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ABSTRACT

We aim to summarize the current state of knowledge regarding Galactic Faraday rotation in an all-sky map of the Galactic Faraday
depth. For this we have assembled the most extensive catalog of Faraday rotation data of compact extragalactic polarized radio sources
to date. In the map making procedure we use a recently developed algorithm that reconstructs the map and the power spectrum of
a statistically isotropic and homogeneous field while taking into account uncertainties in the noise statistics. This procedure is able
to identify some rotation angles that are offset by an integer multiple of π. The resulting map can be seen as an improved version of
earlier such maps and is made publicly available, along with a map of its uncertainty. For the angular power spectrum we find a power
law behavior C` ∝ `

−2.17 for a Faraday sky where an overall variance profile as a function of Galactic latitude has been removed, in
agreement with earlier work. We show that this is in accordance with a 3D Fourier power spectrum P(k) ∝ k−2.17 of the underlying
field neBr under simplifying geometrical and statistical assumptions.

Key words. Galaxies: magnetic fields - Galaxy: structure - ISM: magnetic fields - Radio continuum: ISM - Methods: data analysis -
Techniques: polarimetric

1. Introduction

Magnetic fields are ubiquitous in the interstellar medium. They
are likely to play a major dynamical role in the evolution of
galaxies. It is by comparing theoretical predictions and simula-
tions to observations of galactic magnetic fields that their gener-
ation and dynamical role can be understood (see e.g. Beck 2011,
and references therein). It is natural to look first and foremost
at our own galaxy, the Milky Way, and try to study its mag-
netic field. However, its observation is complicated by a num-
ber of effects. The magnetic field is a three-dimensional vec-
tor field that varies on multiple scales throughout the Galaxy.
Thus, a large number of measurements of the field would be
needed to determine even its large-scale properties. Furthermore,
virtually any observation suffers from a projection effect as lo-
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cal effects add up along the line of sight. And finally the mag-
netic field cannot be measured directly, so that related observ-
ables have to be used. These observables, however, are not only
sensitive to the magnetic field itself but also to other quantities
which are not necessarily better understood, introducing ambi-
guities when inferring properties of the magnetic field. The in-
tensity of synchrotron radiation is sensitive to the strength of the
magnetic field component orthogonal to the line of sight, how-
ever it is modulated by the density of cosmic ray electrons (e.g.
Ginzburg & Syrovatskii 1965). The direction of this magnetic
field component can be studied via the polarization direction of
synchrotron radiation and thermal dust emission (e.g. Gardner
& Whiteoak 1966; Lazarian 2003). A magnetic field component
along the line of sight, on the other hand, gives rise to the effect
of Faraday rotation (e.g. Nicholson 1983; Gardner & Whiteoak
1966; Burn 1966). The strength of this effect is influenced not
only by the magnetic field but also by the density of thermal elec-
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trons. Furthermore, when observing this effect for extragalactic
sources, it contains contributions non only from the Galaxy, but
rather from every position along the line of sight to the source
with a non-vanishing magnetic field and thermal electron den-
sity.

In order to find an unambiguous terminology capturing these
subtleties, we introduce the concept of Faraday depth, which
depends on position and is independent of any astrophysical
source. The Faraday depth corresponding to a position at a dis-
tance r0 from an observer is given by a line of sight integral,

φ(r0) =
e3

2πm2
ec4

∫ 0

r0

dr ne(r)Br(r), (1)

over the thermal electron density ne and the line of sight com-
ponent of the magnetic field Br. Here, e and me are the electron
charge and mass and c is the speed of light. The Galactic Faraday
depth is therefore exactly this integral, where the lower bound-
ary is the outer edge of the Milky Way. It is this integral that
contains the information on the Galactic magnetic field.

The observational consequence of Faraday rotation on a sin-
gle linearly polarized source is a rotation of its plane of polar-
ization about an angle that is proportional to the square of the
wavelength. The proportionality constant is equal to the source’s
Faraday depth, i.e the above integral expression, where the lower
boundary is now the source’s position. Often, the assumption
that the observed polarized radiation stems from a single source
is made implicitly and a linear fit to the position angle of the
plane of polarization as a function of the squared wavelength
is made. We refer to the slope of such a λ2-fit as rotation mea-
sure (RM). In the case of a single source this is the same as the
source’s Faraday depth. However, the polarized radiation will in
general be emitted over a range of physical distances and also
over a range of Faraday depths, and the position angle will no
longer vary linearly with λ2. This emission spectrum in Faraday
space can be recovered using the technique of RM synthesis
(Burn 1966; Brentjens & de Bruyn 2005). In this work we cre-
ate a map of the Galactic Faraday depth using both data that are
based on RM synthesis and data that are based on linear λ2-fits.
Neither measures the Galactic Faraday depth exclusively and we
use the term Faraday rotation data when referring to data val-
ues without specifying whether they are rotation measures or the
result of a synthesis study.

A review of early work on the inference of features of the
regular component of the Galactic magnetic field from RM
measurements is included in the work of Frick et al. (2001).
Some of the studies are done by Morris & Berge (1964);
Gardner et al. (1969); Vallée & Kronberg (1973); Ruzmaikin
& Sokolov (1977); Ruzmaikin et al. (1978); Simard-Normandin
& Kronberg (1979); Andreasian (1980, 1982); Inoue & Tabara
(1981); Sofue & Fujimoto (1983); Vallée (1983); Agafonov et al.
(1988); Clegg et al. (1992); Han & Qiao (1994); Han et al.
(1997), as well as Rand & Kulkarni (1989); Rand & Lyne (1994)
who use RM data of pulsars, and Seymour (1966, 1984) who
uses spherical harmonics to obtain an all-sky RM map. Some of
the more recent studies aiming to constrain the Galactic mag-
netic field using rotation measures of extragalactic radio sources
include the ones by Brown & Taylor (2001); Mao et al. (2010);
Kronberg & Newton-McGee (2011); Pshirkov et al. (2011), as
well as Brown et al. (2003b, 2007); Nota & Katgert (2010); Van
Eck et al. (2011), who supplement extragalactic RMs with pulsar
rotation measures. Weisberg et al. (2004); Vallée (2005, 2008);
Han et al. (2006); Men et al. (2008) rely entirely on pulsar rota-
tion measures for estimating the Galactic magnetic field, while

Sun et al. (2008); Jansson et al. (2009); Jaffe et al. (2010) use
rotation measures of extragalactic sources in combination with
synchrotron polarization and intensity data.

