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ABSTRACT
In this work we investigate the nonlinear and nonlocal relation between cosmological
density and peculiar velocity fields. Our goal is to provide an algorithm for the recon-
struction of the nonlinear velocity field from the fully nonlinear density. We find that
including the gravitational tidal field tensor using second order Lagrangian perturba-
tion theory (2LPT) based upon an estimate of the linear component of the nonlinear
density field significantly improves the estimate of the cosmic flow in comparison to
linear theory not only in the low density, but also and more dramatically in the high
density regions. In particular we test two estimates of the linear component: the log-
normal model and the iterative Lagrangian linearisation. The present approach relies
on a rigorous higher order Lagrangian perturbation theory analysis which incorpo-
rates a nonlocal relation. It does not require additional fitting from simulations being
in this sense parameter free, it is independent of statistical-geometrical optimisation
and it is straightforward and efficient to compute. The method is demonstrated to
yield an unbiased estimator of the velocity field on scales >∼ 5 h−1 Mpc with closely
Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar
velocity field is extremely well recovered showing a good agreement with the true one
from N -body simulations. The typical errors of about 10 km/s (1 sigma confidence
intervals) are reduced by more than 80% with respect to linear theory in the scale
range between 5 and 10 h−1 Mpc in high density regions (δ > 2). We also find that
iterative Lagrangian linearisation is significantly superior in the low density regime
with respect to the lognormal model.

Key words: (cosmology:) large-scale structure of Universe – galaxies: clusters: gen-
eral – catalogues – galaxies: statistics

1 INTRODUCTION

Gravitational instability is one of the key ingredients to ex-
plain the rich hierarchy of structures we observe today in the
Universe. It has amplified small mass fluctuations produced
after inflation to give rise from large galaxy clusters to huge
voids. Simultaneously, the same local gravitational field im-
printed “peculiar” velocities in galaxies; deviations from the
overall expansion of the Universe which is responsible for
the Hubble flow.

The peculiar velocity of galaxies is a valuable quantity
in cosmology since it contains similar but complementary
information to that enclosed in the galaxies position. For
instance, by requiring isotropy in the measured galaxy clus-
tering, the cosmological mass density parameter and even

? E-mail: kitaura@aip.de, Karl-Schwarzschild fellow

the nature of gravity can be constrained (see e.g. Davis et al.
1996; Willick & Strauss 1998; Branchini et al. 2001; Guzzo
et al. 2008). In addition, these motions can be used to recon-
struct the properties of the universe at a earlier time, in prin-
ciple, even at recombination where perturbations were com-
pletely linear (Nusser & Dekel 1992; Gramann 1993a; Croft
& Gaztanaga 1997; Narayanan & Weinberg 1998; Monaco
& Efstathiou 1999; Frisch et al. 2002).

A method able to accurately determine the peculiar
velocity field can be used in many different applications;
ranging from bias studies combining galaxy redshift surveys
with measured peculiar velocities (see e.g. Fisher et al. 1995;
Zaroubi et al. 1999; Courtois et al. 2011), Baryon Acoustic
Oscillations reconstructions (see e.g. Eisenstein et al. 2007),
determination of the growth factor, to estimates of the initial
conditions of the Universe which in turn can be used for con-
strained simulations (see e.g. Gottloeber et al. 2010; Klypin
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2 Kitaura et al.

Works θ-δ relation parameters methodology

θ = δ {p} linear theory: LPT

Nusser et al. (1991) θ = δ/(1 + αδ) α, {p} empirical approximation

Bernardeau (1992) θ = α
[
(1 + δ)β − 1

]
α, β, {p} PT

Gramann (1993b) θ = δ − αD2
1µ

(2)(φg) α, {p} approx. 2LPT
Willick et al. (1997) θ =

[
(1 + α2σ2

δ )δ + ασ2
δ

]
/(1 + αδ) α, σ2

δ , {p} empirical approximation

Chodorowski et al. (1998) θ =
[
δ − α

(
δ2 − σ2

δ

)
+ βδ3

]
α, β, σ2

δ , {p} PT+N -body

Bernardeau et al. (1999) θ =
[
γδ + α

(
δ2 − σ2

δ

)
+ βδ3

]
α, β, γ, σ2

δ , {p} PT+N -body

Kudlicki et al. (2000) θ = α
[
(1 + δ)1/α − 1

]
+ (α− 1)/(2α)σ2

δ α, σ2
δ , {p} PT+Eulerian grid-based code

Bilicki & Chodorowski (2008) θ = γ
[
(1 + δ)1/α − (1 + δ)β

]
α, β, γ, {p} spherical collapse model

this work θ = D1δ(1) −D2f2/f1 µ(2)(φ(1)) {p} 2LPT

Table 1. The parameters α, β, γ are either derived from first principles (Bernardeau 1992; Gramann 1993b; Bilicki & Chodorowski
2008, this work) or from fitting to simulations being different for each case. These parameters also depend on the scale of interest. The

parameters which are in parenthesis are fully determined by the chosen cosmology and the theoretical model. The variance of the density
field is given by σ2

