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ABSTRACT

The flux-ratio anomalies observed in multiply-lensed quasar images are most plau-
sibly explained as the result of perturbing structures superposed on the underlying
smooth matter distribution of the primary lens. The cold dark matter cosmological
model predicts that a large number of substructures should survive inside larger halos
but, surprisingly, this population alone has been shown to be insufficient to explain
the observed distribution of the flux ratios of quasar’s multiple images. Other halos
(and their own subhalos) projected along the line of sight to the primary lens have
been considered as additional source of perturbation. In this work, we use ray trac-
ing through the Millennium II simulation to investigate the importance of projection
effects due to halos and subhalos of mass m > 108h−1M⊙ and extend our analysis
to lower masses, m > 106h−1M⊙, using Monte-Carlo halo distributions. We find that
violations of the cusp−caustic relation caused by line-of-sight haloes are comparable
to (or even larger than) those caused by intrinsic substructures. The magnitude of the
violation depends strongly on the density profile and concentration of the intervening
halos, but clustering plays only a minor role. For a typical lensing geometry (lens
at redshift 0.6 and source at redshift 2), background haloes (behind the main lens)
are more likely to cause a violation than foreground halos. The combined effect of
substructures within the lens and along the line of sight in a ΛCDM universe results
in a cusp-violation probability from lensing flux-ratio observations of ∼20%. This is
enough to reconcile the model with current data, but larger samples are required for
a stronger test of the theory.

Key words: Gravitational lensing - dark matter - galaxies: ellipticals - galaxies:
formation

1 INTRODUCTION

In the cold dark matter (CDM) cosmogony, galaxies are bi-
ased tracers of a filamentary “cosmic web” of collapsed re-
gions in the matter density field – dark matter haloes. The
excellent agreement between the predictions of this model
and observations of the large-scale clustering of galaxies pro-
vides compelling support for CDM. However, on the scale
of individual dark haloes, the model makes a number of
predictions that have yet to be fully verified: cuspy halo
density profiles and a large population of surviving dark

⋆ E-mail: xudd@astro.uni-bonn.de

matter substructures. These substructures are the cores of
accreted CDM haloes that persist as long-lived gravitation-
ally bound subhaloes (Gao et al. 2004; Diemand et al. 2008;
Springel et al. 2008). Therefore, measurements of halo den-
sity profiles and of the subhalo abundance are crucial tests
of the cosmological model.

Galaxies and their dark matter haloes can act as strong
gravitational lenses, producing distorted and even multiple
images of more distant galaxies and quasars. The distribu-
tion and properties of these images provide sensitive probes
of the mass distribution in the lens. In some multiply-lensed
quasar systems, simple parametric mass models can fit im-
age positions well, but not their flux ratios. Such anoma-
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lies are interpreted as evidence for complex substructures in
lensing galaxies1 (Mao & Schneider 1998; Metcalf & Madau
2001; Metcalf & Zhao 2002; Chiba 2002; Metcalf et al. 2004;
Sugai et al. 2007; McKean et al. 2007; More et al. 2009;
MacLeod et al. 2009).

On scales probed by galactic strong lensing (typ-
ically a few kiloparsecs), predictions from CDM sim-
ulations have been compared with observed flux-ratio
anomalies (e.g. Dalal & Kochanek 2002; Bradač et al. 2004;
Metcalf & Amara 2010). Several studies have concluded
that the predicted abundance of dark matter substructures
in the strong-lensing regions of galaxy-sized haloes is not
sufficient to explain the statistics of the currently avail-
able sample of known anomalous lenses (Mao et al. 2004;
Amara et al. 2006; Macciò & Miranda 2006; Chen et al.
2011).

In any smooth lens potential producing multiple im-
ages of a single source, a specific magnification ratio (here
equivalent to a flux ratio) of the three most strongly-
magnified images will approach zero asymptotically as the
source approaches a cusp of the tangential caustic. This
is known as the “cusp-caustic relation” (see Eq. 3 be-
low) (Blandford & Narayan 1986; Schneider & Weiss 1992;
Zakharov 1995; Keeton et al. 2003). Structures, either
within a lensing galaxy or projected by chance along the
line of sight, will perturb the potential and alter the flux
of one or more images, resulting in a violation of the cusp-
caustic relation. These violations are extreme cases of flux-
ratio anomalies.

Xu et al. (2009, 2010) analyzed flux-ratio distributions
of multiple-imaged background quasars in simulated lens-
ing systems, using six ∼ 1012M⊙ CDM haloes and their
substructure populations (subhaloes and streams) from the
Aquarius project (Springel et al. 2008). The effects of bary-
onic substructures (satellite galaxies and globular clusters)
were also investigated. These exceptionally high resolution
simulations confirmed that the substructure abundance (in
the critical region of a Milky Way-mass lens) predicted by
the CDM model is too low to explain the observed frequency
of cusp-caustic violations.

This apparent deficiency of substructures is not yet
a strong challenge to CDM, in part because the sample
of observed lenses is extremely small. Furthermore, dark
matter haloes and subhaloes are present along the entire
line of sight from the source to the observer, not just in
the lens itself. These independent haloes projected in front
of and behind the lens can also induce perturbations to
the lensing potential and thus cause flux-ratio anomalies
(Chen et al. 2003; Wambsganss et al. 2005; Metcalf 2005a,b;
Miranda & Macciò 2007; Puchwein & Hilbert 2009).

In particular, Chen et al. (2003) used the cross-section
(optical depth) method to calculate the effect of both
subhaloes intrinsic to the main lens and line-of-sight haloes.
They found that the former would dominate the total lens-
ing cross-section, although the exact percentage was highly
sensitive to the spatial distribution of substructures2; the

1 Apart from quasar images’ flux-ratio anomalies, another
promising method is to use surface brightness anomalies of lensed
galaxies to identify substructures and constrain their properties,
see e.g., Vegetti & Koopmans (2009); Vegetti et al. (2009).
2 A similar conclusion was reached by Xu et al. (2009, 2010); see

latter – line-of-sight haloes, modelled as singular isothermal
spheres – would contribute to 6 10% of the total perturba-
tion. Metcalf (2005a) performed ray-tracing simulations for
the line-of-sight lens population (106M⊙ 6 m 6 109M⊙) in
a ΛCDM universe, which he compared to several observed
systems with measured cusp-caustic ratios. Assuming
that haloes have Navarro, Frenk & White (NFW) profiles
(Navarro et al. 1996, 1997), he found that the predicted
abundance of line-of-sight haloes was enough to explain
the observed flux-ratio anomalies of several representative
cases. With a slightly different approach and assuming
singular isothermal spheres for the line-of-sight haloes,
Miranda & Macciò (2007) found that with contributions
from the sight-line perturbers, the observed flux-ratio
anomalies can be reproduced with a high confidence level.

In this work, we re-examine the perturbing effect of
haloes along the entire line of sight from the source to the
observer by using N-body simulations to generate strong-
lensing sight lines and quantify the flux-ratio distributions
for multiply-imaged sources. In §2, we introduce our method
for tracing light deflection through multiple lens planes.
In §3, we present a summary of the cusp-caustic viola-
tions arising from simple perturbation scenarios (varying
the density profiles, angular positions and redshifts of the
perturbers). In §4, we describe our method for generating
“lensing lighcones” in the Millennium II ΛCDM N-body
simulation (Boylan-Kolchin et al. 2009). Results from the
analysis of these lensing cones are given in §5. In §6 we
present results using a Monte-Carlo approach to account
for haloes below the mass resolution limit of Millennium
II (∼ 108h−1M⊙). Our conclusions are given in §7. The
cosmology of our lensing simulations is the same as that
used for the Millennium-II simulation, with a matter density
Ωm = 0.25, cosmological constant ΩΛ = 0.75, Hubble con-
stant h = H0/(100 km s−1 Mpc−1) = 0.73 and linear fluctu-
ation amplitude σ8 = 0.9. These values are consistent with
cosmological constraints from the WMAP 1- and 5-year data
analyses (Spergel et al. 2003; Komatsu et al. 2009), but dif-
fer at about the 2σ level from more recent WMAP 7-year
determinations (Komatsu et al. 2011). This small offset is of
no consequence for the topics addressed in this paper.

