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ABSTRACT

We present a first application of the recently proposed LITMUS test for magnetic helicity, as well as a thorough study of its applicability
under different circumstances. In order to apply this test to the galactic magnetic field, the newly developed critical filter formalism
is used to produce an all-sky map of the Faraday depth. The test does not detect helicity in the galactic magnetic field. To understand
the significance of this finding, we made an applicability study, showing that a definite conclusion about the absence of magnetic
helicity in the galactic field has not yet been reached. This study is conducted by applying the test to simulated observational data.
We consider simulations in a flat sky approximation and all-sky simulations, both with assumptions of constant electron densities and
realistic distributions of thermal and cosmic ray electrons. Our results suggest that the LITMUS test does indeed perform very well in
cases where constant electron densities can be assumed, both in the flat-sky limit and in the galactic setting. Non-trivial distributions
of thermal and cosmic ray electrons, however, may complicate the scenario to the point where helicity in the magnetic field can escape
detection.
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1. Introduction

Helicity is of utmost interest in the study of astrophysical mag-
netism. Mean field theories for turbulent dynamos operating
in the galactic interstellar medium have been successful in ex-
plaining how the observed magnetic field strengths are main-
tained (e.g. Subramanian 2002). These theories predict that he-
licity is present on small scales in interstellar magnetic fields.
Observationally detecting or excluding helicity in these fields
would therefore either strongly suggest that these theories are
valid or indicate that there are some flaws in them.

However, since helicity is a quantity that describes the three-
dimensional structure of a magnetic field and most observation
techniques produce at best two-dimensional images leading to
an informational deficit, it has thus far largely eluded observers.
Previous work on the detection of magnetic helicity in astro-
physical contexts has focused mainly on either magnetic fields
of specific objects, such as the Sun (see e.g. Zhang 2010, and
references therein) or astrophysical jets (cf. e.g. Enßlin 2003;
Gabuzda et al. 2004), or cosmological primordial magnetic fields
(e.g. Kahniashvili & Ratra 2005; Kahniashvili et al. 2005). Two
exceptions are the work by Volegova & Stepanov (2010), in
which the use of Faraday rotation and synchrotron radiation for
detecting magnetic helicity was suggested for the first time, and
the work of Kahniashvili & Vachaspati (2006), in which the use
of charged ultra high energy cosmic rays of known sources is
suggested for probing the three-dimensional structure of mag-
netic fields through which they pass. However, the sources of
ultra high energy cosmic rays are not known yet and the appli-
cability of this test is therefore limited.

The LITMUS (Local Inference Test for Magnetic fields
which Uncovers heliceS) procedure for the detection of mag-
netic helicity suggested by Junklewitz & Enßlin (2010) probes
the local current helicity density B · j, which for an ideally con-

ducting plasma becomes

B · j ∝ B · (∇ × B) . (1)

Here, the magnetic field is denoted by B and the electric cur-
rent density by j. The test uses measurements of the Faraday
depth and of the polarization direction of synchrotron radiation
to probe the magnetic field components along the line of sight
and perpendicular to it, respectively. Its simple geometrical mo-
tivation should make it applicable in a general setting, provided
these quantities can be measured. The results depend only on
the properties of the magnetic field along a line of sight and are
therefore purely local in the two-dimensional sky projection. Our
aim is to test this idea on observational as well as on simulated
data, thereby determining the conditions under which the test
will yield useful results.

This paper is organized as follows. In Sect. 2, the basic equa-
tions used in the LITMUS test are reviewed. They are applied
to observational data describing the galactic magnetic field in
Sect. 3, with special emphasis on a sophisticated reconstruction
of the Faraday depth, described in Sect. 3.2. Section 4 is de-
voted to a thorough general assessment of the test’s reliability.
To this end it is applied to simulated observations of increasing
complexity. Section 4.1 describes the application in a flat sky
approximation, whereas Sect. 4.2 examines all-sky simulations,
finally arriving at complete simulations of the galactic setting in
Sect. 4.2.2, where realistic electron distributions are added. We
discuss our results and conclude in Sect. 5.

2. The helicity test

For a thorough introduction into the ideas behind the LITMUS
test, the reader is referred to Junklewitz & Enßlin (2010). Here,
we only summarize the resulting equations.
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On the one hand side, synchrotron emission produced by
cosmic ray electrons is used to probe the magnetic field com-
ponent perpendicular to the line of sight. Its polarization is de-
scribed by the complex field

P = Q + iU = |P| e2iχ, (2)

where Q and U are the usual Stokes parameters quantifying the
linearly polarized components of the radiation with respect to
some orthogonal coordinate system and χ is the polarization an-
gle with respect to the first coordinate direction. On the other
hand, the Faraday depth

φ ∝

∫
LOS

neB · dl (3)

is used to probe the magnetic field component parallel to the line
of sight (LOS).