Recent attempts to create an all-sky map of Faraday rota-
tion measure were made by Frick et al. (2001); Johnston-Hollitt
et al. (2004); Dineen & Coles (2005); Xu et al. (2006). However,
due to the limited number of data points available at the time,
their reconstructions are limited to the largest-scale features. A
rather sophisticated attempt is made by Short et al. (2007), who
use Monte Carlo Markov Chain methods and account for uncer-
tainty in the noise covariance while avoiding the direct involve-
ment of covariance matrices. Realistic attempts to create all-sky
maps including smaller-scale features have been possible only
since Taylor et al. (2009) published the NRAO VLA Sky Survey
(NVSS) (Condon et al. 1998) rotation measure catalog that con-
tains data on sources distributed roughly equally over the sky at
declinations larger than −40◦. One such attempt is made in the
same publication where the data are simply smoothed to cover
the celestial sphere in regions where data are taken. Another at-
tempt has been made by Oppermann et al. (2011a), using a more
sophisticated signal reconstruction algorithm which takes into
account spatial correlations without oversmoothing any maxima
or minima.

The NVSS rotation measure catalog is, however, suboptimal
in two respects. It lacks data in a large region in the southern sky
below the declination of −40◦ due to the position of the observ-
ing telescope (VLA) and its rotation measure values were de-
duced using only two nearby frequency channels (see Table 1).
This increases the risk of introducing offsets of integer multi-
ples of π in the rotation angle, as discussed by Sunstrum et al.
(2010), and makes it impossible to detect any deviations from
a proportionality to λ2 in the polarization angle. Thus, sources
with a non-trivial Faraday spectrum could not be identified and
were assigned a possibly misleading RM value.

In this work we aim to create a map of the Galactic Faraday
depth that summarizes the current state of knowledge. To this
end we combine the NVSS rotation measure catalog of Taylor
et al. (2009) with several other catalogs of Faraday rotation
data of polarized extragalactic radio sources, increasing the spa-
tial coverage and further constraining the signal also in regions
where several data sets overlap. We improve on the map of
Oppermann et al. (2011a) by using this more extensive data set
and by using an extended version of the reconstruction algorithm
which takes into account uncertainties in the noise covariance,
presented by Oppermann et al. (2011b). The resulting all-sky
map of the Galactic Faraday depth will be useful in many re-
spects. On the one hand, all-sky information can help in bring-
ing forth global features of the underlying physics, such as the
Galactic magnetic field or the electron distribution. On the other
hand, an all-sky map can also be useful when studying local or
extragalactic features. It could, for example, serve as a look-up
table for Galactic contributions to the Faraday depth when study-
ing extragalactic objects.

The remainder of this paper is organized as follows: In
Sect. 2 we briefly review the main features of the extended criti-
cal filter algorithm that we use in our map making procedure and
discuss how it is applied to the situation at hand. The data sets
entering the reconstruction are listed in Sect. 3 and the results
are presented in Sect. 4. In the results section, we also include
a brief discussion of the reconstructed angular power spectrum.
We summarize our findings in Sect. 5.
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2. Reconstruction algorithm

In order to reconstruct the Galactic Faraday depth from the point
source measurements, we use the extended critical filter formal-
ism that was presented by Oppermann et al. (2011b). This filter
is based on the critical filter that was used for the reconstruction
by Oppermann et al. (2011a) and derived by Enßlin & Frommert
(2011) and Enßlin & Weig (2010) within the framework of in-
formation field theory developed by Enßlin et al. (2009).

2.1. Signal model

The signal model we use is the same as the one used by
Oppermann et al. (2011a). We review the essentials briefly.

In the inference formalism we employ, it is assumed that a
linear relationship, subject to additive noise, exists between the
observed data d and the signal field s that we try to reconstruct,
i.e.

d = Rs + n. (2)

Here, the response operator R describes the linear dependence of
the data onto the signal. Formally, the signal could be a continu-
ous field, e.g. some field like the Galactic Faraday depth on the
celestial sphere. In practice, however, the best we can hope for is
to reconstruct a discretized version of such a field, i.e. a pixelized
sky-map. In this case, one can think of the signal field s on the
sphere as a vector of dimension Npixels, each component of which
corresponds to one pixel, and the whole set of data points d as
another vector of dimension Ndata. The response operator then
becomes a matrix of dimension Ndata × Npixels and n is another
vector of dimension Ndata that contains the noise contributions
to each data point. Next, we specify the definitions of the signal
field and the response matrix for our specific application.

The critical filter algorithm, as well as the extended critical
filter, is intended to reconstruct statistically isotropic and homo-
geneous random signal fields. We briefly recapture the meaning
of this.

It is assumed in the derivation of the filter formulas (see
Oppermann et al. 2011b, for details), that the signal field that
describes nature is one realization of infinitely many possible
ones. Further, it is assumed that some of these possibilities are
a priori more likely to be realized in nature than others, i.e. a
prior probability distribution function on the space of all pos-
sible signal realizations is defined. We assume this probability
distribution to ba a multivariate Gaussian with an autocorrela-
tion function S (n̂, n̂′). Here, n̂ and n̂′ denote two positions on
the celestial sphere. Now assuming statistical homogeneity and
isotropy means assuming that S (n̂, n̂′) depends only on the angle
between the two positions n̂ and n̂′. This means that the correla-
tion of the value of the signal field at one position with another
one at a certain distance depends only on this distance, not on
the position on the sphere (homogeneity) and not on the direc-
tion of their separation (isotropy). Note, however, that we are
making this assumption only for the prior probability distribu-
tion, i.e. the inherent probability for signal realizations. The data
can (and do) break this symmetry, making the posterior probabil-
ity distribution, i.e. the probability for a signal realization given
the measured data, anisotropic. Furthermore, any single realiza-
tion of a signal with isotropic statistics can appear arbitrarily
anisotropic. Extremely anisotropic realizations will, however, be
a priori more unlikely than others.

For this reason we divide out the most obvious largest scale
anisotropy introduced by the presence of the Galactic disk. We

do this by defining our signal as

s(l, b) =
φ(l, b)
p(b)

, (3)

i.e. the dimensionless ratio of the Galactic Faraday depth φ and
a variance profile p that is a function of Galactic latitude only.
We use this simplistic ansatz for the Galactic variance profile in
order to account for the largest scale anisotropies without using
any specific Galactic model in the analysis.