2 SIMULATIONS OF LIGHT DEFLECTION

THROUGH MULTIPLE LENS PLANES

In Chapter 9 of Schneider et al. (1992), the authors present
the theory of light deflection through multiple lens planes.
As shown in Fig. 1, haloes are projected near the line of
sight at all redshifts between the observer and a source at
redshift zs. The angular position of the source is denoted
by ~β⋆, and its final image position is denoted by ~θ⋆. The
haloes are assumed to be distributed in N lens planes, each
at redshift zi (i=1,2...N , and zs = zN+1). As the light ray

passes through each plane, the image position ~θi+1 (where
the light ray intercepts the plane) in the (i+1)-th lens plane,

which is also the source position ~βi for the i-th plane, is

also Nierenberg et al. (2011) for the observed spatial distribution
of luminous satellites in early-type galaxies.
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Figure 1. An illustration (top) of a light ray propagating through
intergalactic space from a lensed quasar to an observer. The pri-
mary galaxy/halo at intermediate redshift causes image splitting
due to its strong lensing effect. Both intrinsic substructures (satel-
lite subhaloes and galaxies) in the primary lens and intergalactic
haloes along the line of sight perturb the lensing potential and
give rise to anomalous flux ratios between the images. The corre-
sponding illustration of ray tracing through multiple lens planes
is given in the bottom panel.

related to ~β⋆ and ~θ⋆ by the lens equation:

~θi+1 = ~βi = ~θ1 −
i

∑

j=1

Dj,i+1

Di+1

~̂αj(~θj), (1)

where ~θN+1 = ~βN = ~β⋆, and ~θ1 = ~θ⋆. ~̂αj(~θj) is the deflection

angle a light ray undergoes in the j-th plane at ~θj . Di+1 and
Dj,i+1 are angular diameter distances between the (i+1)-th
plane and the observer, and between the (i + 1)-th plane
and the j-th plane, respectively. DN+1 = Ds is the angular
diameter distance of the source. The Jacobian matrix Ai of
the mapping between ~θ1 and the source position ~βi for the
i-th plane is given by:

Ai =
∂~βi

∂~θ1
=

∂~θi+1

∂~θ1
= I −

i
∑

j=1

Dj,i+1

Di+1

∂~̂αj

∂~θj

∂~θj

∂~θ1
(2)

and AN ≡ As = ∂~βN

∂~θ1
is the overall Jacobian matrix, de-

scribing the mapping relation between ~β⋆ and ~θ⋆. The mag-
nification µ is then given by µ = detA−1

s .
Images of any given background source can be accu-

Figure 2. An illustration of how the presence of substructures af-
fects the cusp-caustic relation. The upper panels show the critical
curves in the image plane; the bottom panels are the contour maps
of Rcusp for sources within the tangential caustic in the source
plane. Squares indicate positions of close triple images and the
corresponding sources in the two planes. The image opening angle
∆θ is labelled for one case in the top left panel. The left column
shows cases with a smooth lens potential. In the right column,
we show cases where substructures are present. The cusp-caustic
relation is violated when a perturbing structure is projected near
the image positions around the critical curve (see text).

rately and efficiently identified using the Newton-Raphson
method, once the mapping relation (the overall Jacobian

matrix As = ∂~βN

∂~θ1
) is obtained. We determine the Jacobian

matrix numerically, as follows. For each lens plane, a rigid
grid of 1000 × 1000 is applied to cover a central region of
5′′ × 5′′. Source positions ~βN (~θ1) that correspond to grid

points ~θ1 in the first lens plane (which is also the final image
plane) are calculated through the multi-plane lens equation
(Eq. 1). An arbitrary light ray propagating through a lens
plane will not necessarily hit a grid point of the mesh that
covers that plane. Therefore, for any given position ~θi of
the i-th lens plane, the deflection angle ~̂αi(~θi) is obtained
by linear interpolation using the values for the four nearest
grid points. Once ~βN (~θ1) is obtained, the Jacobian matrix

As = ∂~βN

∂~θ1
can be derived using finite differencing with the

five-point stencil method. We use our multi-plane ray tracing
code with a resolution of 0.005′′/pix in the lens and image
planes, which we find sufficient to accurately reproduce the
lensing properties of a number of simple analytical cases.

3 ANOMALOUS FLUX RATIOS AND

CUSP-CAUSTIC VIOLATIONS

The cusp-caustic relation (Blandford & Narayan 1986;
Schneider & Weiss 1992; Zakharov 1995; Keeton et al. 2003)
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Table 1. Four-image quasar lensing systems with ∆θ 6 120◦

measured at radio wavelengths (CLASS).

Systems ∆θ (◦) Rcusp Reference

(1) B2045+265 34.9 0.501 Fassnacht et al. (1999)
Koopmans et al. (2003)

(2) B0712+472 76.9 0.255 Jackson et al. (1998)
Koopmans et al. (2003)

(3) B1422+231 77.0 0.187 Patnaik et al. (1999)
Koopmans et al. (2003)

(4) MG0414+053 101.5 0.227 Katz et al. (1997)
(5) B1555+375 102.6 0.417 Marlow et al. (1999)

Koopmans et al. (2003)

is defined as:

Rcusp ≡
|µA + µB + µC |

|µA|+ |µB |+ |µC |
→ 0 (3)

when µtotal = |µA| + |µB| + |µC| → ∞. µ denote the mag-
nifications of the three closest images (A, B and C) of a
background point source located near a cusp of the tan-
gential caustic (as shown in Fig. 2). Observationally, source
positions cannot be directly measured – instead, an image
opening angle is often used as an indicator of the proxim-
ity of a source to the nearest cusp of the tangential caustic.
This opening angle ∆θ is measured between lines joining the
centre of the lens to the two outer images A and C. As the
source moves outwards (towards the nearest cusp), ∆θ → 0,
µtotal → ∞, and Rcusp will go to zero asymptotically. This
relationship holds for any smooth lens potential.

Fig. 2 illustrates how perturbing structures change the
cusp-caustic relation. The upper panels show the critical
curves in the image plane, and the bottom panels are con-
tour maps of Rcusp for sources within the tangential caustic
in the source plane. Left and right columns show smooth
lens potentials and lens potentials with substructures, re-
spectively. Substructures located near the critical curve will
affect images nearby and result in significantly larger values
of Rcusp, violating the predicted ratios of image magnifica-
tions (fluxes) given by Eq. (3).

3.1 Observational samples

Multiple images of lensed quasars with small ∆θ are ideal
cases to examine violations of the cusp-caustic relation and
can be used to put constraints on the properties of perturb-
ing structures. This is especially true when their fluxes are
measured in the radio and mid-infrared, as the interpreta-
tion of optical and near-infrared flux ratios is complicated
by stellar microlensing and dust extinction. At the present
time, only five cusp-geometry lensing systems with image
opening angle ∆θ 6 90◦ are known. These were used for
statistical comparisons to the simulations in our previous
work (Xu et al. 2009, 2010). All five cases have surprisingly
large Rcusp values which are difficult to explain with simple
smooth lens models. Of these five (flux-ratio measurements),
two that were obtained in the optical have been proven to
be affected by microlensing; the other three were from the
CLASS survey (Browne et al. 2003; Myers et al. 2003) at ra-
dio wavelengths and are thought to be more secure cases of
perturbations due to substructures in the lens.