A helical magnetic field will lead to a gradient of the Faraday
depth that is parallel to the polarization direction of the syn-
chrotron emission, as was argued in Junklewitz & Enßlin (2010).
In order to compare the directions of the two quantities, this gra-
dient is also formulated as a complex field

G =
(
(∇φ)x + i (∇φ)y

)2
= |G| e2iα, (4)

with

α = arctan
( (∇φ)y

(∇φ)x

)
, (5)

where the indices x and y denote its components with respect to
the coordinates used. The helicity test that is performed in this
work consists simply of multiplying G with the complex conju-
gate of the polarization P∗. If the two angles χ and α differ by a
multiple of π (i.e. the gradient and the polarization direction are
parallel), the product will be real and positive. If they differ by
an odd multiple of π/2 (i.e. the two directions are perpendicu-
lar), it will be real and negative. Any orientation in between will
produce varying real and imaginary parts in the product. Thus,
observational directions along which a magnetic field is helical
are indicated by a positive real part and a vanishing imaginary
part of the product. Averaging over all observational directions
will give an indication of the global helicity of the field.

It was furthermore shown by Junklewitz & Enßlin (2010)
that the ensemble average of this product over all magnetic field
realizations given a magnetic correlation tensor (and therefore a
helicity power spectrum) is a measure for the squared integrated
spectral current helicity density

〈GP∗〉B ∝
(∫ ∞

0
dk
εH(k)

k

)2

, (6)

with large scales weighted more strongly than small scales.

3. Application to galactic observations

In this section, we try to answer the question whether the mag-
netic field of the Milky Way is helical by applying the LITMUS
test to the available observational data. Since the magnetic field
is localized in a region that surrounds the observer, all relevant
quantities will be given as fields on the sphere S2, i.e. as func-
tions of the observational direction, specified by two angles ϑ
and ϕ, which are taken to represent the standard spherical polar
coordinates in a galactic coordinate system.

3.1. Observational data

For the synchrotron emission, we use the data gathered by the
WMAP satellite after seven years of observations1, described in
Page et al. (2007). Since the foreground synchrotron emission
is most intense at low frequencies, we use the measurement in
the K-Band, which is centered at a frequency of ν = 23 GHz.
Furthermore, we assume that the detected polarized intensity is
solely due to galactic synchrotron emission. Thus, the Stokes
Q and U parameter maps (defined with respect to the spherical
polar coordinate directions êϑ and êϕ in the galactic coordinate
system) can be simply combined according to Eq. (2) to give the
complex quantity P whose argument is twice the rotation angle
of the plane of polarization with respect to the êϑ-direction

χ(ϑ, ϕ) =
1
2

arctan
(

Im(P(ϑ, ϕ))
Re(P(ϑ, ϕ))

)
(7)

(cf. Junklewitz & Enßlin 2010).
There are several depolarizing effects that have to be con-

sidered when dealing with polarization data. Faraday depo-
larization, which is important only at low frequencies due to
the proportionality of the Faraday rotation angle to the square
of the wavelength, can be safely neglected in the K-Band.
Depolarization effects due to different magnetic field orienta-
tions along the line of sight are certainly present. However,
they are present as well in the numerical test cases presented
in Sect. 4, which yield good results. Additionally, depolarization
due to the finite beam-size of the WMAP satellite and the finite
pixel size of the polarization maps used in this study can play
a role. The only way to limit this effect is to use higher resolu-
tion maps, ultimately necessitating the use of Planck data in the
future.

In order to construct a map of the Faraday depth, we use
the catalog of rotation measurements provided by Taylor et al.
(2009)2. These provide an observational estimate of the Faraday
depth for certain directions in the sky where polarized radio
point-sources could be observed. Since the catalog encompasses
a large number (37 543) of point-sources, it paints a rather clear
picture of the structure of the Faraday depth. However, Earth’s
shadow prevents observations in a considerably large region
within the southern hemisphere.

3.2. Reconstructing the Faraday depth map

The reconstruction is conducted according to the critical filter
method first presented in Enßlin & Frommert (2010). A more
elegant derivation of the same filter can be found in Enßlin &
Weig (2010). Since this formalism takes into account available
information on the statistical properties of the signal in the form
of the power spectrum, it is able to interpolate into regions where
no direct information on the signal is provided by the data, such
as the shadow of Earth in this case. Furthermore, it takes into
account the available information on the uncertainty of the mea-
surements. All in all it is expected to lead to a reconstructed map
of the Faraday depth that is much closer to reality than e.g. a
map in which the data were simply smoothed to cover the sphere.
Small-scale features that are lost in such a smoothing process are
for example reproduced by the critical filter algorithm.

