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Estimating the diagonal entries of a matrix, that is not directly accessible but only available as
a linear operator in form of a computer routine, is a common necessity in many computational
applications, especially in statistical inference. Here, methods of statistical inference itself are used
to improve the accuracy and/or the computational costs of matrix probing methods to estimate
matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within
information field theory, is shown to significantly improve estimates based on only a few sampling
probes, in cases in which some form of continuity of the solution can be assumed. The strength,
length scale and precise functional form of the exploited autocorrelation function of the matrix
diagonal is determined from the probes themselves. The developed algorithm is successfully applied
to mock and real world problems. These performance tests show that the method pays off best in
situations where a matrix diagonal has to be calculated from only a small number of computationally
expensive probes.
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I. INTRODUCTION

A. Estimation and inference

Many computational problems are approached by
stochastic methods. Numerical integrals over very high
dimensional spaces using regular grids are prohibited by
the exploding computational costs, and are often ap-
proximated by the summation of suitably constructed
stochastic samples. For example, the extraction of the
diagonal entries of a matrix, that is only available as a
linear operator on vectors, would require that this opera-
tor is applied once to each basis vector of the vector space.
For the high dimensional image spaces one encounters in
signal reconstruction problems, this is most often com-
putationally too expensive. Therefore matrix or operator
probing methods have been developed, in which the op-
erator is probed by a number of random vectors, from
which a stochastic estimate of the matrix diagonal can
be obtained. The estimate will have a stochastic error,
that can be diminished by enlarging the probing sam-
ple size. This of course also increases the computational
costs.

Thus, a calculation problem has been replaced by a
numerical experiment, or more precisely with a measure-
ment which has many similarities with physical measure-
ments. The outcome of this numerical measurement is
therefore subject to uncertainties. The uncertainties can
be reduced by repeating independent measurements and
averaging the results. And – this is the main point of
this paper – the averaging procedure can be improved by
inference methods which exploit additional knowledge on
the solution. For example, just the knowledge that the
matrix diagonal should exhibit some level of smoothness
on some (not necessarily known) spatial scales will turn

out to be sufficient to improve the estimate precision by
a factor of a few for a given budget of computational
resources.

The analogy between stochastic estimation and sig-
nal inference might become more convincing for estima-
tion problems for which the computational operations
required by a probing estimator can be separated into
prohibitively expensive ones (i.e. applying the linear op-
erator to a matrix) and relatively cheap ones (i.e calcu-
lating some average of the probes). The expensive opera-
tions are then the measurement, and the data they deliver
carry information on the signal we are interested in (the
matrix diagonal) as well as noise contamination due to
aspects of the matrix that we are not interested in (the
impact of the non diagonal terms on the matrix-vector-
product). Although in principle these two contributions
to the data could be identified and separated, the com-
putational costs for this are very high. Thus we should
admit that due to our limited computational resources
we do not know how a given datum (the result of the
matrix-vector operation) is to be separated into signal
and noise, because this would involve breaking down the
matrix explicitly. However, for a sufficiently large set of
suitably constructed measurements (i.e. using appropri-
ate random vectors as operator probes) the signal part
in the data will always be the same where the noise part
will be independent and of zero mean. Thus, a suitably
constructed averaging scheme will reveal the signal with
larger and larger accuracy with increasing data size.

Only two questions remain. What is the optimal av-
eraging scheme, that exploits, in addition to the data,
any prior knowledge we have on the problem? Addi-
tionally what are its computational costs? If a more so-
phisticated and better scheme exceeds the costs for the
additional probing required to gain the same accuracy,
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it would not be worth implementing. Furthermore, one
might worry that one gets into an infinite recursion of in-
ference schemes within inference schemes. For example,
an image reconstruction problem requires the calculation
of a matrix diagonal. For this an inference scheme is used,
which itself could again require the calculation of another
matrix diagonal, and so on.1

Here, a pragmatic point of view is adopted, and higher
order problems are ignored. It will be shown that more
sophisticated inference schemes can significantly outper-
form simple probing and averaging schemes in terms of
total computational costs to reach a given accuracy level.
This is especially true in case the computational costs for
the matrix operation are large.

B. Previous work

The search for estimators of properties of matrices led
to the stochastic method of probing. For this purpose
the matrices are multiplied with test vectors in a way
which statistically projects out the property of interest,
here, the matrix diagonal. A first proposal for such a
probing method can be found in the work by Hutchinson
(1989) [1, and references therein]. There the functionality
and efficiency of probing for obtaining trace estimates has
been proven.

