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ABSTRACT

We study the excitation of nonaxisymmetric modes in the-pustger phase of binary com-
pact object mergers and the associated gravitational wangs®n. Our analysis is based
on general-relativistic simulations, in the spatial canfal flathess approximation, using
smoothed-particle-hydrodynamics for the evolution of teratand we use a set of equal and
unequal mass models, described by two nonzero-tempetsdrenic equations of state and
by one strange star equation of state. Through Fourierfoems of the evolution of matter
variables, we can identify a number of oscillation modesyel as several nonlinear com-
ponents (combination frequencies). We focus on the domimas 2 mode, which forms a
triplet with two nonlinear components that are the resultafpling to the quasiradial mode.

A corresponding triplet of frequencies is identified in thravgtational wave spectrum, when
the individual masses of the compact objects are in the rik@dy Irange of 1.2 to 1.33/,.

We can thus associate, through direct analysis of the dysaafithe fluid, a specific fre-
guency peak in the gravitational wave spectrum with theineal component resulting from
the difference between the = 2 mode and the quasi-radial mode. Once such observations
become available, both the = 2 and quasiradial mode frequencies could be extracted, al-
lowing for the application of gravitational-wave asteriss@ology to the post-merger remnant
and leading to tight constraints on the equation of stategf-density matter.

Key words:

1 INTRODUCTION transforms of the evolved variables reveal that the fluidsisiltat-

ing in a number of modes that have discrete frequenciesdghimut
Mergers of binary compact objects are prime sources formgeco  the star. Furthermore, we also identify several nonlineampo-
and third-generation interferometric gravitational w§@Ww) de- nents, sums and differences of discrete oscillation moHes.os-
tectors |(Abbott et all_2009; Acernese et al. 2006; Abadi¢'eta cillations identified in the fluid are in direct corresponderwith
2010). The expected GW signals from such events are estimate peaks in the GW spectrum, as obtained through the quadrupole
through general-relativistic hydrodynamical simulatideee Duez formula. We focus on the main quadrupobe (= 2) oscillation
2010 for a review). The outcome of these simulations depends  mode of the fluid, which appears as a triplet, the side bands be
the binary parameters and on the equation of state (EOSpbf hi  ing due to the nonlinear coupling to the fundamental qudiita
density matter. The latter is rather uncertain (Lattimerr@&kash (m = 0) mode. The lowest-frequency side band, the difference be-
2007; Steiner et al. 2010) and currently it is unclear whetfoe tween then = 2 andm = 0 frequencies, coincides with a peak in
a given binary mass, the merger would lead to a hypermassive the GW spectrum that characterizes the merger phase in @l mo
compact object or to prompt collapse to a black hole. If a hy- els, in which the mass of both compact objects are in the rahge
permassive compact object forms, it will not be axisymneetri 1.2 to 1.35//,. We thus propose that in the event of detection, one

but it will show transient nonaxisymmetric deformationscis as could extract both thex = 0 andm = 2 mode frequencies of the
a bar-like shape, spiral arms, a double core structure amdi-qu  merged object, which could lead to tight constraints on tSE
radial and nonaxisymmetric oscillations of the matterogrnon- of high-density matter. In effect, such a detection wouldi®e an
axisymmetric features should be distinguishable in the Gyias analysis with GW asteroseismology of the remnants of bioarg-
and could be used for characterizing the hypermassive ottropa pact object mergers.

ject (Zhuge et al. 1994; Oechslin eflal. 2002; Shibata & \29GP;
Shibata et al. 2005; Shibata & Taniguchi 2006; Oechslin &éan particle-hydrodynamics (SPH) and on a spatially-confdlyritat
2007 Baiotti et al. 2008; Kiuchi et al. 2009; Bauswein eRal10). spacetime approximation, as described in detdil in Bausel.