Table 2 of Chen et al. (2011) lists all of the currently
observedRcusp-∆θ pairs for systems with four distinct point-
like images of quasars lensed by one single galaxy. Our Ta-
ble 1 lists those with their flux ratios measured in the radio
and their image opening angles ∆θ 6 120◦. In this work,
we have calculated the Rcusp distribution for all possible
source positions that have close-triple image opening angle
∆θ 6 120◦ under different perturbing scenarios.

3.2 Statistical measures for the cusp-caustic

violation: P (> Rcusp|∆θ ± 2.5◦) and P 90(R0.187
cusp )

Given a simulated lensing system, we compare to the obser-
vations in Table 1 by generating a large number of realisa-
tions of background sources with ∆θ 6 120◦. We calculate
Rcusp for each realisation and evaluate P (> Rcusp|∆θ±2.5◦)
for this ensemble of realisations. This is defined as the prob-
ability for Rcusp, measured for sources with image opening
angles ∈ [∆θ − 2.5◦, ∆θ + 2.5◦] (i.e. within a five-degree
opening-angle span centred at ∆θ) to be larger than a par-
ticular threshold value. Lenses with more perturbations will
result in large Rcusp values for many source positions and
thus have a higher P (> Rcusp|∆θ ± 2.5◦) than lenses with
fewer perturbations.

We illustrate our use of the P (> Rcusp|∆θ ± 2.5◦) in
Fig. 3. The top panel shows a typical example of a close
triple image configuration for cusp sources with ∆θ 6 120◦.
In this case, the lensing galaxy has a (smooth) singular
isothermal ellipsoidal (SIE) profile (see Keeton & Kochanek
(1998) for notations of bI , bSIE, q3, and s0 herebelow) with
lensing strength bI = 0.6′′ and axis ratio q3 = 0.8, and is
located at redshift zd = 0.6; the source redshift is zs = 2.
The corresponding contour map of P (> Rcusp|∆θ ± 2.5◦)
in the Rcusp-∆θ plane is given in the middle panel.
Also plotted are the radio measurements for the cur-
rently best available sample (listed in Table 1). These are
clearly inconsistent with the smooth-lens Rcusp distribution.

When we include the substructures within the lens-
ing galaxy and its dark matter halo, the regular Rcusp

distribution for a smooth lens potential disappears. The
bottom panel in Fig. 3 shows the average distribution of
P (> Rcusp|∆θ±2.5◦) when including the subhalo population
from the Aquarius simulations (Xu et al. 2009). At small
∆θ, violations are more significant than on larger scales. The
smallest Rcusp measured among all observed cusp-caustic
systems is 0.187 (from B1422). In Xu et al. (2009), we cal-
culated the mean violation probability P 90(R0.187

cusp ) for Rcusp

to be larger than or equal to 0.187, computed over all realiza-
tions with ∆θ 6 90◦. P 90(R0.187

cusp ) was found to be ∼10%. We
concluded that it is difficult to explain the observed Rcusp

distribution (especially at larger ∆θ) with a subhalo popu-
lation similar to that produced in the Aquarius simulations.
This motivates the search for other sources of perturbations
to the lens potential.

3.3 Simple perturbation scenarios with different

halo redshifts, masses, profiles and

concentrations

A number of parameters determine the importance of these
perturbers for creating violations to the cusp-caustic rela-
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Figure 3. Top panel: Close triple image configurations for a SIE
lens with bI = 0.6′′ and q3 = 0.8. The critical curve of the lens
is shown in black and its caustics in grey. The regions sampled
by “cusp sources” are shown in red, and the corresponding dis-
tributions of the three images are shown as green, pink and blue
regions around the critical curve. Middle panel: the correspond-
ing probability contour map for P (> Rcusp|∆θ ± 2.5◦). Contour
levels of 1%, 2%, 5%, 10%, 20% and 50% (from top to bottom)
are plotted. Blue squares are the five radio measurements (with

∆θ 6 120◦) so far available. Bottom panel: the average probabil-
ity contour map (for ∆θ 6 90◦) of violations due to substructures
in the Aquarius haloes (using results from Xu et al. 2009).

tion: most significant are their masses, density profiles, red-
shifts and impact parameters to the line of sight. Before
presenting the results from general lines of sight taken from
N-body simulations, we first show several simple perturba-
tion scenarios to illustrate, individually, the effects of these
different parameters, in the case of a single perturbing halo.

Fig. 4 shows critical curves and caustics produced by a
main-lens potential of an isothermal ellipsoid with bI = 0.6′′,
q3 = 0.8 and core size s0 = 0.05′′, located at zd = 0.6 for a
source at redshift zs = 2, plus a perturber of m = 1010M⊙

modelled with a truncated singular isothermal sphere. The
panels in this figure correspond to different scenarios. In the
upper row the perturber’s angular position is fixed (out-
side the tangential critical curve), and we vary its redshift:
z = 0.4 (foreground), z = 0.6 (in the main-lens plane) and
z = 1.4 (background). In the lower row, we fix the redshift
of the perturber to the main lens plane (z = 0.6) and change
its impact parameter, such that it is projected within, on top
of and outside the tangential critical curve (left to right pan-
els, respectively). Wiggles and swallow tails are introduced
to the critical lines and caustics by the added perturbing
structure; massive perturbers (or those with compact den-
sity profiles) can even cause a secondary set of criticals and
caustics. Images located around these wiggle features violate
the cusp-caustic relation most strongly.

Fig. 5 shows the contour maps of P (> Rcusp|∆θ± 2.5◦)
in the Rcusp-∆θ plane for the different scenarios above.
Violation patterns as a function of image opening angle
∆θ vary with the positions and redshifts of the perturbers.
Notice that at redshifts greater than that of the primary
lens, the cone of light rays starts decreasing in size towards
the source. This means a “background” perturber that
appears to be projected close to the critical curve (where
images normally form) could actually be far away from the
light ray. Such perturbers would be less effective in causing
convergence fluctuations than their foreground counterparts
(they would still contribute to the shear field). However,
depending on the distribution of the primary lens and the
source, there could be many more background structures
affecting the light ray than those in the foreground (see §5).

The mass and density profile of a perturber also af-
fect the production of flux-ratio anomalies (and cusp-caustic
violations) by altering the effective cross-section. Singu-
lar isothermal spheres have been found to be a good
approximation for the inner density profiles of relatively
massive haloes (Rusin et al. 2003; Treu & Koopmans 2004;
Rusin & Kochanek 2005; Koopmans et al. 2006, 2009),
where baryons are thought to dominate their central po-
tentials. This effect may be less important in smaller haloes,
where the density profile is more likely to be well approx-
imated by the NFW distribution characteristic of CDM
haloes in N-body simulations (Navarro et al. 1997). Nev-
ertheless, there is still much controversy whether observed
low-mass haloes around dwarf galaxies have core-like shal-
low profiles (Oh et al. 2011).

