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ABSTRACT

We investigate the impact of statistical and systematic errors on measurements of
linear redshift-space distortions (RSD) in future cosmological surveys, analysing large
catalogues of dark-matter halos from the BASICC simulation. These allow us to es-
timate the dependence of errors on typical survey properties, as volume, galaxy den-
sity and mass (i.e. bias factor) of the adopted tracer. We find that measures of the
specific growth rate β = f/b using the Hamilton/Kaiser harmonic expansion of the
redshift-space correlation function ξ(rp, π) on scales larger than 3 h−1 Mpc are typi-
cally under-estimated by up to 10% for galaxy sized halos. This is significantly larger
than the corresponding statistical errors, which amount to a few percent, indicating
the importance of non-linear improvements to the Kaiser model, to obtain accurate
measurements of the growth rate. The systematic error shows a diminishing trend with
increasing bias value (i.e. mass) of the halos considered. We compare the amplitude
and trends of statistical errors as a function of survey parameters to predictions ob-
tained with the Fisher information matrix technique. This is what is usually adopted
to produce RSD forecasts, based on the FKP prescription for the errors on the power
spectrum. We show that this produces parameter errors fairly similar to the standard
deviations from the halo catalogues, provided it is applied to strictly linear scales in
Fourier space (k < 0.2 h Mpc−1). Finally, we combine our measurements to define and
calibrate an accurate scaling formula for the relative error on β as a function of the
same parameters, which closely matches the simulation results in all explored regimes.
This provides a handy and plausibly more realistic alternative to the Fisher matrix
approach, to quickly and accurately predict statistical errors on RSD expected from
future surveys.
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1 INTRODUCTION

Galaxy clustering as measured in redshift-space contains the
imprint of the linear growth rate of structure f(z), in the
form of a measurable large-scale anisotropy (Kaiser 1987).
This is produced by the coherent peculiar velocity flows
towards overdensities, which add an angle-dependent con-
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tribution to the measured redshift. In linear theory, these
redshift-space distortions (RSD) in the clustering pattern
can be quantified in terms of the ratio β(z) = f(z)/b(z)
(where b is the linear bias of the sample of galaxies con-
sidered). A value for β can be obtained by modeling the
anisotropy of the redshift-space two-point correlation func-
tion ξ(rp, π) (where rp and π are the separations perpendic-
ular and parallel to the line of sight) or, equivalently, of the
power spectrum (see Hamilton (1998) for a review). Since
b can be defined as the ratio of the rms galaxy clustering
amplitude to that of the underlying matter, b ≈ σgal

8 /σmass
8 ,

the measured product β×σgal
8 is equivalent to the predicted

combination f(z) × σmass
8 (z) (Song & Percival 2009). The

latter is a prediction depending on the gravity theory, once
normalized to the amplitude of matter fluctuations at the
given epoch, e.g. using CMB measurements.

Measurements of the growth rate f(z) are crucial to
pinpoint the origin of cosmic acceleration, distinguishing
whether it requires the addition of “dark energy” in
the cosmic budget, or rather a modification of General
Relativity. These two radically alternative scenarios are
degenerate when considering the expansion rate H(z)
alone, as yielded, e.g., by the Hubble diagram of Type Ia
supernova (e.g. Riess et al. 1998; Perlmutter et al. 1999)
or Baryonic Acoustic Oscillations (BAO, e.g Percival et al.
2010). Although the RSD effect is well known since long, its
important potential in the context of dark energy studies
has been fully appreciated only recently (Guzzo et al.
2008; Zhang et al. 2008). This led to a true renaissance
of the interest in this technique (Wang 2008; Linder
2008; Nesseris & Perivolaropoulos 2008; Acquaviva et al.
2008; Song & Percival 2009; White, Song, & Percival
2009; Percival & White 2009; Cabré & Gaztañaga 2009;
Blake et al. 2011), such that RSD have quickly become one
of the most promising probes for future large dark energy
surveys. This is the case of the recently approved ESA
Euclid mission (Laureijs et al. 2011), which is expected
to reach statistical errors of a few percent on measure-
ments of f(z) in several redshift bins out to z = 2 using
this technique (coupled to similar precisions with the
complementary weak-lensing experiment).

In general, forecasts of the statistical precision reachable
by future projects on the measurements of different cosmo-
logical parameters have been produced through widespread
application of the so-called Fisher information matrix tech-
nique (Tegmark 1997). This has also been done specifically
for RSD estimates of the growth rate and related quantities
(Wang 2008; Linder 2008; White, Song, & Percival 2009;
Percival & White 2009). One limitation of these forecasts
is that they necessarily imply some idealized assumptions
(as e.g. on the Gaussian nature of errors) and have not been
verified, in general, against systematic numerical tests. This
is not easily doable in general, given the large size of planned
surveys. A first attempt to produce general forecasts based
on numerical experiments was presented by Guzzo et al.
(2008), who used mock surveys built from the Millennium
simulation to numerically estimate the random and system-
atic errors affecting their measurement of the growth rate
from the VIMOS VLT Deep Survey. Using a grid of refer-
ence survey configurations, they calibrated an approximated
scaling relation for the relative error on β as a function of
survey volume and mean density. The range of parameters

explored in this case was however limited, and one specific
class of galaxies only (i.e. bias) was analyzed.

The second crucial aspect to be taken into consideration
when evaluating Fisher matrix predictions, is that they only
consider statistical errors and cannot say anything about the
importance of systematic effects, i.e. on the accuracy of the
expected estimates. This is clearly a key issue for projects
aiming at percent or sub-percent precisions, for which sys-
tematic errors will be the dominant source of uncertainty.

In fact, a number of works in recent years sug-
gest that the standard linear Kaiser description
of RSD is not sufficiently accurate on quasi-linear
scales (≈ 5 − 50 h−1Mpc) where it is routinely ap-
plied (Scoccimarro 2004; Tinker, Weinberg, & Zheng
2006; Taruya, Nishimichi, & Saito 2010;
Jennings, Baugh, & Pascoli 2011). Various non-linear
corrections are proposed in these papers, the difficulty
often being their practical implementation in the anal-
ysis of real data, in particular in configuration space
(de la Torre & Guzzo 2012). One may hope that in the
future, with surveys covering much larger volumes, it will
be possible to limit the analysis to very large scales, where
the simple linear description should be adequate. Still,
ongoing surveys like Wigglez (Blake et al. 2011), BOSS
(Eisenstein et al. 2011) and VIPERS (Guzzo et al., in
preparation), will still need to rely on the clustering signal
at intermediate scales to model RSD.

Here, we shall address in a more systematic and ex-
tended way the impact of random and systematic errors on
growth rate measurements using RSD in future surveys. We
shall compare the results directly to Fisher matrix predic-
tions, thoroughly exploring the dependence of statistical er-
rors on the survey parameters, including also, in addition
to volume and density, the bias parameter of the galaxies
used. This is also relevant, as one could wonder which kind
of objects would be best suited to measure RSD in a future
project. These will include using halos of different mass (i.e.
bias), up to those traced by groups and clusters of galaxies.
Potentially, using groups and clusters to measure RSD could
be particularly interesting in view of massive galaxy redshift
surveys as that expected from Euclid (Laureijs et al. 2011),
which can be used to build large catalogues of optically-
selected clusters with measured redshifts. A similar oppor-
tunity will be offered by future X-ray surveys, as that ex-
pected from the E-Rosita mission (Cappelluti et al. 2011),
although in that case mean cluster redshifts will have to be
measured first.

This paper is complementary to the parallel work of
Marulli et al. (2012), where we investigate the impact on
RDS of redshift errors and explore how to disentangle ge-
ometrical distortions introduced by the uncertainty of the
underlying geometry of the Universe – i.e. the Alcock-
Paczynski effect (Alcock & Paczynski 1979) – on measure-
ments of RSD. Also, while we were completing our work,
independent important contributions in the same direction
appeared in the literature by Okumura & Jing (2011) and
Kwan, Lewis, & Linder (2011).

The paper is organized as follows. In § 2 we describe
the simulations used and the mass-selected subsamples we
defined; in § 3 we discuss the technical tools used to esti-
mate and model the two-point correlation function in red-
shift space, ξ(rp, π), and to estimate the intrinsic values of
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bias and distortion to be used as reference; in § 4 we present
the measured ξ(rp, π) and show the resulting statistical and
systematic errors on β, as a function of the halo bias; here we
discuss in detail how well objects related to high-bias halos,
as groups and clusters, can be used to measure RSD; in § 5
we organise all our results into a compact analytic formula
as a function of galaxy density, bias and survey volume; we
then directly compare these results to the predictions of a
Fisher matrix code; finally we summarize our results in § 6.