Here, we analyze the formed hypermassive compact object as(2010) and references therein. We simulate the merger afdie
an isolated gravitating fluid, studying its oscillation nesdFourier pact objects following the evolution from the late inspipdlase

The simulation code is based on general relativistic smembth
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through the merging and the formation of the hypermassine re
nant, until a quasi-stationary state is reached.
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lapse by strong differential rotation. Because of this,dbhtcome
of the simulations with the LS and MIT60 EOSs is still usefod f

The paper is structured as follows: In SEE. 2 we discuss the qualitative comparisons to the cases where the Shen EO8ds us

initial data used in our similations. In S&¢. 3 we outline tiuener-
ical methods used in the simulations and in the mode exbracti
procedure. Sectidal 4 presents our results in detail, whieeic[b
we compare them to previous results in the literature. Welcoie
with Sec[®.

2 INITIAL DATA

We consider two different models of hadronic EOSs, refetced

The masses of compact stars in binaries cluster at
about 1.35 My (Thorsett & Chakrabartyl 1999 Zhang et al.
2010), which is also predicted by population synthesis istud
(e.g.[Belczynski et al. 2008). Therefore, we focus in ourysis

on systems with two neutron stars with a gravitational mdss o
1.35 M. In order to investigate unequal-mass mergers, we also
consider configurations with a 1.2/ neutron star and a more
massive companion of 1.3%,. For the MIT60 EOS, we include a
configuration with two low-mass stars of 1M each, an unequal-
mass binary with 1.2/ and 1.35M, and a configuration with

as Shenl(Shen etlal. 1998) and LS (Lattimer & Swasty|1991) and two stars of 1.35/ each. In the latter case, however, the hyper-
a strange quark matter EOS, referred to as MIT60. Since dur- massive object formed after merging only survives for a fegw d
ing merging temperatures of more than several ten MeV can be hamical timescales before collapsing to a black hole, andoweot

reached, all three EOSs take into account non-zero temyperetf-
fects (see Bauswein etal. 2010 for a discussion of the irapoet
of temperature effects in the merger context).

The Shen EOS was derived within a relativistic mean-field
theory and assumes an incompressibilty modulus for nucheas
ter of K = 280 MeV (Shen et al. 1998). Solving the relativistic
equations of hydrostatic equilibrium, nonrotating nentstars de-

scribed by the Shen EOS have radii of about 15 km in the mass

range of 0.5 to 1.0/ . The maximum mass of nonrotating stars is
2.2 M. For the LS EOS a liquid-drop model witi = 180 MeV
was adopted (Lattimer & Swesty 1991), which yields neuttanss

discuss this model in our study. Table 1 lists all models icmred
further, where, for example, Shen 12135 refers to the sitionla
with a 1.2M and a 1.35V/, star employing the Shen EOS.

3 NUMERICAL METHODS
3.1 Simulations

The hydrodynamical simulations of the binary merger angtis-
merger remnant are performed with a three-dimensionalrgene

more compact in comparison to the Shen EOS . Typical radii are relativistic SPH code. The Einstein field equations are emblv

of the order of 12 km for masses of 0.5 to I\6,. The LS EOS
supports nonrotating objects with masses slightly abo¥e/A .

The MIT60 EOS follows from the strange matter hypothe-
sis (Bodmer 1971, Witteh 1984), i.e. that 3-flavor quark eratt
of up, down and strange quarks is more stable than ordinary nu
clear matter. In such a case, compact stars would be stramge s
rather than neutron stars (see e.g. Glendehning 1996; elastred.
2007), which has not been strictly ruled out theoreticallyob-
servationally at this point. For the MIT60 EOS the MIT Bag
model (Farhi & Jaffe 1984) was employed, with a bag constant o

within the condition of spatial conformal flatness, whiclguges
the additional implementation of a GW backreaction schefoe.
details of the code see Oechslin et al. (2002, 2007). Thaulealc
tions start from a quasi-equilibrium orbit about three tations
before the actual merger. For the neutron star models abo,HB0
SPH particles are used, while the flat density profile of gfesstars
allows for a lower SPH particle resolution of about 130,08@tip
cles. Simulations with a somewhat higher number of pagide
not significantly affect the main features of our resultse Bhmu-
lations are carried out until a stable remnant in approxémata-

60MeV /fm® (seel Bauswein et al. 2010 for details). Strange star tional equilibrium has formed and oscillates for tens of aiyical
models are generally more compact than neutron star moflels o timescales, or until the delayed collapse to a black holescc

the same mass. Furthermore, the mass-radius relationasfgstr
stars does not show the typical inverse relation of neuttarss
The mass-radius relation for all three EOSs included in tuslys
can be found in Fig. 2 of Bauswein ef al. (2010).

