
The SINS survey of z~2 galaxy kinematics: 

properties of the giant star forming clumps1 

Genzel, R. 1,2, Newman, S.3, Jones, T.3, Förster Schreiber, N.M.1, Shapiro, K.3,14, 

Genel, S.1, Lilly, S.J.4, Renzini, A.5, Tacconi, L.J.1, Bouché, N.6,15, Burkert, A.7, 

Cresci, G.8, Buschkamp, P.1, Carollo, C.M.4, Ceverino,D.9, Davies, R.1, Dekel,A.9, 

Eisenhauer, F.1, Hicks, E.10, Kurk, J.1, Lutz, D.1, Mancini, C.5, Naab, T.11, Peng, Y.4,  

Sternberg, A.12, Vergani, D.13 & Zamorani, G.13    

                                                          

                        

1 Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching, 

Germany (genzel@mpe.mpg.de) 

 2 Department of Physics, Le Conte Hall, University of California, Berkeley, CA 94720, USA 

3 Department of Astronomy, Campbell Hall, University of California, Berkeley, CA  94720, USA 

4 Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH Zürich, 

CH-8093, Switzerland 

5 Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova, I-35122, Italy 

6 Department of Physics & Astronomy, University of California, Santa Barbara,  Santa Barbara, CA 

93106, USA 

7 Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, München, D-81679, 

Germany  

8 Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I - 

50125 Firenze, Italia 

9 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel 

10 Department of Astronomy, University of Washington, Box 351580, U.W.,  Seattle, WA 98195-1580, 

USA 

11 Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching, Germany 

12 School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 

 
1  Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory 
(ESO), Paranal, Chile (ESO program IDs 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-
0635, 183.A-0781). 

 1

http://www.ucsb.edu/
http://www.phys.huji.ac.il/
http://www.huji.ac.il/
http://www.huji.ac.il/


13 INAF Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy 

14 Aerospace Research Laboratories, Northrop Grumman Aerospace Systems, Redondo Beach, CA 

90278, USA 

15 supported by the Marie Curie grant PIOF-GA-2009-236012 from the European Commission 

 

Abstract 

We have studied the properties of giant star forming clumps in five z~2 star-

forming disks with deep SINFONI AO spectroscopy at the ESO VLT1. The clumps 

reside in disk regions where the Toomre Q-parameter is below unity, consistent with 

their being bound and having formed from gravitational instability. Broad Hα/[NII] 

line wings demonstrate that the clumps are launching sites of powerful outflows. The 

inferred outflow rates are comparable to or exceed the star formation rates, in one 

case by a factor of eight. Typical clumps may lose a fraction of their original gas by 

feedback in a few hundred million years, allowing them to migrate into the center. 

The most active clumps may lose much of their mass and disrupt in the disk. The 

clumps leave a modest imprint on the gas kinematics. Velocity gradients across the 

clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam 

smearing and clump sizes, these gradients may be consistent with significant 

rotational support in typical clumps. Extreme clumps may not be rotationally 

supported; either they are not virialized, or they are predominantly pressure 

supported. The velocity dispersion is spatially rather constant and increases only 

weakly with star formation surface density. The large velocity dispersions may be 

driven by the release of gravitational energy, either at the outer disk/accreting streams 

interface, and/or by the clump migration within the disk. Spatial variations in the 
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inferred gas phase oxygen abundance are broadly consistent with inside-out growing 

disks, and/or with inward migration of the clumps.  

.  

Keywords:  cosmology: observations --- galaxies: evolution --- galaxies: high-

redshift --- infrared: galaxies 
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1. Introduction 

The rest-frame UV/optical morphologies of most z > 1 ‘normal’ star forming 

galaxies (henceforth ‘SFGs’: Steidel et al. 1996, 2004, Franx et al. 2003, Noeske et al. 

2007, Daddi et al. 2007, Cameron et al. 2010) are irregular and often dominated by 

several giant (kpc-size) star forming clumps (Cowie et al. 1995, van den Bergh et al. 

1996, Elmegreen et al. 2004, 2009, Elmegreen & Elmegreen 2005, 2006, Förster 

Schreiber et al. 2009, 2011a). These clumpy, asymmetric structures often resemble 

z~0 mergers (Conselice et al. 2003, Lotz et al. 2004). However, spatially resolved 

studies of the ionized gas kinematics of these clumpy galaxies find a surprisingly 

large abundance of disks with coherent rotation, especially among the more massive 

(M*  a few 1010 M


) and bright (Ks AB21.8) systems (Förster Schreiber et al. 2006, 

2009, Genzel et al. 2006, 2008, Weiner et al. 2006, Wright et al, 2007, Law et al. 

2007, 2009, Shapiro et al. 2008, Bournaud et al. 2008, Cresci et al. 2009, van 

Starkenburg et al. 2008, Epinat et al. 2009, Lemoine-Busserolle & Lamareille 2010). 

These kinematic studies also find that high-z SFGs as a rule exhibit large local 

velocity dispersions of their ionized gas component, with ratios of rotation velocity vc 

to local intrinsic velocity dispersion σ0 ranging from 1 to 6. Observations of CO 

rotational line emission indicate that z~1-3 SFGs have large (~30-80%) baryonic cold 

gas fractions (Daddi et al. 2008, 2010a, Tacconi et al. 2008, 2010).  

These basic observational properties can be understood in a simple physical 

framework, in which gravitational instability and fragmentation in semi-continuously 

fed, gas-rich disks naturally leads to large turbulence and giant star forming clumps 

(Noguchi 1999, Immeli et al. 2004 a,b, Bournaud, Elmegreen & Elmegreen 2007, 
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Elmegreen et al. 2008, Genzel et al. 2008, Dekel, Sari & Ceverino 2009, Bournaud 

2010). A more detailed discussion of these instabilities follows in section 2.4 where 

we show that gas rich, marginally stable disks should have much larger and more 

massive star forming complexes than those in z~0 SFGs and that these complexes 

should be located in regions where the value of the Toomre (1964) Q-parameter is 

below unity. 

The most recent generation of cosmological galaxy evolution models and 

simulations find that the buildup of z>1 SFGs in the mass range of 1010 to 1011 M


 is 

dominated by smooth accretion of gas and/or minor mergers (Kereš et al. 2005, 2009, 

Dekel & Birnboim 2006, Bower et al. 2006, Kitzbichler & White 2007, Ocvirk, 

Pichon & Teyssier 2008, Davé 2008, Dekel et al. 2009a, Oser et al. 2010). In contrast 

the overall cosmological mass assembly of galaxies, especially of the most massive 

ones and at late times, is probably dominated by mergers (Bower et al. 2006, 

Kitzbichler & White 2007, Naab et al. 2007, Naab, Johansson & Ostriker 2009, Guo 

& White 2008, Davé 2008, Genel et al. 2008). The large and semi-continuous gas 

accretion in these ‘cold flows’ or ‘cold streams’ may rapidly build up galaxy disks 

(Dekel et al. 2009a, Ocvirk et al. 2008, Kereš et al. 2009, Oser et al. 2010). If the 

incoming material is gas rich, then violent gravitational instabilities in these disks 

could lead to the large star formation rates derived from observations (Genel et al. 

