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Flavor stability of a realistic accretion-phase supernova neutrino flux
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Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor depen-
dent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of
a 15M� spherically symmetric model and corresponding neutrino fluxes. We use realistic energy
and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting
for both multi-angle and multi-energy effects. For our matter and neutrino density profile we always
find stable conditions: flavor conversions are limited to the usual MSW effect. In this case one may
distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle Θ13 is as large
as suggested by recent experiments.
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Introduction.—The huge neutrino fluxes emitted by
core-collapse supernovae (SNe) are key to the explosion
dynamics and nucleosynthesis [1] and detecting a high-
statistics “neutrino light curve” from the next nearby
SN is a major goal for neutrino astronomy [2–4]. Besides
probing the core-collapse phenomenon in unprecedented
detail, one may detect signatures of flavor oscillations and
extract information on neutrino mixing parameters [5].

The refractive effect caused by matter [6] suppresses
flavor oscillations until neutrinos pass through the MSW
region in the collapsing star’s envelope [7, 8]. How-
ever, neutrino-neutrino interactions, through a flavor off-
diagonal refractive index [9, 10], can trigger self-induced
flavor conversions [11–13]. This collective effect usually
occurs between the neutrino sphere and the MSW re-
gion and can strongly modify neutrino spectra [14–16],
although this would never seem to help explode the star
[17]. Actually, in low-mass SNe (not studied here) the
density falls off so fast that MSW can occur first, leading
to novel effects on the prompt νe burst [18–20].

Collective oscillations at first seemed unaffected by
matter because its influence does not depend on neu-
trino energies [14]. However, depending on emission
angle, neutrinos accrue different matter-induced flavor-
dependent phases until they reach a given radius. This
“multi-angle matter effect” can suppress self-induced fla-
vor conversion [21]. Based on schematic flux spectra, this
was numerically confirmed for accretion-phase SN models
where the density near the core is large [22]. This epoch,
before the delayed explosion finally takes off, is when the
neutrino luminosity and the difference between the ν̄e
and ν̄µ,τ fluxes are largest. If self-induced flavor conver-
sion did not occur and the mixing angle Θ13 was not very
small [23], the accretion phase would provide a plausible
opportunity to determine the mass hierarchy [5, 22].

Numerical multi-angle simulations of collective oscilla-
tions are very demanding [24], but it is much easier to
study if such oscillations are suppressed for given density

profile and neutrino distributions. Self-induced conver-
sion requires that part of the spectrum is prepared in one
flavor, the rest in another. The collective mode consists of
pendulum-like flavor exchange between these parts with-
out changing the overall flavor content [11, 25–27]. The
inevitable starting point is a flavor instability of the neu-
trino distribution caused by neutrino-neutrino refraction.
An exponentially growing mode can be detected with a
linearized analysis of the evolution equations [13, 28]. We
here apply this method to a numerical accretion-phase
SN model, for the first time using both realistic neutrino
energy spectra and angular distributions.

Numerical SN model.—Our spherically symmetric sim-
ulation to produce an accretion-phase SN model was
performed with the Prometheus-Vertex code as in
Ref. [29], using now a 15M� progenitor [30]. The trans-
port module of the code computes the energy and angle
distributions of ν and ν̄ of all flavors by a tangent-ray
discretization of the Boltzmann transport equation [33].
We used 21 nearly geometrically spaced energy bins up to
380 MeV and 672 tangent rays for the discussed model.
We do not artificially trigger an explosion because our
interest is limited to the accretion phase, but otherwise
our model is comparable to Ref. [22]. We use several
snapshots and illustrate our findings with one taken at
280 ms post bounce. The flux spectra (Fig. 1) show a νe
excess from deleptonization and a ν̄e flux almost twice
that of νx (representing any of νµ,τ or ν̄µ,τ ) and average
νe, ν̄e and νx energies of 15.3, 18.1, and 16.9 MeV.

We study neutrino propagation in the free-streaming
limit, so we can describe the angular distribution by the
angle ϑR relative to the radial direction at a chosen inner-
boundary radius R. Actually it is more convenient to use
u = sin2 ϑR = (1 − cos2 ϑr) r

2/R2, which is uniformly
distributed on 0 ≤ u ≤ 1 if emission is isotropic at a
“neutrino sphere” with radius R [21, 28]. We choose
R = 44.7 km and show the corresponding u distribution
in Fig. 1. Isotropic emission from a neutrino sphere is
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FIG. 1: Flux spectra for our 280 ms SN model. The angle
variable 0 ≤ u ≤ 1 is based on R = 44.7 km.

not a good description because neutrinos emerge from a
thick layer. The ν̄e and νx intensities are similar in the
radial direction: the excess ν̄e flux largely arises from
its broader angular distribution (larger emission region).
Flavor oscillations depend on the difference of the e and
x distributions, which is small in the radial direction
(Fig. 1). The angular distributions do not cross, although
in principle there could have been a forward νx excess.