We note that the recent discovery of aM2 pulsar
(Demorest et al. 2010) practically rules out EOSs whichdyieax-
imum masses of nonrotating compact stars below this lintie T
maximum masses of nonrotating stars for the LS and MIT60
EOSs employed here fall short of this requirement, but not
dramatically. Though to date several finite-temperatureSEO
(Typel et al. 2010} _Hempel & Schaffner-Bielich 2010; Shealet
20108.,bl 2011; Shen et/al. 2011) have been published, anike t
of writing only those introduced above have been availablast
and successfully incorporated in the simulation code. Thass/-
ing out the LS and MIT60 EOSs would leave us with a single EOS,
which would not test the sensitivity of our results to theicbmf
EOS. We thus include the LS and MIT60 EOSs in our study for the
sole purpose of estimating the sensitivity of our conclosito the
EOS employed, keeping in mind their disadvantage. Nevietbe
the individual stars that make up the binaries have masgafisi
cantly lower than the maximum mass limit, and the hypermassi
object formed as a result of the merger is supported agagtst ¢

The dynamics of the models used in this study have been ex-
tensively discussed |n Bauswein et al. (2010), and the réade-
ferred to this publication for details. Here we only give aebr
outline: While orbiting around the common center of mass, th
stars approach each other increasingly faster due to angda
mentum and energy losses by the GW emission. Prior to merging
tidal forces start to deform the stars. The strength of tfiecede-
pends on the EOS and on the masses of the binary components.
The deformation is pronounced for the Shen EOS, but relgtive
small for the strange star models. Finally, the stars meriges ro-
tating double-core structure, where the two dense coresaafip
bounce against each other a few times to ultimately form ferdif
entially rotating hypermassive object with a single corethle case
of unequal masses, such as our models Shen 12135 and LS 12135,
the less massive binary component is tidally stretched aagped
around the more massive one. Moreover, an extended spiral ar
develops, feeding a dilute halo around the differentiatitating
central object. In the case of the unequal mass strange st@elm
MIT60 12135, the outcome is more similar to the equal mass,cas
because of the reduced tidal effects.

The equal-mass neutron star mergers also form thick disks
around the remnants, because matter is shed off from theewhol



Gravitational waves and nonaxisymmetric oscillations3

surface of the hypermassive objects. In contrast, the retarat 50 F T T T T A 1e-06

merging strange stars terminate at a sharp surface, asadinitial

stars. Matter is stripped off only later in the evolution wiagular 0

momentum transfer leads to the formation of two thin spiraig 40 - 4

which then form a fragmented thin disk around the centrad¢ctbj -1e-06
The hypermassive remnants of the merger are supported

against gravitational collapse by differential rotatiamdahermal 30 i -20-06

pressure. However, ongoing angular momentum transferasd | >

by mass shedding finally leads to gravitational collapsetdadk

hole formation. The delayed collapse can take up to hundéds o 20 L i -3e-06

milliseconds for low-mass models, but our simulations wermi-

nated at about 10 to 20 ms after merging. -4e-06
The GW emission of our models is analyzed by means of the 10 L |

quadrupole formula. In the low-frequency regime the speate -5e-06

not reliable because we simulate only a small fraction ofrthpgiral

phase and thus miss most of the low-frequency part of theabkign 1 1 1 ! ! -6e-06

3.2 ModeExtraction - 86-06

The original simulation data in different two-dimensionqdanes

are first mapped onto a Cartesian grid of sizex n, = 51 x 51.