δ = 〈δ2〉. PT stands for perturbation theory and is applied only in the univariate case (local relation). 2LPT stands

for second order Lagrangian perturbation theory and yields the only nonlocal (and nonlinear) relation from the list. Hivon et al. (1995);

Monaco & Efstathiou (1999) proposed 2LPT to correct for redshift distortions. Let us mention here the least-action principle methods
to determine the peculiar velocities from mass tracer objects (galaxies) introduced by Peebles (1989) and further extended by Nusser &

Branchini (2000); Branchini et al. (2002); Lavaux et al. (2008).

et al. 2003). A particularly well suited application regards
the topological methods to detect the kinematic Sunyaev-
Zeldovich effect.

There is in addition recent interest in the measurement
of large-scale flows. Some authors claim to have detected
a so-called “dark flow” caused by super-horizont perturba-
tions (see e.g. Kashlinsky et al. 2009, 2011). Others discuss
such flows as a challenge to the standard cosmological model
as a whole (see e.g. Watkins et al. 2009).

Unfortunately, the apparent shift in spectral features of
a galaxy is also affected by the expansion of the universe,
therefore it is not possible to directly measure the peculiar
velocity field in spectroscopic surveys. For this reason, one
has to resort to indirectly infer it from the mass density fluc-
tuations (but see Nusser et al. 2011, for a recent alternative
method). However, this is not a trivial procedure due the
highly nonlinear state of the density fluctuations today and
due to its nonlocal relationship with the velocity field.

The simplest approach is given by the linear continu-
ity equation, which is routinely used in clustering stud-
ies. However, it has a range of applicability only limited
to very large scales (e.g. Angulo et al. 2008). Alternative
methods devised to improve upon linear theory can be sep-
arated into three areas. The first one consists on developing
nonlinear relationships with higher-order perturbation the-
ory (Bernardeau 1992; Chodorowski et al. 1998; Bernardeau
et al. 1999; Kudlicki et al. 2000), with spherical collapse
models (Bilicki & Chodorowski 2008) or based on empirical
relations found in cosmological N-body simulations (Nusser
et al. 1991; Willick et al. 1997).

A second idea is to solve the boundary problem of find-
ing the initial positions of a set of particles governed by the
Eulerian equation of motion and gravity with the least ac-
tion principle (see Peebles 1989; Nusser & Branchini 2000;
Branchini et al. 2002). A similar approach consists on relat-
ing the observed positions of matter tracers (e.g. galaxies)
in a geometrical way to a homogeneous distribution by min-
imizing a cost function, which combined with the Zeldovich
approximation (Zel’dovich 1970) provides an estimation of

the velocity field (see Mohayaee & Tully 2005; Lavaux et al.
2008).

The diversity of strategies and approximations for ob-
taining the velocity from the density field hint at the diffi-
culty of the problem. Some approaches are simply not accu-
rate enough and some are computationally very expensive.
This sets the agenda for an improvement in the field. Any
new method should be accurate, unbiased, computationally
effiecient and applicable to observational data.

A further shortcoming of the existing approaches is that
they are mostly particle-based, which is not applicable for
more general matter tracers like the Lyman-alpha forest or
the 21-cm line, nor they can be combined with optimal den-
sity field estimators (see Kitaura et al. 2010; Jasche & Ki-
taura 2009; Kitaura et al. 2010).

In this paper we investigate a different approach based
on higher order Lagrangian perturbation theory, and it is
motivated by the pioneering work of Gramann (1993b) and
further extended by Hivon et al. (1995); Monaco & Ef-
stathiou (1999). The theoretical basis for LPT was care-
fully worked out by Moutarde et al. (1991); Buchert &
Ehlers (1993); Buchert (1994); Bouchet et al. (1995); Cate-
lan (1995) (for further references see Bernardeau et al. 2002).

Contrary to classic applications of LPT, in which the
properties of an evolved distribution are predicted from a
linear density field in Lagrangian coordinates (e.g. in the
generation of initial conditions for N -body simulations or
of galaxy mock catalogues: Jenkins (2010); Scoccimarro &
Sheth (2002), our starting point is an evolved field in Eule-
rian coordinates (e.g. the present-day galaxy distribution).
The key realisation of our approach is that it is possible
to decompose a nonlinear density field into a Gaussian and
Non-Gaussian term, which are related to each other through
LPT (see similar approaches Gramann 1993a,b; Monaco &
Efstathiou 1999). In other words, it is possible to find a
closely Gaussian field which would evolve, under the as-
sumption of LPT, into the measured density field today.
This Gaussian field can then naturally be used to predict
the corresponding velocity field today in LPT.

