M U L ATI O N S

Our analysis was applied to simulated galaxy clusters with different
physics included. We expect the real characteristics of the ICM gas
to be somewhere in between CSF and NR cases. It is therefore inter-
esting to examine which quantities, studied here, changes strongly
between CSF and NR runs.

3 Recall that numerically W10 is close to the standard deviation of the log-
normal distribution.

In general, gas cooling in CFS runs should lead to a more dense
and prominent core at the cluster centre. The off-centre clumps
are also expected to be denser and more compact. These effects
reveal themselves as a ‘forest’ of high-density peaks in the density
distribution in the CFS runs (see Fig. 1). The impact of the cooling
on the bulk component is much more subtle, as summarized below
for a subsample of relaxed clusters:

(i) The difference between the mean width of density and pres-
sure distributions in the CSF and NR runs is minor. At r500 the
mean width of density distributions in relaxed clusters is ∼16 per
cent larger in NR runs than in the CSF ones. The difference in the
width could be due to the difference in ellipticity of the gas dis-
tribution (see Lau et al. 2011, 2012). Indeed, after correction for
the contribution of the ellipticity, using the approach, outlined in
Section 7.2, the difference in the width of the distributions in the
NR and CSF runs near r500 reduces down to ∼4 per cent.

(ii) The rms velocities in the bulk component or the ratio Pmotions
Pthermal

are very similar in both runs.
(iii) The clumping factor (see equation 6), calculated for the bulk

component at r500, is ∼23 and ∼8 per cent higher in the NR runs for
unrelaxed and relaxed clusters, respectively. The clumping factor,
calculated for total density distribution including the high-density
tail, is also larger for NR run. In this case the difference can be up to
40 per cent. The clumping factor is sensitive to cluster classification
on relaxed and unrelaxed systems and has a very large scatter from
cluster to cluster. Even after averaging over the sample, one object
can dominate the mean.

This difference between CSF and NR can be understood in terms
of a simple notion: in CSF runs the gas with high or intermediate
densities has a short cooling time. This gas cools down below X-
ray temperatures resulting in a stronger separation of hot and low-
density gas and much colder clumps. While in the NR runs the gas
at intermediate densities/temperatures has much longer lifetime.

9 SU M M A RY

In this study we propose a novel description of the ICM in simulated
galaxy clusters that allows us to better understand the properties of
the bulk of the hot gas in clusters and various inhomogeneities.
Our analysis is applied to 16 simulated galaxy clusters with dif-
ferent baryonic physics. The main results and conclusions can be
summarized as follows.

(1) We suggest a simple, quick and robust method to divide the
ICM in simulations into a nearly hydrostatic bulk component and
non-hydrostatic high-density inhomogeneities. This allows us to
study separately the properties of both components. In X-ray obser-
vations similar division between these two components is usually
based on the analysis of X-ray images from which bright localized
spots are excluded. The selection of the bulk component imple-
mented in the present study corresponds to the idealized case, when
statistical quality of the data allows one to make careful cleaning
of the image from all distinct features. The analysis of two com-
ponents together corresponds to another limit when no bright spots
are excluded from observed images.

(2) The characteristic amplitude of stochastic gas velocities in
the bulk component is increasing with radius and has a very regular
behaviour. rms velocity averaged over a sample of relaxed (un-
relaxed) clusters varies from ∼0.4 cs, 500(∼0.7 cs, 500) at 0.3 r500 to
∼0.6 cs, 500(∼0.8 cs, 500) at 2r500. This is in a broad agreement with
previous measurements (e.g. Lau et al. 2009). Velocities of motions
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in the high-density component, in contrast, are higher, change ir-
regularly with radius and exhibit large scatter from one cluster to
another. Note that the values of velocities in the bulk gas component
are consistent with current velocity estimates from X-ray observa-
tions (e.g. Werner et al. 2009; Sanders, Fabian & Smith 2011; de
Plaa et al. 2012). The forthcoming Astro-H4 mission (launch date
2014) will provide more robust constraints on the gas velocities
since it has high-energy resolution ∼5 eV. For example, in Zhu-
ravleva et al. (2012) we show that in the Perseus-like clusters gas
motions with Vgas � 0.3cs cause line broadening of ∼7 eV, while the
thermal broadening does not exceed 3 eV. Therefore, gas motions
should be readily detectable.

A closely related quantity is the ratio of pressure due to gas
motions and thermal pressure, which is ∼0.2 at r500 for relaxed
clusters. This result holds for bulk component alone and for the
bulk plus high-density components together. At larger radii the ratio
Pmotions
Pthermal

in the bulk component is increasing gradually to 50–60 per
cent at 2 r500 for relaxed clusters (and even more for the bulk plus
high-density components together).