We then perform Fourier analysis of evolved variables ober t 40
whole grid (but focusing mainly on the equatorial plane) afeh-

tify the predominantly excited modes, which appear as dtscr
frequencies in the Fourier spectrum. At selected mode é&equ

cies, we proceed with extracting the shape of the mode eigen-

6e-06

4e-06

2e-06

functions, using a method described|in_Stergioulaslet &04p 0
The two-dimensional shape of the eigenfunction in the exyizdt
plane correlates directly with the amplitude of the Foutrans- 20 17 -2e-06
form at a given mode frequency. At nodal lines, care must be
taken to switch the sign of the eigenfunction. This method wa -4e-06
first applied in_Stergioulas etlal. (2004) to the case of animgt- 10 -
ric modes, where two-dimensional eigenfunctions wereaesd -6e-06
in a plane that passes through the rotational axis. Here ndetfat -86-06
the same method can be used for extracting the eigenfusatibn
non-axisymmetric modes in the equatorial plane. We noteftina
all modes that were identified, the mode frequency was discre Mx 8e-07
throughout the star and identical in all hydrodynamicalalales. 50 - ' ' ' ' 1
To our knowledge, this is the first direct demonstration that 6e-07
once a hypermassive object forms after a binary mergerhies
as an isolated, self-gravitating system and its dynamiosbeade- 40 - 7] 4e-07
scribed as a superposition of different oscillation modtesa liffer-
entially rotating background). Departures from a backgtbequi- 2e-07
librium state can be described (up to a certain degree) blynsam 30 N
features of the oscillations. We note that the backgroundrging > 0
in time, so that individual frequency peaks are broadenexeN
theless, the frequency peaks remain sufficiently narrowleatify 20 + - -2e-07
individual modes.
-4e-07
10 + e
-6e-07
| | | | | -8e-07

10 20 30 40 50

Ny

Figure 1. Projection in the equatorial plane of the extracted= 0, 2 and

4 mode eigenfuctions (from top to bottom) for the oscillagidn pressure
of model Shen 135135. The two axes count individual grid fsoaf the

Cartesian grid used for the mode analysis. The color scdyehas a relative
meaning.
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Figure 2. Projection in the equatorial plane of the extracted= 1 mode
eigenfunction, for the oscillations in pressure of modelTsD 12135.

4 RESULTS
4.1 Two-dimensional eigenfunctions

Non-isentropic, differentially rotating, compact objeaan oscil-
late in a large number of different quasinormal modganodesp-
modes,g-modes and inertial modes, distinguished by three differ-
ent mode numberg, m andn, the latter one being the radial order,
see _Stergioulas (2003) for a review)). Here, we only charamt
the structure of the extracted modes in the equatorial piaterms

of the mode numbet:. A complete characterization and identifica-
tion with specific quasinormal modes would require a muchemor
detailed analysis that is out of the scope of the current wargar-
ticular, neither a linear, nor a nonlinear complete analg$ipos-
sible oscillation modes has been done for remnants of neafer
compact objects, to date, with which we could directly corepa
our results. As such, we will talk about “modes” and “eigatfu
tions” even though we have not strictly shown a correspooelén
specific linear quasinormal modes. Nevertheless, for thegse of
explaining the main observable features of GWs from nowyaxis
metric oscillations in binary compact object mergers, auwspnt
approach suffices.

In the Fourier transform of hydrodynamical variables, the
dominant mode is always the = 2 mode. For equal-mass merg-
ers, the even mode numbers are predominantly excited, Wdrile
unequal-mass mergers, the odd mode numbers are also aenside
ably excited (mainly then = 1 mode). The modes can be identi-
fied by inspection of the extracted two-dimensional eigeafion
in the equatorial plane. Representative cases are showigst{F
and[2, which display the eigenfunctions (in pressure Ggiihs)
of them = 0, 2 and 4 modes for the equal-mass model Shen
135135 and then = 1 mode for the unequal-mass model MIT60
12135. Them = 0 (quasiradial) eigenfunction is dominated by
a spherically symmetric contribution, while an additignsinall
(rotationally-induced) quadrupole distortion is alsogmet. As ex-
pected for this type of eigenfunction, there is a nearlywtacnodal
line in the pressure perturbations, characteristic of tinelémental
radial mode.