2008, Dekel et al. 2009b). The giant clumps are expected to migrate into the center 

via dynamical friction and tidal torques on a time scale of 

2
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where they may form a central bulge and a remnant thick disk (Noguchi 1999, Immeli 

et al. 2004 a,b, Förster Schreiber et al. 2006, Genzel et al. 2006, 2008, Elmegreen et 

al. 2008, Carollo et al. 2007, Dekel et al. 2009b, Bournaud, Elmegreen & Martig 

2009, Ceverino, Dekel & Bournaud 2010).  

The efficacy of the ‘violent disk instability’ for forming bulges by the in-spiral of 

the giant clumps hinges on the survival of the clumps in the presence of outflows 

driven by stellar winds, supernovae and radiation pressure, even if secular bulge 

growth may also occur directly from the disk without clump migration. This ‘star 

formation feedback’ is widely thought to be a key ingredient in the evolution of star 

forming galaxies (Dekel & Silk 1986, Kauffmann, White & Guiderdoni 1993, Finlator 

& Davé 2007, Efstathiou 2000, Bouchè et al. 2010, Dutton, van den Bosch & Dekel 

2010). Local Universe giant molecular clouds (GMCs) are prone to rapid expulsion of 

gas by this feedback on a time scale expulsion ~ clump

out

M
t

M
  , which probably dissipates 

GMCs on a time scale of a few tens of Myrs (Murray 2010). High-z clumps may live 

longer because their ratio of gravitational binding energy to star formation rate is 

~100 times larger than in the local Universe (Dekel et al. 2009b). Exactly how stable 

the high-z clumps are and how large their gas expulsion time scales might be, is a 

matter of current debate. Krumholz & Dekel (2010) find that the high-z clumps only 

loose a modest fraction (<50%) of their original mass by feedback as long as the star 

formation efficiency per free fall time does not significantly exceed a few percent 

(similar to local SFGs: Kennicutt 1998a). Murray, Quataert & Thompson (2010a) and 

Genel et al. (2010) argue that the majority of the clumps’ initial gas mass is expelled 

by feedback in the form of momentum driven winds. 

While it is plausible that the very active high-z SFGs are naturally driven toward 

marginal gravitational instability (Q~1) by self-regulation (Quirk 1972, Gammie 
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2001, Thompson, Quataert & Murray 2005), the dominant agents responsible for the 

required (and observed) high velocity dispersions are not known, and possibly multi-

factorial (Krumholz & Burkert 2010). Förster Schreiber et al. (2006) proposed that the 

gravitational energy released by the accreting gas (including minor mergers) at the 

interface of the cold streams and the disk may trigger the large random motions. A 

similar explanation is favored by Genzel et al. (2008) and Khochfar & Silk (2009), 

while Dekel et al. (2009b) argue that smoother-than-average streams may not be able 

to drive a large local velocity dispersion but in other cases accretion from the halo 

might drive the disk into stability (Q>1). Instead, Immeli et al. (2004 a,b), Dekel et al. 

(2009b) and Ceverino et al. (2010) all favor gravitational torques in the disk and 

collisions between the giant clumps, or a combination of the gravitational torques and 

stellar feedback (Elmegreen & Burkert 2010) as the main drivers of the turbulence. If 

the main driver of the large velocity dispersions is stellar feedback, and specifically 

radiation pressure on dust grains, one might expect a correlation of the amplitude of 

turbulence with star formation rate or surface density (Förster Schreiber et al. 2006, 

Genzel et al. 2008, Murray et al. 2010a).  

 In this paper we present and analyze new high-quality SINFONI/VLT integral 

field (IFU) spectroscopy (Eisenhauer et al. 2003, Bonnet et al. 2004) of five luminous, 

clumpy z~2 SFGs. We employed both laser guide star (LGS) and natural guide star 

(NGS) adaptive optics (AO) to improve the angular resolution to an effective ~0.2” 

FWHM. For all of the targets, the quality of the derived spectra is much superior to 

previous data, because of long integration times (9 to 19 hours in four of the targets) 

and/or the high surface brightness of the selected clumpy galaxies. With these data it 

is now possible, for the first time, to study detailed line profiles on the scale of the 

most massive and largest clumps (1-3 kpc). Our measurements deliver interesting new 
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constraints on the kinematic properties and lifetimes of the giant clumps. We adopt a 

ΛCDM cosmology with Ωm=0.27, Ωb=0.046 and H0=70 km/s/Mpc (Komatsu et al. 

2010), as well as a Chabrier (2003) initial stellar mass function (IMF). 
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2. Observations and Analysis 

2.1 Source Selection, Observations and Data Reduction 

By selection, the five galaxies we discuss in this paper are massive (vc~250 km/s, 

M*~1010.6 M


, Mdyn(R~10 kpc) 1011 M


), luminous (star formation rates (SFR) ~ 

120- 290 M


yr-1) and fairly large (Rdisk(HWHM)~3-6.5 kpc). They sample the upper 

range of mass and bolometric luminosity of the z~2 SFG ‘main sequence’ (Förster 

Schreiber et al. 2009, Noeske et al. 2007, Daddi et al. 2007). In this subset of the z~2 

SFG population, data cubes with integration times a few to twenty hours per galaxy 

have sufficient signal to noise ratio (SNR) in a sufficient number of independent 

pixels (Npix~50-200) to extract the detailed properties of giant clumps, each of which 

have intrinsic FWHM diameters of 0.15”-0.3” (Genzel et al. 2008). 

As part of the SINS GTO survey (Förster Schreiber et al. 2009) and the 

SINS/zCOSMOS ESO Large Program  (see Mancini et al., in prep.) of high-z galaxy 

kinematics carried out with SINFONI at the VLT, we observed the Hα, [NII] and 

[SII] emission lines in the rest-frame UV-selected  SFGs Q1623-BX599 (z=2.332) 

and Q2346-BX482 (z=2.258: Erb et al. 2006b, Förster Schreiber et al. 2006, 2009), 

and in the rest-frame optically selected SFGs D3a15504 (z=2.383) ; ZC782941 

(z=2.182) and ZC406690 (z=2.196) (Kong et al. 2006; Genzel et al. 2006, 2008; 

Förster Schreiber et al. 2009; Mancini et al., in prep; Peng et al., in prep.).  The two 

rest-UV-selected sources were photometrically identified in optical imaging by their 

UnGR colors (satisfying the ‘BX’ criteria), their redshift confirmed from optical 

spectroscopy, and first observed in the near-IR with the long-slit spectrometer 

NIRSPEC on Keck II (Steidel et al. 2004; Adelberger et al. 2004; Erb et al. 2006b).  

The rest-optically-selected targets were identified based on Ks-band imaging and via 
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the ‘BzK’ color criterion for 1.4 < z < 2.5 star-forming galaxies (Daddi et al. 2004b), 

and followed-up with VLT/VIMOS optical spectroscopy to confirm their redshift 

(Kong et al. 2006; Lilly et al. 2007).  Prior to the SINFONI observations, none of 

them had near-IR spectroscopic data. ZC782941 and ZC406690 were moreover 

specifically drawn from the 1.7 deg2 zCOSMOS spectroscopic survey (Lilly et al, 

2007)  to be located within 30” of  G < 16 mag stars suitable for Natural Guide Star  

adaptive optics (AO) assisted observations.  