In the simple scenarios presented below and in our
line-of-sight lensing simulations (see §5 and §6), we model
perturbing haloes either as truncated singular isothermal
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Figure 4. Critical curves (six panels on the left) and caustics (six panels on the right) produced by the same smooth lens potential
plus a m = 1010M⊙ perturber (indicated by red squares), modelled by a truncated singular isothermal sphere. Top row: the perturber’s
angular position is fixed and its redshift set at z = 0.4 (in the foreground, left panel), z = 0.6 (in the primary lens plane, middle panel)
and z = 1.4 (in the background, right panel). Bottom row: The redshift of the perturber is fixed (z = 0.6) and its impact parameter is
changed from inside the tangential critical curve (left panel, labelled as “In”), to overlapping (middle panel, labelled as “On”) to outside
(right panel, labelled as “Out”). Parameters are noted in each panel. Note the wiggles induced in the critical curves and the production
of secondary critical curves and caustics.

.

Figure 5. Corresponding probability contour maps of P (> Rcusp|∆θ ± 2.5◦) for cases presented in Fig. 4. Symbols and contour levels
are the same as in Fig. 3. The top row presents cases where a perturber (of 1010M⊙) is projected at the same angular position as shown
in the upper panels of Fig. 4, but located at different redshifts: z = 0.4 (foreground), z = 0.6 (in the main-lens plane) and z = 1.4
(background); the second row shows cases where the perturber is located at z = 0.6 but projected at three different angular positions as

shown in the lower panels of Fig. 4.
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Figure 6. Critical curves for smooth lens potential with a single perturbing halo (located at z = 0.6), plotted as a red square. In
columns from left to right the perturber has a mass of 108M⊙, 109M⊙, and 1010M⊙, respectively. The rows from top to bottom
correspond to different assumptions for the density profile: a truncated singular isothermal sphere, a truncated NFW profile with the
M08 concentration-mass relation, and a truncated NFW profile with the B01-M05 concentration-mass relation, respectively.

spheres3 or truncated NFW profiles, normalized with their
masses and truncated at their virial radii. We follow the
convention of defining the virial radius as r200, the radius
within which the mean halo density is 200 times the critical
density of the Universe (at the appropriate redshift z). The
mass enclosed within r200 is denoted as M200. For the NFW
profile, the concentration parameter is C200 ≡ r200/rs, where
rs is the scale radius. This parameter is thought to correlate
with mass M200 and redshift z. A number of concentration-
mass relations have been proposed in the literature, based
on N-body simulations.

In this work, we adopt the concentration-mass relation
of Macciò et al. (2008) (hereafter M08) wherever we model
perturbers as truncated NFW profiles. The fitting formula
(for a WMAP-1 cosmology, close to that of the Millennium-

3 A singular isothermal sphere may not be a realistic model for
small haloes. We adopt this model for ease of comparison with
previous work, e.g. Chen et al. (2003).

II simulation) is given by:

C200(M200, z) =
100.917

[H(z)/H0]2/3

(

M200

1012M⊙

)−0.104

, (4)

where H2(z) = H2
0 [ΩΛ + Ωm(1 + z)3].

The concentration-mass relation of Bullock et al. (2001)
was used by Metcalf (2005a,b) to study how line-of-sight
haloes (106M⊙ 6 m 6 109M⊙) contribute to the flux
anomaly problem. The adopted fitting formula was given
by (Metcalf 2005b):

C200(M200, z) =
14

1 + z

(

M200

1012M⊙

)−0.15

. (5)

To compare with Metcalf (2005a,b), we also perform our
analysis using this alternative concentration-mass relation,
hereafter referred to as B01-M05.

Fig. 6 shows how these different assumptions for the
mass, density profile and concentration-mass relation of
a perturber change the total critical curves produced by
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a primary lens at z = 0.6 and the perturbing halo lo-
cated at the same redshift and with a mass of M200 =
[108M⊙, 109M⊙, 1010M⊙]. A different density profile (a
truncated singular isothermal sphere, a truncated NFW pro-
file with the M08 concentration-mass relation and a trun-
cated NFW profile with the B01-M05 concentration-mass
relation) is assumed in each row of Fig. 6. Different distor-
tions to the critical curve correspond to different levels of
violations in the smooth-lens flux-ratio relationship.

The mass dependence of the violation pattern has
been studied systematically, with results presented in §6,
which also includes a discussion of effects from different
concentration-mass relations and from allowing scatter in
the concentration on the overall cusp-violation probabilities.

In this section we have illustrated the effects of varying
the redshift, impact parameter, mass and density profile of a
single perturbing halo. In practice, perturbations could arise
anywhere along the line of sight and from many different
haloes. The overall perturbation is far more complicated
than any of the simple cases presented here. In the following
sections, we use cosmological N-body simulations to obtain
self-consistent and realistic distributions of perturbers along
strong lensing sight lines, and estimate the net perturbation
and the likelihood of the observed flux ratio violations.

4 LENSING LINES OF SIGHT FROM

COSMOLOGICAL SIMULATIONS

4.1 Constructing lensing cones from MS-II

The Millennium-II simulation (MS-II; Boylan-Kolchin et al.
2009) is an N-body simulation of a cubic cosmological
volume with a comoving side length of 100h−1 Mpc, at
a spatial resolution of 1h−1 kpc and mass resolution of
6.89 × 106h−1M⊙. The cosmological parameters of MS-II
are the same as those of the earlier Millennium and Aquar-
ius simulations, consistent with the WMAP-1 results. MS-II
provides us with the large-scale distributions of a cosmologi-
cal sample of dark matter haloes. When tracing lensing sight
lines through this simulation, we use the following method to
determine where haloes cross the past light cone of a fiducial
observer (for more details, see Angulo 2008).

We start by replicating the 100h−1 Mpc simulation
box in its X, Y and Z dimensions, as many times as we
need to cover the desired redshift range (along the sight
line) and angular size (transverse to the sight line). For
computational efficiency we only let the combined box go
to the source redshift in the X and Y dimensions, and
keep the number of replications in the Z dimension to a
minimum. As illustrated in Fig. 7, the observer is located
at the origin (0, 0, 0) in one corner of this replicated box.
Assuming a source redshift of zs = 2, the total dimension
of the combined box is chosen to be 38 × 38 × 8, in units
of one Millennium-II simulation box. The position angles
(θ, φ) of a given line-of-sight vector are defined as the
angles measured from the ZX- and XY -plane, respectively.
The simulated sky into which we trace sight lines is then
two 2◦ × 30◦ stripes, which cover 10◦ 6 θ 6 40◦ and
50◦ 6 θ 6 80◦, and 10◦ 6 φ 6 12◦. Directions along the
X and Y axes (with 6 10◦) and along 40◦ 6 θ 6 50◦ have

Figure 7. The geometry of the replicated box for light-cone gen-
eration: the MS-II simulation box of 100h−1 Mpc is repeated in
its X, Y and Z dimensions as many times as needed to cover
the desired redshift range and angular size. For a source redshift
of zs = 2, the total dimension of the combined box is set to be
38× 38× 8, in units of one Millennium-II simulation box. An ob-
server is put at the origin (0, 0, 0) of this box. The position angle
pair (θ, φ) of a given line-of-sight vector are defined as the angles
measured from the ZX- and XY -plane, respectively. The simu-
lated sky we have looked at is then two 2◦ × 30◦ stripes, which
cover 10◦ 6 θ 6 40◦ and 50◦ 6 θ 6 80◦, and 10◦ 6 φ 6 12◦.
Directions along the axes (with 6 10◦) and along θ ∼ 45◦ have
been excluded to avoid significant structure repetition.

been excluded to avoid significant repetition of structures
in the replicated box.