2 SIMULATED DATA AND ERROR

ESTIMATION

2.1 Halo catalogues from the BASICC

simulations

The core of this study is based on the high-resolution
Baryonic Acoustic-oscillation Simulations at the Institute
for Computational Cosmology (BASICC) of Angulo et al.
(2008), which used 14483 particles of mass 5.49 ×
1010 h−1 M⊙ to follow the growth of structure in dark mat-
ter in a periodic box of side 1340 h−1Mpc. The simulation
volume was chosen to allow for growth of fluctuations to
be modelled accurately on a wide range of scales includ-
ing those of BAO. The very large volume of the box also
allows us to extract accurate measurements of the cluster-
ing of massive halos. The mass resolution of the simula-
tion is high enough to resolve halos that should host the
galaxies expected to be seen in forthcoming high-redhift
galaxy surveys (as e.g. Luminous Red Galaxies in the case
of SDSS-III BOSS). The cosmological parameters adopted
are broadly consistent with recent data from the cosmic mi-
crowave background and the power spectrum of galaxy clus-
tering (Sánchez et al. 2006): the matter density parameter
is ΩM = 0.25, the cosmological constant density parame-
ter ΩΛ = 0.75, the normalization of density fluctuations,
expressed in terms of their linear amplitude in spheres of
radius 8h−1Mpc at the present day σ8 = 0.9, the pri-
mordial spectral index ns = 1, the dark energy equa-
tion of state w = −1, and the reduced Hubble constant
h = H0/(100 kms−1 Mpc−1) = 0.73. We note the high value
of normalization of the power spectrum σ8, with respect to
more recent WMAP estimates. This has no effect on the
results discussed here (but see Angulo & White (2010) for
a method to scale self-consistently the output of a simula-
tion to a different background cosmology). Outputs of the
particle positions and velocities are stored from the simu-
lations at selected redshifts. Dark matter halos are identi-
fied using a Friends-of-Friends (FOF) percolation algorithm
(Davis et al. 1985) with a linking length of 0.2 times the
mean particle separation. In this paper, only groups with al
least Npart = 20 particles are considered (i.e only halos with
mass Mhalo > 1.10 × 1012 h−1 M⊙).

We use the complete catalogue of halos of the simulation
at z = 1, from which we select sub-samples with different
mass thresholds (i.e. number of particles). This corresponds
to samples with different bias values. Table 1 reports the
main features of these catalogues. In the following we shall
refer to a given catalogue by its threshold mass Mcut (i.e.
the mass of the least massive halo belonging to that cata-
logue). We also use the complete dark matter sample (here-

Ncut Mcut [h−1 M⊙] Ntot n [h3 Mpc−3]

20 1.10× 1012 7483318 3.11× 10−3

30 1.65× 1012 4897539 2.04× 10−3

45 2.47× 1012 3158088 1.31× 10−3

63 3.46× 1012 2164960 9.00× 10−4

91 5.00× 1012 1411957 5.87× 10−4

136 7.47× 1012 866034 3.60× 10−4

182 9.99× 1012 597371 2.48× 10−4

236 1.30× 1013 423511 1.76× 10−4

310 1.70× 1013 290155 1.21× 10−4

364 2.00× 1013 230401 9.58× 10−5

455 2.50× 1013 165267 6.87× 10−5

546 3.00× 1013 124497 5.17× 10−5

Table 1. Properties of the halo catalogues used in the analysis.
Ncut is the threshold value of Npart, e.g. the catalogue Ncut = 20
is the set of groups (i.e. halos) with at least 20 DM particles; Mcut

is the corresponding threshold mass; Ntot is the total number of
halos (i.e. the number of halos with Mhalo > Mcut); n is the
number density (i.e. n = Ntot/V , where V = 13403 h−3Mpc3 is
the simulation volume).

after DM), including more than 3× 109 particles1. For each
catalogue, we split the whole (cubical) box of the simulation
into N3

split sub-cubes (Nsplit = 3 unless otherwise stated).
Each sub-cube ideally represents a different realization of
the same portion of the Universe, so that we are able to
estimate the expected precision on a quantity of cosmologi-
cal interest through its scatter among the sub-cubes. Using
Nsplit = 3 is a compromise between having a better statis-
tics from a larger number of sub-samples (at the price of not
sampling some very large scales), and covering scales even
larger (with Nsplit = 2, but with no statistics.

This analysis concentrates at z = 1, because this is cen-
tral to the range of redshifts that will become more and
more explored by surveys of the next generation. This in-
cludes galaxies, but also surveys of clusters of galaxies, as
those that should be possible with the eRosita satellite, pos-
sibly due to launch in 2013. Exploring the expectations from
RSD studies using high-bias objects, corresponding e.g. to
groups of galaxies, is one of the main themes of this paper.

2.2 Simulating redshift-space observations

For our measurements we need to simulate redshift-space
observations. In other words, we have to “observe” the sim-
ulations as if the only information about the distance of an
object was given by its redshift. For this purpose we center

1 Such a number of points involves very long computational times
when calculating, e.g., a two-point correlation function. To over-
come this problem, we often use a sparsely sampled sub-set of the
DM catalogue. In order to limit the impact of shot-noise, we nev-
ertheless always keep the DM samples denser than the least dense
halo catalogue (i.e. Mcut = 1.10× 1012 h−1 M⊙). We verified di-
rectly on a sub-set that our results do not effectively depend on
the level of DM dilution.

© 0000 RAS, MNRAS 000, 1–19



4 D. Bianchi, et al.

the sample (i.e. one of the sub-cubes) at a distance given by

D1 = D(z = 1) =

∫ z=1

0

c

H(z′)
dz′

=

∫ z=1

0

c

H0

√

ΩM + ΩΛ(1 + z′)3
dz′ , (1)

where the last equality holds for the flat ΛCDM cosmology
of the simulation. More explicitly, we transform the positions
(Xi, Yi, Zi) of an object in a sub-cube of side L, into new
comoving coordinates

− L

2
6 Xi 6

L

2
,

D1 −
L

2
6 Yi 6 D1 +

L

2
, (2)

−L

2
6 Zi 6

L

2
,

where we arbitrarily choose the direction of the Y axis
for the translation (Z represents a coordinate, not to
be confused with the redshift z). This procedure assigns
to each object a comoving distance in real space Di =
√

X2
i + Y 2

i + Z2
i , hence, inverting Eq. (1), a cosmological

(undistorted) redshift zi. We then add the Doppler contri-
bution to obtain the “observed” redshift, as

ẑi = zi +
vr
c
(1 + zi) , (3)

where vr is the line-of-sight peculiar velocity. Using ẑi in-
stead of zi to compute the comoving distance of an object
gives its redshift-space coordinate. Finally, in order to elim-
inate the blurring effect introduced at the borders of the
cube, we trim a slice of 10 h−1Mpc from all sides, a value
about three times larger than typical pairwise velocity dis-
persion.

3 MEASURING REDSHIFT-SPACE

DISTORTIONS

3.1 Modelling linear and non-linear distortions

In a fundamental paper, Kaiser (1987) showed that, in the
linear regime, the redshift-space modification of the observed
clustering pattern due to coherent infall velocities takes a
simple form in Fourier space:

PS(k, µk) = (1 + βµ2
k)

2
PR(k) , (4)

where P is the power spectrum (subscripts R and S de-
note respectively quantities in real and redshift space), µk

is the cosine of the angle between the line of sight and the
wave vector ~k and β = f/b is the distortion factor, where
f = d logG

d log a
and G is the linear growth factor of density

perturbations. Hamilton (1992) translated this result into
configuration space (i.e. in terms of correlation function, ξ):

ξ
(L)
S (rp, π) = ξ0(r)P0(µ) + ξ2(r)P2(µ) + ξ4(r)P4(µ) , (5)

where rp and π are the separations perpendicular and par-
allel to the line of sight, µ is the cosine of the angle between
the separation vector and the line of sight µ = cos θ = π/r,

Pi are Legendre Polynomials and ξi are the multipole mo-
ments of ξ(rp, π), which can be expressed as

ξ0(r) =

(

1 +
2

3
β +

1

5
β2

)

ξ(r) (6)

ξ2(r) =

(

4

3
β +

4

7
β2

)

[ξ(r)− ξ̄(r)] (7)

ξ4(r) =
8

35
β2

[

ξ(r) +
5

2
ξ̄(r)− 7

2
¯̄ξ(r)

]