The five galaxies span the range of kinematic properties found in the SINS survey 

of z~2 SFGs (Förster Schreiber et al. 2009). BX482 and ZC406690 are large clumpy, 

rotating disks with a prominent ~5kpc ring of star formation. D3a15504 is a large 

rotating disk with a central AGN. ZC782941 is a more compact, rotating and 

asymmetric disk. The asymmetry is mainly caused by a compact clump north of the 

main body the galaxy, which may be a second, lower mass galaxy interacting with the 

main galaxy (a ‘minor’ merger). BX599 is an example of the compact ‘dispersion 

dominated’ systems that tend to be common among less massive, UV-selected 

galaxies (Erb et al. 2006b, Law et al. 2007, 2009). However, our new LGS AO 

SINFONI data now resolve BX599 spatially and reveal a substantial velocity gradient 

of 150 to 200 km/s across ~3 kpc. The observed ratio of half the velocity gradient to 

the integrated velocity dispersion Δvgrad/(2σint)~0.6. This is similar to several rotating 

disk galaxies in the SINS survey (Förster Schreiber et al. 2009). BX599 may thus be a 

compact rotating disk. For a more detailed description of the SINS and 

SINS/zCOSMOS surveys, source selection, and global galaxy properties, we refer to 

Förster Schreiber et al. (2009) and Mancini et al. (in prep.).  

Table 1 summarizes integration times and the final FWHM angular resolutions in 

these galaxies. For a description of the data reduction methods and analysis tools we 
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refer to Schreiber et al. (2004), Davies (2007), and Förster Schreiber et al. (2009). 

With the final data cubes in hand, we median-filtered the data by two spatial pixels 

and fitted Gaussian line profiles to each pixel with the fitting code LINEFIT (Förster 

Schreiber et al. 2009). LINEFIT performs weighted fits to the observed line profiles 

as a function of the two spatial coordinates based on an input noise data cube and an 

input spectral response function. The instrumental spectral response function as 

obtained from OH sky lines is shown as a grey dashed curve in the profiles shown in 

Figures 7 to 9. For the 0.05”x 0.125” pixel scale in K-band we used here it is fit quite 

well by a Gaussian of FWHM ~85 km/s (green curve in the upper left panel of Figure 

9), with some excess emission in the line wings relative to this best fitting Gaussian. 

For the analysis of the line profiles in our program galaxies these small differences are 

negligible, however. LINEFIT takes this instrumental line profile as inputs to 

compute intrinsic velocity dispersions. Likewise the velocity dispersions listed in 

Table 2 and shown in Figures A1 and A2 are intrinsic values after removal of the 

instrumental broadening (and any beam smeared rotation). 

Uncertainties of all fitted parameters are calculated through 100 Monte-Carlo 

simulations in which the spectrum of each spatial pixel is perturbed assuming a 

Gaussian distribution of the rms from the input noise cube. The final integrated line 

intensity, velocity and velocity dispersion maps were then multiplied by a mask 

constructed from all pixels with Hα line emission at >3σ significance. We compare 

the line emission maps to similar resolution (~0.15”-0.25” FWHM) images of the 

rest-frame UV/optical stellar continuum. In the case of BX482 we use the HST/NIC2-

H-band image (through the F160W filter) of Förster Schreiber et al. (2010). For 

ZC782941 and ZC406690 we use the HST/ACS I-band (F814W filter) images taken 

as part of the COSMOS survey (Koekemoer et al. 2007). For D3a15504 we have 
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taken and analyzed a 2h AO-assisted exposure of the galaxy with VLT/NACO in Ks-

band, as part of our original SINS survey program (Förster Schreiber et al. 2009).  

 

2.2 Modeling of the velocity fields 

We identified the most prominent clumps from maps of individual Hα velocities 

(‘channels’) or, in the case of clump D in BX482, from the rest-frame optical 

continuum map. For identification as a clump, we required the presence of an obvious 

local maximum in at least two separate velocity channel maps. Figure 1 gives 

examples of such velocity channel maps for D3a15504 (top row), BX482 (middle 

rows) and ZC782941 (bottom row), and marks the positions of the most prominent 

clumps by circles/ovals and alphabetical symbols. Our list of clumps is meant to 

identify the brightest obvious clumps, and is not complete for the fainter clumps 

whose identification can be more ambiguous. For BX482 (Figure 2 middle left 

column), ZC782941 (middle right column), ZC406690 (Figure 2 right column) and 

BX599 (Figure 9) the brightest clumps also stand out in the velocity integrated Hα 

and the continuum maps. In D3a15504 and ZC782941 (clumps B-E) some of the 

clumps are less obvious or even washed out in the integrated maps because of diffuse 

integrated disk emission. We determined intrinsic HWHM clump radii from Gaussian 

fits to the appropriate velocity channels and subtracted the instrumental resolution in 

squares. 

In addition to the basic velocity and velocity dispersion maps obtained from 

LINEFIT, we also constructed ‘residual’ maps by removing the large scale velocity 

field. For this purpose we used ‘kinemetry’ (Krajnović et al. 2006, Shapiro et al. 

2008), or simple rotating disk models fitted to the Hα data (Genzel et al. 2006, 2008, 

Cresci et al. 2009). The resulting velocity/dispersion maps capture the large scale 
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kinematics, which can then be subtracted from the LINEFIT maps, in order to make 

local residuals stand out more clearly. For the purposes of the analysis presented 

below, both methods give indistinguishable results. 

To perform a kinemetry analysis, we require knowledge of the dynamical center, 

position angle, and inclination of a galaxy. For the high SNR data presented here, we 

are able to determine the dynamical centers directly from the shapes of the iso-

velocity contours. Position angles and inclinations are estimated from the orientations 

of the maximum velocity gradients (line of nodes) and the minor to major axis ratios 

of the line and continuum emission. Using these inputs, we parameterize the observed 

velocity fields as Fourier expansions along the angle φ in the plane of the sky. Ideal, 

thin-disk rotation is described by a cos(φ) term (see Shapiro et al. 2008 for more 

details). To determine the higher order (local) variations of the velocity field, and/or 

larger scale, non-axisymmetric deviations from simple rotational motion, we subtract 

this cos(φ) map from the observed velocity field. 

 The disk models compute data cubes from input structural parameters (c.f. Cresci 

et al. 2009). For BX482 and ZC406690 we use input models with a ring surrounding a 

central (extincted) bulge for the mass distribution, and for D3a15504 and ZC782941 

we use exponential disk models (Genzel et al. 2006, 2008, Newman et al. 2011, in 

preparation). Dynamical modeling and analysis of the rest-frame optical morphology 

indicates that this central component in BX482 has ~20% of the total disk mass 

(Genzel et al. 2008; Förster Schreiber et al. 2011a, 2011b in preparation). In either 

case the absence and/or weakness of emission from the center has no influence on the 

analysis we discuss in the following. Position angles and inclinations are determined 

as above. The model data are then convolved with the angular and spectral resolution 

profiles and sampled at the observed pixel scales. The total dynamical mass Mdyn is 
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then varied to achieve a best fit match to the observed rotation velocities.  To study 

the non-axisymmetric motions in a galaxy, the best-fit model velocity and velocity 

dispersion maps are subtracted from the respective observed maps. 

We compare these residual maps with Hα surface brightness maps derived from 

the observed data cubes. Likewise we constructed [NII]/Hα ratio maps from 

integrated line emission maps smoothed with a 3pixel (0.15”) kernel. We multiplied 

these maps with a mask constructed from all pixels with Hα emission at >3σ 

significance. We also constructed pixel-pixel correlation plots of residual velocity 

dispersion (δσ=σ(data)-σ(model))) vs. Hα surface brightness, and [NII]/Hα line ratio 

vs. Hα surface brightness. Before investigating possible trends in these correlations, 

we culled pixels with large δσ or [NII]/Hα uncertainties. Additionally, in the case of 

D3a15504 (which has a prominent central bulge, AGN and a narrow line region) we 

also removed the nuclear region.   