Haloes at each simulation snapshot (corresponding to
a particular redshift) are identified using the Friends-of-
Friends algorithm (Davis et al. 1985). Haloes also contain
many subhaloes; these are identified using the subfind

algorithm (Springel 2005). The minimum mass of subhaloes
resolved by the simulation is 1.4× 108h−1M⊙ (correspond-
ing to 20 particles). Haloes at different snapshots are linked
together by an algorithm for defining their merging history
(Helly et al. 2003). We follow haloes in each of these merger
trees and predict their trajectories (in the replicated box)
between every two adjacent snapshots. In this way, we can
find the exact redshift and comoving position of a halo at
the moment it crosses the past light cone of the observer.
When a halo crosses the light cone, all its subhaloes are
assumed to cross at the same redshift. We assume that
the relative positions of these subhaloes at the light-cone
crossing time are the same as in the previous snapshot.

Hereafter, we will use the term “lensing cone” to refer to
the observer’s light cone that encloses a particular lensing
sight line towards a certain direction in the sky (and out
to the source redshift). All haloes that cross the past light
cone are checked to see if they are physically within a given
lensing cone. If so, their positions, redshifts, masses and half
mass radii are stored for lens modelling. All lensing cones are
50′′ × 50′′-wide, out to a source redshift zs = 2, and contain
a primary lens around redshift zd = 0.6 (typical source and
lens redshifts for the observed quasar lensing systems).

To build up our lensing cone catalogue, we randomly
select about 300 directions in the 2◦ × 60◦ simulated
sky, each of which goes through at least one galaxy-scale
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Figure 8. The halo distribution within an example lensing cone
in a slice of depth 3800h−1 Mpc (in co-moving distance), out to a
redshift of z = 2. The cone covers a region of 50′′×50′′. In all four
panels, haloes and subhaloes are plotted as black squares; those
more massive than 1010M⊙ are shown by red squares. The central

region of radius R 6 5′′ is indicated with blue lines in both top left
and bottom right panels. Top left: the projected cone geometry
in comoving distance. Top right: same lensing cone, shown in
the redshift− physical distance plane. Bottom left: the central
4′′ × 4′′ region of the light cone projected in the sky, where the
main tangential critical curves form; subhaloes are indicated by
purple squares in this panel, circles in solid red and dashed black
indicate the half-mass radii of haloes (and subhaloes). Bottom
right: an expanded view, showing haloes and subhaloes projected
within the central 40′′ × 40′′ of the light cone.

halo with a mass above 1012h−1M⊙ located at redshift
|z − 0.6| 6 0.02 in the replicated box. This ensures that
the primary haloes we select are responsible for producing
multiple images of the zs = 2 background sources. We have
confirmed that these ∼ 300 randomly selected primary
lenses are representative of mass and circular velocity dis-
tributions of ∼23,000 haloes that meet the same selection
criteria in the simulated sky.

Fig. 8 shows the geometry and halo distribution of an
example lensing cone. On average each lensing cone (of
50′′ × 50′′) contains about 10, 000 (12, 000) haloes (sub-
haloes). Within a projected central region of R 6 5′′ for
strong lensing, there are on average ∼ 300 haloes with
m > 108h−1M⊙ directly contributing to the convergence
field. The rest are distributed further out (in projection)
and contribute to the shear field of this region in the same
way as point masses.

4.2 Ray-tracing through MS-II lensing cones

and line-of-sight lens modelling

To carry out calculations for multi-plane light deflection,
we assume 60 lens planes distributed with equal spacing in
redshift between the observer and the source at zs = 2. In

each of these lens planes, a region of 5′′ × 5′′ around the
line centre is covered by a 1000 × 1000 rigid grid in order
to calculate the Jacobian matrix As (Eq. 2) between the
source plane and the final image plane.

Haloes within a lensing cone are projected into these
lens planes according to their redshifts. The main lens halo
is modelled as an isothermal ellipsoid, for which a universal
axis ratio (q3 = 0.8) and core radius (s0 = 0.05′′) are as-
sumed. The orientation of the ellipsoid is randomly chosen
in the interval of [0, 2π]. The lensing strength bSIE (related
with bI through bI = bSIEe/sin

−1e, where e = (1 − q23)
1/2,

see Keeton & Kochanek 1998) is derived through an empir-
ical relationship between halo’s virial velocity V200 and the
velocity dispersion σSIE of the equivalent isothermal ellip-
soid (Chae et al. 2006):

σSIE

200 km/s
≈

[

1.17 V200

200 km/s

]0.22

(171 km/s 6 V200 6 563 km/s)

(6)
and bSIE = 4π(σSIE/c)

2Dds/Ds, where c is the speed of
light and Dds and Ds are the angular diameter distances
between the main lens and the source, and the source and
the observer, respectively. The virial velocity V200 is ob-
tained from halo mass M200 and its virial radius r200 through
V 2
200 = GM200/r200. Our requirement that the main lens

be more massive than 1012h−1M⊙ implies a weighted mean
lensing strength bSIE = 0.84′′, derived from an average σSIE

of 222 kms−1 for our sample of ∼ 300 primary lenses.
Within each lensing cone, haloes with projected pro-

files that are completely outside the central 5′′ × 5′′ region
are treated as point masses. Those within this region are
assigned a density profile: as described above, we investi-
gate three distinct choices of this profile (singular isother-
mal sphere, NFWwith the M08 concentration-mass relation,
and NFW with the B01-M05 concentration-mass relation).
All halo profiles are normalized to their masses M200 and
truncated at the virial radii r200; subhaloes are truncated at
two times their half mass radii.

For each line of sight, deflection angles are individually
calculated for the equivalent isothermal ellipsoid of the main
lens and for all line-of-sight (sub)haloes, and are tabulated
to the meshes at different lens planes. Through ray tracing,
source positions ~βN that correspond to the final image plane
~θ1 are identified, and the final Jacobian matrix As = ∂~βN

∂~θ1
is then derived using the finite differencing method. Images
of a given source position are effectively found using the
Newton-Raphson iteration method.

5 RESULTS FROM THE MILLENNIUM II

SIMULATION

In order to calculate P (> Rcusp|∆θ ± 2.5◦) – the probabil-
ity distribution in the Rcusp −∆θ plane for individual lens-
ing cones, we generate 10, 000 ∼ 20, 000 cusp sources whose
close triple images have image opening angles ∆θ 6 120◦.
We have also calculated P 90(R0.187

cusp ) for cases with ∆θ 6 90◦

as an overall estimate for cusp-caustic violations to compare
with our previous work, in which only cases with ∆θ 6 90◦

were examined for violations (caused by intrinsic substruc-
tures within the main lens).
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To derive average violation probabilities over all sight
lines, we weight P (> Rcusp|∆θ ± 2.5◦) and P 90(R0.187

cusp )
of each lensing cone by the quadruple-image lensing
cross-section in the source plane (simply the fractional
area within the tangential caustic). We do not account for
magnification bias among the cusp sources.

Fig. 9 (upper panels) and Table 2 show that if perturb-
ing structures are haloes (and subhaloes) distributed outside
the main lens along the line of sight as in the Millennium-II
simulation, where such haloes are resolved to 108h−1M⊙,
they cause a non-negligible amount of cusp violations, com-
parable to those due to the substructures in the lens itself.
However, the violation pattern (as a function of ∆θ) depends
strongly on the density profiles applied to haloes projected
near the centre of the line of sight.

5.1 Effects from massive line-of-sight haloes

We have also investigated the effect from line-of-sight haloes
more massive than 1010h−1M⊙, which are most likely to re-
tain a significant fraction of baryons in their dark matter
potential wells. The chance of finding at least one of these
massive secondary lenses intercepting a strong-lensing sight
line (i.e. projected within a typical Einstein radius of 1′′

around the line centre, out to a redshift of 2) is about 10%.
Depending on their density profiles, compact haloes (e.g. sin-
gular isothermal spheres) could generate severe astrometry
anomalies with a probability of a few percent, while haloes
with shallower inner profiles could not.