Our method combines i) the equations of motion and
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Cosmic velocity fields 3

continuity for a fluid under self gravity in 2-nd (3-rd) order
Lagrangian Perturbation theory (LPT) with ii) the idea that
the present-day galaxy distribution can be expanded into a
closely linear-Gaussian field and a highly skewed nonlinear
component consistent with 2LPT (or 3LPT) (see Kitaura
& Angulo 2011). The former aspect makes our approach
physically motivated and also captures the nonlocal nature
of the density-velocity relation via the gravitational tidal
field tensor. The latter aspect self-consistently minimises the
impact of the approximations of a 2nd order formulation of
gravitational evolution, but more importantly, it enables the
application of LPT to nonlinear fields.

We note, that the lognormal transformation including
the subtraction of a mean field to obtain an estimate of the
linear field was proposed by Kitaura et al. (2010) and has
been recently confirmed to give already a good estimate of
the divergence of the displacement field (Falck et al. 2011).
To estimate the velocity field one needs, however, to go to
higher order perturbation theory as we show in this work.

In the next section we recap Lagrangian perturbation
theory and derive the velocity-density relation to second and
third order. In section 2.2 we will present the method to com-
pute the peculiar velocity field from the nonlinear density
field. In section 3 we will present our numerical tests based
on the Millennium Run simulation. Here we will analyze the
goodness of the recovered velocity divergence as compared
to the true one and the same for each velocity component. A
study of the errors in our method is also presented. Finally
we present our conclusions.

2 VELOCITY–DENSITY RELATION

The first part of this section presents the relation between
density and velocity fields in 2LPT, and how it can be ap-
plied to an evolved field. In the second part, we outline a
practical implementation of this method.

2.1 Second order Lagrangian perturbation theory

The basic idea in Lagrangian perturbation theory is that
an initial homogeneous field expressed in Lagrangian coordi-
nates q can be related to a final field in Eulerian coordinates
x trough a unique mapping: x = q + Ψ(q) determined by a
displacement field Ψ (see e.g. Bernardeau et al. 2002).

The linear solution for this expression is the well-known
Zeldovich approximation, in which the displacement field is
given by the Laplacian of the gravitational potential at q.
This result has been successfully applied to many aspects of
cosmology, but it fails to describe the dynamics of a non-
linear field where shell crossings and curved trajectories are
common.

An improvement is found by expanding the displace-
ment field and considering higher order terms (see e.g.
Buchert et al. 1994; Melott et al. 1995; Bouchet et al. 1995).
For instance, the displacement field to second order is given
by

Ψ = −D1∇φ(1) +D2∇φ(2), (1)

where D1 is the linear growth factor normalised to unity
today, D2 the second order growth factor, which is given by

D2 ' −3/7 Ω−1/143D2
1 (see Buchert & Ehlers 1993; Bouchet

et al. 1995). The potentials φ(1) and φ(2) are obtained by
solving a pair of Poisson equations: ∇2φ(1) = δ(1), where
δ(1) is the linear over-density, and ∇2φ(2) = δ(2).

It is important to realise that these terms are not in-
dependent of each other. The second order nonlinear term
δ(2) is fully determined by the linear over-density field δ(1)

through the following quadratic expression

δ(2) ≡ µ(2)(φ(1)) =
∑
i>j

(
φ
(1)
,ii φ

(1)
,jj − [φ

(1)
,ij ]2

)
, (2)

where we use the following notation φ,ij ≡ ∂2φ/∂qi∂qj , and
the indices i, j run over the three Cartesian coordinates.

iWe note that going to third order in Lagrangian pertur-
bation theory provides modest improvements (see Buchert
& Ehlers 1993; Melott et al. 1995; Catelan 1995; Bouchet
et al. 1995; Bernardeau et al. 2002).

Under this framework, and expanding the inverse of the
Jacobian of the transformation between Lagrangian and Eu-
lerian coordinates (we follow here the approach by Gramann
1993b, extending the Zeldovich approximation to 2LPT),
the final density field can be written in terms of the linear
and nonlinear fields (Kitaura & Angulo 2011);

δM = −∇ ·Ψ + µ(2)(Θ) + µ(3)(Θ)

= D1δ
(1) −D2µ

(2)(φ(1)) + µ(2)(Θ) + µ(3)(Θ)

= δL + δNL (3)

with Ψ = −∇Θ, δL = D1δ
(1) and δNL = −D2µ

(2)(φ(1)) +
µ(2)(Θ) + µ(3)(Θ). Note that the third order term in the
Jacobean expansion is given by:

µ(3)(Θ) = det (Θ,ij) . (4)

Similarly, the particle co-moving velocities v are given
to second order by:

v = −D1f1H∇φ(1) +D2f2H∇φ(2) , (5)

where fi = d lnDi/d ln a, H is the Hubble constant and a is
the scale factor. For flat models with a non-zero cosmolog-
ical constant, the following relations apply f1 ≈ Ω5/9, f2 ≈
2Ω6/11 (see Bouchet et al. 1995), where Ω(z) is the matter
density at a redshift z.