Bekas et al. [2] extended the probing to Hadamard vec-
tors (rows of the Hadamard matrix) to improve the es-
timation of diagonals of banded matrices. Those meth-
ods have been oriented to applications in density func-
tional theory. Similar problems were approached by Tang
and Saad [3] and references therein, with a focus on non-
stochastic estimators.

The recent paper by Aune and Simpson [4] transfers
the probing technique to the field of information theory,
in particular to the calculation of log-likelihoods.

Finally in the extensive work of Rohde and Tsy-
bakov [5] the noise corrupted observation of unknown
matrix entries is investigated from a more mathematical
point of view.

1 However, in practice, such an infinite recursion can easily be
truncated. First, one can use the pure frequentist averaging
method at some level of this loop, thereby truncating it. Second,
although the dimension of the matrix diagonal appearing in an
image reconstruction problem has as many entries as the image,
due to potentially existing spatial symmetries (e.g. statistical
translational and rotational invariance) and smoothness proper-
ties (the uncertainty map of an image usually has less structure
than the image itself) the covariance structure of the diagonal
entries has often a lower number of degrees of freedom. Thus,
the computational complexity of the series of nested inference
problems gets simpler and simpler to the point where a direct
matrix operation is affordable and truncates the need for further
recursion.

C. Structure of this work

First, in Sect. II, we highlight the importance of ob-
taining estimates for matrix diagonals, in particular of
uncertainty covariance matrices in the framework of in-
formation theory. We discuss the problem of their calcu-
lation in high-dimensional cases.

We will review in Sect. III the frequentist approach
called probing, which is completely general and can be
applied to all kinds of matrices. In Sect. IV we use infor-
mation field theory (IFT) to present a Bayesian estimate
for matrix diagonals. Our proposal focuses on covariance
matrices, which are positive and symmetric by definition,
and in practice often have sparse off-diagonal entries or at
least off-diagonal entries that are decaying with distance
from the diagonal.

Subsequently, Sect. V is devoted to the verification and
application of both methods, where we investigate simple
mock examples as well as a real example: the uncertainty
covariance matrix of the all sky Faraday depth derived
from the NVSS catalog.

We conclude in Sect. VI.

II. PROBLEM OF MATRIX DIAGONALS

Linear operators are fundamental in any area of com-
putation and thereby often expressed in their matrix rep-
resention.

In the field of information theory the covariance matrix
of a quantity (which equals the inverse of the precision
matrix) holds a key role. To stress this, let us consider a
multi dimensional zero-mean Gaussian

G(ϕ,X) =
1√

det [2πX]
exp

(
−1

2
ϕᵀX−1ϕ

)
(1)

with the covariance matrix X = 〈ϕϕᵀ〉G where ϕ is a
random field defined over some pixelized vector space
and 〈 · 〉G denotes the expectation value weighted by this
Gaussian. (In this matter ‘pixel’ is to be understood as
a discretized coordinate which elsewhere may be referred
to as ‘grid point’, ‘bin’ or ‘voxel’.)

A diagonal entry of the covariance matrix is the
squared standard deviation σi assigned to pixel i express-
ing the pixelwise uncertainty in ϕ,

σ2
i =

〈
ϕ2
i

〉
G = Xii. (2)

A sophisticated and effective reconstruction tool is the
generic filter [6] that we will review in the following. We
provide this review in order to further emphasize the im-
portance and problem of obtaining matrix diagonals for
stochastic inference. Furthermore because this filter will
form the basis of our proposed algorithm discussed in
Sect. IV B.
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A. Generic filter

The generalized Wiener filter, as derived e.g. in [7] in
a Bayesian framework, is for one thing based on a linear
forward data model

d = R s+ n, (3)

where the data d is a sum of signal response R s and
noise n. In this scenario, the response is a linear operator
that inherits all aspects of the signal detection, i.e. the
detector’s input-output relation (e.g. the detector’s point
spread function, survey coverage, etc.).