Fig. 10 presents the peculiar image configurations for
an example sight line. Four, six and eight images (excluding
the central image) are produced when the source is located
at different positions with respect to two sets of tangen-
tial caustics. In this particular case, the second caustic is
produced by a perturbing halo of 2 × 1010M⊙, modelled
as a truncated singular isothermal sphere, projected near
the centre of the main lens. Such peculiar image astrome-
try has already been proposed and used to constrain density
profiles of massive intergalactic objects (e.g., Wyithe et al.
2001; Wilkinson et al. 2001).

5.2 Substructures inside line-of-sight haloes

To investigate the effect of substructures inside haloes along
the line of sight, we have excluded all substructures from our
Millennium-II lensing cones and calculated violations due to
“smooth” line-of-sight haloes alone. Table 2 lists violation
probabilities in this case (for different halo density profiles).
The relevance of subhaloes to lensing flux-ratio anomalies
strongly depends on their assumed density profiles. Above
m > 108h−1M⊙, NFW-like substructures within line-of-
sight haloes are responsible for causing a few percent of the
cusp-caustic violations.

5.3 Background vs. foreground

We have separated line-of-sight haloes that are distributed
in front of and behind the main-lens plane (zd = 0.6). The
violation probabilities of these two groups are listed in Table
2, calculated excluding their subhaloes. A higher violation

Table 3. Mean surface number densities of projected haloes out
to z = 2.0 per decade of mass, averaged over 200 Monte-Carlo
lensing cones.

[106, 107] [107, 108] [108, 109] [109, 1010] > 1010 (h−1M⊙)

414 50 6 0.7 0.1 (/arcsec2)

probability is found caused by haloes in the background than
in the foreground, as more haloes intercept the light rays be-
hind the main lens plane, given a typical lensing geometry
(zd = 0.6 and zs = 2). It is interesting to notice that viola-
tions from the foreground and the background roughly add
up to the total violations due to haloes along the entire line
of sight (second row of Table 2). The ratio between viola-
tions from the foreground and from the entire sight line is
close to 2:5, which is the ratio between the comoving radial
distances for zd = 0.6 and zs = 2.

6 RESULTS FROM MONTE-CARLO HALOES

WITH A SHETH-TORMEN

MASS FUNCTION

The Millennium-II simulation has a limited mass resolution.
To investigate the mass dependence of the violation pat-
tern below the halo mass of 108h−1M⊙, we have used a
Monte-Carlo method to generate intergalactic halo popula-
tions with masses 106h−1M⊙ 6 m < 1012h−1M⊙ (see §7 for
discussion on adopting 106h−1M⊙ as the lower mass limit).
These haloes are drawn from the Sheth-Tormen mass func-
tion (Sheth & Tormen 2002) generated with the code pro-
vided by Reed et al. (2007).

We have randomly generated 200 lensing cones out to
zs = 2, each of which contains a main lensing halo modelled
as an isothermal ellipsoid at redshift zd = 0.6. The lensing
strength bSIE is fixed to be 0.84′′, the same as the mean bSIE
of the main lenses in the selected sample of the Millennium-
II lensing cones. The axis ratio q3 = 0.8, core radius S0 =
0.05′′ and an orientation angle of 0.25π are also taken to be
the same for all main lenses.

In each realization of the lensing cone, line-of-sight halo
positions are randomly generated, with number densities as
given by the Sheth-Tormen mass function at the redshifts of
the 60 lens planes used for the Millennium-II lensing cones.
Table 3 lists the mean surface number densities of projected
haloes in different mass decades, averaged over 200 lens-
ing cones4. Haloes projected within the 50′′ × 50′′-cone are
saved, and those projected within the central 5′′ ×5′′-region
are modelled with truncated singular isothermal spheres
and truncated NFW profiles (using both M08 and B01-M05
concentration-mass relations). Those further out are mod-
elled with point masses. Cusp-caustic violations were identi-
fied in the same way as for the Millennium-II lensing cones.

4 These numbers roughly follow a power-law mass function of
dn(m) = m−1.9dm, m being the mass of haloes.
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Table 2. P 90(R0.187
cusp ) from cosmological simulations.

Cases truncated singular isothermal sphere truncated NFW (M08) truncated NFW (B01-M05)

haloes + subhaloes 7.8% 7.3% 12.8%
haloes only 7.0% 5.2% 9.7%

background haloes 5.0% 3.2% 5.8%
foreground haloes 2.0% 1.9% 4.0%

Note: P 90(R0.187
cusp ) ≈ 10% was derived using only substructure populations (m & 105h−1M⊙) from the Aquarius simulations (Xu et al.

2009, 2010). Cases here are using line-of-sight structures (haloes and subhaloes) from the Millennium II simulation (m > 108h−1M⊙);
subhaloes from the main lensing halo have been excluded.

Figure 9. Contour maps of the violation probability P (> Rcusp|∆θ ± 2.5◦). Symbols and contour levels are the same as in Fig. 3. The
upper panels are for MS-II lensing cones with all line-of-sight haloes and subhaloes (m > 108h−1M⊙), and the bottom panels are for
Monte-Carlo lensing cones with line-of-sight haloes that follow the Sheth-Tormen mass function (m > 106h−1M⊙). Three columns from
left to right correspond to different assumptions for the density profile: truncated singular isothermal spheres, truncated NFW profiles
with M08 and B01-M05 concentration-mass relations, respectively.

Table 4. Violation probabilities for Monte-Carlo lensing cones with main lens parameter bSIE = 0.84′′.

P 90(R0.187
cusp ) > 106h−1M⊙ > 107h−1M⊙ > 108h−1M⊙ > 109h−1M⊙ > 1010h−1M⊙

truncated singular isothermal sphere 8.2% 7.7% 6.5% 4.8% 2.8%
truncated NFW profile (M08) 12% 9.1% 5.6% 2.5% < 1%
truncated NFW profile (B01-M05) 23% 18% 11% 5.5% 1.9%
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Figure 10. Critical curves and caustics of an example MS-II lensing cone. The remarkable wiggle feature on the tangential critical curve
is caused by a 2× 1010M⊙ halo along the line of sight, modelled as a truncated singular isothermal sphere. Green dots in red regions in
the subpanels are example source positions. Red and blue dots in the main panels are the corresponding image positions; red for negative
parities, blue for positive parities. Panels 1-4 present different image configurations for a source located within the caustic region where
five images would be produced; panel 5-8 are for a caustic source with seven images; and panel 9 is for nine images.

6.1 Mass dependence of the cusp-caustic violation

The lower panels of Fig. 9 show P (> Rcusp|∆θ ± 2.5◦) con-
tour maps using Monte-Carlo realizations of the line-of-sight
halo population, with a lower mass limit of 106h−1M⊙. As in
the MS-II lensing case, the frequency of cusp-caustic viola-
tions depends strongly on the assumed halo density profiles.
Table 4 also presents the values of P 90(R0.187

cusp ) when this
lower mass limit is increased, so that the mass dependence
of the cusp-caustic violations can be seen.

Applying truncated singular isothermal spheres yields
relatively larger contributions to cusp violations from more
massive haloes5 (m > 109∼10h−1M⊙). When truncated
NFW profiles are assumed, lower mass haloes would also
cause a significant amount of violations. As can be seen from

5 Xu et al. (2009) estimated the total lensing cross-section σcs ∝
b2SIE ×Nperturbers(m) for singular isothermal lenses. In this case
σcs ∝ mα, and α is a positive value, hence the total lensing cross-
section will be biased towards massive haloes.