 

2.3 Determination of star formation rates and gas masses 

For calculating star formation rates and gas surface densities from the Hα data we 

used the conversion of Kennicutt (1998b) modified for a Chabrier (2003) IMF 

(SFR=L(Hα)0/2.1x1041 erg/s). We corrected the observed Hα fluxes for spatially 

uniform extinction with a Calzetti (2001) extinction curve (A(Hα)=7.4 E(B-V)), 

including the extra ‘nebular’ correction (Agas=Astars/0.44) introduced by Calzetti 

(2001). We determined E(B-V) from the integrated UV/optical photometry of the 

galaxies (row 5 in Table 2). Förster Schreiber et al. (2009) find that including the 

extra nebular correction brings Hα- and UV-continuum based star formation rates of 

z~2 SINS galaxies into best agreement.  
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We estimated molecular surface densities (and masses, including a 36% helium 

contribution) from equation (8) of Kennicutt et al. (2007), modified for the Chabrier 

IMF used here,  

 

2 1 2
     log 0.73 log   +2.91          (2).mol gas star form

M pc M yr kpc
 

  

    
   

    

 

 

Equation (2) is based on Hα, 24μm and CO observations of M51 and is similar to 

results for larger samples of z~0 SFGs (e.g. equation (4) in Kennicutt 1998a, and 

Figure 4 of Genzel et al. 2010). It has the added advantage of being based on spatially 

resolved measurements of the gas to star formation relation with a similar spatial 

resolution (0.5 kpc) as our high-z data and also covering a similar range of gas surface 

densities (10-103 M


pc-2).  Figure 4 in Genzel et al. (2010) (see also Daddi et al. 

2010b) also shows that to within the uncertainties (of about a factor of 2), z~0 and 

z~1-3 SFGs (with galaxy integrated measurements of CO luminosities and SFRs) are 

fit by the same relation, although the gas masses from the best fits of Genzel et al. 

(2010) are ~20% larger than estimated from equation (2). In equation (2) we did not 

correct the data for the fraction of Hα emission from outflowing gas (see section 3.2 

below). This correction is small, with the exception of the brightest clumps where gas 

surface densities may be somewhat overestimated.  

The gas surface densities/masses and star formation rates estimated from equation 

(2) and in listed Table 2 are uncertain by at least a factor of 2 to 3. In addition to the 

well known issue of how to infer molecular gas column densities/masses from the 

integrated line flux of an optically thick CO rotational line (see the in depth discussion 

in Tacconi et al. 2008, Genzel et al. 2010), and the question of whether equation (2) 
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adequately describes the gas to star formation relation for the physical conditions on 

clump scales at z~2, there is the important issue of differential extinction. We will 

argue in section 3.2 that the asymmetry of broad Hα/[NII] line emission is direct 

evidence for such differential extinction. It is unclear, however, what the general 

impact of the differential extinction would be on clump scales. One might naively 

expect that the effect increases gas column densities/masses relative to averages on 

larger scales. However, there are almost certainly also evolutionary effects, such that 

in a given aperture there may both be very high dust column densities in neutral 

clouds, as well as HII regions with relatively low extinction. Such spatial separations 

of 300 pc to >1 kpc are seen in nearby spirals, such as M51 (Rich & Kulkarni 1990), 

as well as at z~1 (Tacconi et al. 2010). As a result, the Kennicutt-Schmidt scaling 

relation in equation (2) may break down or be significantly altered on small scales 

(e.g. Schruba et al. 2010 in M33 on  80 pc scales). 

 

2.4 Spatial distribution of the Toomre Q-parameter 

A rotating, symmetric and thin gas disk is unstable to gravitational fragmentation 

if the Toomre Q-parameter (Toomre 1964) is 1. For a gas dominated disk in a 

background potential (of dark matter and an old stellar component) Q is related to the 

local gas velocity dispersion σ0 (assuming isotropy), circular velocity vc, epicyclic 

frequency κ (κ2 = 4(vc/Rdisk)
2+ Rdisk d(vc/Rdisk)

2/dRdisk), gas surface density Σgas, and 

radius of the disk Rdisk via the relation (Binney & Tremaine 2008, Escala & Larson 

2008, Elmegreen 2009, Dekel et al. 2009b) 

 2

0 0 0 0
2

/
       (3).
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Here the constant a takes on the value of 1, 2,  3 and 2  for a Keplerian, constant 

rotation velocity, uniform density and solid body disk; fgas is the gas fraction within 

Rdisk. If the disk consists of molecular (H2+He), atomic (HI+He) and stellar (*) 

components, Qtot
-1= QH2

-1+ QHI
-1+ Q*

-1 if all components have similar velocity 

dispersions. If there is a (young) stellar component distributed similarly to the gas, the 

combined gas + young star component will thus have a Qtot that is inversely 

proportional to the sum of the gas and stellar surface densities. In that case fgas should 

be replaced by the mass fraction fyoung of that ‘young’ component. Such a disk is 

unstable (or stable) to fragmentation by gravity depending on whether Qtot is less (or 

greater) than unity. Equation (3) can be rewritten as 

0
 

                                 (4),young

c disk

Q fz

v R a

   
    

   
 

where z is the z-scale height of the disk. Gas rich, marginally stable disks are thick 

and turbulent. The largest and fastest growing, Jeans-unstable mode not stabilized by 

rotation is the ‘Toomre scale/mass’, given by (Elmegreen 2009, Genzel et al. 2008, 

Escala & Larson 2008, Dekel et al. 2009b) 
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           




 

where the numerical factors are for a flat rotation curve (a=1.4). Gas rich, marginally 

stable disks thus should have much larger and more massive star forming complexes 

than those in z~0 SFGs with (cold) gas fractions of less than 10% and larger fractions 

of stabilizing old stellar disks and bulges.      
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For the four well resolved disks/rings, we created maps of the Toomre parameter 

Q(x,y). We combined the computed gas surface density for each pixel (equation 2), 

with the best fitting model rotation curve to compute the epicyclic frequency and 

the velocity dispersion map to calculate Q(x,y) from equation (3). We then used 

different Monte-Carlo realizations and standard error propagations to compute maps 

of the uncertainties ΔQ. 


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3. Results 

Figure 1 and Figure 2 show velocity channel maps and the integrated Hα and 

continuum images for four of the five galaxies. The integrated Hα image of the fifth 

galaxy (BX599) is shown in the top center panel of Figure 8. In this case, we do not 

have access to a high resolution continuum image. The most prominent clumps are 

labeled for each galaxy (see the more detailed discussion in section 2.2). Tables 2 and 

3 summarize the derived physical properties. A ‘typical’ individual clump within the 

massive (M*~1010….11 M


) BX/BzK galaxies in the SINS survey, such as an average 

clump in D3a15504, ZC782941 and BX482, accounts for a few percent of the 

UV/optical light of the entire galaxy, has a current star formation rate of a few solar 

masses per year, and a stellar mass of one to a few times 109 M


 (Table 2, Förster 

Schreiber et al. 2011b, in prep.). The most extreme clumps in BX482 and ZC406690 

make up ~10-20% of the integrated Hα fluxes, have star formation rates of 10 to 40 

solar masses per years and masses ~1010 M
. 