The generalized Wiener filter arises in case one can in
addition assume a Gaussian distribution for the signal’s
prior and the signal-independent noise,

P (s) = G(s, S), (4)

P (n|s) = G(n,N), (5)

where S and N stand for the signal and noise covariance
matrix respectively. Ergo the likelihood of the data given
the signal becomes

P (d|s) = P (n|s) = G(d−Rs,N). (6)

The resulting filter formula, whose derivation is detailed
in [6–8] and will therefore not be repeated in this work,
is

m =
(
S−1 +RᵀN−1R

)−1︸ ︷︷ ︸
D

(
RᵀN−1d

)︸ ︷︷ ︸
j

, (7)

where the map m is the Bayesian estimator for the sig-
nal, i.e. its posterior mean, D is referred to as informa-
tion propagator and j as information source. The inverse
problem of estimating the signals given the data leads to
a Gaussian posterior,

P (s|d) = G(s−m,D), (8)

with with the mean m and covariance D which encodes
the a posteriori signal uncertainty. Both, the signal and
noise covariance needed for this, are here assumed to be
known. A convenient description of these covariances is
in terms of their power spectra, the spectra of the eigen
values of these matrices.

In the following we decompose the signal covariance
by S =

∑
l ClSl, where the Sl are the projections onto a

suitable eigen basis (in our examples in Sect. V this will
be spherical harmonics). An analogous decomposition
exists for the inverse S−1 =

∑
l C
−1
l S−1l .

The signal’s power spectrum might be unknown a pri-
ori, whereas the eigen basis can often be guessed from
statistical symmetries (e.g. the spherical harmonics ba-
sis in case of a statistically isotropic distribution on the
sphere). Thus, the spectral coefficients Cl allow for a
parameterization of the covariance. In such applications
without spectral knowledge, the generalized Wiener fil-
ter can be extended to a generic filter derived in [6]. The

generic filter formulas are Eq. (7) complemented by a re-
construction rule for the power spectrum, i.e. for each
spectral coefficient one calculates

Cl =
1

%l + 2εl
tr
[
(mmᵀ + δlD)S−1l

]
(9)

where %l = tr
[
S−1l

]
are the degrees of freedom for each

spectral band. A prior that is flat on a logarithmic
scale has been assumed for the spectral coefficients in the
derivation of this formula. The parameters (δl, εl) charac-
terize the different filter options: Two specific forms are
the classical filter for which one chooses (δl, εl) = (0, 0)
and the critical filter for which (δl, εl) = (1, 0). The
former can be derived from a ‘classical’ maximum a pos-
teriori (MAP) approximation of the spectral uncertainty
marginalized problem. The latter is called ‘critical’ be-
cause it exhibits (in contrast to the classical filter) only
a marginal perception threshold. (For a filter with a per-
ception threshold the signal to noise ratio of a spectral
mode has to exceed a certain threshold in the data be-
fore the filter recognizes it at all.) There exists a critical
line in the δ-ε-plane separating filters that fully suppress
bands with insufficient spectral power from filters that do
not. The critical filter resides exactly on this line while
the classical filter is in the region with such a perception
threshold.

All in all Eq. (7) and (9) provide an iterative scheme for
the full inverse problem of signal reconstruction with un-
known power spectrum, i.e. unknown correlation struc-
ture. The signal reconstruction benefits from this ad-
ditional spectral information since it encodes internal
structure of the signal. Furthermore, it can be shown,
see [6, 8], that the posterior can usually be approximated
by a Gaussian,

P (s|d) ≈ G(s−m,D), (10)

where the map m is the expected signal given the data
and

√
diag [D] the associated uncertainty map (to which

the square root is to be applied pixelwise). Therefore, the
resulting map is an approximative solution of the infer-
ence problem. This map is constructed to be close to the
minimum mean square error (MMSE) estimate (averaged
over the remaining uncertainties given the data).

In order to apply the critical or other generic filters we
may need to calculate the trace of DS−1l in (9) in each
iteration, and we have to evaluate the diagonal of D in
order to interpret the reliability of our results. This mo-
tivates our ambition to develop faster and more accurate
matrix probing schemes.

Generic filters are applied e.g. in [6–10].

B. Exact matrix diagonal

The diagonal of the uncertainty covarianceD is a quan-
tity of interest, but unfortunately not directly accessible
in most cases. Its calculation involves complex matrix op-
erations such as matrix inversion, see Eq. (7). Often the
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complete matrix is not known explicitly, only the matrix-
vector-multiplication is available in form of a computer
routine which reads in and returns a vector.