The profile function is calculated in a multi-step procedure.
In the first step, we sort the data points into bins of Galactic lati-
tude and calculate the root mean square value for the Faraday ro-
tation data of each bin, disregarding any information on Galactic
longitude of the data points. We then smooth these values with
a kernel with 10◦ FWHM1 to form an initial profile function p̃.
In the second step, we reconstruct the signal field, resulting in
a map m̃ and the corresponding 1σ uncertainty map ˆ̃D1/2. We
use these to calculate the corresponding posterior mean of the
squared Faraday depth according to〈

φ2
〉
P(s|d)

= p̃2m̃2 + p̃2 ˆ̃D. (4)

The posterior mean is the ensemble average over all possible
signal configurations weighted with their posterior probability
distributionP(s|d), i.e. their probability given the measured data,
and is denoted by 〈·〉P(s|d). From this expected map of the squared
Faraday depth, we then calculate a new variance profile p, now
using the pixel values of the map instead of the data points. A
few data points were added before repeating this final step yet
another time. The final reconstruction is then conducted with the
resulting profile function. Both the initial variance profile and
the one used in the final reconstruction are shown in Fig. 1. The
drop-off toward the Galactic poles of the first-guess profile func-
tion is less pronounced since the relatively high noise component
of the Faraday rotation data in these regions enters in the root
mean square that is calculated from the data points. The vari-
ance profile as calculated from the final results is also shown in
Fig. 1.

Having introduced the Galactic variance profile, we can now
specify the response operator. In our application, the response
matrix R needs to contain both the multiplication of the signal
field with this profile function and the probing of the resulting
Faraday depth in the directions of the point sources. It is a ma-
trix of dimension Ndata × Npixels. Each row corresponds to one
data point and each column to one pixel of the sky map. Here,
the row corresponding to the i-th data point contains a non-zero
entry only in the column corresponding to the pixel in which
the i-th observed extragalactic source lies, modeling the prob-
ing of the Faraday depth in the observed directions. This entry
is the value of the Galactic variance profile p at the latitude of
the pixel, effectively rescaling the local signal field value into a
Faraday depth.

Furthermore, we assume Gaussian priors both for the signal
and for the noise with covariance matrices S and N, respectively.
Since our signal field is assumed to be statistically homogeneous
and isotropic, its covariance matrix S is completely determined
by its angular power spectrum2 (C`)`, ` = 0, 1, . . . , `max. The

1 Oppermann et al. (2011a) experiment with different smoothing
lengths and find that a factor two difference does not matter for the
end result. We chose 10◦ by visual inspection of the smoothness of the
resulting profile.

2 The angular power spectrum is defined by C` =
〈
s`m s∗`m

〉
P(s)

, where
s`m denotes the signal’s spherical harmonic component of a certain az-
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Fig. 1. The root mean square Galactic profile that is used in the
definition of the signal field and is part of the response matrix,
as a function of Galactic latitude. The dashed curve represents
the initial profile function p̃ and the solid curve the one used in
the final reconstruction, p. The dotted curve shows the profile as
calculated from the final results.

minimum length scale `max is determined by the finite resolution
of the discretization. Assuming uncorrelated noise for all data
points, the noise covariance N becomes diagonal. The diagonal
entries are given by the variance calculated from the error bars
given in the data catalogs, modified to account for the expected
average extragalactic contribution,

σ2 = σ2
(measurement) + σ2

(extragalactic). (5)

We include a multiplicative correction factor η that will be deter-
mined during the reconstruction, making the diagonal entry of N
corresponding to the i-th data point

Nii = ηiσ
2
i . (6)

As the extragalactic contribution, we use the value
σ(extragalactic) = 6.6 rad/m2, motivated by the study of Schnitzeler
(2010).

Reasons for a deviation of η from unity could be a general
under-estimation of the measurement error, as was discussed for
the NVSS catalog by Stil et al. (2011), a misestimation of the ex-
tragalactic contribution, a multi-component Faraday depth spec-
trum, but also the presence of an offset of an integer multiple of
π in the rotation angle.

2.2. The extended critical filter

The extended critical filter (see Oppermann et al. 2011b) is a
method to simultaneously reconstruct the signal, its covariance,
given here by its angular power spectrum (C`)`, and the noise co-
variance, given here by the correction factors (ηi)i. To this end,
inverse Gamma distributions are assumed as priors for the pa-
rameters of the covariances, i.e.

P(C`) =
1

q`Γ(α` − 1)

(
C`

q`

)−α`
exp

(
−

q`
C`

)
(7)

imuthal quantum number ` and an arbitrary magnetic quantum number
m, the asterisk denotes complex conjugation, and the angular brackets
denote an ensemble average weighted with the prior probability distri-
bution.

and

P(ηi) =
1

riΓ(βi − 1)

(
ηi

ri

)−βi

exp
(
−

ri

ηi

)
, (8)

and all these parameters are assumed to be independent. We
choose α` = 1 for the parameter describing the slope of the
power law and q` = 0 for the parameter giving the location of the
exponential low-amplitude cutoff, turning the prior for each C`

into Jeffreys prior which is flat on a logarithmic scale, enforc-
ing the fact that we have no a priori information on the power
spectrum. For the prior of the correction factors we choose the
parameter βi = 2, since we already have information on the ex-
pected noise covariance from the data catalogs. We adapt the
value of ri such that the a priori expectation value of log η be-
comes 0, thereby conforming with the catalogs.

With these values, the actual filtering process consists of it-
erating the three equations3

m = DR†N−1d, (9)

C` =
1

2` + 1
tr

((
mm† + D

)
S −1
`

)
, (10)

and

ηi =
1

2βi − 1

2ri +
1
σ2

i

(
(d − Rm)2

i +
(
RDR†

)
ii

) (11)

until convergence is reached. Here, m is the reconstructed
signal map, the †-symbol denotes a transposed quantity, and
D =

(
S −1 + R†N−1R

)−1
is the so-called information propaga-

tor (Enßlin et al. 2009). The matrix S −1
` projects a signal vector

onto the `-th length-scale by keeping only the degrees of free-
dom represented by spherical harmonics components with the
appropriate azimuthal quantum number. Although we have cho-
sen βi = 2 for our reconstruction, we leave the parameter un-
specified in these equations, since we later compare our results
to those obtained with β , 2 (see Sect. 4.2).

The three equations can be qualitatively explained. Eq. (9)
links the reconstructed map to the data. It consists of a response
over noise weighting of the data and an application of the in-
formation propagator to the result. The information propagator
combines knowledge about the observational procedure encoded
in the response matrix R and the noise covariance matrix N with
information on the signal’s correlation structure contained in the
signal covariance matrix S . It is used in Eq. (9) to reconstruct the
map at a given location by weighting the contributions of all data
points using this information. The information propagator is also
(approximatively) the covariance matrix of the posterior proba-
bility distribution. Therefore, it can be used to obtain a mea-
sure for the uncertainty of the map estimate. The 1σ uncertainty
of the map estimate in the j-th pixel is given by D̂1/2

j = D1/2
j j .