Assuming that any primordial vorticity has no growing
modes associated (the first vorticity terms appear in 3rd or-
der Lagrangian perturbation theory, see appendix), implies
that the velocity field today is fully characterised by its di-
vergence (∇ · v), or, for convenience, by the scaled velocity
divergence, defined as:

θ ≡ −f(Ω,Λ, z)−1∇ · v , (6)

with f(Ω,Λ, z) ≡ Ḋ1/D1 = f1(Ω,Λ, z)H(z).
Combining Eqs. 3 and 5 truncated to quadratic terms

in Φ(1): δNL =
(
D2

1 −D2

)
δ(2), one gets

θ = δM −
[
D2

1 +

(
f2
f1
− 1

)
D2

]
δ(2) . (7)

This expression is very similar to the one found by Gra-
mann (1993b) (see Tab. 1). Note, however, that using di-
rectly the evolved field as the source for the second order
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Figure 1. Statistics of the scaled velocity divergence (θk: true from the simulation θNbody and different reconstructed ones θrec as

explained below) with different smoothing scales: Left: rS = 5 h−1Mpc, Right: 10 h−1Mpc. Curves from left to right in the order of

appearance: yellow: approximate 2LPT solution from the nonlinear density field (GRAM) (see G93 in table 1), cyan: logarithm of the
density field (LOG), blue dashed: true scaled velocity divergence at z = 0 the Millennium Run (Nbody), black: 2LPT estimate from

the logarithm of the density field (LOG-2LPT) (Eq. 8), red: 2LPT estimate from the iterative solution (2LPT) (see §2.2), green: linear

theory (LIN) (density field).

term δ(2) is a good approximation for the true velocity field
only on very large scales (where δM is close to unity), as we
will see in §3 and Fig. 1, breaking down on scales of even 10
h−1Mpc for both estimations of the nonlinear field and of
the velocity divergence.

In this paper we follow a different approach, and solve
iteratively the following equation;

θ = D1δ
(1) −D2

f2
f1
δ(2) . (8)

which results from taking the divergence of Eq. 5 (for a sim-
ilar approach see Monaco & Efstathiou 1999). For this, we
rely on an estimation of the linear component of the present-
day density field, which in turn can be calculated by solv-
ing iteratively Eq. (3). Note that we expand the inverse of
the Jacobian and avoid in this way problems caused by low
density regions as reported in Monaco & Efstathiou (1999)
(see also Kitaura & Angulo 2011). In practice, a good ap-
proximation for such term is simply given by the logarithm
of the density field; δL = D1δ

(1) = ln(1 + δM) − µ, with
µ = 〈ln(1+δM)〉, as shown by (Neyrinck et al. 2009; Kitaura
& Angulo 2011). Note that this expression is essentially the
lognormal approximation for the matter field (Coles & Jones
1991). This local transformation has the advantage of being
computationally inexpensive.

In summary, what our approach does is to find a linear
field which when plugged into 2LPT expressions produces
the observed matter field (or third order, see appendix). If
gravity worked only at a second order level, then this lin-
ear field would be identical to the actual linear field that
originated δM, but naturally in reality it is just an approx-
imation. Then, our estimation for the velocity field is that
predicted by this linear density field.

2.2 Method

The method to estimate the peculiar velocity field from the
nonlinear density field is straightforward and fast to com-
pute. We now outline the steps to be followed for a practical
implementation. Here we have assumed that there is an un-
biased and complete estimation of the matter field δM. The
extra layer of complication introduced by shot noise, a sur-
vey mask, biasing and redshift space distortions is out of
the scope of this paper and will be addressed in a future
publication.

(i) Linear density field
One starts computing an estimate of the linear component

of the density field. Here we propose two alternatives:

(a) Lognormal model

δLLOG = D1δ
(1) = ln(1 + δM)− µ (9)

(b) Gaussianisation with LPT (Kitaura & Angulo
2011)

δLLPT = D1δ
(1) = δM − δNL (10)

(ii) Linear potential
Then the Poisson equation is solved to obtain the linear

potential:

φ(1) = ∇−2δ(1) (11)

(iii) Nonlinear second order density field
The tidal field contribution to second order is calculated

from the linear potential:
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Cosmic velocity fields 5

δ(2)
[
φ(1)

]
=
∑
i>j

(
φ
(1)
,ii φ

(1)
,jj − (φ

(1)
,ij )2

)
, (12)

(iv) Scaled velocity divergence
One can now construct the 2nd order divergence of the

velocity field taking both the linear and the second order
contribution:

θ = D1δ
(1) −D2

f2
f1
δ(2), (13)

(v) Peculiar velocity field
Finally, one obtains the 3D velocity field:

v = −f(Ω,Λ, z)∇∇−2θ . (14)

Please note that the equations in steps (ib), (ii), (iii) and
(v) can be solved with FFTs. Details of the Gaussianisation
step with LPT can be found in Kitaura & Angulo (2011).