The eigenfunction of then = 2 mode shows a very sharp
guadrupole pattern, induced by the merger of the two ind&fid
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stars. The two nodal lines are, as expected, nearly pemqdadio
each other. Then = 4 mode eigenfunction shows a characteris-
tic octupole pattern. The alternating regions are of nethdysame
size, but due to the very low amplitude of excitation and thaefi
duration of the time-series, the Fourier transform alsd&pigp a
non-zero contribution at the center of the star, which mélaaisfor
this mode we are approaching the accuracy of our method grligh
order modes should also be excited (and there are indeede lar
number of peaks in the Fourier transform at high frequehdias
their amplitude is so small that any extracted eigenfuncivil be
dominated by numerical errors.

Fig.[@ shows the eigenfunction of the = 1 mode excited
during the merger of the unegal-mass model MIT60 12135. A&hod
line that cuts through the center of the star is characte$tthis
mode. Notice that conservation of momentum prohibits tHe-ex
tence of a fundamentah = 1 mode, as this would induce a linear
motion of the center of mass. However, higher-order ovesare
allowed, so the extracted mode should be identified as thefb
frequency) first overtone of the = 1 modes. This is supported by
the additional, nearly circular node line, which allows foomen-
tum conservation during the oscillation.

4.2 Modefrequencies

Table[1 lists the extracted mode frequencies (in the irdrtime,
defined by coordinate timé) for the various models. We note
that the frequencies of the quasiradial (= 0) mode differ sig-
nificantly among the three chosen EOSs. In the selected mass-
range, this frequency is lowest for the Shen EOS (about &zhkH

It doubles to about 1kHz for the LS EOS and it reaches up to
about 1.5kHz for the MIT60 EOS. This mode frequency is aéfdct
mainly by two factors: the compactness of the star and thartis

of the model from the region of axisymmetric instability tolc
lapse. At the boundary of this region, the frequency of thasgu
radial mode goes through zero. On the other hand, higheractmp
ness leads to higher mode-frequency. But, because of thgraxi
metric instability, the quasiradial mode frequency canrbalsfor

any EOS, as long as the model is near the instability thresfbiis
latter property explains the fact that, for each EOS, theetwodith
larger total mass have smaller quasiradial mode frequency.

The frequency of then = 2 mode depends mainly on the
compactness of the star and for the models in Table 1 it ishigug
2 kHz for the stiffer Shen EOS and roughly 3kHz for the softer
LS EOS and for the MIT60 EOS. As expected, for each EQS, it
is higher for the more massive (hence more compact) model. In
all unequal mass cases, we were able to extractthe 1 mode
frequency, which is induced by the unequal distribution aémjust
prior to merging. The additionah = 3 mode was extracted for the
Shen and LS EOSs, while in three models we could also identify
them = 4 mode.

A remarkable property of the nonaxisymmetric modes=
1...4 is that the extracted frequencies are nearly integer nhestip
of the frequency of then = 1 mode. This property holds true with
good accuracy for the equal-mass cases, while for the uhetpss
mergers it is less accurate, but still roughly true.

4.3 A representative model

The evolution of the GW amplitude,. expected from the late bi-
nary inspiral, merger and post-merger phases for the uhecass
model Shen 12135 is shown in the top panel of Eig. 3. The merger
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Table 1. Extracted mode frequencies.

Model fm:O fm:l fm:2 fm:S fm:4
(kHz) (kHz) (kHz) (kHz) (kHz)
Shen 12135 0.50 1.07 2.14 3.22 4.26
Shen 135135 0.46 - 2.24 - 4.11
LS 12135 1.10 1.55 3.12 4.66 -
LS 135135 0.98 — 3.30 - -
MIT60 1111 1.56 - 2.92 - 5.94
MIT60 12135 1.24 1.72 3.26 - -

takes place at around= 17ms from the start of the simulation.
A characteristic sudden change in the frequency and phate of
waveform takes place at the onset of merging. After a fewliigh
nonlinear oscillations, the waveform settles into a morgular
pattern. The late-time damping of the waveform is the resu#
combination of shock-induced dissipation of oscillati@ms nu-
merical damping. Gravitational-wave damping is effectivdy on
larger timescales than shown here. With less numerical otmmnp
the gravitational wave amplitude could remain strong forucm
longer time, leading to an enhanced signal (for a recent-teng
evolution see Rezzolla etlal. (2010)).