Eq. (10) estimates the angular power spectrum from two con-
tributions. The first term in the trace gives the power contained
within a reconstructed map, while the second term compensates
for the power lost in the filtering procedure generating this map.
This second contribution is not contained in the map calculated
via Eq. (9) since the data are not informative enough to de-
termine the locations of all features. In a very similar fashion,
Eq. (11) estimates the correction factors for the error bars also
from two main contributions. The first contribution uses simply
the difference between the observed data and the data expected

3 This is the first order version of the extended critical filter. See
Oppermann et al. (2011b) for details.
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Fig. 2. Distribution of the data points on the sky. Shown is a
HEALPix map at a resolution of Nside = 128, using Galactic co-
ordinates. The map is centered on the Galactic center, latitudes
increase upward, and longitudes increase to the left. Each black
pixel contains at least one data point.

from the reconstructed map and the second contribution com-
pensates partly for the attraction the data exhibit onto the map in
the reconstruction step which lets some fraction of the noise im-
print itself onto the map. Both contributions are rescaled by the
inverse noise variance to turn this estimate of the noise variance
into a correction factor. There is a third term in Eq. (11) that is
solely due to the prior we chose for η. It prevents the error bars
from vanishing in case a data point is by chance in perfect agree-
ment with the map. For a detailed derivation of these formulas,
the reader is referred to Oppermann et al. (2011b).

We include a smoothing step for the angular power spec-
trum in each step of the iteration, where we smooth with a ker-
nel with ∆` = 8 FWHM, lowering ∆` for the lowest `-modes.
This is done to avoid a possible perception threshold on scales
with little power in the data (see Enßlin & Frommert 2011). The
smoothing step is also justified by the fact that none of the un-
derlying physical fields, i.e. the thermal electron density and the
line of sight component of the magnetic field, are expected to
have vastly different power on neighboring scales.

3. Data sets

Table 1 summarizes the data catalogs that we use for the recon-
struction. Altogether, the catalogs contain 41 330 measurements
of the Faraday rotation of extragalactic point sources. Fig. 2
shows their distribution on the sky. The coverage is clearly far
from complete, especially at declinations below −40◦ where the
Taylor-catalog does not provide any data. However, 24% of the
data points from the other catalogs lie within this region, so some
toeholds are present even there. The densely sampled region that
stands out at the top of the empty patch in Fig. 2 is Centaurus A,
studied in the Feain-catalog. The relative scarcity of data points
near the Galactic plane is due to numerous depolarization ef-
fects caused by nearby structures in the magneto-ionic medium,
as explained by Stil & Taylor (2007). We use only extragalactic
sources, and not pulsar rotation measures, since this ensures that
each measurement contains the full Galactic Faraday depth.

Since the regions of coverage of the different catalogs over-
lap some of the data points have the same underlying radio
source. While this does not constitute a problem for the recon-
struction algorithm, it does in principle lead to noise correlations
since the intrinsic Faraday rotation of this source, which is part

of the noise in our formalism, enters each of these data points
in the same way. We ignore this effect in favor of a greatly sim-
plified analysis. The combination of the response matrix and the
inverse noise covariance matrix in Eq. (9) corresponds to an in-
verse noise weighted averaging of all data points that fall within
one sky pixel. If the error bars were only due to the intrinsic
Faraday rotation of the sources, this would amount to an under-
estimation of the error bar by a factor 1/

√
k for a source that

appears in k different catalogs. In reality, the intrinsic Faraday
rotation constitutes only a fraction of the total error budget. The
effect is therefore smaller.

Some of the catalogs listed in Table 1 are themselves com-
pilations of earlier measurements. As a consequence, some indi-
vidual observations are contained in several of the catalogs. We
have removed data points where we suspect such duplications so
that each observation is used only once. Note that this does not
apply to different observations of the same source, as discussed
above. The number of data points given in Table 1 is the effec-
tive number of data points that we use in our analysis from the
respective catalog.

Any variation of the Galactic Faraday depth within one pixel
of our map can naturally not be reconstructed. Such variations
on very small scales have been detected by Braun et al. (2010)
for a region around (l, b) ≈ (94◦,−21◦). Should several sources
fall within a pixel in such a region, our algorithm will yield an
appropriate average value for the pixel and increase the error
bars of the data points until they are consistent with this average
value.

The sources studied in the Bonafede-catalog and some of
the sources in the Clarke-catalog lie within or behind galaxy
clusters. They are therefore expected to have an increased extra-
galactic contribution to their measured Faraday rotation. In order
to take the cluster contribution into account, we have corrected
the error bars of these points accoring to

σ2
(corrected) = σ2 + σ2

(cluster). (12)

To estimate the cluster contribution σ(cluster), Bonafede et al.
(2010) studied resolved background sources for which several
independent RM measurements are possible. σ(cluster) was then
identified with the empirical value of the standard deviation of
these measurements. Clarke et al. (2001) estimated the cluster
contribution by comparing the RM values of sources within the
cluster to those of sources behind the cluster. The Johnston-
Hollit-B-catalog also contains sources associated with galaxy
clusters. However, due to the low density of sources, an esti-
mation of the cluster contribution is not possible in this case. We
expect a fraction of the other sources to be affected by clusters as
well. However, since information on which sources exactly are
affected is missing in general, we leave it to our algorithm to in-
crease the error bars of the appropriate data points. The same
problem exists in principle for satellite galaxies of the Milky
Way, such as the Large and Small Magellanic Clouds. We do
not attempt to separate their contribution to the Faraday depth
from the one of the Milky Way, so that the map we reconstruct is
strictly speaking not a pure map of the Galactic Faraday depth,
but rather a map of the Faraday depth of the Milky Way and its
surroundings. Due to our use of spatial correlations in the recon-
struction algorithm, the Faraday depth contribution intrinsic to
the sources will, however, be largely removed.

Furthermore, some of the sources will have a non-trivial
Faraday spectrum, i.e. they exhibit polarized emission at more
than one Faraday depth. While the technique of RM synthesis
(Burn 1966; Brentjens & de Bruyn 2005) is able to make out
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Fig. 3. Reconstructed dimensionless signal map m (top) and its uncertainty D̂1/2 (bottom). Note the different color codes.

these sources, such features are not described by a λ2-fit, which
may thus lead to an erroneous rotation measure value. This prob-
lem becomes more severe if the number of frequencies used in
the fit is low. In the limit of two frequencies, multi-component
Faraday spectra necessarily go unnoticed. We use the data points
obtained by λ2-fits of only a few frequencies nevertheless, and
leave it to the reconstruction algorithm to increase the error bars

of those with an underlying multi-component spectrum accord-
ingly.