Table 4, when the lower mass limit of line-of-sight haloes
decreases from 108h−1M⊙ to 106h−1M⊙ (107h−1M⊙), the
corresponding violation probabilities, P 90(R0.187

cusp ), increase
by ∼2% (1%), ∼6% (4%) and 12% (7%) when assuming
truncated singular isothermal spheres and truncated NFW
profiles with the M08 and the B01-M05 concentration-mass
relations, respectively.

Comparing Table 4 with Table 2, it can be seen that
our Monte-Carlo results are similar to those obtained using
the Millennium-II lensing cones in the mass range above
108h−1M⊙. This suggests that the clustering of haloes is not
a dominant effect in the production of flux-ratio anomalies
for galactic-scale lenses.

6.2 Dependence on the Einstein radius

When the lower mass cutoff for main lensing haloes in the
Millennium-II lensing cones is reduced from 1012h−1M⊙ to
1011h−1M⊙, the mean lensing strength bSIE of the equiva-
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Table 5. P 90(R0.187
cusp ) for Monte-Carlo lensing cones with main lenses of different Einstein radii bSIE: violations due to line-of-sight

perturbers more massive than 106h−1M⊙.

P 90(R0.187
cusp ) bSIE = 0.62′′ bSIE = 0.84′′ bSIE = 1.0′′ bSIE = 1.5′′

truncated singular isothermal sphere 6.4% 8.2% 11% 15%
truncated NFW profile (M08) 9.5% 12% 15% 20%
truncated NFW profile (B01-M05) 20% 23% 28% 32%

lent isothermal ellipsoids decreases from 0.84′′ to 0.62′′ (cor-
responding to σSIE = 190 kms−1 for zd = 0.6 and zs = 2
using Eq.6). Table 5 presents the P 90(R0.187

cusp ) values that
result from four different bSIE for the main lenses in our
Monte-Carlo lensing cones. In addition to bSIE = 0.62′′ and
0.84′′, we have calculated violations for an arbitrary bSIE of
1′′ (1.5′′), which is about the mean (largest) Einstein radius
of the observed systems listed in Table 1.

As can be seen clearly from Table 5, systems with larger
Einstein radii have higher violation probabilities. This is ex-
pected, because close triple images normally form around
the tangential critical curve at about the Einstein radius.
Comparing to the case of a small Einstein radius, a larger
value of this radius results in a higher chance for the image
triple (of a given opening angle ∆θ) to be intercepted by
line-of-sight perturbers.

6.3 Halo concentrations and mass function

As we have shown above, the cusp-violation probability de-
pends strongly on our assumptions about halo concentra-
tion. The concentration-mass relation derived by Bullock
et al. (2001) has a simple functional form (including red-
shift evolution) and has been widely used in the literature.
Coĺın et al. (2004) investigated concentration parameters for
haloes of 106h−1M⊙ 6 m 6 109h−1M⊙ and found this rela-
tionship to be a good fit. However, these early simulations
of dark matter halo formation had relatively low numerical
resolution and this can introduce systematic errors.

More recently, a number of authors including Neto et al.
(2007), Gao et al. (2008), Zhao et al. (2009) and M08
(whose results are used above), derived concentration-mass
relations from high-resolution cosmological N-body simu-
lations. These studies are restricted to haloes with m >

1010h−1M⊙ but they exhibit systematic differences from
the concentrations obtained by B01-M05. For this reason
we show lensing results using the M08 relation, extrapolat-
ing to lower masses when required, but exploring how the
results change when this relation is varied by factors of a
few.

The B01-M05 concentration-mass relation overesti-
mates the concentration of small mass haloes inferred
from the extrapolated M08 relation by factors of 3 ∼ 4
at z = 0. Therefore, we expect the violation probability
to be larger for the B01-M05 relation than for the M08
relation. The scatter in halo concentration also affects the
final cusp-violation probability.

Fig. 11 presents the values of P 90(R0.187
cusp ) induced by

line-of-sight haloes assuming the Sheth-Tormen mass func-
tion. To allow for possible uncertainties in halo concentra-
tion, we also show results for the case when the concen-

Figure 11. The violation probability P 90(R0.187
cusp ) changes

with the application of different concentration-mass relations.
P 90(R0.187

cusp ) is given by the Y-axis. The X-axis indicates the as-
sumed halo concentration C (at any given mass) normalized to
C(M08) – the concentration predicted by the M08 concentration-

mass relation. The Sheth-Tormen mass function is used to gen-
erate line-of-sight halo populations. Values of P 90(R0.187

cusp ) at
C/C(M08)=0.5, 1.0, 2.0 and 3.0 are plotted as the four black
squares, which are connected by the black solid line. Assuming
that violations grow linearly with the number of perturbers, the
dash and dotted lines plotting (100 ± 20)%× and (100 ± 10)%×
the P 90(R0.187

cusp ) values as shown in the black solid line, resemble
violation probabilities under (100±20)%× and (100±10)%× the
Sheth-Tormen mass function, respectively. Red, green and blue
squares present results (under the Sheth-Tormen mass function)
when allowing for scatter of concentrations (for haloes of a given
mass) in form of Gaussian distributions with the standard devia-
tion being 0.1, 0.2 and 0.3 dex around mean concentration values
predicted by the M08 concentration-mass relation. P 90(R0.187

cusp )
derived from using the B01-M05 concentration-mass relation is
also given, indicated by the purple horizontal line.

trations inferred from the M08 concentration-mass relation
are multiplied by factors of 0.5, 1.0. 2.0 and 3.0. Varying
amounts of scatter in concentration (for haloes of a given
mass) are modelled assuming a Gaussian distribution with
mean value equal to the M08 concentrations. As may be
seen, the violation probabilities depend strongly on halo
concentrations. Higher concentrations result in higher cusp-
caustic violation probabilities. A larger scatter in concentra-
tion will also increase the violation probability.

The halo mass function (the number density of haloes
per unit volume per decade in mass) influences the cusp
violation probability. Metcalf (2005b) found that flux-ratio
anomalies caused by line-of-sight perturbers not only depend
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strongly on the radial density profile of the haloes (their con-
centration), but also on the primordial matter power spec-
trum on small scales. Miranda & Macciò (2007) suggested
that flux-ratio anomalies could be used statistically as a
test of the behaviour of the matter power spectrum on small
scales. We do not explore these effects here but in Fig. 11
we show the result of using (100 ± 10/20)%× the Sheth-
Tormen mass function, and assuming that violations grow
linearly with the number of perturbers.

7 DISCUSSION AND CONCLUSIONS

We have examined the effects of intergalactic cold dark mat-
ter haloes on flux-ratio anomalies in multiply-lensed quasar
images by ray-tracing along strong-lensing sight lines that
are either taken from the Millennium II simulation (for
haloes and subhaloes with m > 108h−1M⊙), or generated
using the Monte-Carlo method assuming a Sheth-Tormen
mass function (for haloes with m > 106h−1M⊙).

We use P 90(R0.187
cusp ), the probability for the cusp-caustic

relation, Rcusp, to be larger than or equal to 0.187 – the
smallest value of Rcusp measured for cusp-caustic systems
to date (for the quasar B1422) – over all realizations with
∆θ 6 90◦, as a statistical measure of the cusp-caustic vi-
olation probability. We have found that the mean viola-
tion probability from intervening haloes depends strongly
on their density profiles.