1 The data are available from NASA’s Legacy Archive for Microwave
Background Data Analysis at http://lambda.gsfc.nasa.gov.

2 The catalog is available at
http://www.ucalgary.ca/ras/rmcatatlogue.
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Fig. 1. Vertical galactic profile p(ϑ) of the Faraday depth.

3.2.1. Data model

The field that is to be reconstructed here is the sky-map of the
Faraday depth. In order to apply the critical filter formula, the
signal should be an isotropic Gaussian field. Since the Faraday
depth clearly is larger along directions passing through the galac-
tic plane, the condition of isotropy is not satisfied. Therefore, a
vertical profile is calculated by binning the observations into in-
tervals [ϑi, ϑi + ∆ϑ), calculating the root mean square rotation
measure value for each bin and smoothing the resulting values
to obtain a smooth function p(ϑ). The result is shown in Fig. 1.
This profile is used to approximatively correct the anisotropies
induced by the galactic structure and the resulting signal field

s(ϑ, ϕ) =
φ(ϑ, ϕ)

p(ϑ)
(8)

is assumed to be isotropic and Gaussian with a covariance ma-
trix S . The Gaussian covariance matrix is determined solely by
the angular power spectrum coefficients Cl, the reconstruction of
which is part of the problem at hand.

The data d, i.e. the rotation measure values in the catalog,
are taken to arise from the signal s by multiplication with a re-
sponse matrix R, which consists of a part encoding the specific
directions in which the signal field is probed in order to pro-
duce the measurements and another part that is a simple multi-
plication with the vertical profile p(ϑ). Additionally, a Gaussian
noise component n is assumed with a covariance matrix N =
diag(σ2

1, σ
2
2, . . . ), where σi is the one sigma error bar for the ith

measurement in the catalog. Thus, the data are given by3

d = Rs + n = R̃ps + n. (9)

Recent discussions in the literature (see e.g. Stil et al. 2011) have
shown, however, that the error estimates as quoted in the cat-
alog are probably too low. In addition, any contribution to the
measured data from intrinsic Faraday rotation within the sources
will further increase the error budget since the signal field in this
context is only the contribution of the Milky Way. We therefore
adapt the error bars of Taylor et al. (2009) according to the for-
mula

σ(corrected) =

√
( fσσ)2 +

(
σ(int))2

, (10)

3 The discretized version used in the implementations is di =∑
j Ri j s j + ni =

∑
j R̃i j p j s j + ni, where the index j determines a pixel

on the sphere, so that s j = s(ϑ j, ϕ j) and p j = p(ϑ j).

respectively. Here, the factor fσ accounts for the general under-
estimation of the errors in the catalog of Taylor et al. (2009),
whereas the additive constant σ(int) represents the average con-
tribution of the sources’ intrinsic Faraday rotation. As numeri-
cal values, we use fσ = 1.22, which was found by Stil et al.
(2011) by comparing the data of Taylor et al. (2009) and Mao
et al. (2010) on sources that are contained in both catalogs, and
σ(int) = 6.6 m−2, which corresponds to the upper end of the num-
bers found by Schnitzeler (2010). Since the error contribution
from the internal Faraday rotation is not correlated with the mea-
surement error, the two contributions add up quadratically in the
noise covariance matrix.

3.2.2. Reconstruction method

For signal and noise fields with a Gaussian prior probability dis-
tribution, the posterior probability distribution of the signal field
is again a Gaussian, i.e. it is of the form P(s|d,Cl) = G(s−m,D),
where a multivariate Gaussian probability distribution with co-
variance matrix X is denoted by

G(x, X) =
1

|2πX|1/2
exp

(
−

1
2

x†X−1x
)
, (11)

where the † symbol denotes a transposed and complex con-
jugated quantity. In order to reconstruct the mean signal field
m = 〈s〉, where the brackets denote the posterior mean, it is also
necessary to reconstruct the angular power spectrum Cl. To do
so, the critical filter formulas

m = D j (12)

and
Cl =

1
2l + 1

tr
((

mm† + D
)

S l

)
(13)

are iterated, starting with some initial guess for the power spec-
trum. Here, the signal covariance matrix is expanded as S =∑

l ClS l, where S l is the projection onto the spherical harmonic
components with index l. Furthermore, D is the posterior covari-
ance matrix,