6



N. Oppermann et al.: The Galactic Faraday sky
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Fig. 4. Reconstruction of the Galactic Faraday depth pm (top) and its uncertainty pD̂1/2 (bottom) in rad/m2. Note the different color
codes.

4. Results

All results shown here are calculated at a HEALPix4 resolution
of Nside = 128, i.e. the maps contain 196 608 pixels. The mini-
mum angular scale that we consider is `max = 383, correspond-

4 The HEALPix package is available from http://healpix.jpl.
nasa.gov.

ing roughly to half a degree. These results are publicly available
and can be downloaded from http://www.mpa-garching.
mpg.de/ift/faraday/. The maps that we show are all cen-
tered on the Galactic center with positive Galactic latitudes at
the top and positive Galactic longitudes plotted to the left.
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4.1. Map

Figure 3 shows the reconstructed dimensionless signal map m
and an estimate for its uncertainty, given by D̂1/2. The same for
the physical Galactic Faraday depth pm, i.e. the signal multiplied
by the Galactic variance profile, is shown in Fig. 4. As expected,
the signal reconstruction is more uncertain in regions that lack
data. Furthermore, the uncertainty in Fig. 3 tends to be smaller
in the Galactic plane. This is due to the higher signal response
brought along by the Galactic variance profile in this area. When
considering the uncertainty of the final map of the Faraday depth,
i.e. the bottom panel of Fig. 4, this feature gets turned around.
The values within the Galactic plane now tend to be more un-
certain than the ones near the poles. Note, however, that this is
the absolute uncertainty. Since the Galactic Faraday depths are
greater for lines of sight through the Galactic disk as well, the
relative uncertainty is smaller there. This corresponds roughly to
the uncertainty shown in the bottom panel of Fig. 3 which can be
interpreted as the uncertainty of the Galactic Faraday depth rel-
ative to the value of the Galactic variance profile at the specific
latitude. Also, the uncertainty is only high in the Galactic plane
in pixels that do not contain any data. In the pixels that contain
measurements, the uncertainty is comparable to the error bars of
the data. It should be noted, however, that due to the approxima-
tions made in the derivation of the filter formulas (for details, see
Oppermann et al. 2011b), the presented 1σ intervals cannot be
interpreted as containing 68% of the correct pixel values of the
signal. Oppermann et al. (2011b) found in their mock tests, that
about 50% of the correct pixel values lie within this range.

In general, Fig. 3 is better suited to make out localized fea-
tures away from the Galactic plane. The most striking of these
features is the quadrupole-like structure on large scales that fa-
vors positive Faraday depths in the upper left and lower right
quadrant and negative Faraday depths in the upper right and
lower left quadrant. This has been observed in measurements
of Faraday rotation in the past, first by Simard-Normandin &
Kronberg (1980), and has often been claimed to be due to a
toroidal component of the large scale Galactic magnetic field that
changes sign over the Galactic plane (see e.g Han et al. 1997).
Recent studies by Wolleben et al. (2010) and Mao et al. (2010)
have shown, however, that this pattern is probably at least partly
due to local features of the interstellar medium in the solar neigh-
borhood. At Galactic longitudes beyond roughly ±100◦, this pat-
tern turns into a dipolar structure, favoring negative values at the
left edge of the map and positive ones on the very right, as noted
previously by Kronberg & Newton-McGee (2011). This might
be a signature of a toroidal magnetic field component that does
not change sign over the Galactic plane. But of course this could
also be a local effect, independent of the large scale magnetic
field.

Many other features are visible in the top panel of Fig. 3.
We have marked some of the features that have already been
discussed in the literature in Fig. 5 for easier reference.

Simard-Normandin & Kronberg (1980) identified three large
regions (A, B, and C in Fig. 5) with large angular size that
stand out in Galactic Faraday depth amplitude. Stil et al. (2011)
narrowed the definitions of the regions A and C down to their
more striking parts using the NVSS RM catalog. Region A is a
large area of negative Galactic Faraday depth localized roughly
at 80◦ < l < 150◦, −40◦ < b < −20◦. This region is seen in
the direction of radio Loop II, but there is little evidence that the
two are associated. The high-longitude boundary of region A co-
incides with part of the edge of Loop II. However, pulsar rotation
measures suggest that Region A extends more than 3 kpc along

A

B

b1

b2

C d
e

f

g

h

ii

4 3 2 1 0 1 2 3 4

Fig. 5. Same as the top panel of Fig. 3, with markings around the
regions discussed in the text. The letters labeling the regions are
used for reference in the main text. Dashed lines denote lines of
constant Galactic longitude or latitude. Their angular separation
is 30◦.

the line of sight (Simard-Normandin & Kronberg 1980), which
suggests that region A is a much larger structure.

Region B of Simard-Normandin & Kronberg (1980) is as-
sociated with the Gum nebula. Vallee & Bignell (1983) and Stil
& Taylor (2007) identified a large magnetic shell in the area.
The arc of positive Galactic Faraday depth around 250 rad/m2

at −120◦ < l < −90◦, b ≈ 13◦ (region b1 in Fig. 5) coincides
with the northern Hα arc of the Gum nebula. A small excess in
Galactic Faraday depth (region b2 in Fig. 5) is associated with
the nearby HII region RCW 15 (l = −125◦, b = −7◦).

Region C is an area of positive Galactic Faraday depth in
the range 33◦ < l < 68◦, 10◦ < b < 35◦ near the boundary
of Radio Loop I. Wolleben et al. (2010) found diffuse polarized
emission at a Faraday depth of 60 rad/m2 at l ≈ 40◦, b ≈ 30◦
with associated HI structure, and interpreted this structure as part
of a separate super shell around a subgroup of the Sco-Cen (Sco
OB2 2).

Besides the Gum nebula, some extended HII regions at in-
termediate Galactic latitude can be identified in the form of a
localized excess in Galactic Faraday depth (Stil & Taylor 2007;
Harvey-Smith et al. 2011). The HII regions Sh 2-27 around ζ
Oph at l = 8◦, b = 23.5◦ (region d in Fig. 5) and Sivan 3 around
α Cam at l = 144.5◦, b = 14◦ (region e in Fig. 5) stand out
as isolated regions of negative Galactic Faraday depth, while Sh
2-264 around λ Ori (region f in Fig. 5) is visible as a positive
excess at l = 195, b = −12. Stil et al. (2011) presented an image
of Hα intensity with rotation measure data overplotted.