 

3.1 Giant clumps are the locations of gravitational instability 

As discussed in the Introduction and section 2.4, a plausible hypothesis is that the 

~1-2 kpc diameter giant star forming clumps in z>1 SFGs represent the largest/most 

massive gravitationally unstable entities in the high-z disks. If this is indeed the case 

an empirical determination of the Toomre parameter (equation 2) as a function of 

position should show that clumps and their surroundings have Q  1.  

Following the methods discussed in the last section, Figures 3 to 6 give the Q-maps 

at a resolution of ~0.22 to 0.25” FWHM for D3a15504, BX482, ZC782941 and 

ZC406690, where we have only retained pixels with an rms uncertainty ΔQ<0.3 to 
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0.5. As inputs for our calculations we used the velocity, velocity dispersion and Hα 

integrated flux maps shown in the left and middle panels of Figures 3 to 6. The central 

regions in all four galaxies should be neglected, for the following reasons. The central 

few kpc of D3a15504 may be affected by a central AGN, as well as by large non-

circular motions. Both increase the velocity dispersion there (Figure 3 bottom left, 

Genzel et al. 2006). The central regions of BX482, ZC782941 and ZC406690 exhibit 

elevated velocity dispersions due to an additional central mass (without much Hα 

emission) in the cases of BX482 (Genzel et al. 2008) and ZC406690 (Newman et al. 

2011, in preparation), and unresolved beam smearing of rotation in ZC782941.  

We find that throughout the extended outer disks and toward the clumps of 

D3a15504, BX482, ZC782941 and ZC406690 the empirically determined Q-

parameter is at or even significantly below unity. As postulated, these SFGs are 

indeed unstable to fragmentation throughout their disks. The clumps are thus 

gravitationally bound or nearly so. Our analysis only considers the gaseous 

component. As discussed in 2.4, taking into account a stellar component with 

dispersion similar to that of the gas will probably lower the Q-values still further. 

Given the typical molecular gas fractions of ~0.3 to 0.8 (Tacconi et al. 2010, Daddi et 

al. 2010), this pushes Q to significantly below unity in the prominent clumps. These 

clumps thus appear to be in the highly unstable regime, where linear Toomre-stability 

analysis is inappropriate. The fact that the Q-parameter is below unity even in the 

more diffuse disk regions suggest that global perturbations are significant in setting 

the Q-distribution. We conclude that the Q-maps in Figures 3 to 6 are consistent with 

the commonly held view that the clumps form by gravitational instability. However, 

we cannot exclude the alternative possibility that the instability is driven by a large 
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scale compression, such as experienced in a galaxy interaction or (minor) merger (e.g. 

Di Matteo et al. 2007). 

 

3.2 Evidence for powerful outflows on clump scales 

UV spectroscopy of metal absorption lines and of Lyα emission lines provide 

compelling evidence for ubiquitous mass outflows in ‘normal’ high-z (Pettini et al. 

2000, Shapley et al. 2003, Steidel et al. 2004, 2010, Weiner et al. 2009). More 

recently, Shapiro et al. (2009) have reported broad Hα/[NII] optical line emission 

from stacking of 47 z~2 SFG spectra in the SINS survey. In both cases the 

information is integrated over galaxy (or intergalactic) scales and, in the case of 

absorption lines, the location of the absorber along the line of sight is not or only 

approximately (Steidel et al. 2010) constrained. Lyα is strongly self-absorbed so that 

any information on spatial distribution and kinematics is washed out and strongly 

depends on modeling. The broad lines discussed by Shapiro et al. (2009) could 

originate in extended galactic winds coming from star forming disks (similar to z~0 

starburst galaxies: Armus, Heckman & Miley 1990, Lehnert & Heckman 1996, 

Martin 1999, 2005, Rupke, Veilleux & Sanders 2005, Veilleux , Cecil & Bland-

Hawthorne 2005, Strickland & Heckman 2009) or alternatively, in outflows driven by 

a central AGN. 

 

3.2.1 broad wings of Hα emission associated with clumps 

Our data provide for the first time direct evidence for powerful outflows on the 

scale of individual star forming clumps. Figures 7 and 8 show extracted spectral 
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profiles for individual bright clumps, as well as for the entire galaxy in Q1623-BX599 

and ZC400690. We find that 

 the prominent clumps A and B in ZC406690 exhibit blue line wings extending 

500 and 1000 km/s half width at zero power (HWZP) from line center;  

 a more symmetric, broad component (FWHM 1000 km/s, HWZP ~ 1000 

km/s) is seen in the integrated spectrum of ZC406690 and BX599. In the latter 

the broad emission originates in a compact region (intrinsic diameter  3kpc) 

centered within ~1kpc of the peak of narrow Hα emission (clump ‘A’: top 

panels in Figure 8);  

 somewhat blue-shifted, broad components are also present in clump A of 

ZC782941, the central pixels of clump A of BX482 and perhaps in the average 

clump spectrum of D3a15504;  

 there are no detectable broad wings in the off-clump galaxy emission of 

D3a15504 and BX482, or in the southern clumps of ZC782941. 

Applying two or multi-component component Gaussian fits, we find that toward the 

clumps of the five SFGs in Table 2 the broad (Δv(FWHM)broad~300-1000 km/s), 

modestly blueshifted (<vbroad>-<vnarrow>~ -30..-150 km/s) components constitute <20 

to 60% of the total Hα line flux (row 12 of Table 2). The broad component fits are 

shown as thin continuous red lines in the spectra in Figures 7 to 9. The evidence for 

these broad wings is also apparent in the co-added spectrum of the clumps in all five 

galaxies (Figure 9).  

The line widths and flux fractions of the broad emission components in the five 

galaxies are in good agreement with the stacking results of Shapiro et al. (2009). In 

the bin of the most massive, highest star formation rate galaxies (M*>7x1010 M


, 

comparable to our sample) Shapiro et al. (2009) find FWHMbroad~2200 (+400,-750) 
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km/s and fbroad=0.31(+0.04,-0.1).  For comparison, the average spectrum in Figure 9 

shows that the broad component constitutes about 50% of the average emission from 

the brightest clumps. The contribution for the galaxy wide averages in our sample is 

about 30%, comparable to Shapiro et al. (2009). This comparison adds further support 

to our conclusion that the broad emission comes from individual giant star forming 

clumps in the disks, rather than from the nuclear regions, or the extended disks.  