Calculating the diagonal of the matrix X of dimension
r seems still possible using normalized unit vectors e(k)

(with e
(k)
i = δik ∀ i, k ∈ {1, . . . , r}).

diag [X] =
∑
k

e(k) ∗X e(k), (11)

where ∗ denotes a componentwise product in the way
that (a ∗ b)i = aibi ∀ i ∈ {1, . . . , r}.

It is obvious that this ‘true’ diagonal is too ex-
pensive computationally because one needs to evaluate
the matrix-vector-multiplication exactly r times looping
through all unit vectors where the dimension r of the
problem can be very high (r � 1). In addition each of
those products alone can be expensive because it may in-
voke numerical inversion techniques, e.g. conjugate gra-
dient [11], which is the case in most of the examples in
Sect. V.

III. PROBING ESTIMATE

The question arises if one can choose another set of
vectors instead of the full set of normalized unit vectors to
speed up the computation. Independent and identically
distributed (i.i.d.) random variables stored in a set of
vectors {ξ} (with sample size |{ξ}| = A) will work if
they fulfill the property

〈ξiξj〉{ξ}
A→∞−−−−→ δij . (12)

Here the average 〈 · 〉{ξ} stands for the arithmetic mean

over a set {ξ} and δij for the Kronecker delta.
Two of many possible options are (i) equally probable

values of ±1 for the components of ξ [1]2 or (ii) zero-mean
Gaussian random numbers with unit variance. Both were
originally developed for trace estimation. We will use (ii)
in the following examples.

Regardless of the choice of the random vectors, the
sample average

〈ξ ∗X ξ〉{ξ}
A→∞−−−−→ diag [X] (13)

over an infinite set will result in the ‘true’ diagonal, see
App. A.

The average over a finite but sufficiently large set (A <
r <∞) will therefore give the probing estimator f of the
matrix diagonal,

diag [X] ≈ 〈ξ ∗X ξ〉{ξ} = f . (14)

2 In [2] a much more sophisticated choice, based on [1], is pre-
sented.

Given this estimator we obtain one for the trace by sum-
ming up all elements of f , as

tr [X] ≈ 〈ξᵀX ξ〉{ξ} =
∑
i

fi. (15)

Since one wants to obtain an estimator in a finite period
of time, one has to find an acceptable trade-off between
the sample size A and the residual error, where the latter
scales with 1/

√
A according to the law of large numbers.

Aiming for a certain precision therefore requires a par-
ticular amount of computation time.

The estimator given by Eq. (14) is absolutely generic
and applicable to a variety of matrices. Recent applica-
tions of it can be found in [2, 4, 9].

IV. BAYESIAN ESTIMATE

A. Forward model

Instead of doing a blind probing we now want to
develop a Bayesian estimate which exploits additional
knowledge of the problem to infer the matrix diagonal
from a smaller set of samples. For this purpose we
consider the sampling described by Eq. (14) as a linear
forward model of a measurement process for the signal
s̃ = diag [X] we are interested in. (In order to avoid
confusion we will mark with a tilde already introduced
synonymous quantities that appear now in another con-
text.)

For one sample, a ∈ {1, . . . , A}, the measurement
equation takes the form

d̃(a) = ξ(a) ∗X ξ(a)

= diag
[(
ξ
(a)
1

)2
, . . . ,

(
ξ(a)r

)2]︸ ︷︷ ︸
R̃(a)

s̃+ ñ(a). (16)

For all samples it is

d̃ =
(
d̃(1), . . . , d̃(A)

)ᵀ
=
(
R̃(1), · · · , R̃(A)

)ᵀ
︸ ︷︷ ︸

R̃

s̃+
(
ñ(1), . . . , ñ(A)

)ᵀ
︸ ︷︷ ︸

ñ

= R̃ s̃+ ñ, (17)

where d̃ represents the ‘measured’ data, R̃ the signal re-
sponse and ñ the noise. The contributions from all off-
diagonal matrix elements are considered to be noise, i.e.

ñ(a) = ξ(a) ∗ (X − diag [X11, . . . , Xrr]) ξ
(a), (18)

and they can be estimated using (17), once we have an
estimator for the signal.

Note that if one chooses the random variables ξ to be
±1, firstly one does not have to evaluate normal variables
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as originally pointed out by [1] and secondly all the re-
sponse martices R(a) equal 1 and hence do not need to be
treated separately for the different samples. This speeds
up the algorithm and reduces the memory requirements.