D =
(
S −1 + R†N−1R

)−1
, (14)

and j is the information source term,

j = R†N−1d. (15)

Since the critical filter is on the brink of exhibiting a per-
ception threshold (cf. Enßlin & Frommert 2010) and it is gen-
erally more desirable to overestimate a power spectrum enter-
ing a filter than to underestimate it, the coefficients Cl are sub-
jected to a procedure in which the value of Cl is replaced by
max {Cl−1,Cl,Cl+1} after each iteration step. The advantage of
overestimating the power spectrum can be seen by considering
the limit of Cl → ∞ in Eq. (12) and (14). For high values of Cl,
the first term in Eq. (14) can be neglected and Eq. (12) becomes

mCl→∞ = s + R−1n. (16)

Thus, by overestimating the power spectrum the importance of
its exact shape is diminished and the reconstruction will instead
follow the information given directly by the data more closely.
Considering an extreme underestimation of the power spectrum,
Cl → 0, on the other hand, would lead to

mCl→0 = 0, (17)

suppressing the information given by the data.
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Fig. 2. Results of the reconstruction of the signal field and Faraday depth. The left column shows the posterior mean of the signal
field m (panel (a)) and its one-sigma uncertainty

√
D̂ (panel (c)). The right column shows the resulting map of the Faraday depth

pm (panel(b)) and the corresponding one-sigma uncertainty
√

p2D̂ (panel (d)) in m−2.
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Fig. 3. Angular power spectrum of the signal field s. The solid
curve shows the resulting power spectrum as calculated with
the critical filter formalism. The dashed line depicts the signal
power spectrum used to generate large-scale uncertainty correc-
tions for the calculation of G according to Sect. 3.2.3.

3.2.3. Calculating 〈G〉G(s−m,D)

Once the posterior mean of the signal is reconstructed, the corre-
sponding field G can be calculated according to Eq. (4), assum-
ing φ = m. However, since Eq. (4) is a nonlinear transformation
of the Faraday depth, that is not the same as the posterior mean

of G. This can be estimated by averaging over a large number of
samples, according to

〈G(s)〉G(s−m,D) ≈
1

Nsamples

Nsamples∑
k=1

G(sk). (18)

Here, the samples sk are drawn from the posterior probabil-
ity distribution G(s − m,D). In our implementation we use the
method of Jasche et al. (2010) to generate these samples, i.e. we
generate corrections yk to the posterior mean m by drawing sig-
nal and noise realizations from the respective prior probability
distributions,

s̃k ←↩ P(s|S ), (19)

nk ←↩ P(n|N), (20)

combining them into a data realization according to

dk = Rs̃k + nk, (21)

and calculating the difference between the signal realization and
the Wiener filtered data realization

yk = s̃k − DR†N−1dk. (22)

The signal realizations

sk = m + yk (23)

are shown by Jasche et al. (2010) to follow the posterior proba-
bility distribution. For reasons of numerical feasibility, we con-
sider only large scale corrections to the posterior mean in our
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Fig. 4. Results of the calculation of the gradient field G and the application of the LITMUS test. The first row shows estimates for
the ablolute values of the field G. Panel (a) shows G as calculated directly from the posterior mean m of the signal field, whereas
panel (b) takes into account large-scale uncertainty corrections as described in Sect. 3.2.3. Panel (c) shows the absolute value of the
polarized intensity P as measured by the WMAP satellite and panel (d) shows the result of the LITMUS test, namely Re (GP∗), in
arbitrary units, using G and P as shown in panels (b) and (c), respectively. Note the logarithmic color code of panels (a)–(c).

calculation, i.e. we introduce a small-scale power cut-off for the
signal power spectrum that describes the prior probability distri-
bution used in Eq. (19).

Thus, given m and D, the posterior mean for the Faraday
depth is given by 〈φ〉 = pm, its one sigma error bars by ±p

√
D̂,

and the posterior mean for the field G by the above sampling ap-
proximation, where the signal samples sk are multiplied with the
galactic profile function p(θ) to give realizations of the Farady
depth. Here, D̂ is the vector that contains the diagonal elements
of the matrix D.

3.3. Results

Figures 2 – 4 summarize the results of the Faraday depth re-
construction and the application of the LITMUS test to these
data. All calculations are conducted at a HEALPix4 resolution
Nside = 64. The left column of Fig. 2 shows the reconstructed
signal field as well as its uncertainty as they are calculated using
the critical filter method. Evidently, the reconstruction method
is able to extrapolate from the available information into regions
where no data are taken, i.e. the Earth’s shadow in the lower right
of the projection. However, only structures on scales comparable
to the extent of the region without information are reconstructed
within it and the reconstruction’s uncertainty becomes large in
this region, as well as near the galactic poles, where the signal-
response to noise ratio of the data is low.