Chen et al. (2003) assumed singular isothermal spheres
for line-of-sight haloes and find that they only contribute to
6 10% of the total perturbation. Assuming the same halo
density profile, we find that the cusp-caustic violation prob-
ability caused by line-of-sight haloes with m > 106h−1M⊙ is
comparable to that caused by intrinsic substructures within
the main lensing halo (P 90(R0.187

cusp ) ≈ 8% vs. 10%, Xu et al.
2010), which is in fair agreement with Miranda & Macciò
(2007). The different results between Chen et al. (2003) and
ours can be attributed to the drawbacks of their cross-
section method, which underestimates effects from more so-
phisticated perturbation scenarios (see Metcalf 2005a).

When we assume truncated NFW profiles for the line-
of-sight haloes (m > 106h−1M⊙), the violation probability,
P 90(R0.187

cusp ), increases to 23% if we adopt the B01-M05
concentration-mass relation and to 12% if we adopt our
preferred relation, that by M08. These values are larger
than that due to the intrinsic subhalo populations alone.

A typical NFW profile has an Einstein radius 3 ∼ 4 or-
ders of magnitude smaller than a singular isothermal sphere
with a same mass. However, NFW perturbers in the mass
range from 106h−1M⊙ to 109∼10h−1M⊙ cause more cusp
violations than their singular isothermal counterparts. This
may be due to the fact that in this mass range, perturbation
in magnification (ratios) is mainly from fluctuations in the
local density field that do not change the image positions.
When comparing an NFW with a singular isothermal sphere
of the same mass, we notice that the surface density distri-
bution of the former exceeds that of the latter from a radius
of ∼ 0.001r200 outwards, which means the NFW profile is
more effective in introducing fluctuation to the convergence
and thus causing flux-ratio anomalies.

On the other hand, the deflection angle of a perturber

ofm ∼ 106−9h−1M⊙ is always small (. 0.001′′ for a singular
isothermal sphere locating at z = 0.6), until the perturber is
massive (m & 1010h−1M⊙) and compact enough (a singular
isothermal sphere) to have a deflection angle (& 0.01′′) that
can shift a nearby image to a new position with a different
magnification from the primary lens (see Metcalf 2005b).
This can explain the larger violation probabilities (as shown
in Table 4), caused by singular isothermal perturbers of
m > 109∼10h−1M⊙ than by their NFW counterparts which
are less effective in causing flux-anomalies due to shifting
image positions.

Another issue concerns the finite-source effect.
Metcalf & Amara (2010) pointed out that biased results
about substructures could be drawn due to the point source
approximation, which is used in this work.

The radio-emission regions of observed quasars are
estimated to be ∼10 parsecs in extent (Andreani et al.
1999; Wyithe et al. 2002), corresponding to ∼ 0.001′′ for a
source at zs = 2.0. When the perturbing mass drops down
below 106h−1M⊙, the corresponding effective perturbing
area decreases to . 0.001′′ in radius for the perturber at
zd = 0.6, becoming smaller than an image with µ ∼ 10− 20
(around the tangential curve) of the radio emission region
of a background quasar. As a result, the induced mag-
nification fluctuation would be smeared out (within the
image area), and thus no significant image flux anomaly
would be observed at radio wavelengths (but could still be
seen in the optical/near-infrared, which comes from much
smaller physical regions. See Moustakas & Metcalf 2003 for
spectroscopic gravitational lensing). This is why we do not
consider the violation probability produced by perturbing
haloes below 106h−1M⊙. As can be seen from Table 4,
even if we neglect contributions from perturbers below
107h−1M⊙, we still find ∼ 10% cusp-violation probability
from line-of-sight NFW-like perturbers adopting the M08
concentration-mass relation.

Several other points are worth noting. Firstly, the vio-
lation probability depends, of course, on the concentration
of the halo, and both large halo concentrations and a large
scatter in concentration will result in higher violation prob-
abilities. Thus, it may be possible to use the statistics of
flux-ratio distributions (measured in the radio) from large
samples of lensed quasars to constrain the density profiles
of low-mass dark matter haloes.

Secondly, systems with large Einstein radii are more
likely to be observed in a configuration that violates the
cusp-caustic relation because of a higher incidence of close
triple images (with a given opening angle ∆θ) that are
intercepted by line-of-sight perturbers. In our work, us-
ing the B01-M05 concentration-mass relation and adopting
bSIE = 1.0′′, the violation probabilities for several represen-
tative cases in Metcalf (2005a) can be reproduced.

Thirdly, the probability that a massive halo (m >

1010h−1M⊙) intercepts a galaxy-scale strong-lensing sight
line with an impact parameter of 6 1′′ from the main lens
centre is about 10%. These halos can perturb image fluxes,
surface brightness (e.g., Vegetti et al. 2009) and even image
astrometry (e.g., Wyithe et al. 2001). Halos with compact
density profiles (e.g., singular isothermal spheres) could gen-
erate extra image pairs locally with an image separation of
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0.01′′ ∼ 0.1′′, resulting in more than four bright images of
a background quasar. With upcoming lensing surveys, ob-
servations of peculiar image configurations could put better
constraints on the density profiles of these massive haloes
(Orban de Xivry & Marshall 2009).

Fourthly, for masses above 108h−1M⊙, we find that halo
clustering has only a minor effect on the flux-ratio anoma-
lies for galaxy-scale lensing systems. For a typical lensing
geometry (with zd = 0.6, zs = 2), the overall perturbation
produced by background haloes (behind the main lens) is
larger than that caused by foreground haloes.

To summarise, in this work we have calculated the cusp-
caustic violation probability, as measured by P 90(R0.187

cusp ),
produced by line-of-sight dark matter haloes. The value
of P 90(R0.187

cusp ) strongly depends on halo density profiles,
specifically on concentration, in the case of NFW per-
turbers. When the concentration-mass relation proposed by
Macciò et al. (2008) is used, the value of P 90(R0.187

cusp ) pro-
duced by all line-of-sight perturbers that could give rise
to observable flux-ratio anomalies at radio wavelengths is
found to be ∼10%. In previous work (Xu et al. 2009, 2010)
using the Aquarius simulations (Springel et al. 2008), we
had found that the contribution to P 90(R0.187

cusp ) from in-
trinsic substructures within the main lensing galaxy and its
dark matter halo amounts to P 90(R0.187

cusp ) ≈ 10%. Summing
up both contributions, the total violation probability could
reach ∼20%.

There are five observed cusp geometry lensing systems
whose triple images have opening angles ∆θ 6 90◦. Of these,
the three radio lensing cases show firm evidence for cusp-
caustic violations due to galactic-scale structures. Applying
the same statistical argument used by Xu et al. (2009), we
conclude that the probability of observing such a violation
rate (3/5) is ≈ 5% for a total P 90(R0.187

cusp ) ≈ 20%. This can
be compared with the probability of < 1% that Xu et al.
(2010) found when considering only perturbations due to
intrinsic substructures.

The existing observational sample is clearly too small
for us to reach a definitive conclusion regarding the appro-
priateness of the ΛCDM model. Our main result, however,
is that, depending on the density profiles of CDM haloes
(and subhaloes), the line-of-sight projection effect on the
flux-ratio anomalies of quasar images can be comparable
to, or even larger than that from intrinsic subhalos. New
multiply-lensed four-image systems discovered in upcoming
lensing surveys will make it possible to use the statistics
of flux-ratio anomalies to constrain the properties of dark
matter halo as well as the cosmogonic model.

We mention in passing that a warm dark matter cos-
mogony has a different power spectrum of density pertur-
bations, as well as different density profiles for small halos
compared to the standard CDM cosmogony. This will result
in different (presumably lower) cusp-violation probabilities
(e.g., Miranda & Macciò 2007). This possibility is worth ex-
ploring further in future.
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