B. Proposed algorithm

Our goal is to find an estimator for the matrix diag-
onal which is close to the MMSE, but still computa-
tionally affordable. This estimator has to account for
our missing knowledge about the underlying correlation
structure. Given these requirements the generic filter for-
mulas are potentially an appropriate choice. Therefore,
our proposed algorithm is based on this filter.

We start by probing the matrix as described in Sect. III
and as a result obtain a first estimator f for our sig-
nal, i.e. the matrix diagonal. This additional informa-
tion changes our state of knowledge about the matrix
diagonal in the way that the assumed prior in (4) is
not adequate anymore. However, after only a few sam-
ples, f will not yet be a good approximation for the di-
agonal entries of the matrix, since several entries may
be considerably over- or underestimated. By contrast f
provides already a good enough estimator for the trace,
see (15). For that reason we can a priori expect the ma-
trix diagonal s̃ to be distributed around some t̃ rather
than around zero, where for all i ∈ {1, . . . , r} we set
t̃i =

∑
i fi/r ≈ 〈tr [X]〉{ξ} /dim [X]. Therefore the prior

of the matrix diagonal is chosen to have a non-zero mean
t̃,

P (s̃) = G(s̃− t̃, S̃). (19)

As a consequence the filter formulas (7) and (9) undergo
a shift,

m̃ = D̃
(
R̃ᵀÑ−1d̃+ S̃−1t̃

)
, (20)

D̃ =
(
S̃−1 + R̃ᵀÑ−1R̃

)−1
, (21)

C̃l =
1

%̃l + 2ε̃l
tr
[((

m̃− t̃
) (
m̃− t̃

)ᵀ
+ δ̃lD̃

)
S̃−1l

]
. (22)

Furthermore the noise covariance, i.e. its required in-
verse, is unknown a priori and needs to be estimated for
our algorithm. If we use the data model described in
Sect. IV A, Ñ−1 can be approximated by the noise given
the data and an estimator for the signal,

ñ = d̃− R̃ m̃. (23)

We simplify our calculation be using

Ñ−1 = (ññᵀ)
−1 ≈ (diag [ñ ∗ ñ])

−1
. (24)

This is done in order to limit the computational effort.
(A more correct treatment of unknown noise covariance
matrices is addressed in [10].)

Equations (20) to (22) are solved iteratively in the fol-
lowing scheme:

1. Start with m̃(ν=0) = f .

2. Compute ñ(ν+1) according to (23).

3. Compute C̃
(ν+1)
l according to (22),

while ignoring t̃ and D̃ for ν = 0.

4. Compute m̃(ν+1) according to (20)
using (21) and (24).

5. Repeat steps 2 to 4 until convergence.

As an initial guess for the power spectrum in step 3, we
use an overestimation. This accelerates the convergence
process as can be seen in the extreme limits: C̃l → ∞ :
m̃ ∼ R̃−1d̃, whereas C̃l → 0+ : m̃ ∼ t̃. I.e. a strong
overestimate still gives a non trivial result for m̃, whereas
an underestimate gives a trivial one.

Following Sect. II A we generally recommend the crit-
ical filter, since it does not exhibit a significant percep-
tion threshold. Nevertheless in the presented examples
the correction term tr[D̃S̃−1l ] does only marginally con-
tribute to the accuracy and therefore the classical filter
which does not require the calculation of this term has
been applied in the following.

V. VERIFICATION & APPLICATION

A. Numerical experiments

To verify the proposed algorithm, we perform some
numerical experiments that are posed on signals living on
the sphere. The examples in this Sect. are represented by
all sky HEALPix3 maps with Nside = 8, resulting in r =
768 pixels and in a maximal spectral index lmax = 23 of
the spherical harmonics basis in which we a priori assume
our signal covariance to be diagonal due to a statistical
isotropy of the signal.

1. Trivial case

At first we consider a trivial case where the matrix in
question is given explicitly. To ensure that this matrix
is covariant, i.e. it is positive and symmetric, we con-
structed it to be

X =


X11 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 Xrr

 , (25)

3 See HEALPix homepage http://healpix.jpl.nasa.gov/
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5 30 5 30 5 30

Figure 1: Result from the trivial case: (left) the exact matrix diagonal, (middle) the probing estimate and (right) the Baysian
estimate started with four probes, both after around 0.3 seconds.
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Figure 2: The L2-norm of the error (divided by the number of pixels r) as a function of CPU time for the trivial case: The

evolution of the probing estimator (solid), its theoretical prediction ∝ 1/
√
A (dotted) and the Bayesian estimators starting

with four (dashed light) and nine samples (dashed dark) respectively are shown.

where the diagonal entries need to fulfill Xii ≥ 2 ∀ i ∈
{1, . . . , r} for positive definiteness and are drawn with a
simple structure on the sphere, see Fig. 1.