3 TESTING THE METHOD WITH N-BODY
SIMULATIONS

In this section we test the performance of the method out-
lined above by comparing the velocity field directly ex-
tracted from a N -body simulation with our estimation based
on the respective nonlinear density field.

With this purpose, we employ the Millennium simu-
lation which tracks the nonlinear evolution of more than
10 billion particles in a box of comoving side-length 500
h−1Mpc (Springel et al. 2005). In particular, we use the
output corresponding to redshift 0, which is where the most
nonlinear structures are present.

At such output we first compute the velocity and den-
sity field by mapping the information of dark matter par-
ticles onto a grid of 2563 cells using the nearest-grid-point
(NGP) assignment scheme, which gives a spatial resolution
of about 2h−1Mpc. We then apply the algorithm presented
in §2.2 to infer the velocity divergence on a grid of identical
dimensions. In the next two subsections we present our re-
sults and explore the accuracy when applied on two scales;
10 h−1Mpc on which linear theory is usually assumed to
perform well, and 5 h−1Mpc which enters into the mildly
nonlinear regime.

3.1 The velocity divergence

The first ingredient in our algorithm is the linear component
of the density field. We stress that this field is not not the
“initial conditions” of the universe, since structures have
moved from its Lagrangian position to the Eulerian ones at
z=0. Contrarily to the linear term, the nonlinear component
is highly skewed.

Fig. 1 compares the PDF of the velocity divergence θ
as given by different estimators, with the one directly mea-
sured from the simulation (blue dashed line). The left panel
shows the fields smoothed with a 5 h−1Mpc whereas the
right panels do so with a larger smoothing of 10 h−1Mpc.
In both cases, the predictions of linear perturbation theory
(i.e. θ = δ) displays the worst performance of all – it overes-
timates systematically the number of volume elements with

4 6 8 10

0

1

2

3

4

σ
(∇
×

v
| x

)/
σ

(∇
·v

)
[%

]

rS [h−1Mpc]

Figure 5. Standard deviation of the x-component of the curl
σ(∇× v|x) divided by the standard deviation of the velocity di-

vergence σ(∇ · v) in % as a function of the scale rS. The mean

of both the curl and the divergence of the peculiar field are very
close to zero.

large value of θ and underestimates the ones with low val-
ues of θ (green curve). This is a consequence of linear theory
breaking down in even mildly under- or overdense regions.

Using linear theory together with the linear component
of the nonlinear density field given by the logarithm of the
field (ln(1 + δM)−µ, see cyan curve in Fig. 1) is still a poor
description of the PDF, suggesting the need of higher order
corrections.

The first second order estimation we consider is that
given by Eq. (7) which is closely related to the one proposed
by Gramann and uses the nonlinear field as a proxy for the
linear density field (yellow curve). In the regime where this
approximation is valid (δ ∼ 0) this approach performs re-
markably well. However, there is a clear and rapid degra-
dation for volumes with larger deviations of homogeneity.
For instance, this solution yields to values even of θ = −140
at scales of 5 h−1Mpc! This behaviour is due to a complete
misestimation of the nonlinear term δ(2) and therefore of the
nonlinear corrections to the velocity field.

Finally, black and red lines indicate the results of the
method proposed in this paper with Lagrangian perturba-
tion theory, based upon an estimate of the linear component
of the density field using the lognormal model (LOG-2LPT:
black) or the iterative Lagragian linearisation (2LPT: red).
On both panels, the predicted PDF follows very closely that
measured in the Millennium simulation, even on the extreme
tails (especially with LOG-2LPT). The only appreciable dif-
ference with the lognormal model is a slight overestimation
for low values of θ (static regions), we note however, that this
could be potentially improved by higher order expressions.
Indeed, 3rd order PT appears to perform better than 2LPT
for underdense regions (see appendix). In spite of this, on
both 5 and 10 h−1Mpc 1 our method is clearly superior to

1 We have also checked that this is true on 3,4,6,7 and 8 h−1Mpc
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any of the other methods we investigated here, as far as the
PDF is concerned and for any value of θ. The iterative 2LPT
solution yields a moderate overestimation for high values of
θ due to the laminar flow approximation used in Lagrangian
perturbation theory which does not fully capture nonlinear
structure formation. Nevertheless, the PDF of θ using this
solution is clearly superior to the linear approximation.