4 The HEALPix package is available from
http://healpix.jpl.nasa.gov.

The outcome for the angular power spectrum is shown in
Fig. 3. Clearly, the critical filter predicts a large amount of power
on small scales. Therefore the rather high values seen in Fig. 2.c
are mainly due to uncertainty on small scales. This may in part
be due to an underestimation of the error bars of extreme data
points which are not accounted for by our rather crude correction
of the error bars as described by Eq. (10).5

The right column of Fig. 2 shows the reconstructed Faraday
depth and its uncertainty, obtained from the left column of Fig. 2
by a simple multiplication with the galactic profile function
p(ϑ). Clearly, the field 〈φ〉 takes on only low values within the
information-less region, whereas, again, its uncertainty is espe-
cially large there.

Figure 4 shows the two fields used in the LITMUS test as
well as its result. The field G calculated according to the sam-
pling prescription, Eq. (18), is shown in panel (b). In the sam-
pling procedure, large-scale uncertainty corrections that are de-
scribed by the signal power spectrum shown in Fig. 3 are taken
into account. For comparison, the field G as calculated from the
posterior mean of the signal field without any uncertainty cor-
rections is shown in panel (a). The main effect of the uncertainty
corrections is to increase the values within the region where no
data points were measured and in the polar regions. The spatial
structure of G, however, remains largely unchanged.

5 A thorough study of the problem of reconstructing a signal field
with unknown power spectrum from data with unknown error bars will
be presented in a future paper.



6 N. Oppermann et al.: Probing Magnetic Helicity

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-3 -2 -1 0 1 2 3

R
e
〈G

P
∗
〉 S

2

β

Fig. 5. Rotational curve for Re 〈GP∗〉S2 in arbitrary units.

Finally, the real part of the product GP∗ is shown in the
last panel of Fig. 4. By visual inspection, it is not immediately
clear whether positive values dominate this image. Taking the
spatial average Re 〈GP∗〉S2 does in fact yield a negative value.
Nevertheless, we performed another test for helicity. In order to
assess helicity on small scales, the two fields G and P are rotated
with respect to one another about an angle β around the galactic
axis and their product is again averaged over the whole sky. For
a helical magnetic field, this procedure should result in a curve
Re 〈GP∗〉S2 (β) that exhibits a maximum at β = 0, since the cor-
relations between the fields G and P are expected to be local. The
resulting curve for this test is shown in Fig. 5. Not only does it
not take on its global maximum at β = 0, but the point β = 0
does not seem to be special in any way. Therefore, no indication
of helicity is found.

We also performed the analysis with a different function
p(ϑ), created by doubling the smoothing length in its calcula-
tion. The results of the reconstructed map of the Faraday depth
changed only slightly, i.e. the variance of the difference between
the reconstructions with the two different profiles is 0.65% of the
variance of the original 〈φ〉-map shown in Fig. 2.b.

4. Application to simulated data

In order to check whether the nondetection of helicity in the pre-
vious section allows the conclusion that the galactic magnetic
field is in fact nonhelical, we now apply the same helicity test
to a number of artificially generated magnetic fields with known
helicity.

4.1. Planar implementation

The most simple setting that can be considered is the observation
of a well localized magnetic field structure. In the limit of great
distances between the magnetic field under consideration and the
observer, the lines of sight penetrating the field become parallel.
We assume the field to be contained in a cubic box which is
oriented along the lines of sight.

The field in the box is generated by the garfields code (first
applied in Kitaura & Enßlin 2008). This code draws the three
cartesian components of the magnetic field in Fourier space in-
dependently of a common power spectrum, assumed here to be
a Kolmogorov-type spectrum of the form PB(k) ∝ k−5/3−2, ac-
cording to Gaussian statistics. In order to produce a magnetic

field without divergence, its frequency components parallel to
the respective k-vector are then subtracted

Bdiv-free(k) ∝ B(k) − k
k · B(k)

k2 . (24)

A degree of helicity is then imprinted onto the field by applying
the formula

Bdiv-free,hel(k) ∝ Bdiv-free(k) + η
ik × Bdiv-free(k)

k
, (25)

where η = 0 leaves the field unaffected and η = ±1 produces the
highest degree of helicity.