The normalized L2-norms of the residual error4 serve
as an accuracy measure and are shown as a function of
CPU time in Fig. 2.

Although X as an operator could be implemented very
efficiently, we use the much more expensive full matrix
multiplication to have realistic computational costs like
those of applying a more complex matrix. But this trivial
case should only hold as a proof of concept, more sensible
examples are discussed in the following.

As one can clearly see in Fig. 2 the probing estima-
tor improves continuously with an increasing number of
probes and shows an overall proportionality to 1/

√
A

as argued in Sect. III. However, the Bayesian estima-
tor given a set of samples converges in only a couple of
iterations to a result with an accuracy the pure prob-
ing will first reach after investing a factor of a few more
CPU time. For a fixed amount of computation time the
Bayesian estimator excels the probing estimator, as can
be seen in Fig. 1. It is also evident that the Bayesian es-

4 Meaning mathematically ||diag [X]−f ||2/r or ||diag [X]−m||2/r
respectively to be exact.

timator must reach a lower limit in its progress because
only a limited data set is provided containing finitely ac-
curate information.

2. Realistic case

For a more realistic mock example we consider a co-
variance matrix D = (S−1 + N−1)−1 similar to the one
described by (7) where the signal covariance S is com-
pletely defined by a power spectrum

Cl ∝ (max {1, l})−2 . (26)

The noise covariance N is characterized by two effects,
first high noise in one of the twelve HEALPix basis
pixels representing a defect in the detector, and second
smoothly increased noise towards the poles imitating an
observational effect5. The described noise covariance and
the resulting propagator D are illustrated in Fig. 3, where
one can see the conservation of the noise structure and
the smoothing effect of the power spectrum.

5 The noise variance is assigned to each pixel i according to N−1
ii =

(0.005 + 8 (hi(hi − hmax))2 /h4
max), where hi is the HEALPix

ring number associated to the pixel i.
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1.2 72.0 0.9 9.0

Figure 3: The realistic case: (left) the matrix diagonal of the mock noise covariance N and (right) the ‘true’ diagonal of the
propagator D = (S−1 + N−1)−1.
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Figure 4: Same as Fig. 2, only for the propagator for the realistic case.

The performance of both algorithms is shown in Fig. 4.
Our algorithm performs qualitatively in the same way as
in the trivial case but the overall gain in accuracy or
time is quantitatively lower. It is also noticeable that
the relative advantage of the proposed method decreases
with the number of used random vectors. Consequently
the matrix diagonal inference method pays off best in
cases where a rough estimate using only a few probes is
sufficient.

B. Faraday sky uncertainty

Next, we attempt to use our algorithm in a real phys-
ical application. We consider the inference problem dis-
cussed in [9]. In that work, an all sky map of the galactic
Faraday depth was reconstructed from a catalog of mea-
surements of the Faraday depths of 37 543 point sources
[12]. The data were modeled according to a linear mea-
surement procedure, Eq. (3), with a response matrix R
that encodes both the probing of the all sky field in the
directions of the point sources and a multiplication with
a scalar function of galactic latitude, p(ϑ). This galactic
profile function was introduced to partially account for
the large scale anisotropy introduced by the presence of
the galactic disk on the sky. It was calculated as the root
mean square rotation measure value per latitude bin from
the same data set as a first step of the reconstruction.

With this response, the signal field becomes a down
scaled version of the galactic Faraday depth, i.e. the

dimensionless ratio of the Faraday depth to the profile
function. To reconstruct this field the critical filter algo-
rithm that was discussed in Sect. II A was used, yielding
an estimate for the posterior mean m of the signal field
s, as well as an estimate for the components of the an-
gular power spectrum of this field, Cl. In addition, a
map showing the uncertainty of the signal estimate m,
given by diag [D], is provided in [9]. This was calculated
from the information propagator D, which takes on the
form (21), by applying the probing estimator discussed
in Sect. III.