Some large shells are also visible in the image of the Galactic
Faraday depth. The Galactic anti-center direction is the most
favourable direction to see these large structures, because it is
less crowded than the inner Galaxy and the line of sight makes a
large angle with the large-scale magnetic field. The North Polar
Spur (region g in Fig. 5) is the notable exception toward the in-
ner Galaxy. The filament of positive Galactic Faraday depth at
180◦ < l < 200◦, b ≈ −50◦ (region h in Fig. 5) is associated
with the wall of the Orion-Eridanus superbubble (Heiles 1976;
Brown et al. 1995). A large arc of positive Galactic Faraday
depth (region i in Fig. 5) rises north of the Galactic plane at
around l ≈ 95◦ up to b ≈ 65◦ around l = 180◦ and curves back
to the Galactic plane at around l = 210◦ (Stil et al. 2011). This
arc of positive Galactic Faraday depth traces the intermediate-
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Fig. 6. Comparison of the reconstructed distribution of the cor-
rection factors η that enter the noise covariance matrix and their
priors. The dark histogram and line show the normalized distri-
bution and prior for β = 2, respectively. The light histogram and
line show the same for β = 3.

velocity arch of atomic hydrogen gas identified by (Kuntz &
Danly 1996).

Xu et al. (2006) reported RM excesses in the direction of the
nearby Perseus-Pisces and Hercules super clusters. The higher
sampling provided by the new Faraday rotation data catalogs has
revealed high-latitude structures in the Galactic Faraday depth
that warrant further investigation in the effect of the Galactic
foreground. Many more small- and intermediate-scale features
are visible in the top panel of Fig. 3. A detailed analysis of these
features is left for future work.

4.2. Reconstruction of the noise covariance

The extended critical filter adapts the correction factors (ηi)i, in-
troduced in Sect. 2, so as to make the error bars of the data con-
form with the local map reconstruction. This is influenced by the
surrounding data points and the angular power spectrum, which
is in turn reconstructed using the entirety of the data. Oppermann
et al. (2011b) showed that allowing for this adaptation of the er-
ror bars leads to a slight oversmoothing of the reconstructed map
since small-scale features that are only supported by individual
data points get easily misinterpreted as noise.

In our reconstruction, we find that the median correction fac-
tor is η(med) = 0.56. This indicates that the bulk of the data
points are rather consistent with one another and therefore with
the reconstruction as well. As a consequence, their error bars
are not enlarged but rather slightly decreased by the algorithm.
Oversmoothing can therefore not be a serious issue for the map
as a whole. This is supported by the geometric mean of the cor-
rection factors, for which we find η(geom) = 0.75. This corre-
sponds to the arithmetic mean on a logarithmic scale and its prior
expectation value was tuned to be one. Looking at the arithmetic
mean on a linear scale, we find η(mean) = 6.40, indicating that
there are at least a few data points whose error bars get cor-
rected upward significantly. In fact, there are 134 data points
with ηi > 400, meaning that the error bar has been increased
by a factor of more than 20. These are isolated outliers in the
data that are not consistent with their surroundings.
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P
(η

)

η

|b| < 15◦

15◦ < |b| < 45◦

|b| > 45◦

Fig. 7. Comparison of the reconstructed distributions of the
correction factors η for different latitude bins. The dark solid
histogram depicts the distribution for data points within the
Galactic plane, the light dashed histogram the distribution for
data points at intermediate latitudes, and the dotted histogram
the one for data points in the polar regions. Only the results ob-
tained with β = 2 are shown.
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Fig. 8. Comparison of the reconstructed distributions of the cor-
rection factors η for the two data reduction techniques. The dark
solid histogram depicts the distribution for data points obtained
from a linear λ2-fit and the light dashed histogram the distribu-
tion for data points stemming from RM synthesis studies.

Figure 6 shows the final distribution of η-values. The bulk
of these values lie around η = 1 or even slightly below. Only
relatively few data points have highly increased error bars (note
the logarithmic scale of the vertical axis in Fig. 6). Also plot-
ted in Fig. 6 is the distribution of η-values that resulted from a
reconstruction in which the slope parameter in the prior for the
correction factors was chosen to be β = 3, as well as the prior
probability distributions corresponding to β = 2 and β = 3. This
shows two things. The resulting distribution does not change
much when the value of β is changed and both distributions are
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better represented by a prior with β = 2. Our choice for β is thus
justified.

The data points with η � 1 do not appear to be spatially
clumped, making it improbable that any extended physical fea-
tures that are present in the data are lost due to the increase in
the assumed noise covariance. Any real features that might mis-
takenly be filtered out in this procedure can be expected to be
smaller or comparable in size to the distance to the next data
point, i.e. one or two pixels or about one degree in most parts
of the sky. The data points with strongly corrected error bars
are predominantly located near the Galactic plane. This can be
clearly seen in Fig. 7, where we plot the distribution of the cor-
rection factors for three latitude bins separately. While the dif-
ference in the distributions for the polar regions and the inter-
mediate latitude bin is not very big, the data points around the
Galactic disk clearly are more likely to have correction factors at
the high end. At least in some cases these high η-values can be
interpreted as correcting an offset in the rotation angle of π that
has escaped the observational analysis. Others might be due to
a high level of polarized emissivity within the Galactic disk that
can lead to misleading RM fits. Another reason for high η-values
is a higher extragalactic contribution to the measured Faraday ro-
tation, caused e.g. by magnetic fields in galaxy clusters. This last
reason, however, would not be expected to show any statistical
latitude dependence.

As mentioned earlier, a non-trivial emission spectrum in
Faraday space is hard to identify when using linear λ2-fits to
obtain RM values. We therefore compare the distributions of the
correction factors for data points from λ2-fits and the ones for
data points that stem from RM synthesis studies in Fig. 8. From
the histograms it can indeed be seen that the data from λ2-fits are
more likely to have a high η-value, as expected.

Figure 9 shows a comparison of our reconstructed signal map
with the reconstruction of Oppermann et al. (2011a), where the
critical filter formalism was used without accounting for uncer-
tainties in the noise covariance and only data from the Taylor-
catalog were used. The differences that can be seen are twofold.
On the one hand, our map shows structure due to the additional
data points that we use, most prominently at declinations be-
low −40◦. On the other hand, some of the features present in
the older map have vanished since they were supported only by
a single data point which has been interpreted as being noise-
dominated by our algorithm. These features appear prominently
both in the old map and in the difference map, where our newly
reconstructed map has been subtracted from the old one. They
have the same sign in both these maps. Also, our new recon-
struction is less grainy. This is a combined effect of the higher
resolution that we use and the adaptation of error bars during our
reconstruction.