Irrespective of the true damping timescale, we are inter-
ested mainly in the frequency spectrum, which is shown in the
middle panel of Fig[13. We plot the scaled power spectral den-
sity, h4 (f)V/f (black curve), wherév, (f) is the Fourier trans-
form of hy(t), which is directly comparable with the antici-
pated sensitivity for Advanced LIGO presently being ins@l
(Harry & the LIGO Scientific Collaboration (2010)) and theopr
jected Einstein Telescope (ET) detectars (Punturolei &I1((R
Hild et al. (2010)) (dotted red and blue curves, respegtjvélote
that the sensitivity of the advanced Virgo detector (Aceenet al.
(2006)) is planned to be similar to the one of the AdvancedQ@IG
detector. Therefore, we include the latter only as an exarfigplthe
class of detectors going into operation within the next ge@he

nate line). The Fourier amplitude is composed of several di-
tinct and narrow peaks, which correspond to the discrete- 0,

1, 2, 3 and 4 mode frequencies. In addition, a number of smalle
peaks are seen. The latter are nonlinear components, catiaioin
frequencies of the main oscillation modes, i.e. linear santdif-
ferencel (seel Zanotti et al. (2005); Passamonti etlal. (2007) and
references therein). The difference of the frequenciebeaft = 2
andm = 0 mode is denoted as “2-0", their sum as “2+0” (and sim-
ilarly for other components). A two-dimensional plot of theurier
amplitude of the pressure evolution at the “2-0” frequereyenls
that indeed itis a combination of a radial and a quadrupaittem.

By comparison of the middle and bottom panels of Fig. 3,
there is an obvious near coincidence of the frequency geak
GWs with the frequency of the: = 2 mode of the post-merger
remnant. Furthermore, the other two peaks of the GW triglet,
and f, nearly coincide with the “2-0” and “2+0” combinations of
the pressure oscillations. As we will see, this is a genegf@biour
for all models (except for the very low mass MIT60 1111 model)
It is thus tempting to attribute th¢_ peak in the GW spectrum
to a nonlinear interaction between the quadrupole and sl
modes. Essentially, a double core structure that appearslian
appears several times in the early post-merger phase ceuladeb
result of (or could be described by) this nonlinear intecactTo
firmly establish this goes beyond the scope of the preserk, wat
already the coincidence of the. and “2-0” frequencies has prac-
tical consequences: it allows the determination of bothithe- 2
andm = 0 oscillation frequencies of the post-merger remnant.
In combination with the additional knowledge of the chagaist
tics of the compact objects from the detection of the in$ignal
(see Read et al. (2009) and references therein), the detsion
of at least two independent oscillation frequencies shalitalv for
the application of the theory of GW asteroseismology, plasiery
stringent constraints on several properties of the posgeneem-
nant and consequently on the EOS of high-density matteraffior
application of GW asteroseismology to isolated, rotatiegtron
stars, see Gaertig & Kokkotgs (2011)).

distance to the source is assumed to be 100 Mpc. We also show

the same quantity during the pre-merger phase only (recg:and
during the post-merger phase only (green curve). The fit pée
roughly 900Hz is artificial, because our simulations onbrtsat a
few orbits before merging, so most of the actual inspiralsghis
missing. The largest peak (denoted By at about 2kHz is clearly
produced exclusively in the post-merger remnant. In aolditb this
peak, which is very pronounced and clearly detectable by &l a
with good prospects for detection by Advanced LIGO, there ar
two more characteristic peaks, denotedfbyand f., which are

4.4 A survey of different models

Having examined in detail model Shen 12135 as a represantati
case, it is instructive to compare the main results to theleoass
case Shen 135135 (FId. 4). The GW spectrum (middle panetjof Fi

[4) is very similar to the representative case, except fotlsifter-

ences in the frequencies of the main peaks. In the Fouriesfem
of the pressure evolution (bottom panel of fiyy. 4), the oddieso
m = 1 and 3 are no longer as strong as in the unequal-mass case,

also produced in the post-merger phase and have good pt®spec and the evolution is mainly determined by the= 2 mode, while

for detection by ET (more so fof_ than for f). These two peaks
are both above the ET noise curve and above the contributitie o
pre-merger (inspiral) waveform to the FFT of the signal. fEhare
additional peaks above the ET noise curve in the range of 1&@Hz
1.5kHz, which, however, will be superseded by the inspigia,
unless the post-merger signal is analyzed separately frermspi-
ral part. Furthermore, the high-frequency peaks that al@biie
ET noise curve will not concern us.