, (8)

where

ξ̄ =
3

r3

∫ r

0

ξ(t)t2dt (9)

¯̄ξ =
5

r5

∫ r

0

ξ(t)t4dt . (10)

The superscript L reminds us that Eq. (5) holds only in
linear regime. A full model, accounting for both linear and
non-linear motions, is obtained empirically, through a con-
volution with the distribution function of random pairwise
velocities along the line of sight ϕ(v):

ξS(rp, π) =

∫ +∞

−∞

ξ
(L)
S

[

rp, π − v(1 + z)

H(z)

]

ϕ(v)dv , (11)

where z is the redshift and H(z) is the Hubble function
(Davis & Peebles 1983; Fisher et al. 1994; Peacock 1999).
We represent ϕ(v) by an exponential form, consistent
with observations and N-body simulations (e.g. Zurek et al.
1994),

ϕ(v) =
1

σ12

√
2
e
−

√
2|v|
σ12 , (12)

where σ12 is a pairwise velocity dipersion. We note in pass-
ing that the use of a Gaussian form for ϕ(v) is in some cases
to be preferred, as e.g. when large redshift measurement er-
rors affects the catalogues to be analyzed. This is discussed
in detail in Marulli et al. (2012) Hereafter we shall refer to
Eq. (5) and Eq. (11) as the linear and linear-exponential
model, respectively. Moreover, in order to simplify the nota-
tions, we shall refer to the real- and redshift-space correla-
tion functions just as ξ(r) and ξ(rp, π) respectively, removing
the subscripts R and S.

3.2 Fitting the redshift-space correlation function

We can estimate β (and σ12, for the linear-exponential
model) through this modelling, by minimizing the follow-
ing χ2 function over a spatial grid:

χ2 = −2 lnL =
∑

i,j

(y
(m)
ij − yij)

2

δ2ij
, (13)

where we have defined the quantity

yij = log[1 + ξ(rpi, πj)] . (14)

Here the superscript m indicates the model and δ2ij repre-
sents the variance of yij . The use of log(1 + ξ) in Eq. (14)
has the advantage of placing more weight on large (linear)
scales (Hawkins et al. 2003). However, unlike Hawkins et al.
(2003), we simply use the sample variance of yij to esti-
mate δij (as in Guzzo et al. 2008). We show in Appendix
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Figure 1. Left: the real-space correlation functions of the halo catalogues, compared to that of the dark-matter particles in the BASICC
simulation. Right: the ratio of ξhalo(r) and ξDM (r) for each catalogue, with the resulting best-fit linear bias b2t = ξhalo(r)/ξDM (r) =
const, fitted over the range 10 < r < 50h−1 Mpc. Error bars correspond to the standard deviation (of the mean) over 27 sub-cubes.

A that this definition provides more stable estimates of β
also in the low-density regime. The correlation functions
are measured using the minimum variance estimator of
Landy & Szalay (1993). We tested different estimators, such
as Davis & Peebles (1983), Hewett (1982) and Hamilton
(1993), finding that our measurements are virtually insensi-
tive to the estimator choice, at least for r . 50 h−1 Mpc. For
the linear-exponential model, we perform a two-parameter
fit, including the velocity dispersion, σ12, as a free param-
eter. However, being our interest here focused on measure-
ments of the growth rate (through β), σ12 is treated merely

as an extra parameter to (potentially) account for deviations
from linear theory2.

Finally, in performing the fit we have neglected an im-
portant aspect, but for good reasons. In principle, we should
consider that the bins of the correlation function are not
independent. As such, Eq. (13) should be modified as to
include also the contribution of non-diagonal terms in the

2 See, for instance, Scoccimarro (2004) for a detailed discussion
about the physical meaning of σ12.
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Figure 2. The expected the bias factor, expressed as b2 =
ξhalo(r)/ξDM (r), plotted over a wider range of separations than
in the previous figure. Dashed lines are obtained by fitting a
constant bias model over the range denoted by the grey area,
10 < r < 50h−1 Mpc. Error bars give the standard deviation of
the mean over the 27 sub-cubes.

covariance matrix, i.e. (in matrix form)

− 2 lnL =
(

Y
(m) −Y

)T

C
−1

(

Y
(m) −Y

)

, (15)

where Y and Y(m) are two (column) vectors containing all
data and model values respectively (with dimension N2

b ,
where Nb is the number of bins in one dimension used to
estimate ξ(rp, π)), whereas C is the covariance matrix, with
dimension N2

b ×N2
b .

This is routinely used when fitting 1D correlation func-
tions (e.g. Fisher et al. 1994), but it becomes arduous in
the case of the full ξ(rp, π), for which Nb ≈ 100 and the
covariance matrix has as a consequence ≈ 108 elements.
What happens in practice, is that the estimated functions
are over- sampled, so that the effective number of degrees of
freedom in the data is smaller than the number of compo-
nents in the covariance matrix, which is then singular. Still,
a test with as many as 100 block-wise boostrap realizations
(de la Torre & Guzzo 2012) yields a very unsatisfactory co-
variance matrix. We tested on a smaller-size ξ(rp, π) the
actual effect of assuming negligible off-diagonall elements in
the covariance matrix, obtaining a difference of a few per-
cent in the measured value of β. Part of this insensitivity is
certainly related to the very large volumes of the mock sam-
ples, with respect to the scales involved in the parameter
estimations. This corroborates our forced choice of ignoring
covariances in the present work, also because of the compu-
tational time involved in inverting such large matrices, size
multiplied by the huge number of estimates needed for the
present work.

3.3 Reference distortion parameters and bias

values of the simulated samples

Before measuring the amplitude of redshift distortions in the
various samples described above, we need to establish the
reference values to which our measurements will be com-
pared, in order to identify systematic effects. Specifically,

we need to determine with the highest possible accuracy
the intrinsic “true” value of β for all mass-selected sam-
ples in the simulation. This can be obtained from the rela-
tion (Peebles 1980; Fry 1985; Lightman & Schechter 1990;
Wang & Steinhardt 1998)

β(z) =
Ω0.55

M (z)

b(z)
, (16)

where, f(z) = Ω0.55
M (z) is the growth rate of fluctuations at

the given redshift3. For the flat cosmology of the simulation
ΩM (z) is

ΩM (z) =
(1 + z)3ΩM0

(1 + z)3ΩM0 + (1−ΩM0)
. (17)

The linear bias can be estimated as

b2 =
ξhalo(r)

ξDM (r)
. (18)

Here ξhalo and ξDM have to be evaluated at large sepa-
rations, r & 10h−1 Mpc, where the linear approximation
holds. In the following we shall adopt the notation bt and
βt for the values thus obtained. To recover the bias and
its error for each Mcut listed in Table 1 we split each cu-
bic catalogue of halos into 27 sub-cubes. Figure 1 shows
the measured two-point correlation functions and the cor-
responding bias values for the various sub-samples. These
are computed at different separations r, as the average over
27 sub-cubes, with error bars corresponding to the standard
deviation of the mean. Dashed lines give the corresponding
value of b2t , obtained by fitting a constant over the range
10 < r < 50 h−1 Mpc. In most cases, the bias functions
show a similar scale dependence, but the fluctuations are
compatible with scale-independence within the error bars
(in particular for halo masses Mcut 6 1.70× 1013 h−1 M⊙).
For completeness, in Figure 2 we show that this remains
valid on larger scales (r & 50 h−1 Mpc, whereas on small
scales (r . 10 h−1 Mpc), a significant scale-dependence is
present. The linear bias assumption is therefore acceptable
for r & 10h−1 Mpc.

In a realistic scenario, β is measured from a redshift
survey. Then the growth rate is recovered as f = bβ.
Unfortunately in a real survey it is not possible to esti-
mate b through Eq. (18) as we described above (and as
it is done for dark matter simulations) since the real ob-
servable is the two-point correlation function of galaxies,
whereas ξDM cannot be directly observed. A possible so-
lution is to assume a model for the dependence of the
bias on the mass. Using groups/clusters in this context
may be convenient as their total (DM) mass can be esti-
mated from the X-ray emission temperature or luminosity.
We compare our directly measured b with those calculated
from two popular models: Sheth, Mo, & Tormen (2001) and
Tinker et al. (2010) (hereafter SMT01 and T+10), in Fig-
ure 3. Details on how we compute bSMT01 and bT+10 are re-
ported in the parallel paper by Marulli et al. (2012). We see
that for small/intermediate masses our measurements are
in good agreement with T+10, whereas for larger masses,

3 In this section we adopt the notation ΩM = ΩM (z) and ΩM0 =
ΩM (z = 0), not to be confused with the notation ΩM = ΩM (z =
0) adopted elsewhere in this work.
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Figure 3. Comparison of the bias values measured from the simu-
lated catalogues as a function of their threshold mass, Mcut, with
the predictions of the SMT01 and T+10 models. The top axis also
reports the number of particles per halo, Ncut, corresponding to
the catalogue threshold mass.