The fits of broad emission components in Figures 7 through 9 assume that the 

local ‘narrow component’ line profiles (after removal of large scale motions) are 

Gaussians. This assumption needs justification. The detection of the highest velocity 

gas in the wings is obviously independent of the assumption of line profiles in the 

core of the line. However, the quantitative determinations of the relative fraction of 

the line flux in the broad component listed in row 12 of Table 2 and of the line 

profiles of the broad component do depend on the assumption of the Gaussian shape 

of the narrow component. The upper panels of Figure 9 give the co-added line profile 

of the regions between bright clumps (and on weaker clumps) in D3a15504, BX482 

and ZC782941. The upper left panel clearly shows that this ‘interclump’ profile can 

indeed be well fitted by the instrumental line profile broadened by a Gaussian of 

dispersion ~75 km/s. There may be a small amount of excess emission in both blue 

and redshifted line wings but this emission is less than 10-15% of the total flux. The 

upper right panel of Figure 9 shows a comparison of this interclump spectrum with 

the co-added ‘bright clump’ spectrum from the bottom left of Figure 9. The bright 

clump spectrum is well fit by the interclump profile in its core and red wing but 

clearly shows highly significant blue excess emission. The profile of the broad 

component (only associated with the bright clumps) can then be inferred, without 

assumptions on intrinsic line profiles, by subtracting a suitable fraction F of the 
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interclump profile from the bright clump profile such that the broad component has a 

reasonably smooth profile near low velocities. The dotted red curve in the bottom 

right panel of Figure 9 is the result for F=0.75 but the result is very similar for F 

anywhere between 0.6 and 0.9. The average broad line profile has a FWHM of 500 

km/s and is blue shifted by -50 km/s. This test confirms the Gaussian fit approach in 

Figures 7 and 8. 

 

3.2.2 broad [NII] emission 

In the cases of clump B, the integrated galaxy profile and perhaps also clump A in 

ZC406690, the SNR is sufficient to see a blue wing in the 6585 Ǻ [NII] line similar to 

that in Hα. The ratio {[NII]/Hα}broad in ZC406690 B/integrated is about 0.3. This ratio 

is larger than in the narrow component of the star forming clumps in ZC406690 

([NII]/Hαnarrow~0.07 to 0.23). ZC782941 (clump A) may exhibit weak broad [NII] 

lines as well, as does the co-added bright clump spectrum in the bottom panels of 

Figure 9. 

 

3.2.3 outflow velocities are similar to those found from UV-spectra 

and in local starbursts 

The velocity widths of the blue-shifted wings in our sample are comparable to 

those seen in the UV metal-line absorption components in z~2-3 SFGs studied by 

Pettini et al. (2000) and Steidel et al. (2010). Steidel et al. (2010) find that the velocity 

centroids of the outflowing gas range between 0 (systemic) and -500 km/s, with an 

average (in 89 z~2 BX galaxies) of -160 km/s. The centroid of the blueshifted 
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component in Figure 9 is -80±20 km/s, comparable to the values found by Steidel et 

al. (2010). The maximum blue-shifted velocities (Δvmax,1 ~|<v>broad-2*σbroad|) in our 

sample range between 380 and 1000 km/s (the average spectrum in Figure 9 has 560 

km/s), which are also in good agreement with the Δvmax-SFR and Δvmax-vc relations in 

z~0 starburst and ultra-luminous galaxies (Martin 2005, Veilleux et al. 2005). For 

vc~250 km/s Martin (2005) finds in her sample of z~0 ultra-luminous galaxies values 

of Δvmax,1 between 300 and 750 km/s. Veilleux et al. (2005) and Rupke et al.(2005) 

define the ‘maximum’ wind speed as Δvmax,2=|<v>broad-Δvbroad(FWHM)/2|. If this 

measure is applied to the galaxies in our sample we find values ranging between 260 

and 640 km/s (Figure 9 gives 360 km/s), or about 2/3 of the values given in Table 2. 

For a sample of z~0 luminous and ultra-luminous infrared galaxies Rupke et al. 

(2005) find <Δvmax,2>=300-400 km/s. In all these cases some caution is required since 

a detailed comparison of column density weighted mean absorption profiles with rms-

density weighted emission profiles may be misleading. The Δvmax-SFR and Δmax-vc 

relations in z~0 starburst and ultra-luminous galaxies have been interpreted as support 

for a ‘cool’ outflow driven by the momentum of the intrinsic hot wind due to 

supernovae and stellar winds (Lehnert & Heckman 1996, Martin 2005, Veilleux et al. 

2005), and/or the radiation pressure from the star forming regions onto dust grains 

mixed with the cold gas (Martin 2005, Murray et al. 2005).  

It is thus eminently plausible to conclude that the broad, blueshifted Hα emission 

in the z~2 SFGs originates in warm ionized outflows triggered by the intense star 

formation activity in the giant clumps. The alternative interpretation of narrow- or 

broad-line emission from a central AGN (Shapiro et al. 2009) can be excluded for 

ZC406690, BX482 and D3a15504. Here the broad emission is associated with 

individual, off-center clumps participating in the general rotation of the galaxy. An 
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AGN interpretation is possible in ZC782941 and BX599. In ZC782941 clump A is 

separated from and has a peculiar velocity relative to the main body of the galaxy. 

This clump may thus be the center of a small intruding galaxy that is interacting with 

the main part of ZC782941 (i.e. a ‘minor’ merger). Broad emission from that central 

spot could conceivably come from a buried AGN. Likewise, in the case of the 

‘dispersion dominated’, compact galaxy BX599 the broad emission comes from the 

brightest emission component (of two: Figure 8), which may be the center of the 

overall system.  

The prevalence of asymmetric blue-shifted line profiles in Figures 7 to 9 suggests 

that differential extinction is an important factor in determining line profiles and 

fluxes. Typical gas column densities in the high-z SFGs range from 700 to 8000 

M


pc-2 (row 9 in Table 2), corresponding to N(H)~1022.8-23.9 cm-2, or visual 

extinctions of AV~30-400, for dust to gas ratios similar to the Milky Way. Dust 

opacities at high-z may be smaller because of clumpiness and lower metallicity 

(Reddy et al. 2010) but are plausibly sufficiently high to account for strong 

differential extinction of Hα across SFG disks. If this is correct, the interpretation of 

the blue-shifted emission as originating in an outflow is strengthened further. 

 

3.2.4 the outflowing gas is extended on kpc-scales 

The case of ZC406690 is particularly favorable for studying the properties of the 

outflowing component, as the ‘disk’ emission from the clumps is narrow in velocity 

(due to the low (30 to 400) inclination) and the surface brightness is high because of 

the highly clumped emission. Clump A has ~22% of the total Hα emission of the 

galaxy. In the most spectacular broad-component clump (clump B) the broad emission 
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is clearly offset from the narrow emission component by 0.16” toward the south-east. 

Toward region D (~0.6” south-east of clump B) the line profile is completely 

dominated by blue emission. This blue gas cannot be part of the rotating gas ring that 

characterizes the rest of the narrow Hα emission in ZC400690 (upper left panel of 

Figure 6). It has a similar center velocity as (but narrower profile than) the broad 

emission closer to clump B (Figure 7). Region B may thus be dominated by a 

component in the outflow. The projected broad emission associated with clump B 

thus is extended over 1.3 to 5 kpc. Given the relatively low inclination of the galaxy, 

the de-projected extent perpendicular to the galactic plane may be still larger, and may 

be comparable to the diameter of the star forming ring in ZC406690 (~10 kpc). In 

contrast the Hα-faint but continuum bright clump C has no discernable broad blue-

shifted component (Figure 7). These strong spatial variations of the broad emission, as 

well as of the equivalent width Hα/2700 Ǻ rest-frame continuum may be due to a 

combination of variable extinction and/or evolutionary effects in individual clumps.  

 

3.2.5 the fraction of broad emission may be correlated with star 

formation surface density  

The incidence of strong broad emission in our sample appears to be most obvious 

for the highest surface brightness clumps and, in turn, we do not detect the outflow 

component in the ‘interclump’ spectrum shown in the top left panel of Figure 9. For 

the 7 clumps in Table 2 and the interclump spectrum there may be correlation 

between the ratio of broad to narrow Hα component fluxes and star formation surface 

density. A confirmation (or repudiation) of this tantalizing trend would be interesting. 