Finally, we assume the thermal and cosmic ray electron den-
sities to be constant throughout the box. Thus, the observables
Q, U, and φ can be obtained by simply integrating the appro-
priate magnetic field components along the box direction asso-
ciated with the line of sight. Then the complex quantities G and
P are easily calculated and multiplied, yielding two-dimensional
images of GP∗. This procedure is conducted for various realiza-
tions of random magnetic fields both without helicity (η = 0)
and with maximal helicity (η = 1).

4.1.1. Results

The resulting images for one random magnetic field realization
are shown in Fig. 6. The cube was discretized for the calcula-
tion into 5123 pixels. It can already be seen by eye that positive
values of Re (GP∗) dominate in the case with maximal helic-
ity (panel (a)), whereas in the case without helicity (panel (b)),
positive and negative values seem to be roughly equally repre-
sented. Calculating the spatial averages over the whole square
yields Re 〈GP∗〉� = 2.3 · 10−3 and Re 〈GP∗〉� = −1.5 · 10−4 for
the case with and without helicity, respectively.

We calculated this spatial average for the results of the
LITMUS test applied to 100 different random magnetic field re-
alizations, both with and without helicity. Averaging these val-
ues for the helical fields and for the nonhelical fields separately
yields a positive value in the helical case. Normalizing all values
such that this average becomes equal to one yields

〈Re 〈GP∗〉�〉samples = 1.0, σRe〈GP∗〉� = 0.63

in the case with helicity and

〈Re 〈GP∗〉�〉samples = −0.025, σRe〈GP∗〉� = 0.34

in the case without. Clearly, the LITMUS test yields positive
results if applied to helical fields, whereas its results fluctuate
around zero if applied to nonhelical fields. This is exactly the
behavior that should be expected and the basic functioning of
the LITMUS test is thereby demonstrated in this setting.

4.2. Spherical implementation

As a next step, the applicability of the LITMUS test is checked
for magnetic fields surrounding the observer, as in the case of
the galactic field. Again, several sets of mock observations are
produced. These simulations are conducted using the hammurabi
code (see Waelkens et al. 2009) in connection with the garfields
code6. The hammurabi code allows for a large scale analytic
field model and an additional Gaussian random field component,

6 Both codes are available from
http://www.mpa-garching.mpg.de/hammurabi/hammurabi11.
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Fig. 6. Maps of Re (GP∗) for a particular magnetic field realization in arbitrary units. Panel (a) shows the case with maximal helicity
(η = 1), panel (b) the one without helicity (η = 0).

which can be generated by the garfields code with a preset de-
gree of helicity as described in Sect. 4.1. It then integrates the
different field components, weighted with the appropriate elec-
tron density, along radial lines of sight and produces sky maps
of simulated observations of the Stokes parameters Q and U and
Faraday depth φ (among others), thus providing all necessary
ingredients to perform the LITMUS procedure.

4.2.1. Constant electron densities

For simplicity, we start again by setting the densities of the ther-
mal electrons and the cosmic ray electrons to constant values
throughout the simulated galaxy.

Gaussian random field. First, in order to apply the test to a
field with a well-defined degree of helicity, the field strength of
the large scale analytic component is set to zero, such that the
simulated galactic field is a purely random one with a chosen
degree of helicity. As in the planar case, we choose either no
helicity (η = 0) or maximal helicity (η = 1).

Figure 7 shows the maps of Re (GP∗) for one particular
Gaussian random magnetic field with a power law index of −5/3,
with helicity and without helicity, respectively. As for the planar
implementation, one can immediately see that positive values
dominate in the helical case and positive and negative values are
roughly equally represented in the nonhelical case.

Figure 8 shows the results of the rotational test described in
Sect. 3.3 for this particular magnetic field realization. Clearly,
the spatial average Re 〈GP∗〉S2 takes on a sharp maximum at
β = 0 and is positive in the case with helicity, while it does
not have a maximum there and in fact happens to be negative in
the case without helicity. This is exactly the result expected from
the LITMUS test.

The sharpness of the peak in Fig. 8 indicates that the helicity
is to be found in small-scale features. As a test of this assertion,
we calculated the spherical multipole components Glm and Plm
of the complex gradient and polarization fields. Note that the
spatial average over the product of the fields is proportional to
the sum of the products of the multipole components, i.e.

Re 〈GP∗〉S2 =
1

4π
Re

 lmax∑
l=0

l∑
m=−l

GlmP∗lm

 , (26)

where lmax is determined by the finite resolution of the map. If
we now neglect the first terms in the sum, i.e. the small-l contri-
butions, we arrive at a spatial average over the product in which
all large-scale features were neglected. The resulting rotational
curves for the same magnetic fields used for Fig. 8 are shown in
Fig. 9, where only multipole moments with l ≥ 25 were consid-
ered. It can be seen that this procedure further sharpens the peak
at β = 0 and strengthens it relative to other local maxima in the
curves, thus facilitating the detection of small-scale helicity. The
same result for the observational data studied in Sect. 3 is shown
in Fig. 10. Clearly, there is still no sign of helicity in this case.