The three frequenciet_, f» and f; form a triplet, which we
will attempt to interpret in terms of the oscillation moddstioe
post-merger remnant. The bottom panel of Elg. 3 shows thdiamp
tude of the Fourier transform of the evolution of the presslong
a fixed coordinate line in the equatorial plane which padsesigh
the center of the coordinate system (this is an integratepliam
tude, taking into account the contributions along the wicolerdi-

them = 0 andm = 4 modes are also present and so are nonlinear
components. Again, there is a coincidence between the dreyu

of the f_ peak in the GW spectrum and the “2-0" combination fre-
guency in the pressure evolution.

The unequal-mass model LS 12135 shows similar qualitative
properties as the corresponding Shen 12135 model, excapt th
all mode frequencies are considerably higher. In addigolarger
number of nonlinear components can be clearly identifiettgbo
panel of Fig[h). Thef_ vs. “2-0” coincidence remains. The cor-
responding equal-mass model LS 135135 shows onlyrthe 0
andm = 2 modes dominating, with the addition of the “2-0" and

1 These combination frequencies are also called bilineaplaay (or in-
termodulation) components.
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“2+0” combination frequencies. As in the previous moddisye is
again anf_ vs. “2-0" coincidence.

For the strange matter EOS MIT60, we examined the equal-

remnant, could be used to distinguish a soft EOS from a SBEE
Shibata & Ury|ul (2002) also suggested that the post-mertér G
spectrum is produced by non-axisymmetric oscillation nsode

mass case MIT60 1111, where each individual component of the the merged object and arrived at empirical relations (fdytpopic

binary system has a mass of only M, (Fig.[4). The reason is
that for an individual mass of 1.38/, an equal-mass binary sys-
tem forms a black hole soon after merging. Notice that thesitien
profile of the MIT60 models differs drastically from the casie
the hadronic EOSs. It is very flat and terminates at a highevalu
at the surface. Especially for the low-mass model of M3, the
density profile is roughly uniform. This causes the osddlaprop-
erties of the MIT60 models to differ considerably from tho$éhe
hadronic models. The GW spectrum of the MIT60 1111 model is
still qualitatively similar to the previous hadronic mosleind one
can still identify a triplet of frequencieg_, f2 and f. However, in
this case, the frequency of the quasiradial mode is higlser tor

the hadronic models and, in fact, coincides with the frequeof

the “2-0" nonlinear component. The latter differs, for thimdel
only, from the f_ peak in the GW spectrum. It is possible that
the f_, f2 and f; triplet is caused by the nonlinear interaction
of the f> mode with a mode other than the quasiradial mode or
that these are combination frequencies of higher ordeiicBlaiso
that, for this model, the frequency of the = 2 mode is twice
the frequency of the quasiradial mode. Such a coincidenb&hw

EOSs) for the two frequencigs. and f2, without identifying their
origin. Based on the dependence of these two frequenciekeon t
parameters of the polytropic EOS, they suggested that these
frequencies could be used to constrain the stiffness of @®.E

IniShibata et al! (2005) it was suggested that quasiradidt os
lations modulate the post-merger signal and it was noticatithe
difference in frequency between the two main peaks (i.eptaks
we call f_ and f> here) is approximately equal to the frequency
of the quasiradial oscillation. Furthermore| in Shibataahifuchi
(2006) and in Kiuchi et all (2009) two strong sideband petsn(-
ing a triplet with thef, peak) were pointed out to exist in some
cases and were associated with a modulation by large-amelit
quasiradial oscillations. The results of our mode anakp®sn line
with the above observations and expectations.

In contrast, Baiotti et al. (2008) described the repeatpeap
ance of a double core structure in a particular high-masgeader
object as a dynamical bar-mode instability which develops ia
quickly suppressed again several times. The double caretste
appeared at a regular interval of 2 ms. According to our ciirre
results, this should be simply the period of the quasiramtallla-

leads to a resonance between the two modes and to enhanced GWion and instead of a dynamical instability the modulatisrdue

emission has also been observed in simulations of phassittom-
induced instabilities in rotating compact stars (Abdikémaaet al.
2009 Dimmelmeier et al. 2009).