(3) The clumping factor boosts the X-ray emissivity for the bulk
component in relaxed clusters by less than ∼15–25 per cent within
r500. This factor increases to 30–40 per cent at 2 r500. For the bulk
plus high-density components together the clumping factor is much
larger and is very irregular.

(4) We introduce two characteristics of the bulk component: me-
dian radial profiles of density/temperature/pressure – characteristic
of the overall radial properties and width W10 of the density and
pressure distributions – characteristic of gas fluctuations around the
median value.

In contrast to the mean, mode or range profiles, the median pro-
files are very robust even if the ICM is strongly contaminated by
high-density inhomogeneities. Therefore, in order to calculate ra-
dial profiles of gas characteristics, we do not need to exclude clumps
from the ICM first. This would significantly simplify analysis of big
samples of simulated clusters.

The density distribution of the bulk gas in each radial shell can
be well described by log-normal distribution. We propose to use
the width of density distributions as another robust characteristic
of the bulk gas. The width is an increasing function of distance
from the cluster centre with a relatively small scatter from cluster
to cluster, especially for relaxed clusters. The typical width of the
density distribution at r500 in our CSF sample is W10 ∼ 0.25 dex with
the scatter ±0.037 for relaxed clusters, while for unrelaxed clusters
the typical width is ∼0.43 dex with slightly larger scatter ±0.14.
This suggests that the width can be used as an additional criterion
to classify clusters in large simulations into relaxed and unrelaxed
clusters.

(5) We investigated the properties of the density inhomogeneities
in the simulated sample. The ellipticity of the underlying mass dis-
tribution can explain 8–20 per cent of the observed density varia-
tions of the bulk component in individual clusters at r500. Another
∼30 per cent of the density distribution width W10 at r500 can be at-
tributed to the adiabatic pressure/density variations in the turbulent
ICM. The remaining part of the observed density variations in the
bulk component is associated with the variations of gas entropy at
a given distance from the cluster centre. These entropy variations
are likely caused by advection of the gas by moving subhaloes,
including the ram-pressure stripped gas, and by gas advection by
stochastic gas motions.

4 http://astro-h.isas.jaxa.jp/

(vi) Compared to observations, the width of the gas density dis-
tribution in the inner parts of relaxed clusters W10 ∼ 0.1–0.2 dex
(FWHM), broadly agrees with the typical amplitude of density per-
turbations of 5 per cent to 10 per cent (rms) in the Coma cluster
core (Churazov et al. 2012). In the cool-core AWM4 cluster, which
is probably more relaxed than Coma, Sanders & Fabian (2012)
found 4 per cent density variations. Further analysis of a sample
of cluster is needed to conclude if additional processes like ther-
mal conduction or mixing are required to reduce the ICM inhomo-
geneity in simulations. The clumping factor CX ∼ 1.1–2.2 at r500

found in the simulations is in agreement with the value 1–3 sug-
gested by the observations. However, at cluster outskirts (1.5 r500)
clumping from the simulations broadly agrees with observations of
PKS0745−191 cluster (Walker et al. 2012) but is ∼3 times smaller
than the clumping factor in the Perseus cluster (Simionescu et al.
2011).

While this paper was in review, we noticed another paper by
Battaglia et al. (2012), where the measurement biases of fgas were
analysed using another sample of simulated clusters. In their pa-
per Battaglia et al. (2012) used T > 106 K cut in the calcu-
lation of the clumping factor to mimic the X-ray observations
(cf. equation 6) and provide the value of fgas within given ra-
dius. Crude estimates show that the behaviour of the clumping
factor is qualitatively similar to our results for the case when
high-density inhomogeneities are not excluded (dashed line in
Fig. 10).

(vii) The analysis described in the paper has important implica-
tions for the measurements of the total mass of clusters. Separation
of the high-density tail from the bulk component of the ICM, allows
one to plug into HSE equation quantities that are not contaminated
by various gas inhomogeneities. This provides a lower limit on the
mass bias one can obtain from the standard analysis of X-ray obser-
vations, once all substructures are carefully removed from the data.
This issue will be addressed in our future work. Also, a combination
of the median density and temperature radial profiles along with the
width of their distributions provides a convenient way to calculate
other possible biases in the observables, such as the bias in the X-ray
emissivity or X-ray temperature and pressure measured through the
SZ effect (Khedekar et al., in preparation).
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