This is because the ratio of broad to narrow components is a measure of the ratio of 

outflow rate to star formation rate. Simple theoretical arguments for both energy and 
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momentum driven winds lead to the expectation that this ratio should be 

approximately constant (Heckman 2003, Veilleux et al. 2005, Murray et al. 2005). 

Outflows tap a fraction of the energy and/or momentum (both proportional to SFR) 

released by the young, massive stars. If the expansion velocity of the ionized gas does 

not strongly depend on SFR, the ratio of outflow rate to SFR is approximately 

constant as well. Martin (2005) and Weiner et al. (2009) find . The star 

formation surface density is proportional to gas surface density if the near-linear KS-

relation of Genzel et al. (2010) and Daddi et al. (2010b) applies. Gas surface density 

in turn is proportional to dust surface density in dusty sources, which in turn is 

proportional to dust opacity. A correlation of the ratio of broad to narrow Hα emission 

with Σstar form, may support the proposal (Murray et al. 2005, 2010a) that the 

cold/warm outflows in massive star forming galaxies are driven to a significant extent 

by radiation pressure (

0.3
outv SFR

~out out dust /M v L


star form,crit

c ). Murray, Ménard & Thompson (2010b) 

show that in that case galactic winds can only be launched for star formation surface 

densities above a critical value, 2.5 2
,250 / 50.1  c km s kpv R 1 2  M yr kpcc

 


  . All five 

galaxies are above this limit. 

Given the emerging evidence for powerful winds from individual clumps, the 

obvious next question is whether this ‘stellar feedback’ is the key agent driving the 

large-scale turbulence in high-z galactic disks, as proposed by Ostriker & Shetty 

(2011) and Lehnert et al. (2009). The next section will show, surprisingly perhaps, 

that this is not evident from our data. 

 

 28



3.3 Is the high velocity dispersion of z>1 SFGs driven by star 

formation feedback? 

Are the large local rms-velocity dispersions (i.e. local FWHM line widths) in 

ionized gas, germane to all high-z SFGs studied so far, a direct result of the clump 

outflows discussed in the last section? The large velocity dispersion may, for instance, 

be driven by the mixing of the hot wind fluid with cooler clouds at the base of the 

outflows (Westmoquette et al. 2007).  If so, one would naively expect a correlation 

between the rms-dispersion and the surface brightness of Hα, as a measure of star 

formation surface density (but see Ostriker & Shetty 2011).  

There clearly is a correlation of rms line width and the powerful outflows in the 

extreme clumps ZC406690 A and B (bottom panel in Figure A1). But this increased 

line width is entirely due to the broad outflow component while the narrow line 

emission in these clumps does not vary significantly relative to the surrounding.  

Figure 10 shows galaxy wide and clump averages of σ0 (or σclump) as a function of 

Σ*, for those z>1 SFGs with good quality determinations. These include the best 

z~1.5-2.5 disks from the SINS survey (Cresci et al. 2009, Förster Schreiber et al. 

2009), and other recent surveys of z~1-2.5 SFGs (Wright et al. 2007, van Starkenburg 

et al. 2008, Epinat et al. 2009, Lemoine-Busserolle & Lamareille 2010), mainly 

sampling fairly massive (Mdyn>1010.5 M


) galaxies with radii R1/2~ 2-10 kpc. We also 

include galaxy wide averages of lower mass disks (~ a few 109 M


) from the survey 

of z~1-3 lensed SFGs by Jones et al. (2010), and from mostly lower mass (Mdyn~0.3-

3x1010M


) and compact (R1/2~0.9-2 kpc) but well resolved (with AO) ‘dispersion 

dominated’ z~1.5-3 SFGs taken from Law et al. (2009). Finally we include our 

individual clump measurements in Table 2. This compilation samples a wide range of 

gravitational potentials and star formation surface densities, from scales somewhat 
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more active than ‘normal’ z~0 SFGs (a few 10-2 M


yr-1 kpc-2) to the ‘Meurer’ limit 

(~20 M


 yr-1 kpc-2). Above this limit there appear to be no or few UV/optically bright 

SFGs at any redshift (Meurer et al. 1997), with the exception of compact, gas rich 

mergers at both low-z (ULIRGs) and high-z (submillimeter galaxies {SMGs}).  

The rms-velocity dispersion does appear to increase with star formation surface 

density but only by a modest amount. The measurements included in Figure 10 

sample more than two orders of magnitude in Σ*, yet σ0 changes by less than a factor 

of 2. A formal weighted fit only yields a marginally significant positive correlation 

(log(σ0) ~ 0.039 (±0.022) log(Σ*)). An un-weighted fit to the same data gives a steeper 

slope (0.07±0.025), as does a fit to only the SINS galaxies and clumps (0.1±0.04), or 

a fit with only AO data sets from SINS and OSIRIS (0.12±0.04). The scatter at any 

fixed star formation surface density is almost as large as the overall trend, and is 

formally larger than the measurement errors. This large scatter is at the root of the 

marginal significance (< 3 standard deviations) of the overall correlation. It is not 

clear whether the overall trend of the high-z points connects to the region occupied by 

lower surface star formation density, z~0 SFGs, as presented by Dib, Bell & Burkert 

(2006).  

Recently, Green et al. (2010) have reported Hα integral field spectroscopy in a 

sample of lower mass, Hα bright star forming galaxies at z~0.1 (including a number 

of mergers), at a similar linear resolution (~ 2 kpc) as the z~2 AO data sets in this 

paper. From their analysis Green et al. infer that the luminosity weighted, average 

velocity dispersions σL scale with star formation rates and, in their most active 

systems, take on values similar to those seen in high-z galaxies. They conclude that 

feedback is the main agent driving galactic turbulence at all redshifts. Unfortunately, 

it is not possible to directly compare σL to the local velocity dispersions σ0 that we are 

 30



discussing in this paper. The luminosity weighted quantity σL places the strongest 

weight on the bright central regions in each galaxy, where beam smearing in rotating 

disks creates artificially large velocity dispersions, which is not or only partially 

removed in the analysis of Green et al. (2010). The quantity σL thus necessarily is an 

upper bound to σ0. A more detailed comparison of the Green et al. data set with our 

data is highly desirable but requires the application of the same data analysis methods, 

which is beyond the scope of this paper (Davies et al. in preparation). 

We have also looked for possible pixel-to-pixel variations of σ0 in the deep AO-

data on the four most extended SFGs reported in this paper. There clearly is an 

increase of the rms dispersion toward clumps A and B in ZC406690 but this increase 

appears to be entirely due to the powerful outflow component in these extreme 

clumps. The width of the narrow component does not vary much in ZC406690. We 

find weak positive correlations between the residual velocity dispersion and Hα 

surface brightness in D3a15504, and possibly ZC782941, consistent with the trends in 

Figure 10. There is no dependence of velocity dispersion on Hα surface brightness in 

BX482 (Appendix A. Figures A1 and A2). To first order, the large velocity 

dispersions in high-z SFGs appear to form a spatially constant ‘floor’. Any 

differences in σ0 between intra- and inter-clump regions are not or only marginally 

significant, given the 1σ measurement errors of typically 10 to 20 km/s (Figures A1 

and A2). 