Here, we show how the application of our Bayesian al-
gorithm to this problem can improve the accuracy and
speed up the calculation of this matrix diagonal. In or-
der to be able to compare the results of the probing and
Bayesian estimators to the correct matrix diagonal, we
reduce the dimensionality of the problem to facilitate the
exact calculation of the diagonal via Eq. (7). We do this
by reducing the resolution of the all sky map with re-
spect to the one presented in [9] to HEALPix parameter
Nside = 16, leading to 3 072 pixels, and truncating the re-
constructed power spectrum at lmax = 47. Furthermore,
we use a coarser version of the galactic profile function.
In this way, a coarse-grained version of the propagator
D is defined and we can calculate its diagonal exactly, as
well as in the frequentist and Bayesian way.

Fig. 5 shows the results of these calculations, where
the matrix-vector-multiplication was conducted for ten
different random vectors in the case of the probing
and Bayesian estimators. While still exhibiting a large
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Figure 5: Diagonal of the propagator for the reconstruction of the galactic Faraday depth. The left panel shows the result of
the exact calculation according to Eq. (11), the middle panel the probing result after ten iterations, and the right panel the
result of the Bayesian estimator, using ten random vectors as well.
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Figure 6: Same as Fig. 2, only for the propagator for the reconstruction of the galactic Faraday depth.

amount of noise, both the probing and Bayesian results
show roughly the right structure after only a few iter-
ations. This structure is determined mainly by an oval
region of high uncertainty, i.e. large diagonal entries,
where no data were taken and a dependence on galactic
latitude due to the profile function. Since the signal re-
sponse includes a multiplication with the galactic profile,
it is larger near the galactic plane than near the galactic
poles, leading to an overall lower uncertainty within the
galactic plane.

From Fig. 5 alone, it is hard to judge whether the
Bayesian estimator leads to an improvement over the
probing one. We therefore plot again the L2-norm of the
difference between the estimated matrix diagonal and the
‘true’ one as a function of CPU-time in Fig. 6. Shown
is the curve for the pure probing estimator as well as
two examples for Bayesian improvements, using two and
ten random vectors, respectively. It is evident that for
both cases the Bayesian method gives a boost in accuracy
with only marginal time consumption. The absolute and
relative improvement is larger if one uses fewer random
vectors. This shows again that the main strength of the
Bayesian method does not lie in the absolute accuracy
that can be reached, but rather in the speed-up it pro-
vides for obtaining an estimate for the matrix diagonal
with intermediate accuracy.

VI. CONCLUSIONS

We reviewed the reliability and robustness of the prob-
ing techniques for diagonals of matrices and applied them
to several examples where they performed as expected.

A new inference algorithm has been proposed that in-
terprets the probing of the matrix diagonal as a numerical
experiment. The outcome of the experiment exhibits all
features of a measurement like signal response and noise.
Exploiting additional knowledge on the existence of an
underlying continuous structure of the matrix diagonal
which exhibits (a priori maybe unknown) correlations al-
lowed for an inference method which improves the esti-
mates acquired from probing.

Applying this new inference algorithm on a sample of
matrix probes, we retrieved estimators for the matrix di-
agonal which exhibit a higher accuracy for a small invest-
ment of additional computation time. As fewer samples
are needed by this new method to achieve the same accu-
racy, we reduce the number of computational expensive
calculations and this way save CPU (and real) time. The
new algorithm is especially effective when matrix diago-
nals need to be calculated only roughly, since the relative
gain in accuracy is larger in cases where only a few probes
are available.

This has been shown in numerical examples as well as
for the uncertainty map appearing in the reconstruction
of the galactic Faraday depth.
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Appendix A: Proof of the probing estimator

Here we prove that Eq. (13) is indeed implied by Eq.
(12). Given a sufficiently large but not necessarily finite
set {ξ} (with |{ξ}| = A), the condition given by Eq. (12)
becomes

lim
A→∞

〈ξiξj〉{ξ} = lim
A→∞

1

A

A∑
a=1

ξ
(a)
i ξ

(a)
j = δij . (A1)

Inserting this equality in Eq. (13), w.l.o.g. restricted to
the average’s component i ∈ {1, . . . , r},

(
〈ξ ∗X ξ〉{ξ}

)
i

=
1

A

A∑
a=1

r∑
j=1

ξ
(a)
i Xijξ

(a)
j

=

r∑
j=1

Xij
1

A

A∑
a=1

ξ
(a)
i ξ

(a)
j︸ ︷︷ ︸

→δij

→ Xii, (A2)

proves the statement.
6 See Sage homepage http://www.sagemath.org/
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