Mcut & 2 × 1013 h−1 M⊙, SMT01 yields a more reliable
prediction of the bias.

4 SYSTEMATIC ERRORS IN

MEASUREMENTS OF THE GROWTH RATE

4.1 Fitting the linear-exponential model

As in the previous section, we split each of the 12 mass-
selected halo catalogues of Table 1 into 27 sub-cubes. Then
we compute the redshift-space correlation function ξ(rp, π)
for each of them. Figure 4 gives an example of three cases
of different mass. Following the procedure described in Sec-
tion 3.2, we obtain an estimate of the distortion parame-
ter β. The 27 values of β are then used to estimate the
mean value and standard deviation of β as a function of
the mass threshold (i.e. bias). The fit becomes unstable for
Mcut > 3× 1013 h−1 M⊙, very plausibly due to the increas-
ing sparseness of the samples and the reduced amplitude
of the distortion (since β ∝ 1/b). Figure 4 explicitly shows
these two effects: when the mass grows (top to bottom pan-
els) the shot-noise, which depends on the number density,
increases, whereas the compression along the line of sight
decreases, since it depends on the amplitude of β. For this
reason, in this work we consider only catalogues below this
mass threshold, as listed in Table 1.

Figure 5 summarizes our results. The plot shows the
mean values of β for each mass sample, together with their
confidence intervals (obtained from the scatter of the sub-
cubes), compared to the expected values of the simulation
βt (also plotted with their uncertainties, due to the error
on the measured bias bt, Section 3.3). These have been ob-
tained using the linear-exponential model, Eq. (11), which
represents the standard approach in previous works, fitting
over the range 3 < rp < 35 h−1Mpc, 0 < π < 35h−1Mpc
with linear bins of 0.5 h−1Mpc. We also remark that here
the model is built using the “true” ξ(r) measured directly
in real-space, which is not directly observable in the case of
real data. This is done as to clearly separate the limitations

Ncut = 20;   Mcut = 1.10 ×1012 h-1 Msun;   bt = 1.44
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Ncut = 182;   Mcut = 9.99 ×1012 h-1 Msun;   bt = 2.32
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Ncut = 546;   Mcut = 3.00 ×1013 h-1 Msun;   bt = 3.18
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Figure 4. ξ(rp, π) for the catalogues with Mcut = 1.10 ×
1012 h−1 M⊙ (upper panel), Mcut = 9.99× 1012 h−1 M⊙ (cen-
tral panel) and Mcut = 3.00 × 1013 h−1 M⊙ (lower panel). Iso-
correlation contours of the data are shown in cyan, whereas the
best fit model corresponds to the black curves. Note that the color
scale and contour levels differ in the three panels. The latter are
arbitrarily set to {0.07, 0.13, 0.35, 1, 4, 8}, {0.15, 0.3, 0.7, 2.8,
6, 12} and {0.25, 0.5, 1.3, 5, 10, 15} respectively from top to
bottom. When the mass grows, the distortion parameter β (i.e.
the compression of the pattern along the line of sight) decreases,
whereas the correlation and the shot-noise increase.
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Figure 5. The mean values of β averaged over 27 sub-cubes, as measured in each mass sample (open circles) estimated using the
“standard” linear-exponential model of Eq. (11). The dark- and light-green bands give respectively the 1σ and 3σ confidence intervals
around the mean. The measured values are compared to the expected values βt, computed using Eqs. (16-18). We also give the 1σ and
3σ theoretical uncertainty around βt, due to the uncertainty in the bias estimate ( brown and red bands, respectively).

depending on the linear assumption, from those introduced
by a limited recontruction of the underlying real-space cor-
relation function. In Appendix B we shall therefore discuss
separately the effects of deriving ξ(r) directly from the ob-
servations.

Despite the apparently very good fits (Fig. 4), we find a
systematic discrepancy between the measured and the true
value of β. The systematic error is maximum (≈ 10%) for
low-bias (i.e. low mass) halos and tends to decrease for larger
values (note that here with “low bias” we indicate galaxy-
sized halos with M ≈ 1012 h−1 M⊙). In particular for Mcut

between 7× 1012 and ≈ 1013 h−1 M⊙ the expectation value
of the measurement is very close to the true value βt.

It is interesting, and somewhat surprising, that, al-
though massive halos are intrinsically sparser (and hence
disfavoured from a statistical point of view), the scatter of
β (i.e. the width of the green error corridor in Figure 5) does
not increase in absolute terms, showing little dependence on
the halo mass. Since the value of β is decreasing, however,
the relative error does have a dependence on the bias, as we
shall better discuss in § 5.

4.2 Is a pure Kaiser model preferable for

cluster-sized halos?

Groups and clusters would seem to be natural candidates
to trace large-scale motions based on a purely linear de-

scription, since they essentially trace very large scales and
most non-linear velocities are confined within their struc-
ture. Using clusters as test particles (i.e. ignoring their in-
ternal degrees of freedom) we are probing mostly linear, co-
herent motions. It makes sense therefore to repeat our mea-
surements using the linear model alone, without exponential
damping correction. The results are shown in Figure 6. The
relative error (lower panel) obtained in this case is in gen-
eral smaller than when the exponential damping is included.
Both models yield similar systematic error (central panel),
except for the small mass range where the exponential cor-
rection clearly has a beneficial effect. In the following we
briefly summarize how relative and systematic errors com-
bine. To do this we consider three different mass ranges ar-
bitrarily choosen.

(i) Small masses (Mcut . 5× 1012 h−1M⊙)
This range corresponds to halos hosting single L∗ galaxies.
Here the linear exponential model, which gives a smaller
systematic error, is still not able to recover the expected
value of β. However, any consideration about these “galactic
halos” may not be fully realistic since our halo catalogues
are lacking in sub-structure (see Section 4.4).

(ii) Intermediate masses

(5 × 1012 . Mcut . 2 × 1013 h−1 M⊙)
This range corresponds to halos hosting very massive galax-
ies and groups. The systematic error is small compared to

© 0000 RAS, MNRAS 000, 1–19
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Figure 6. Comparison of the performances of the linear and linear-exponential models. Upper panel: measurements of β from the
different halo catalogues, obtained wth the linear model of Eq. (5) (squares) and the linear-exponential model of Eq. (11) (trianglesl).
Mean values and errors are computed as in Fig. 5 from the 27 sub-cubes of each catalogue. We also plot the expected values of β from
the simulation, βt = f/bt (i.e. β “true”) and from the models of Fig. 3, βT+10 = f/bT+10 and βSMT01 = f/bSMT01. Central panel:
relative systematic error. Lower panel: relative statistical error.

that of the other mass ranges, for both models. This means
that we are free to use the linear model, which always gives
a smaller statistical error (lower panel), without having to
worry too much about its systematic error, which in any
case is not larger than that of the more complex model. In
particular, we notice that using the simple linear model in
this mass range, the statistical error on β is comparable to

that obtained with a galaxy-mass sample using the more
phenomenological linear-exponential model. This may be a
reason for preferring the use of this mass range for measuring
β.

(iii) Large masses (Mcut & 2× 1013 h−1M⊙)
This range corresponds to halos hosting what we may de-
scribe as large groups or small clusters. The random error
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increases rapidly with mass (Figure 6, lower panel), regard-
less of the model, due to the reduction of the distortion
signal (β ∝ 1/b) and to the decreasing number density.