In the context of neutrino oscillations, ω = ∆m2/2E
is a preferred energy variable, where ∆m2 = (50 meV)2

is the “atmospheric” neutrino mass-squared difference
relevant for 1–3 oscillations studied here. Moreover,
treating anti-neutrinos formally as negative-energy neu-
trinos with negative occupation numbers vastly simpli-
fies the formalism. Flavor oscillations can exchange νe
with νx, leaving the overall neutrino flux unchanged, so
only Fνe −Fνx matters. Our sign convention means that
for anti-neutrinos we then use Fν̄x − Fν̄e , corresponding
to the flavor isospin convention [14]. The neutrino flux
difference distribution g(ω, u) thus defined is shown in
Fig. 2. It is negative for anti-neutrinos (ω < 0) because
Fν̄e > Fν̄x . For ω ∼ 0.2 km−1 there is a spectral crossing
as a function of u, i.e. for large E the νx flux does exceed
the νe flux in the forward direction.

Self-induced oscillations exchange the positive and neg-
ative parts of g(ω, u), leaving fixed the overall flavor con-
tent ε = (Fνe − Fνx)/(Fν̄e − Fνx) − 1 =

∫
dω du g(ω, u).

Our g(ω, u) is mostly negative for anti-neutrinos and

FIG. 2: Distribution g(ω, u) describing the neutrino fluxes.

mostly positive for neutrinos, so collective oscillations
largely correspond to pair conversions νeν̄e ↔ νxν̄x.
Accretion-phase distributions are “single crossed” in this
sense, i.e. g(ω, u) changes sign essentially only on the line
ω = 0, because of the large excess of the νe and ν̄e fluxes.
Significant multiple crossings are typical for the cooling
phase [15].
Equations of motion (EoM).—We describe three-flavor

neutrino propagation by energy- and angle-dependent
3×3 matrices ΦE,u(r). Sans-serif letters denote matri-
ces in flavor space. The diagonal ΦE,u elements are
the ordinary number fluxes FαE,u (flavor α) integrated
over a sphere of radius r. Negative E and negative
number fluxes for anti-neutrinos. The off-diagonal el-
ements, which are initially zero, represent phase infor-
mation caused by flavor oscillations. The flavor evo-
lution is then provided by the “Schrödinger equation”
i∂rΦE,u = [HE,u,ΦE,u] with the Hamiltonian [21]

HE,u =
1

vu

(
M2

2E
+
√

2GFN`

)
(1)

+

√
2GF

4πr2

∫ +∞

−∞
dE′

∫ 1

0

du′
1− vuvu′

vuvu′
ΦE′,u′ .

The matrix M2 of neutrino mass-squares causes vacuum
flavor oscillations and that of net charged lepton densi-
ties N` = diag(ne−nē, nµ−nµ̄, nτ−nτ̄ ) adds the Wolfen-
stein matter effect. The third term provides neutrino-
neutrino refraction and is analogous to matter except for
Pantaleone’s off-diagonal elements and except that in the
SN context neutrinos are not isotropic. A neutrino ra-
dial velocity at radius r is vu = (1 − uR2/r2)1/2. The
factor 1 − vuvu′ arises from the current-current nature
of the weak interaction and causes multi-angle effects.
Moreover, vu appears in the denominator because we fol-
low the flavor evolution projected on the radial direction,
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causing the multi-angle matter effect [21].
Up to the MSW region, the matter effect is so large

that ΦE,u is very nearly diagonal in the weak-interaction
basis, the usual approximation made in SN neutrino
transport. Neutrinos remain stuck in flavor eigenstates
unless the off-diagonal ΦE,u elements start growing by
the self-induced instability. To find the latter we linearize
the EoM in the small off-diagonal amplitudes.

Stability condition.—We study the instability driven
by the atmospheric ∆m2 and the mixing angle Θ13 � 1,
we work in the two-flavor limit, and switch to the ω =
∆m2/2E variable. We write the flux matrices in the form

Φω,u =
Tr Φω,u

2
+
F eω,u − F xω,u

2

(
sω,u Sω,u
S∗ω,u −sω,u

)
, (2)

where F e,xω,u are the flavor fluxes at the inner boundary
radius R. The flux summed over all flavors, Tr Φω,u, is
conserved in our free-streaming limit. The νe survival
probability is 1

2 [1 + sω,u(r)] in terms of the “swap fac-
tor” −1 ≤ sω,u(r) ≤ 1. The off-diagonal element Sω,u is
complex and s2

ω,u + |Sω,u|2 = 1.
The small-amplitude limit means |Sω,u| � 1 and to

linear order sω,u = 1. Assuming in addition a large dis-
tance from the source so that 1 − vr � 1, the evolution
equation linearized in Sω,u and in u is [28]

i∂rSω,u = [ω + u(λ+ εµ)]Sω,u

− µ

∫
du′ dω′ (u+ u′) gω′u′ Sω′,u′ . (3)

Weak-interaction effects are encoded in the r-dependent
parameters with dimension energy

λ =
√

2GF [ne(r)− nē(r)]
R2

2r2
,

µ =

√
2GF [Fν̄e(R)− Fν̄x(R)]

4πr2

R2

2r2
. (4)

The factor R2/2r2 signifies that only the multi-angle im-
pact of both matter and neutrino-neutrino effects en-
ter, and not the electron or neutrino densities them-
selves. Both λ and µ depend on the chosen R, but
also the occupied u range: physical results do not de-
pend on R. We normalize the neutrino-neutrino inter-
action strength µ to the ν̄e − ν̄x flux difference at R,

i.e.
∫ 0

−∞ dω
∫ 1

0
du gω,u = −1, but the only physically

relevant quantity is µ(r) gω,u. Our SN model provides
µ(R) = 3.45 × 104 km−1 after choosing R = 44.7 km.
The “asymmetry” is ε =

∫
dω du gω,u = 0.35.