4.3. Power spectrum

The reconstructed angular power spectrum of the dimension-
less signal field is shown in Fig. 10. It is well described by a
power law. A logarithmic least square fit, which is also shown in
Fig. 10, yields a spectral index of 2.17, i.e.

C` ∝ `
−2.17, (13)

where we have taken scales down to ` = 300 into account. Note
that due to the typical distance of neighboring data points of
roughly one degree, structures smaller than this angular size,
corresponding to ` & 180, will in general not be reconstructed
and we might therefore be missing some power on the smallest

old

new

difference

4 3 2 1 0 1 2 3 4

Fig. 9. Comparison of the reconstruction of the dimensionless
signal to earlier results. The top panel shows the reconstructed
signal field of Oppermann et al. (2011a), the middle panel shows
the same as the top panel of Fig. 3, only coarsened to a resolution
of Nside = 64 to match the resolution of the old reconstruction.
The bottom panel shows the difference between the upper panel
and the middle panel.

scales. However, some data points have smaller angular sepa-
rations and we therefore have some information on the angular
power spectrum up to `max = 383.

Also shown in Fig. 10 is a comparison with the angular
power spectra of the maps that Dineen & Coles (2005) recon-
structed. They created three separate maps from three different
RM catalogs. We used the spherical harmonics components of
their maps5, transformed them to position space, and then di-
vided them by our Galactic variance profile. We plot the an-
gular power spectra of the three resulting dimensionless maps.

5 Dineen & Coles (2005) provide their results at http://astro.
ic.ac.uk/˜pdineen/rm_maps/.
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Fig. 10. Angular power spectrum of the dimensionless signal
field (thick solid line), along with a power law fit, C` ∝ `−2.17

(thick dashed line). The thin lines depict the angular power spec-
tra corresponding to the maps reconstructed by Dineen & Coles
(2005), corrected for the Galactic variance profile. The three RM
catalogs used in their work are from Simard-Normandin et al.
(1981) (S81), Broten et al. (1988) (B88), and Frick et al. (2001)
(F01).
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Fig. 11. Second order structure function corresponding to the an-
gular power spectrum plotted in Fig. 10 (thick solid line) and its
power law fit (thick dashed line), along with power law approx-
imations (thin lines).

Evidently, both the slope and the normalization of the spectra
are in agreement with our result. Haverkorn et al. (2003) study
the angular power spectrum of rotation measures of diffuse po-
larized radio emission from the local interstellar medium in two
regions of the sky on scales 400 < ` < 1500. They fit power
laws with exponents close to −1, i.e. C` ∝ `−1, significantly
larger than our result. This is not necessarily a contradiction,
however, since a flattening of the angular power spectrum on
scales that are too small for our analysis could explain both re-
sults. Furthermore, we take into account the full line of sight
through the galaxy by using only extragalactic sources, so the

volume that we probe is significantly larger than the one probed
by Haverkorn et al. (2003).

In order to compare our result to other earlier papers, we
consider the second order structure function for the dimension-
less signal field,

Ds(ϑ) =
〈(

s(n̂) − s(n̂′)
)2
〉
P(s)

= 2 (S n̂n̂ − S n̂n̂′ ) , (14)

where ϑ = arccos(n̂ · n̂′) and n̂ and n̂′ are two directions in the
sky. Here, S denotes the signal covariance matrix and the angle
brackets denote a prior ensemble average. Since we assume sta-
tistical homogeneity and isotropy for the signal field, S n̂n̂ does
not depend on n̂, S n̂n̂′ depends only on ϑ, and both terms are
completely determined by the angular power spectrum. This also
allows us to exchange the usual spatial average with an ensem-
ble average in Eq. (14). The resulting structure function is plot-
ted in Fig. 11. Using the final angular power spectrum of our
reconstruction (the solid line in Fig. 10), we find a broken power
law with exponents 0.65 for small angles and 0.26 for large an-
gles with the transition occuring around ϑ = 5◦ (the solid line
in Fig. 11). The power law fit to the angular power spectrum
(the dashed line in Fig. 10) leads to a structure function that can
be approximated by a single power law with exponent 0.39 (the
dashed line in Fig. 11).

Minter & Spangler (1996) found that the structure function
derived from their observations is well described by a power
law with exponent 0.64 for angular scales of ϑ > 1◦. Sun &
Han (2004) study the structure function in three different re-
gions within the Galactic plane and in the vicinity of the North
Galactic pole. An inverse noise weighted average of their power
law indices yields a value of 0.11. Haverkorn et al. (2006a)
and Haverkorn et al. (2008) study observations through inter-
arm regions in the Galactic plane separately from observations
along Galactic arms. They find flat structure functions for the
observations along Galactic arms. Haverkorn et al. (2006a) find
a weighted mean power law index of 0.55 for the structure
functions derived from observations through interarm regions,
while Haverkorn et al. (2008) find an inverse-noise weighted
mean power law index of 0.40. Haverkorn et al. (2003) find
flat structure functions for the two regions that they study. Roy
et al. (2008) find a structure function for the region around the
Galactic center that is constant on scales above ϑ = 0.7◦ and ex-
hibits a power law behavior with an exponent of 0.7 on smaller
scales. Stil et al. (2011) fit broken power laws with the breaking
point at ϑ = 1◦ to the structure functions they extract from the
NVSS rotation measure catalog (Taylor et al. 2009). They find
power law indices that vary spatially. Taking an inverse-noise
weighted average of their power law indices for the regions that
they study in detail yields 0.37 for ϑ > 1◦ and 0.59 for ϑ < 1◦.

These observational results indicate that the slope of the
structure function varies from region to region. Our result is in-
sensitive to these variations since our structure function is just a
description of the prior for the dimensionless signal, for which
we have assumed statistical isotropy. It can therefore be inter-
preted as a mean structure function across the whole sky. The
observations that yield non-flat structure functions are in rough
agreement with the slopes that we fit in Fig. 11. The depen-
dence of the structure function slope on Galactic latitude (e.g.
Simonetti et al. 1984; Sun & Han 2004) is partly removed in our
analysis by the division through the Galactic variance profile.
Note that Simonetti et al. (1984); Simonetti & Cordes (1986) al-
ready suspected a break in the structure function at roughly five
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degrees. However, existing studies have not shown convincing
evidence for this.