We now continue with a more detailed testing of our
method. In Fig. 2 we plot the predicted velocity divergence,
θrecLOG−2LPT and θrec2LPT (based on δLLOG and δLLPT, respec-
tively), for each of the 2563 cells in our mesh, as a function
of the value measured in the simulation. As in the previous
plot, we display results on two different scales; 5 h−1Mpc on
the top panel and 10 h−1Mpc on the bottom panel. For com-
parison we also provide the results using linear perturbation
theory θrecLIN = δ.

The values of θ are remarkably well predicted by La-
grangian perturbation theory. In fact, measurements lie
around the 1:1 line in the LOG-2LPT case, implying that
there are no appreciable biases in our estimation over all the
range probed by the Millennium simulation (with the excep-
tion of the low values of θ, for an improvement on this see
appendix). In contrast, the linear theory prediction presents
overestimations of up to a factor of 3 for the 5 h−1Mpc
smoothing and of 2 for 10 h−1Mpc.

The iterative solution (2LPT) produces smaller disper-
sions but also a slight overestimation of θ for high values, as
we already mentioned before.

The distribution of differences in our method is well ap-
proximated by a Gaussian function, whereas in linear theory
there are significant extended tails, we will return to this
in more detail in §3.2. Overall, this plot suggest that our
method not only performs adequately on a statistical basis,
but also on predicting the actual average value of θ in a
given volume element.

Although not displayed by the figure, our method also
performs better than the other methods shown in Fig. 1. In
particular, the classic application of 2LPT recovers θ quite
well for the range −0.5 < θ < 2, as shown in Gramann
(1993b). However, outside the range it displays an erratic
behaviour as it could have been anticipated from Fig. 1.

A complementary visual assessment of our method is
provided in Fig. 4. In these images we display the relative
difference θrec − θNbody (θrecLIN − θNbody in the upper panels,
θrec2LPT−θNbody in the central panels and θrecLOG−2LPT−θNbody

in the lower ones) projected on a slice 2 h−1Mpc thick. As
previously, we explore 5 and 10 h−1Mpc and also display
the linear theory predictions for comparison. We see that
this difference field is not uniformly distributed across the
simulation but there are well defined regions in which the
predictions are very accurate and others where the predic-
tion is somewhat worse. Not surprisingly the latter coincide
with high density regions. Nevertheless, and consistently
with previous plots, we see that areas where linear theory
fails dramatically are much better handled in our approach.

As a final crucial check, we compute the power-spectra
of the scaled velocity divergence according to the N -body
simulation and our reconstruction with both the LPT and
the lognormal linearisation approaches. This is shown in
Fig. 6. Linear theory, as expected, increasingly overestimates
the power towards small scales, whereas the 2LPT solutions
peform remarkably well in a wide range going down to scales

0.01 0.10

0

1

2

3

4

5

6

rS=5 h−1Mpc

LIN

LOG-2LPT
2LPT

k [hMpc−1]

P
re

c
θ

(k
)/
P

N
b
o
d
y

θ
(k

)

Figure 6. Ratio of the true PNbody
θ (k) and reconstructed

P rec
θ (k) power-spectra of the scaled velocity divergence θ for

green: linear theory (LIN), black: 2LPT estimate from the log-
arithm of the density field (LOG-2LPT) (Eq. 8), red: 2LPT esti-

mate from the iterative solution (2LPT) (see §2.2)

of k ' 0.5h/Mpc. We can also see that there is a systematic
deviation originated by the lognormal transformation. The
LPT estimate of the linear component corrects these and
the results are extremely close to the actual power-spectrum
over most of the k-range shown.

3.2 The full 3D peculiar velocity field

We have calculated each component of the peculiar velocity
field (vx, vy,vz) from the inferred velocity divergence as-
suming ∇× θ = 0. In this case, the Fourier transform of the
velocity along a direction is given by v̂ = k · θ̂ with k being
the k-vector. The approximation that the velocity field is ir-
rotational is actually a good one for the scales and redshifts
we consider here. In fact the curl of the velocity fields is on
average more than 25 times smaller than its divergence in
the z=0 output of the Millennium simulation on scales of 3
h−1Mpc and even smaller on larger scales (see Fig. 5).

In Fig. 7 we compare the velocity field along the x-axis
in the simulation and in our method (the two other axis
show essentially the same features). The contours show the
variation of number of cells (the darker colours represent
higher numbers). By comparing both columns, it is clear
that linear theory presents biases for large speeds, which are
removed by our 2LPT approach, on both 5 and 10 h−1Mpc.
We can see that the distribution gets sharper with 2LPT
showing a clear decrease in the number of outliers.