Writing solutions of the linear differential equation,
Eq. (3), in the form Sω,u = Qω,u e

−iΩr with complex
frequency Ω = γ + iκ and eigenvector Qω,u leads to the
eigenvalue equation [28],

(ω+uλ̄−Ω)Qω,u = µ

∫
du′ dω′ (u+u′) gω′u′ Qω′,u′ , (5)
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FIG. 3: Growth rate κ for our SN model as a function of µ
for various λ values as indicated.

where λ̄ ≡ λ + εµ. The solution has to be of the form
Qω,u = (A+Bu)/(ω+ uλ̄−Ω). Solutions exist if µ−1 =
I1 ±

√
I0I2, where In =

∫
dω du gω,u u

n/(ω + uλ̄ − Ω).
The system is stable if all Ω are purely real. A possible
imaginary part, κ, is the exponential growth rate.

Application to our SN model.—Ignoring the effect of
matter (λ = 0), we show κ(µ) for our 280 ms SN model
in Fig. 3. The system is essentially stable above µ of a
few 100 km−1. It is noteworthy that κ is of the same
order as a typical ω of the gω,u distribution, in our case a
few km−1. We also show κ(µ) for λ = 102 and 103 km−1

and observe a shift to larger µ-values [28].

In Fig. 4 we show contours of κ in the (µ, λ) plane. For
large µ and λ values, the system is unstable for λ ∼ µ
[28]. In other words, if the local neutrino number density
is much smaller or much larger than the local electron

FIG. 4: Contours for the growth rate κ in km−1. Also shown
is the profile for our 280 ms SN model. The vertical axis
essentially denotes the density, the horizontal axis the radius
(µ ∝ r−4).
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density, the system is stable.

We also show the locus of [µ(r), λ(r)] along the radial
direction. Since µ(r) ∝ r−4, the red solid line in Fig. 4
is essentially the SN density profile. The step-like fea-
ture is the shock wave where the matter density drops by
about an order of magnitude. Without matter (λ = 0),
neutrinos would enter the instability strip at µ ∼ 100,
corresponding to r ∼ 150 km. We find similar results
for other snapshots at times 150 and 400 ms postbounce,
i.e., neutrinos do not encounter a self-induced instability.

Comparison with earlier work.—A similar accretion-
phase model of the Basel group was used to study flavor
stability by numerically solving the EoMs [22]. A mono-
energetic neutrino distribution and isotropic emission at
a neutrino sphere were assumed. For some snapshots,
an instability occurred at a large radius. Applying our
method to the same matter profile and schematic neu-
trino distribution we find perfect agreement with Ref. [22]
and even reproduce their onset radius for those cases
where partial flavor conversion occurs [31]. It would be
interesting to repeat our study with realistic Basel dis-
tributions to see if partial flavor conversion is an artifact
of their schematic energy and angle distributions.

Conclusions.—We have performed a linearized flavor
stability analysis of an accretion-phase SN model and
concomitant neutrino fluxes with realistic energy and an-
gle distributions. For the studied models, self-induced
flavor conversions do not occur. One should apply this
method to a broader class of models to see if our con-
clusion is generic. It also remains to extend a linearized
analysis to cases without cylindrical symmetry of the an-
gular distribution in view of Sawyer’s concerns about a
significant multi-angle instability [13]. In realistic 3D
models, the neutrino distribution is not cylindrically
symmetric and even if this were the case, in principle
even a small fluctuation could trigger a novel instability
if it were to exist.

Recent experimental evidence suggests that the neu-
trino mixing angle Θ13 is not very small [23], a point
that should become clear with the ongoing round of re-
actor and long-baseline experiments. In this case one
can distinguish the neutrino mass hierarchy in a high-
statistics SN neutrino signal by the presence or absence
of Earth matter effects, but only if collective oscillations
do not exchange flavors before the MSW region. If the
collective flavor swap were fully operational, the mass
hierarchy could be distinguished for an extremely small
value of Θ13 where the MSW conversion is no longer adi-
abatic [32]. If Θ13 is “large” in this sense, the absence
of collective flavor oscillations during the SN accretion
phase, if generic, is good news.

We thank T. Hahn for helping to implement a numeri-
cal library [34]. We acknowledge partial support by DFG
Grants No. TR 7, TR 27, EXC 153 and computer time
at the HLRS in Stuttgart and NIC in Jülich.
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