4.3.1. Consequences for the 3D fields

As an illustrative thought experiment, assume that an observer is
sitting in the middle of a spherical distribution of magnetoionic
medium. Let ϕ̃(x) ∝ ne(x)Br(x) be the product of the local ther-
mal electron density and the line of sight component of the mag-
netic field as a function of 3D position x, i.e. the differential
contribution to the Faraday depth that this observer is measur-
ing. We model this field as factorizing into two parts,

ϕ̃(x) = ϕ̄(r)ϕ(x). (15)

The first part is a spherically symmetric contribution, whose
functional dependence on the radial distance from the observer
is known, and the second part is assumed to be a realization of a
statistically homogeneous and isotropic random field, i.e.〈

ϕ(k)ϕ∗(k′)
〉

= (2π)3 δ(3)(k − k′)Pϕ(k), (16)

where the angle-brackets denote an average over all possible
field realizations, Pϕ(k) is the Fourier power spectrum6 that de-
scribes the statistics of ϕ, and k = |k|.

Using the simplest form of ϕ̄(r), namely a constant within
some finite radius r0, i.e.

ϕ̄(r) =

{
ϕ0 if r < r0
0 else , (17)

and a power law for the Fourier power spectrum,

Pϕ(k) ∝ k−α, (18)

we calculated the angular power spectrum of the Faraday depth
that the observer would measure and compared the result nu-
merically with Eq. (13). We find that the two agree well if one
chooses α roughly equal to the power law index that was found
for the angular power spectrum, i.e. 2.17 in this case.

A similar thought experiment has been conducted by
Simonetti et al. (1984). They assume a Fourier power spectrum
Pϕ(k) ∝ exp

(
−k2/k2

1

) (
1 + k2/k2

0

)α/2
, i.e. a power law with a low-

wavenumber cutoff at k0 and a high-wavenumber cutoff at k1,
and calculate the expected structure function. In the power law
regime, i.e. 1/k1 � r0 sinϑ � 1/k0, they find Ds(ϑ) ∝ ϑα−2

to lowest order in ϑ. Extending this study to independent vari-
ations in the thermal electron density and the magnetic field
component along the line of sight, each described by a power
law power spectrum with the same index α, Minter & Spangler
(1996) found the same dependence on ϑ.7 Our intermediate fit
of Ds(ϑ) ∝ ϑ0.39 (see Fig. 11) therefore corresponds to α = 2.39,
in rough agreement with our numerical finding from the power
spectrum analysis.

Armstrong et al. (1995) have used observations of effects
of interstellar radio scintillation (see also Rickett 1977, 1990),
as well as pulsar dispersion measures, to constrain the power

6 Note that the definition of the Fourier power spectrum made in
Eq. (16) corresponds to what is sometimes referred to as the 3D power
spectrum, i.e. the variance of the field ϕ at each position x in real space
can be calculated as

〈
ϕ2(x)

〉
∝

∫ ∞
0

dk k2Pϕ(k).
7 Minter & Spangler (1996) assume a rectangular shape for ϕ0 instead

of a spherical one.

spectrum describing the fluctuations of the thermal electron den-
sity in the local interstellar medium. They found a Kolmogorov-
type power spectrum, i.e. a power law index of α = 11/3 in
the present notation. This result was combined by Minter &
Spangler (1996) with their own observations of rotation mea-
sures of extragalactic sources. Since they do not find the slope
expected from the Kolmogorov power law in the structure func-
tion of the rotation measure they observe, they conclude that the
outer scale of the Kolmogorov-type turbulence is smaller than
the smallest scale probed by their RM observations. They fit
model structure functions for the variations of the thermal elec-
tron density and the magnetic field to their own observations of
RM, as well as observations of Hα intensity and Hα velocity per-
formed by Reynolds (1980), while also taking into account the
results of Armstrong et al. (1995) on smaller scales. This proce-
dure leads to an estimate of the angular scale corresponding to
the outer scale of the turbulence in the region of their observa-
tions of ϑ(out) . 0.1◦. Although the outer scale of the turbulence
may well vary across the Galaxy, it is probably safe to assume
that the scales larger than one degree that are mainly probed by
the observations used in this work, are not dominated by three-
dimensional turbulence. Whether or not the simple power law
behavior of the angular power spectrum in Eq. (13) points to
some sort of interaction between the fluctuations on different
scales is at the moment an open question.

In any case it is clear that the simplifying assumptions made
in the thought experiments presented above are far from the truth
in the Galactic setting. A more realistic study will likely have to
involve numerical magneto-hydrodynamical simulations of the
interstellar medium, which have become more and more sophis-
ticated over the last years (see e.g. de Avillez & Breitschwerdt
2007; Kissmann et al. 2008; Burkhart et al. 2009; Tofflemire
et al. 2011). Cross-checking the angular power spectrum of the
Faraday depth that is predicted by such a simulation against
Eq. (13) might be a good indicator of how realistic the sim-
ulation actually is. For this, an empiric variance profile would
have to be calculated from the simulated observations to create
a dimensionless signal field comparable to our reconstruction.
Numerical studies will also be able to show whether the simple
power law that we find for the angular power spectrum is a func-
tional form that arises generically or an outcome that needs cer-
tain ingredients. This may then enable a physical interpretation
of the angular power spectrum that we find. On the other hand,
if simulations show that different physical processes are needed
to create the fluctuation power on different angular scales, our
result will directly constrain the relative strength of these pro-
cesses.

5. Conclusions

We have presented a map of the Galactic Faraday depth that
summarizes the current state of knowledge, along with its un-
certainty. For the map reconstruction we have used the extended
critical filter, a state-of-the-art algorithm, yielding a result that is
robust against individual faulty measurements. It is this robust-
ness, along with the usage of the most complete data set on the
Faraday rotation of extragalactic sources to date, and the high
resolution that we are therefore able to reach, that make our map
an improvement over existing studies. Along with the map, the
reconstruction algorithm yields the angular power spectrum of
the underlying signal field, C` ∝ `−2.17, which is in agreement
with earlier work. We have discussed the implications of this
power spectrum for the statistics of the 3D quantities involved in
a greatly simplified scenario and suggested future work on simu-
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lations with the possibility of checking predicted angular power
spectra against our observational result.

All products of this work, i.e. the maps and their uncertain-
ties, as well as the angular power spectrum, are made available to
the community8 for further analysis, interpretation, and for use
in other work where the Galactic Faraday depth plays a role.
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