Furthermore, we created a set of 100 different Gaussian ran-
dom magnetic fields, performed the LITMUS test, and calculated
the spatial average Re 〈GP∗〉S2 for all of them. Each field realiza-
tion was considered in a version without helicity and a version
with maximal helicity, just as in the case of the planar imple-
mentation. Averaging over the 100 samples yields again a pos-
itive value in the helical case. Normalizing all values such that
this average is equal to one yields〈

Re 〈GP∗〉S2
〉

samples = 1.0, σRe〈GP∗〉
S2 = 0.25

in the helical case and〈
Re 〈GP∗〉S2

〉
samples = −0.27, σRe〈GP∗〉

S2 = 0.23
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(a)

�1 1

(b)

�1 1

Fig. 7. Maps of Re (GP∗) for a particular magnetic field realization in arbitrary units in a spherical setting. Panel (a) shows the case
with maximal helicity (η = 1), panel (b) the one without helicity (η = 0).
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Fig. 8. Rotational curve for Re 〈GP∗〉S2 in arbitrary units. The
solid and dashed lines depict the results for the same magnetic
field with helicity parameter η = 1 and η = 0 respectively.
Constant electron densities are assumed.

in the nonhelical case. This clearly underlines the success of the
LITMUS test in the spherical setting.

Since the magnetic field of the Milky Way is known to be
much stronger in the vicinity of the galactic plane than in the
halo region, we repeated the analysis with random realizations of
Gaussian magnetic fields that are confined to the region within a
vertical distance of 8 kpc of the galactic plane. The results of the
LITMUS procedure for these fields still turn out to be a reliable
indicator for magnetic helicity.

Large scale field models. As a next step, the (helical or non-
helical) random magnetic field component is switched off com-
pletely and replaced by an analytic large scale magnetic field
model. Several sets of simulations are performed using differ-
ent models for the galactic large scale field. For these analytic
models, the current helicity can be calculated directly, giving an
expectation as to whether the helicity test should produce posi-
tive results or not.

The results of the rotational helicity test are shown in Fig. 11
for the large scale magnetic field model described in Page et al.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

R
e
( l m

ax ∑ l=
25

l ∑ m
=
−

lG
lm

P
∗ lm

)

β

Fig. 9. Same as Fig. 8, only with large-scale contributions ne-
glected.
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Fig. 10. Same as Fig. 5, only with large-scale contributions ne-
glected.

(2007), i.e.

B(r, ϕ, z) = B0 [ cos (ψ(r)) cos (χ(z)) êr

+ sin (ψ(r)) cos (χ(z)) êϕ
+ sin (χ(z)) êz

] (27)
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Fig. 11. Rotational curve for Re 〈GP∗〉S2 in arbitrary units. The
solid line corresponds to the best-fit magnetic field model of
Page et al. (2007), the dashed line to a model where the parame-
ter χ0 is set to zero. Constant electron densities are assumed.

in galactic cylindrical coordinates, where

ψ(r) = ψ0 + ψ1 ln
(

r
8kpc

)
(28)

and

χ(z) = χ0 tanh
(

z
1kpc

)
. (29)

The solid curve corresponds to the parameters favored by Page
et al. (2007), namely χ0 = 25◦, ψ0 = 27◦, and ψ1 = 0.9◦. This
corresponds to a simple flat spiral in the galactic plane which
becomes more and more screw-like with vertical distance z from
the galactic plane, so that a slight degree of helicity is inherent
in the field geometry. This can be verified by direct calculation
according to Eq. (1), yielding

j · B = B2
0

sin (χ(z)) cos (χ(z))
r

(sin (ψ(r)) + ψ1 cos (ψ(r))) , (30)

which is nonzero for any generic point away from the galac-
tic plane. The resulting line in Fig. 11 is not a clear indication
for this helicity. However, the curve is nevertheless sensitive to
the angle χ0, which produces the helicity. Lowering its value,
i.e. making the spirals more and more parallel to the galactic
plane, changes the results of the LITMUS test. The extreme case
of χ0 = 0, i.e. Bz = 0 everywhere, for which the value of Eq. (30)
becomes zero everywhere, is also shown in Fig. 11. This curve’s
value at β = 0 is even more distinct from its maximum than in
the case of the solid line. This example shows that while the re-
sults react in a systematic way on changes in the parameters, the
test is not suited to detect helicity on the largest scales.