We quantified the uncertainty in the recovered velocity
in Fig. 8. The x-axis corresponds to the errors in the re-
construction, defined as εv,x ≡ vrecx − vx. As in the previous
plot, we show only results for the x-axis since the other three
Cartesian coordinates provide consistent results.

We find that the errors in our method are closely Gaus-
sian distributed – the skewness and kurtosis are dramati-
cally smaller than for linear theory. This property is very
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important when applying the method to real data, since the
observational uncertainties can be added to the model un-
certainties within a Gaussian likelihood without the need
of introducing complex error models. The typical errors are
also significantly reduced with lower standard deviations.
The errors in the reconstruction using linear theory have
very long tails. Such outliers are not present in our method
(see Fig. 8).

As we have discussed along this paper, the larger im-
provement of our method relates to velocities in the high
density regions. For regions with δ > 1 and δ > 2 we find sig-
nificant differences between linear and 2LPT. At 10 h−1Mpc
and cells with δ > 2 the 1 sigma errors with linear theory are
about 70 km/s and are reduced with 2LPT to ∼13 km/s,
i.e. by about 81%. The corresponding 2 sigma confidence
intervals are about 160 and 28 km/s, respectively, i.e. an
error reduction of about 83%. One can see that the 2 sigma
confidence intervals are about double as large as the 1 sigma
confidence intervals for the 2LPT estimation. However, this
is not the case for the linear estimates as these are not Gaus-
sian distributed.

4 CONCLUSIONS

In this paper we presented an improved method to recon-
struct the peculiar velocity field from the density field. It
builds from 2nd order Lagrangian perturbation theory and
the realisation that the density field can be split into a linear
plus a nonlinear term. The latter is the key concept, which
enables the application of Lagrangian perturbation theory
to an evolved field in Eulerian coordinates. This in turn, cre-
ates an approach that is nonlinear and nonlocal by including
the information of the gravitational tidal field tensor.

We have shown that this approach is efficient and accu-
rate over the dynamical range probed by the Millennium
simulation. When the reconstruction is carried out on 5
h−1Mpc, each component of the velocity field can be re-
covered to an accuracy of about 10 kms/sec. On 10 h−1Mpc
this figure is reduced to about 7 kms/sec. If we consider
high density regions, the typical uncertainty is of 13, which
improves dramatic over linear perturbation theory; 81%. An
accurate description of the velocity divergence, both in terms
of its PDF and on a point-by-point basis, is also achieved.
In addition, we have shown that the statistics of the scaled
velocity divergence is extremely well recovered, being almost
indistinguishable from the true one, whereas linear theory
dramatically over-estimates the velocity divergence. This es-
pecially on the mildly nonlinear scale of 5 h−1Mpc where our
method shows more clearly its advantages. Finally, highlight
that our method does not require calibration nor free param-
eters to derive the velocity divergence.

There are a number of simplifications and assumptions
that we have adopted throughout our paper. First, our anal-
yses focused on the peculiar velocity averaged over a volume.
Another aspect is that we have neglected the rotational com-
ponent of the velocity field. This however, does not seem to
be relevant at the scales we have investigated (larger than 5
h−1Mpc).

We have also performed our comparison assuming that
there exist an unbiased estimator of the underlying real-
space density field. But, of course, densities measured in

a survey are in redshift-space. The transformation can be
done, but not trivially. One alternative is to apply the Gibbs-
sampling method suggested by Kitaura & Enßlin (2008) to
correct for redshift-space distortions. In this, the Gaussian
distribution of errors in our method is highly convenient,
since it permits to model the uncertainties in the peculiar
velocity field including observational errors in a straightfor-
ward way.

We would like to note that our comparison and the un-
certainties quoted here, were based on the present-day out-
put of the Millennium Run. Such simulation was carried
out with a value for σ8 about 10% higher than the current
best estimations (see Angulo & White 2010, for a method
to correct for this). Therefore, our uncertainties should be
regarded as an upper limit of the reachable uncertainties for
a hypothetical spectroscopic survey, which should contain a
less nonlinear underlying dark matter distribution.

We anticipate that our method can be used in many
different applications; ranging from bias studies combining
galaxy redshift surveys with measured peculiar velocities,
Baryon Acoustic Oscillation reconstructions, determination
of the growth factor, to estimates of the initial conditions of
the Universe.
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APPENDIX A: THIRD ORDER LAGRANGIAN
PERTURBATION THEORY (3LPT)

For the sake of completeness we investigate here third order
LPT. Following Buchert (1994) and Catelan (1995) one can
write the displacement field to third order as

Ψ = −D1∇φ(1) +D2∇φ(2)

+D3a∇φ(3)
a +D3b∇φ(3)

b +D3c∇×A(3) (A1)

where {D3a, D3b, D3c} are the 3rd order growth factors
corresponding to the gradient of two scalar potentials
(φ

(3)
a ,φ

(3)
b ) and the curl of a vector potential (A(3)). Particu-

lar expressions for the irrotational 3rd order growth factors
(D3a, D3b) can be found in Bouchet et al. (1995), the growth
factor of the rotational term (D3c) is given in Catelan (1995).