For the unequal mass MIT60 12135 model ([EQ. 7), the fre-
guency of the quasiradial mode is smaller than for the MITED11
model, while the frequency of the = 2 mode is higher. As a con-
sequence, the frequency of the “2-0" nonlinear componenbts
far from the f_ peak in the GW spectrum, although the agreement

to the “2-0" nonlinear component (in other, low-mass mogkeks
sented in Baiotti et all (2008), a bar persists for a long tand a
possible association to a dynamical instability is wortttHar in-
vestigation).

is not as good as in the case of the hadronic EOSs. One should

keep in mind, however, that the post-merger remnant is evpin
time, contracting its radius and reaching higher densifiéss is
causing the different oscillation frequencies to chang&inaally
in time. One cannot, therefore, expect a perfect match lestiee
measured peaks in the Fourier transform of evolved vasatel
the nonlinear features of the GW spectrum.

We thus find that the GW spectrum of the post-merger phase is

characterized by a triplet of frequencies that clearly cioies with
the frequencies of thex = 2 oscillation mode of the fluid and its
interaction with the quasiradial mode in all cases with magske
range 1.2V to 1.35M¢. Only in the low-mass MIT60 1111 case
the triplet has a different origin.

5 COMPARISON TO PREVIOUSWORK

Allen et all (1999) presented an initial study of binary mentstar
mergers as a linear perturbation problem of an isolated(atao-
called close-limit approximation, in analogy to the copmsding
approximation in binary black hole mergers). They showet th
several fluid modes would be excited, but their study, being |
ear, did not take into account nonlinear combination fregies,
as we do here in our fully nonlinear approach.

IniZhuge et al.[(1994) the frequency pefkin the GW spec-
trum was associated with the rotating barlike structurenfedt im-
mediately after merging, while it was suggested that thennfai
peak is due to a low-ordgrmode| Oechslin et al. (2002) proposed

that thef» peak, being the quadrupole frequency of the post-merger
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6 CONCLUSIONS

We have studied the excitation of nonaxisymmetric osdilfet
in the post-merger phase of binary compact object mergass. O
analysis is based on general-relativistic simulationshguSPH

for the evolution of matter, and we used a set of equal-mass

and unequal-mass models, described by two nonzero-tetopera

hadronic EOSs and by one strange star EOS. We studied the os-

cillations through Fourier transforms of the evolved matiari-
ables and identified a number of oscillation modes, as wedbas
eral nonlinear components (combination frequencies). ddrai-
nantm = 2 mode forms a triplet with two nonlinear components
that are the result of a coupling to the quasiradial mode. ieco
sponding triplet of frequencies was identified in the GW $pau,
when the individual masses of the compact objects are in et m
likely range of 1.2 to 1.35V/. A specific frequency peak in the

GW spectrum can thus be associated with the nonlinear compo-

nent resulting from the difference between the= 2 mode and
the quasiradial mode. This association is especially gtiorthe

case of hadronic EOSs and could be exploited in the case of fu-

ture detections, in order to characterize the propertigh®post-
merger remnant. For this, it will be necessary to obtain eteu
frequencies of the quasiradial and quadrupole oscillatiodes for
a large sample of theoretically possible post-merger retsnand
construct empirical relations, depending on a few grospqmtés,

such as the mass and radius of the star. Given the deterarirgdti
two frequencies and of the total mass of the system from 8yerial

signal, these empirical relations could be inverted todylicial

information on the properties of high-density relativistbjects.

It would further be interesting to test the sensitivity ofrou
results to the spatial conformal flatness approximation leyepl
here, as well as to assess the influence of magnetic fieldseon th
gravitational wave spectrum. The latter effect can be egoeto
be small for realistic magnetic fields, although there cdadda re-
gion in the mass vs. magnetic field parameter space in whécefth
fect could be measurable (for recent results| see Giacanmeiz.
(2011)).
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