4.3 Origin of the systematic errors

The results of the previous two sections are not fully
unexpected. It has been evidenced in a number of recent
papers that the standard linear Kaiser description of
RSD, Eq. (4), is not sufficiently accurate on the quasi-
linear scales (≈ 5 ÷ 50 h−1 Mpc) where it is normally
applied (Scoccimarro 2004; Tinker, Weinberg, & Zheng
2006; Taruya, Nishimichi, & Saito 2010;
Jennings, Baugh, & Pascoli 2011; Okumura & Jing 2011;
Kwan, Lewis, & Linder 2011). This involves not only the
linear model, but also what we called the linear-exponential
model. Since the pioneering work of Davis & Peebles (1983)
the exponential factor is meant to include the small-scale
non-linear motions, but this is in fact empirical and
only partially compensates for the inaccurate non-linear
description. The systematic error we quantified with our
simulations is thus most plausibly interpreted as due to the
inadequacy of this model on such scales. Various improved
non-linear corrections are proposed in the quoted papers,
although their performance in the case of real galaxies
still requires further refinement (e.g. de la Torre & Guzzo
2012). On the other hand, considering larger and larger
(i.e. more linear) scales, one would expect to converge
to the Kaiser limit. In this regime, however, other diffi-
culties emerge, as specifically the low clustering signal,
the need to model the BAO peak and the wide-angle
effects (Samushia, Percival, & Raccanelli 2011). We have
explored this, although not in a systematic way. We find no
indication for a positive trend in the sense of a reduction
of the systematic error when increasing the minimum scale
rmin included in the fit, at least for rmin = 20 h−1 Mpc.
Systematic errors remain present, while the statistical error
increases dramatically. The situation improves only in a
relative sense, because statistical error bars become larger
than the systematic error. This is seen in more detail in the
parallel work by de la Torre & Guzzo (2012). Finally, it is
interesting to remark the indication that systematic errors
can be reduced by using the Kaiser model on objects that
are intrinsically more suitable for a fully linear description.

4.4 Role of sub-structure: analysis of the

Millennium mocks

In the simulated catalogues we use here, sub-structures in-
side halos, i.e. sub-halos, are not resolved, due to the use of
a single linking length when running the Friends-of-Friends
algorithm (Section 2.1). As such, the catalogues do not in
fact riproduce correctly the small-scale dynamics observed
in real surveys. Although we expect that our fit (limited to
scales rp > 3 h−1 Mpc) is not directly sensitive to what hap-
pens on the small scales where cluster dynamics dominate,
we have decided to perform here a simple direct check of
whether these limitations might play a role on the results
obtained. Essentially, we want to understand if the absence
of sub-structure could be responsible for the enhanced sys-
tematic error we found for the low-mass halos.

To this end, we further analysed 100 Millennium mock
surveys. These are obtained by combining the output of
the pure dark-matter Millennium run (Springel et al. 2005)
with the Munich semi-analytic model of galaxy formation
(De Lucia & Blaizot 2007). The Millennium Run is a large
dark matter N-body simulation which traces the hierarchi-
cal evolution of 21603 particles between z = 127 and z = 0
in a cubic volume of 5003 h−3 Mpc3, using the same cosmol-
ogy of the BASICC simulation (ΩM , ΩΛ, Ωb, h, n, σ8) =
(0.25, 0.75, 0.045, 0.73, 1, 0.9). The mass resolution,
8.6 × 108 h−1M⊙ allows one to resolve halos containing
galaxies with a luminosity of 0.1L∗ with a minimum of 100
particles. Details are given in Springel et al. (2005). The one
hundred mocks reproduce the geometry of the VVDS-Wide
“F22” survey analysed in Guzzo et al. (2008) (except for
the fact that we use complete samples, i.e. with no angular
selection function), covering 2 × 2 deg2 and 0.7 < z < 1.3.
Clearly, these samples are significantly smaller than the halo
catalogues built from the BASICC simulations, yet they de-
scribe galaxies in a more realistic way and allow us to study
what happens on small scales. The combination of the two
sets of simulations should hopefully provide us with enough
information to disentangle real effects from artifacts.

Performing the same kind of analysis applied to the BA-
SICC halo catalogues, we find a comparable systematic er-
ror, corresponding to an under-estimate of β by 10%. We
recover β = 0.577 ± 0.018, against an expected value of
βt = 0.636 ± 0.006, suggesting that our main conclusions
are substantially unaffected by the limited description of
sub-halos in the BASICC samples. Another potential source
of systematic errors in the larger simulations could be res-
olution: the dynamics of the smaller halos could be unreal-
istic simply because they contain too few dark-matter par-
ticles. Our results from the Millennium mocks and those
of Okumura & Jing (2011), which explicitly tested for such
effects, seem however to exclude this possibility.

5 FORECASTING STATISTICAL ERRORS IN

FUTURE SURVEYS

A galaxy redshift survey can be essentially characterized by
its volume V and the number density, n, and bias factor,
b, of the galaxy population it includes (besides more spe-
cific effects due to sample geometry or selection criteria).
The precision in determining β depends on these parame-
ters. Using mock samples from the Millennium run similar
to those used here, Guzzo et al. (2008) calibrated a simple
scaling relation for the relative error on β, for a sample with
b = 1.3:

δ(β)

β
≈ 50

n0.44V 0.5
, (19)

While a general agreement has been found com-
paring this relation to Fisher matrix predictions
(White, Song, & Percival 2009), this formula was strictly
valid for the limited density and volume ranges origi-
nally covered in that work. For example, the power-law
dependence on the density cannot realistically be ex-
tended to arbitrarily high densities, as also pointed out
by Simpson & Peacock (2010). In this section we present
the results of a more systematic investigation, exploring in
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Figure 7. Dependence of the relative error of β on the bias and number density of the catalogues in Table 2, overplotted on the surface
described by the scaling formula of Eq. (20). While the left panel is intended to give an overall view, the right panel is expressly oriented
to show that the formula is an excellent description of the data.
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Figure 8. Relative error on β as a function of volume, bias and number density. The dependence on volume is explored by dividing the
sample into N3

split
sub-samples, with Nsplit = 3, 4, 5, 6. As in all of this section, in modelling the measured ξ(rp, π) through Eq. (11) we

use the deprojected ξ(r) (with πmax = 25 h−1Mpc), as to represent a condition as close as possible to real observations. The superimposed
grid is described by the scaling formula of Eq. (20). Left panel: δ(β)/βt as a function of volume and bias, considering three different
threshold masses (i.e. biases), but randomly diluting the catalogues as to keep a constant number density, n = 2.48× 10−4 h3 Mpc−3 in
all cases (see Table 2, empty circles). Right panel: δ(β)/βt as a function of the volume, V , and the number density, n. Here we consider
a single threshold mass, Mcut = 1.10× 1012 h−1 M⊙, corresponding to a constant bias, b = 1.44.
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n× 105 [h3 Mpc−3]
311 204 131 90.0 58.7 36.0 24.8 17.6 12.1 9.58 6.87

1.10× 1012 ◦ • • ◦ • • ◦ • • • • 1.44
1.65× 1012 • • • • • • • • • • 1.54
2.47× 1012 • • • • • • • • • 1.67
3.46× 1012 • • • ◦ • • • • 1.80
5.00× 1012 • • • • • • • 1.95

Mcut [h−1 M⊙] 7.47× 1012 • • • • • • 2.15 b
9.99× 1012 ◦ • • • • 2.32
1.30× 1013 • • • • 2.49
1.70× 1013 • • • 2.69
2.00× 1013 • • 2.81
2.50× 1013 • 3.01

Table 2. Properties of the diluted sub-samples constructed to test the dependence of the error of β on bias and mean density. Each
entry in the table is uniquely defined by a pair (Mcut, n); moving along rows or columns the samples keep a fixed bias (mass threshold)
or density, respectively. Bias values are explicitly reported at the right-hand side of the table. The diagonal coincides with the full (i.e.
non-diluted) samples. Empty circles indicate catalogues which have been used also to test the dependence on the volume: they have been
split into N3

split
sub-samples for Nsplit = 3, 4, 5, 6, whereas all other catalogues (filled circles) use Nsplit = 3 only for the sake of building

statistical quantities.

more detail the scaling of errors when varying the survey
parameters. This will include also the dependence on
the bias factor of the galaxy population. In general, this
approach is expected to provide a description of the error
budget which is superior to a Fisher matrix analysis, as it
does not make any specific assumption on the nature of the
errors. All model fits presented in the following sections
are performed using the real-space correlation function
ξ(r) recovered from the “observed” ξ(rp, π). This is done
through the projection/de-projection procedure described
in Appendix B (with πmax = 25 h−1Mpc), which as we
show increases the statistical error by a factor around 2.
The goal here is clearly to be as close as possible to the
analysis of a real data set.

5.1 An improved scaling formula

In doing this exercise, a specific problem is that, as shown
in Table 1, catalogues with larger mass (i.e. higher bias) are
also less dense. Our aim is to separate the dependence of the
errors on these two variables. To do so, once a population of
a given bias is defined by choosing a given mass threshold,
we construct a series of diluted samples obtained by ran-
domly removing objects. The process is repeated down to a
minimum density of 6.87 × 10−5 h3 Mpc−3, at which shot
noise dominates and for the least massive halos the recov-
ered β is consistent with zero. In this way, we obtain a series
of sub-samples of varying density for fixed bias, as reported
in Table 2. The full samples are the same used to build, e.g.,
Figure 5.