We assume that the fields are curl-free on scales >∼ 5

h−1Mpc (see Bouchet et al. 1995, and the comparison be-
tween the velocity divergence and the curl in the Millennium
Run in Fig. 5). We therefore consider only the scalar poten-

tial terms φ
(3)
a and φ

(3)
b .

The first term is cubic in the linear potential

δ(3)a ≡ µ(3)(φ(1)) = det
(
φ
(1)
,ij

)
, (A2)

and the second term is the interaction term between the
first- and the second-order potentials:

δ
(3)
b ≡ µ(2)(φ(1), φ(2)) =

1

2

∑
i 6=j

(
φ
(2)
,ii φ

(1)
,jj − φ

(2)
,ij φ

(1)
,ji

)
, (A3)

(see Buchert 1994; Bouchet et al. 1995; Catelan 1995).

In order to ensure that the term δ
(3)
b is curl-free one has

to introduce some proper weights in the expression A3 (see
Buchert 1994; Catelan 1995).

From the displacement field one can derive the expres-
sion for the velocity field

v = −D1f1H∇φ(1) +D2f2H∇φ(2) (A4)

+D3af3aH∇φ(3)
a +D3bf3bH∇φ(3)

b ,

with fi = d lnDi/d ln a (particular expressions for f3a and
f3b can be found in Bouchet et al. 1995). As we can see from
Eq. A4 one can construct all components from the linear
potential φ(1).

We consider here two models for the linear potential.
The first model relies on the local lognormal estimate (see
§2.2) from which the scaled velocity divergence can be cal-
culated in the following way to 3rd order LPT

θ = D1δ
(1) − f2

f1
D2µ

(2)(φ(1))

−f3a
f1
D3aµ

(3)(φ(1))− f3b
f1
D3bµ

(2)(φ(1), φ(2)) . (A5)

The second model yields a non-local estimate of φ(1) to
3rd order given by

δL = δ − δNL (A6)

with δNL = −D2µ
(2)(φ(1)) − D3aµ

(3)(φ(1)) −
D3bµ

(2)(φ(1), φ(2)) + µ(2)(Θ) + µ(3)(Θ). Note that the
potential Θ is also different and is determined by Eq. A1
recalling the relation to the displacement field Ψ = −∇Θ.

Using the latter expression one can write the θ-δ rela-
tion to 3rd order in LPT as
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Figure A1. Cell-to-cell correlation between the true and the reconstructed scaled velocity divergence using 3LPT. Left panels on scales
of 5 h−1Mpc and right panels on scales of 10 h−1Mpc. Upper panels: LOG-3LPT (based on the truncated 3LPT expansion computing

Eq. A5 with the local model for the linear component), lower panels: 3LPT (based on the truncated 3LPT expansion computing Eq. A7

with the non-local model for the linear component).

θ = δ −
(
f2
f1
− 1

)
D2µ

(2)(φ(1))

−
(
f3a
f1
− 1

)
D3aµ

(3)(φ(1))−
(
f3b
f1
− 1

)
D3bµ

(2)(φ(1), φ(2))

−µ(2)(Θ)− µ(3)(Θ) . (A7)

Note that Eq. A6 should be solved iteratively as we do
in the 2LPT case (see §2.2 and Kitaura & Angulo 2011).
Nevertheless to find a fast solution we plug-in the lognormal
model for φ(1) into Eq. A5 yielding a non-local estimate of
the linear field in one iteration. To minimize the deviation
between LPT and the full nonlinear evolution we have addi-
tionally smoothed the density δ in Eq. A7 with a Gaussian
kernel of 2 h−1Mpc radius.

We do not find an improvement in the determination of

the velocity divergence with respect to 2LPT including both
curl-free terms using any of the estimates of the linear com-
ponent. This could be due to an inaccurate determination
of the interaction term φ

(3)
b , as uncertainties in the linear

component φ(1) propagate more dramatically than in terms
which depend only on the initial conditions (φ(2), φ

(3)
a ).

One may neglect the interaction term δ
(3)
b and consider

only the cubic term δ
(3)
a to 3rd order. Such a truncated 3LPT

model includes the main body of the perturbation sequence
with the rest of the sequence being made up of interaction
terms (Buchert 1994).

Our calculations show in this case better results than
2LPT for low values of the velocity divergence (see Fig. A1).
However, for large values of∇·v we obtain larger dispersions
which could be also due to numerical errors in the estimate
of the linear density component δL. The errors in the velocity
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estimation are only moderately reduced with respect to the
2LPT case (see §3.2).
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