We used the model of Page et al. (2007) in the demonstra-
tion of this effect mainly because of its mathematical simplicity.
More sophisticated models can be found e.g. in Sun et al. (2008),
Jansson et al. (2009), Jaffe et al. (2010), and references therein.

4.2.2. The role of the electron densities

In order to get closer to a realistic model of the Milky Way, as a
next step we replace the constant electron densities with realis-
tic models. The hammurabi code allows the use of the NE2001
model for the thermal electron density (cf. Cordes & Lazio 2002,
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Fig. 12. Same as Fig. 8, only with realistic electron densities
used in the calculation.
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Fig. 13. Same as Fig. 11, only with realistic electron densities
used in the calculation.

2003) to compute the Faraday depth and several analytic models
for the cosmic ray electron density to compute the synchrotron
emissivity (see also Waelkens et al. 2009). In the calculations
performed to obtain the results presented here, the cosmic ray
electron distribution model of Page et al. (2007) was used.

Gaussian random field. The resulting rotational curves, as cal-
culated with the realistic electron distributions, for the case of
the Gaussian random field are shown in Fig. 12. Neither in the
case with helicity (η = 1), nor in the case without helicity (η = 0)
does the curve take on its maximum at β = 0. This is the expected
result in the latter case but contradicts the expectation in the for-
mer one. Therefore, the helicity imprinted onto the small scale
magnetic field clearly fails to be detected by the test applied.

Large scale field models. The result for the large scale mag-
netic fields is shown in Fig. 13. There actually seems to be a
maximum in the vicinity of β = 0 now. This is true, however, for
the case of the planar spiral model (χ0 = 0) as well as for the
model with helicity (χ0 = 25◦). Therefore, the proposed helicity
test might under certain circumstances even indicate helicity on
large scales where there is none, if the observer is surrounded by
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the field. Other magnetic field models with planar spirals, such
as the bisymmetric (i.e. B(r, ϕ, z) = −B(r, ϕ + π, z)) spiral model
of Stanev (1997) lead to similar results.

5. Discussion and conclusion

The present work presents the first application of the LITMUS
test for magnetic helicity proposed by Junklewitz & Enßlin
(2010) to actual data. The application of the test involves thor-
oughly reconstructing a map of the Faraday depth distribution,
calculating its transformed gradient field G, creating a map of
GP∗, averaging over this map, shifting the two fields with respect
to each other to see whether any signal vanishes, and filtering
out large-scale contributions for a better detection of small-scale
helicity. This procedure, applied to observations of the Faraday
depth and polarization properties of the synchrotron radiation
within our own galaxy in Sect. 3, does not show any signs of
helicity in the Milky Way’s magnetic field.

In order to assess the significance of this, the applicability of
the test was probed in different artificial settings. The complex-
ity of these settings was increased bit by bit to find out under
what circumstances exactly the LITMUS test yields reliable re-
sults. It was found that meaningful results can be achieved if
the electron densities do not vary on the scales of the magnetic
field, both in the regime of magnetic field structures whose dis-
tance from the observer is much greater than their extension, as
shown in Sect. 4.1, and in the regime of magnetic fields sur-
rounding the observer, as shown in Sect. 4.2.1. We showed that
the performance of the LITMUS test with regard to small-scale
helicity is further improved by dropping the first few terms in
Eq. (26). However, indications of helicity on large scales are un-
reliable, as shown in Sect. 4.2.1. Furthermore, it was demon-
strated in Sect. 4.2.2 that any non-trivial electron density may
distort the outcome of the test to a point where even small-scale
helical structures fail to be detected. This is not too surprising
since e.g. a variation in the thermal electron density will intro-
duce a gradient in the Faraday depth that is not caused by the
magnetic field structure. Therefore the nondetection of helicity
for the galactic magnetic field does not necessarily mean that the
field is nonhelical on small scales. It may be the case that small-
scale fluctuations of the electron density introduce effects in the
observational data that prevent the detection of helicity.

So, as a natural next step, the hunt for helicity in astrophysi-
cal magnetic fields should focus on a region that is small and/or
homogeneus enough for the assumption of constant electron
densities to hold at least approximatively. Although our work
has shown that the helicity test that we studied is not suitable
for all astrophysical settings, we are confident that it may nev-
ertheless yield useful results if applied in a setting with constant
electron densities.

As a side effect of this paper, it was demonstrated in Sect. 3.2
that the method proposed by Enßlin & Frommert (2010) to re-
construct a Gaussian signal with unknown power spectrum is
very well suited for practical application.
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