In Figure 7 we plot the relative errors on β measured
from each catalogue of Table 2, as a function of the bias
factor and the galaxy number density. These 3D plots are
meant to provide an overview of the global behavior of the
errors; a more detailed description is provided in Figures 9-
10, where 2D sections along n and b are reported. For all
the samples considered, the volume is held fixed.

As shown by the figure, the bias dependence is weak
and approximately described by δ(β)/β ∝ b0.7, i.e. the error
is slightly larger for higher-bias objects. This indicates that
the gain of a stronger clustering signal is more than cancelled

by the reduction of the distortion signal, when higher bias
objects are considered. This is however fully true only for
samples which are not too sparse intrinsically. We see in fact
that at extremely low densities, the relationship is inverted,
with high-bias objects becoming favoured. At the same time,
there is a clear general flattening of the dependence of the
error on the mean density n. The relation is not a simple
power-law, but becomes constant at high values of n. In
comparison, over the density range considered here, the old
scaling formula of Guzzo et al. would overestimate the error
significantly. This behaviour is easily interpreted as showing
the transition from a shot-noise dominated regime at low
densities to a cosmic-variance dominated one, in which there
is no gain in further increasing the sampling. Such behaviour
is clear for low-mass halos (i.e. low bias) but is much weaker
for more massive, intrinsically rare objects.

We can now try to model an improved empirical relation
to reproduce quantitatively these observed dependences. Let
us first consider the general trend, δ(β)/β ∝ b0.7, which de-
scribes well the trend of δ(β)/β in the cosmic variance domi-
nated region (i.e. at high density). In Figure 7 such a power-
law is represented by a plane. We then need a function capa-
ble to warp the plane in the low density region, where the rel-
ative error becomes shot-noise dominated. The best choice
seems to be an exponential: δ(β)/β ∝ b0.7 exp(n0/n), where,
by construction, n0 roughly corresponds to the threshold
density above which cosmic variance dominates. Finally, we
need to add an exponential dependence on the bias so that at
low density the relative error decreases with b, such that the
full expression becomes δ(β)/β ∝ b0.7 exp[n0/(b

2n)]. The
grid shown in Figure 7 represents the result of a direct fit of
this functional form to the data, showing that it is indeed
well suited to describe the overall behaviour. In the right
panel we have oriented the axes as to highlight the goodness
of the fit: the rms of the residual between model and data
is ≈ 0.015, which is an order of magnitude smaller than the
smallest measured values of δ(β)/β. This gives our equation
the predictive power we were looking for: if we use it to pro-
duce forecasts of the precision of β for a given survey, we
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Figure 9. The relative error on β as a function of the mean number density of the sample, predicted with the Fisher matrix approach
(solid and dotted lines) and measured from the simulated samples (filled circles; colours coded as in previous figures). The solid and
dotted lines correspond to using respectively kmax = 0.2 h Mpc−1 or kmax = 1 h textMpc−1 (with Lorentzian damping) in the Fisher
forecasts. The dashed lines show in addition the behaviour of the scaling formula obtained from the simulation results (Eq. (20)). This
is also compared, in the top-left panel, to the old simplified fitting formula for b = 1.3 galaxies of Eq. (19).

shall commit a negligible error4 (. 20%) on δ(β)/β (at least
for values of bias and volume within the ranges tested here).
To fully complete the relation, we only need to add the de-
pendence on the volume, which is in principle the easiest.
To this end, we split the whole simulation cube into N3

split

sub-cubes, with Nsplit = 3, 4, 5, 6. By applying this proce-
dure to 5 samples with different bias and number density
(see Table 2) we make sure that our results do not depend
on the particular choice of bias and density. Figure 8 shows
that δ(β)/β ∝ V −0.5 independently of n and b, confirming
the dependence found by Guzzo et al. (2008). We can thus
finally write the full scaling formula for the relative error of
β we were seeking for

δ(β)/β ≈ Cb0.7V −0.5 exp

(

n0

b2n

)

, (20)

where n0 = 1.7 × 10−4 h3 Mpc−3 and C = 4.9 ×
102 h−1.5 Mpc1.5.

5.2 Comparison to Fisher matrix predictions

The Fisher information matrix provides a method for
determining the sensitivity of a particular experiment to a
set of parameters and has been widely used in cosmology.

4 This estimate is obtained by comparing the smallest measured
error, δ(β)/β ≈ 0.07 (Figure 9), with the rms of the residuals,
≈ 0.015.

In particular, Tegmark (1997) introduced an implementa-
tion of the Fisher matrix aimed at forecasting errors on
cosmological parameters derived from the galaxy power
spectrum P (k), based on its expected observational uncer-
tainty, as described by Feldman, Kaiser, & Peacock (1994,
FKP). This was adapted by Seo & Eisenstein (2003) to
the measurements of distances using the baryonic acoustic
oscillations in P (k). Following the renewed interest in RSD,
over the past few years the Fisher matrix technique has
also been applied to predict the errors expected on β,
f and related parameters (e.g Linder 2008; Wang 2008;
Percival & White 2009; White, Song, & Percival 2009;
Simpson & Peacock 2010; Wang et al. 2010; Samushia et al.
2011; Bueno Belloso, Garćıa-Bellido, & Sapone 2011;
di Porto, Amendola, & Branchini 2012). The extensive
simulations performed here provides us with a natural op-
portunity to perform a first simple and direct test of these
predictions. Given the number of details that enter in the
Fisher matrix implementation, this cannot be considered as
exhaustive. Yet, a number of interesting indications emerge,
as we shall see.

We have computed Fisher matrices for all catalogues
in Table 2, using a code following White, Song, & Percival
(2009). In particular, our Fisher matrix predicts errors on β
and b , given the errors on the linear redshift space power
spectrum modeled as in Eq. (4) (Kaiser 1987). We first limit
the computations to linear scales, applying the standard cut-
off k < kmax = 0.2 h Mpc−1. We also explore the possibility
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Figure 10. The relative error on β as a function of the effective bias factor, predicted by the Fisher matrix (solid and dotted lines) and
measured from the simulated samples (filled circles; colours coded as in previous figures). The solid and dotted lines correspond to using
respectively kmax = 0.2 h textMpc−1 or kmax = 1 h Mpc−1 (with Lorentzian damping) in the Fisher forecasts. The dashed lines show
in addition the behaviour of the scaling formula obtained from the simulation results (Eq. (20)).

of including wavenumbers as large as k = π/3 ∼ 1 h Mpc−1

(that should better match the typical scales we fit in the
correlation functions from the simulations), accounting for
non-linearity through a conventional small-scale Lorentzian
damping term. Our fiducial cosmology corresponds to that
used in the simulation, i.e. ΩM = 0.25, ΩΛ = 0.75, H0 = 0.73
and σ8 = 0.9 today. We also choose σ12 = 200 km s−1

as reference value for the pairwise dispersion. We do not
consider geometric distortions (Alcock & Paczynski 1979),
whose impact on RSD is addressed in the parallel paper by
Marulli et al. (2012). To obtain the Fisher predictions on
β, we marginalize over the bias, to account for the uncer-
tainty on its precise value, and on the pairwise velocity in
the damping term (when present).

Figure 9 shows the measured relative errors on β as a
function of the number density, compared to the Fisher fore-
casts for the two choices of kmax. We also plot the scaling
relation from Eq. (20), which best represents the simulation
results. We see that the simulation results are in in fairly
good agreement with the Fisher predictions, when we limit
the computation to very linear scales in the power spectrum
(solid line). The inclusion of higher wavenumbers produces
unrealistically small errors and with a wrong dependence
on the number density. Both the solid lines and points re-

produce the observed flattening at high number densities,
which corresponds to the transition between a shot-noise
and a cosmic-variance dominated regime, respectively.

Similarly, Figure 10 looks at the dependence of the er-
ror on the linear bias parameter, comparing the simulation
results (points and scaling formula best-fit) to the Fisher
forecasts. The behaviour is similar to that observed for the
number density: there is a a failry good agreement when the
Fisher predictions are computed using kmax = 0.2 h Mpc−1,
except for very low values of the number density and the
bias. Again, when non-linear scales are included, the Fisher
predictions become too optimistic by a large factor.

6 SUMMARY AND DISCUSSION

We have performed an extensive investigation of statisti-
cal and systematic errors in measurements of the redshift-
distortion parameter β from future surveys. We have con-
sidered tracers of the large-scale distribution of mass with
varying levels of bias, corresponding to objects like galax-
ies, groups and clusters. To this purpose, we have analyzed
large catalogues of dark-matter halos extracted from a snap-
shot of the BASICC simulation at z = 1. Our results clearly
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evidence the limitations of the linear description of redshift-
space distortions, showing how errors depend on the typi-
cal survey properties (volume and number density) and the
properties of the tracers (bias, i.e. typical mass). Let us re-
cap them and discuss their main implications.

• Estimating β using the Hamilton/Kaiser harmonic ex-
pansion of the redshift-space correlation function ξ(rp, π)
extended to typical scales, leads to a systematic error of up
to 10%. This is much larger than the statistical error of a
few percent reachable by next-generation surveys. The larger
systematic error is found for small bias objects, and de-
creases reaching a minimum for halos of 1013 h−1 M⊙. This
reinforces the trend observed by Okumura & Jing (2011).

• Additional analysis of mock surveys from the Millen-
nium run confirm that the observed systematic errors are
not the result of potentially missing sub-structure in the
BASICC halo catalogues.

• The use of the deprojected correlation function in-
creases the statistical error, inducing also some additional
systematic effects (details are given in Appendix B and also
in the companion paper by Marulli et al. (2012)).

• For highly biased objects, which are sparser and whose
surveys typically cover larger, more linear scales, the simple
Kaiser model describes fairly well the simulated data, with-
out the need of the empirical damping term with one extra
parameter accounting for non-linear motions. This results in
smaller statistical errors.

• We have derived a comprehensive scaling formula,
Eq. (20), to predict the precision (i.e. relative statistical er-
ror) reachable on β as a function of survey parameters. This
expression improves on a previous attempt (Guzzo et al.
2008), generalizing the prediction to a population of arbi-
trary bias and properly describing the dependence on the
number density.

This formula can be useful to produce quite general and
reliable forecasts for future surveys5. One should in any case
consider that there are a few implementation-specific factors
that can modify the absolute values of the recovered rms er-
rors. For example, these would depend on the range of scales
over which ξ(rp, π) is fitted. The values obtained here refer
to fits performed between rmin = 3 and rmax = 35 h−1 Mpc.
This has been identified through several experiments as an
optimal range to minimize statistical and systematic errors
for surveys this size (Bianchi 2010). Theoretically, one may
find natural to push rmax, or both rmin and rmax to larger
scales, as to (supposedly) reduce the weight of nonlinear
scales. In practice, however, in both cases we see that ran-
dom errors increase in amplitude (while the systematic error
is not appreciably reduced).

Similarly, one should also keep in mind that the formula
is strictly valid for z = 1, i.e. the redshift where it has been
calibrated. There is no obvious reason to expect the scaling
laws among the different quantities (density, volume, bias)
to depend significantly on the redshift. This is confirmed
by a few preliminary measurements we performed on halo
catalogues from the z = 0.25 snapshot of the BASICC. Con-

5 For example, it has recently been used, in combination with
a Fisher matrix analysis, to predict errors on the growth rate
expected by the ESA Euclid spectroscopic survey [cf. Fig.2.5 of
Laureijs et al. (2011)]

versely, the magnitude of the errors may change, as shown,
e.g., in de la Torre & Guzzo (2012). We expect these effects
to be described by a simple renormalization of the constant
C.

Finally, one may also consider that the standard devia-
tions measured using the 27 sub-cubes could be underes-
timated, if these are not fully independent. We minimize
this by maximizing the size of each sub-cube, while hav-
ing enough of them as to build a meaningful statistics. The
side of each of the 27 sub-cubes used is in fact close to
500 h−1 Mpc, benefiting of the large size of the BASICC
simulation.

• We have compared the error estimations from our sim-
ulations with idealized predictions based on the Fisher ma-
trix approach, customarily implemented in Fourier space.
We find a good agreement, but only when the Fisher compu-
tation is limited to significantly large scales, i.e. k < kmax =
0.2 h Mpc−1. When more non-linear scales are included (as
an attempt to roughly match those actually involved in the
fitting of ξ(rp, π) in configuration space), then the predic-
tions become unrealistically small. This indicates that the
usual convention of adopting kmax ∼ 0.2 h Mpc−1 for these
kind of studies is well posed. On the other hand, it seems
paradoxical that in this way with the two methods we are
looking at different ranges of scales. The critical point clearly
lies in the idealized nature of the Fisher matrix technique.
When moving up with kmax and thus adding more and more
nonlinear scales, the Fisher technique simply accumulates
signal and dramatically improves the predicted error, clearly
unaware of the additional “noise” introduced by the break-
down of linearity. On the other hand, if in the direct fit of
ξ(rp, π) (or P (k, µ)) one conversely considers a correspond-
ing very linear range r > 2π/kmax ∼ 30 h−1 Mpc, a poor fit
is obtained, with much larger statistical errors than shown,
e.g., in Fig. 5. There is no doubt that smaller, mildly non-
linear scales at intermediate separations have necessarily to
be included in the modelling if one aims at reaching per-
cent statistical errors on measurements of β (or f). If one
does this in the Fisher matrix, then the predicted errors are
too small. The need to push our estimates to scales which
are not fully linear will remain true even with surveys of
the next generation, including tens of millions of galaxies
over Gpc volumes, because that is where the clustering and
distortion signals are (and will still be) the strongest. Of
course, our parallel results on the amount of systematic er-
rors that plague estimates based on the standard dispersion
model also reinforce the evidence that better modelling of
nonlinear effects is needed on these scales. The strong effort
being spent in this direction gives some confidence that sig-
nificant technical progress will happen in the coming years
(see e.g. Kwan, Lewis, & Linder 2011; de la Torre & Guzzo
2012, and references therein).

In any case, this limited exploration suggests once more
that forecasts based on the Fisher matrix approach, while
giving useful guidelines evidence the error dependences, have
to be treated with significant caution and possibly verified
with more direct methods. Similar tension between Fisher
and Monte Carlo forecasts has been recently noticed by
Hawken et al. (2012).

• Finally, in Appendix A we have also clarified which is
the most unbiased form to be adopted for the likelihood
when fitting models to the observed redshift-space correla-
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tion function, proposing a slightly different form with re-
spect to previous works.

With redshift-space distortions having emerged as
probe of primary interest in current and future dark-energy-
oriented galaxy surveys, the results presented here further
stress the need for improved descriptions of non-linear ef-
fects in clustering and dynamical analyses. On the other
hand, they also indicate the importance of building surveys
for which multiple tracers of RSD (with different bias val-
ues) can be identified and used in combination to help un-
derstanding and minimizing systematic errors.
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Cabré A., Gaztañaga E., 2009, MNRAS, 393, 1183
Cappelluti N., et al., 2011, MSAIS, 17, 159
Davis M., Peebles P. J. E., 1983, ApJ, 267, 465
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985,
ApJ, 292, 371

de la Torre S., Guzzo L., 2012, arXiv, arXiv:1202.5559
De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
di Porto C., Amendola L., Branchini E., 2012, MNRAS,
419, 985

Eisenstein D. J., et al., 2011, AJ, 142, 72
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426,
23

Fisher K. B., Davis M., Strauss M. A., Yahil A., Huchra
J., 1994, MNRAS, 266, 50

Fisher K. B., Davis M., Strauss M. A., Yahil A., Huchra
J. P., 1994, MNRAS, 267, 927

Fry J. N., 1985, PhLB, 158, 211
Guzzo L., et al., 2008, Nature, 451, 541
Hamilton A. J. S., 1992, ApJ, 385, L5
Hamilton A. J. S., 1993, ApJ, 417, 19
Hamilton A. J. S., 1998, ASSL, 231, 185

Hawken, A.J., Abdalla, F.B., Hütsi, G., Lahav, O., 2012,
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Figure A1. Mean value (top) and relative scatter (bottom) of
β, as recovered from catalogues with varying density (but same
volume and bias), using the two different definitions of the vari-
ance of each data point of Eqs. A3 (open blue squares) and A4
(open red circles). The dashed line shows as reference the asymp-
totic common value of β that both methods identically recover
at high densities. Note how using eq. A4 yields an unbiased
estimate down to significantly smaller densities, whereas the esti-
mator based on Eq. (A3) becomes rapidly more and more biased
below n ≈ 5× 10−4 h3 Mpc−3. The intrinsic scatter of the mea-
surements, as usual obtained from the 27 sub-cubes of this specific
catalogue, also follows a similar trend.

the corresponding parameterized models. Our likelihood is
simply given by the standard χ2 expression

− 2 lnL =
∑

i,j

(y
(m)
ij − yij)

2

δ2ij
, (A1)

where however the stochastic variable considered is not just
the value of ξ(rp, π) at each separation (rp, π) = (ri, rj), but
the expression

yij = log[1 + ξ(ri, rj)] , (A2)

which has the desirable property of placing more weight
on large, more linear scales. This was first proposed by
Hawkins et al. (2003), who correspondingly adopt the fol-
lowing expression for the expectation value of the variance

δ2ij = {log[1 + ξij + δ(ξij)]− log[1 + ξij − δ(ξij)]}2 . (A3)

This simply maps onto the new variables yij , the interval
including 68% of the distribution in the original variables
ξij , i.e. twice the standard deviation if this were Gaussian
distributed. Strictly speaking, here an extra factor 1/2 would
be formally required if one aims at defining the equivalent of
a standard deviation, but this is in the end uneffective in the
minimization and thus in finding the best-fitting parameters.

However, the weighting factors 1/δij in the likelihood
definition depend explicitly on ξij , which may result in an
improper weighting of the data when the correlation signal
fluctuates near zero. We have directly verified that when the
estimate is noisy, it is preferable to use a smooth weighting
scheme rather than one that is sensitive to local random
oscillations of ξ, which is more likely to yield biased es-
timates. This supported our choice of adopting the usual

sample-variance expression

δ2ij =
1

N

∑

k

(

y
(k)
ij − 〈yij〉

)2

, (A4)

estimated over N realizations of the survey. This can be
done using mock realizations (Guzzo et al. 2008), or, alter-
natively, through appropriate jack-knife or booststrap re-
samplings of the data. Specifically, we find a significant
advantage of the weighting scheme based on sample vari-
ance when dealing with low-density samples. This is shown
in Figure A1, where β is estimated on the catalogue with
Mcut = 1.10 × 1012 h−1 M⊙ using the two likelihoods and
gradually diluting the sample (note that all computations
in this section use the linear-exponential model, with ξ(r)
directly measured in real-space).

In order to understand the reasons behind this be-
haviour, we have studied independently the various terms
composing the likelihood. We use one single sub-cube (i.e.
1/27 of the total volume), from the catalogue with Mcut =
1.10 × 1012 h−1 M⊙, and consider two extreme values of
the mean density. First, we consider the case of the high-
est density achievable by this halo catalogue, n = 3.11 ×
10−3 h3 Mpc−3. In the upper panel of Figure A2 we plot a
section of ξ(rp, π) at constant π = 9.75 h−1 Mpc, together
with the model ξm(rp, π) corresponding to the best-fit β and
σ12 parameters. In this density regime the values of the re-
covered best-fit parameters are essentially independent of
the form chosen for δ2ij (as shown by the coincident val-
ues of β on the right side of Figure A1). The match of the
model to the data is very good. In the central panel, we
plot instead, for each bin i along rp, the absolute value of
the difference between model and observation, (|y − ym|)i,
together with the corresponding standard deviations in the
two cases, which are virtually indistinguishable from each
other. Finally, the lower panel shows the full values of the
terms contributing to the χ2 sum, again showing the equiv-
alence of the two choices in this density regime.

However, when we sparsely sample the catalogue, as to
reach a mean density of n = 9.58× 10−5 h3 Mpc−3 (leaving
all other parameters unchanged), a very different behaviour
emerges (Figure A3)6. Using the Hawkins et al. definition
for the variance yields a best-fit model that overestimates
the data on almost all scales (top panel), corresponding to
unphysical values of β = 2.33 and σ12 = 2112 km s−1. The
central panel now shows how in this regime the two defini-
tions of the scatter, (which weigh the data-model difference),
behave in a significantly different way, with the Hawkins et
al. definition being much less stable than the one used here,
and in general anti-correlated with the values of ξ(rp, π) in
the upper panel. In the lower panel, the dashed line shows
how this anti-correlation smooths down the (|y−ym|)i peaks
resulting in erroneously low values for the χ2 that drive the
fit to a wrong region of the parameter space. In the same
panel, the solid line shows how the likelihood computed with
our definition for these same parameters gives high χ2 val-
ues, thus correctly rejecting the model7.

6 In Figure A1 (upper panel, second blue square from the left)
we show the same behaviour when averaged over 27 sub-samples.
7 For rp = 4.75 h−1 Mpc (and π = 9.75h−1 Mpc) we find 1+ξ−
δ(ξ) < 0. Consequently, δHawkins is not well defined (Figure A3,
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Figure A2. Comparison of the performances of the two likeli-
hood forms discussed in the text in the high-density regime, using
the fully sampled population of halos from a single sub-cube (1/27
of the volume) with Mcut = 1.10×1012 h−1 M⊙. Top panel: cut-
through ξ(rp, π) at fixed π = 9.75h−1 Mpc (broken line), and
corresponding best fit model ξm(rp, π) using the Hawkins et al.
form for the scatter of each data point (continuous line). Central

panel: residual values |yij − y
(m)
ij | between the data and model

values (light grey line) and values for the scatter of each point,
according to the two definitions of Eqs. A4 (solid red line) and
A3 (dashed blue line). Bottom panel: corresponding terms in the
χ2 sum (see Eq. (A1)). The two definitions for the scatter, as
expected, produce virtually identical values for the likelihood.

APPENDIX B: ADDITIONAL SYSTEMATIC

EFFECT WHEN USING THE DEPROJECTED

CORRELATION FUNCTION

In a real survey, the direct measurement of ξ(r) is not pos-
sible. A way around this obstacle is to project ξ(rp, π) along
the line of sight, i.e. along the direction affected by redshift
distortions. We hence define the projected correlation func-
tion as

wp(rp) = 2

∫

∞

0

ξ(rp, π)dπ = 2

∫

∞

rp

r′ξ(r′)dr′
√

r′2 − r2p
. (B1)

Inverting the integral we recover ξ(r). More precisely, fol-
lowing Saunders, Rowan-Robinson, & Lawrence (1992), we
have

ξ(r) =
1

π

∫

∞

r

dwp(rp)/drp
√

r2p − r2
drp , (B2)

central panel) resulting in a zero weight for the corresponding χ2

summand (lower panel).
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Figure A3. Same as Figure A2, but now in the low-density
regime (n = 9.58 × 10−5 h3 Mpc−3). Again, the model curve in
the top panel corresponds to the best-fit parameters obtained
using the Hawkins et al. form of the scatter of each measurements.
The fit is very unsatisfactory. The bottom panel shows how the
likelihood expression based instead on the standard deviation of
y as from Eq. (A4) rejects these parameter values, giving high χ2

values (red solid curve). Note the different scale on the ordinate,
with respect to previous figure.

where π is the usual mathematical constant, not to be con-
fused with the line-of-sight separation π in Eq. (B1).

A more extended investigation of the effects arising
when using the deprojected ξ(r) instead of that directly
measured (hereafter ξdep and ξdir respectively) is carried
out in Marulli et al. (2012). Here we limit the discussion
to the impact of the deprojection technique on the esti-
mate of β, as a function of the mass (i.e. the bias) of the
adopted tracers, focussing on the systematic effects (Figure
B1). One possible source of systematic error in performing
the de-projection is the necessity of defining a finite inte-
gration limit πmax in Eq. (B2). In Figure B1 two differ-
ent choices of πmax are considered. We notice that these
choices (purple inverted triangles and yellow rhombs) result
in different slopes of β as a function of bias, which differ
from the slope obtained using ξdir (green triangles). This
is plausibly due to the fact that using a limiting πmax we
are underestimating the integral (consider that ξ > 0 for
π . 100 h−1Mpc). This effect grows when the bias increases,
because of the corresponding growth of ξ which leads to a
larger “loss of power” in wp. However, we cannot use ar-
bitrarily large values of πmax because the statistical error
increases for larger πmax (see lowest panel of Figure B1).
This may be due to the increase of the shot noise at large
separations. Similarly, the drop of correlation signal at small
separations due to the finite size of the dark matter halos
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Figure B1. The effect of using the de-projected real-space cor-
relation function in the RSD model. Upper panel: values of β
obtained when the real-space correlation function ξ(r) is directly
measured from the simulation (triangles) or deprojected as in real
surveys (rhombs and inverted triangles). The latter correspond to
two different integration limits πmax in the projection. The two
lower panels give ths systematic and statistical error as in Fig-
ure 6.

produces an impact on β which grows with bias. Finally, as
suggested previously (Guzzo et al. 2008) and discussed ex-
tensively in Marulli et al. (2012), Figure B1 shows how us-
ing ξdep in modelling RSD, produces a statistical error about
twice as large as that obtained using ξdir (lower panel).

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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