Finally we have checked for a dependence of σ0 on mass outflow rate, discussed in 

section 4.1 and listed in rows 20, 21 & 22 of Table 2. There is little evidence for such 

a correlation. As the spectra in Figures 7 to 9 show, there is an order of magnitude 

range of inferred outflow velocities at roughly constant rms line width for the 
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different clumps in ZC406690, and the brightest clumps in BX482 and ZC782941 

have comparable outflow rates but very different line widths. 

We would like to emphasize that this relatively weak dependence of σ0 on star 

formation surface density does not constitute an inconsistency with the detection of 

the broad Hα emission discussed in section 3.2. This is because the broad line wings 

in Figures 7 to 9 do not greatly affect the FWHM line widths in most of the clumps 

(with the exception of clumps A and B in ZC406690), which are dominated by the 

narrow component tracing star formation. Again with the exception of ZC406690 the 

inter-clump regions are not affected at all. However, for the galaxy wide estimates σ0 

is by necessity estimated from the linewidths in the off-center parts of the galaxies, in 

order to eliminate the impact of unresolved velocity gradients. This makes the 

determination of a local intrinsic line width in clumps near the center and in compact 

galaxies often tricky and unreliable. A case in point is BX599, where the observed 

dispersion toward clump A definitely is broadened to an effective local σ of 125 km/s. 

For the reasons discussed just before, in Figure 10 we use σ0 ~76±20 km/s, which is 

an estimate from the line width outside this bright clump. 

With the possible exception of extreme clumps, local star formation feedback thus 

does not appear to directly drive the local rms-velocity dispersion of the ionized gas. 

While the star formation-driven galactic outflows discussed in the last section are 

energetically capable of stirring up the ionized gas in the disk, it appears that the 

ordered outflows do manage to break out of the local environment. This is consistent 

with the observations of Steidel et al. (2010) who find that the outflowing gas is 

transported to 100 kpc. For this breakout to be efficient, the clumps probably must 

have clumpy structure below our current resolution, with a small filling factor of the 

densest gas. Such substructure is hinted at from a comparison of the velocity channel 
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maps of the bright clump A in BX482, shown in the middle two rows of Figure 1. 

There are significant small scale variations for clump A in these individual velocity 

maps, consistent with spatial-velocity substructure on sub-kpc scales. 

The question remains whether the kinematics of the ionized gas is a good proxy of 

that of the entire cold (molecular) gas in high-z SFGs. This important issue can soon 

be addressed with high resolution millimeter interferometric imaging of CO rotation 

emission lines (see Tacconi et al. 2010, Daddi et al. 2010a). 

 

3.4 Are the clumps rotationally supported?  

Most of the available numerical simulations of the z>1 gas rich disks predict that 

the gravitationally unstable clumps contract, spin-up and may approach a Jeans 

equilibrium with half or more of the support in rotation (Immeli et al. 2004 a,b, Dekel 

et al. 2009b, Agertz et al. 2010, Aumer et al. 2010, Ceverino, Dekel & Bournaud 

2010). This is because in these simulations the angular momenta of the collapsing 

clumps are largely conserved.  

We have explored the evidence for rotation in our data by determining the velocity 

gradients across clumps in the ‘raw’ and ‘residual’ velocity maps. Figures 11 and 12 

show the residual velocity distributions in BX482, ZC406690 and D3a15504, after 

subtracting (by kinemetry or modeling) the large scale velocity gradients caused by 

the overall galaxy rotation. Clump rotation should show up as a local gradient in these 

residual maps. If the clumps originally have a similar angular momentum direction as 

the galaxy, their rotation should be prograde. For this reason, the right panels in 

Figures 11 and 12 show position- velocity residual cuts through several of the largest 

and best isolated clumps, along the maximum velocity gradient (‘line of nodes’) of the 
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galactic rotation, where the largest effects are expected in most cases. We have also 

explored other directions, with little difference in the results. 

 Velocity gradients are indeed present in the velocity maps across the clumps. In 

the ‘raw’ maps they are on average comparable in magnitude and sign 

(
 max min= ~ 30 ( 11)   km/s/kpc
2sin( )

raw
raw

clump

v v

i R



 ) to the large scale velocity gradients 

across the galaxies but there are no large additional local gradients. In D3a15504 

caution is warranted as the largest gradients (through clumps C, E and F) may also be 

interpreted as large scale, radial streaming of the circum-nuclear gas in a barred 

potential, as discussed in Genzel et al. (2006). After subtraction of the large scale 

velocity gradients from galaxy rotation, the inclination corrected ‘residual’ velocity 

gradients typically are 
 max min= ~ 15 ( 5)   km/s/kpc.

2sin( )
residual

residual
clump

v v

i R



   These 

residual gradients are often retro-grade (negative sign in row 31 of Table 2).  

Are these observed gradients consistent with the clump mass estimates (row 8 of 

Table 2) in virial equilibrium? In principle, dynamical masses can be computed for 

rotationally supported systems if rotation velocity and inclination are known. 

However, most of the giant clumps have HWHM radii comparable to or slightly 

larger than our resolution, so that beam smearing plays an important role in lowering 

the expected velocity gradients.  

To get a quantitative handle on how large these resolution effects are we took two 

approaches. In the first we constructed simple toy models of rotationally supported 

clumps of different masses (5x108 to 1010 M


), sizes (HWHM radii from 0.2 to 1.7 

kpc) and intrinsic density distributions (Gaussian or uniform). For these model clumps 

we calculated model data cubes from the input mass distributions, for a range of 

inclinations and masses, and for a z-thickness of <z>/<R>~0.2 appropriate for the 
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high-z galaxies. We then convolved these models with the spatial (~0.2” FWHM) and 

spectral (85 km/s FHWM) instrumental resolution, and sampled them at the pixel 

scales of SINFONI. The left panel of Figure 13 shows the ratio of the clump mass to 

the empirical ‘rotational’ dynamical mass of these model clumps, given by 

 

2

5 2 3max min
 / /     ~ ~   2.3 10     (M )      (6).

2sin( )dyn rot km s kpc kpc

v v R
M b b R

i G
  
 

 
 

  

 

Here δ is the observed velocity gradient across the observed size of a clump (2R), 

after correction for the inclination of the galaxy, and b and β are dimensionless 

numbers; β is dependent on the assumed density distribution (β=1 and 1.16 for 

uniform and Gaussian clumps, for instance). Figure 13 shows that mass estimates with 

equation (6) require an average value of b=4.4 (with substantial scatter) for matching 

the toy model clump masses if R=RHWHM obs and if clump sizes are comparable to or 

larger than the beam sizes. This is mainly because the true ‘Keplerian’ limit is only 

reached at R~1.5-2 RHWHM. This can be best seen from the open symbols in the left 

panel of Figure 13, which shows that for the same basic assumptions b approaches 

unity for R=2 RHWHM. In the following we will use the estimator at R=RHWHM since in 

the real data the confusing effects of background and other clumps are less severe 

close to the clumps’ cores.  

In our second approach we analyzed the properties of several prominent clumps in 

a Mbaryon=3x1010 M


 galaxy in the cosmological adaptive mesh, hydro-simulations of 

Ceverino et al. (2010, and in prep.), to which publications we refer the reader for 

more details. The simulations have a resolution of 35-70 pc. At z=2.3 the simulated 

galaxy has a number of clumps of mass ~3x108 M


, radius ~0.3 kpc and intrinsic 

 35



circular velocity of 70 km/s. These clumps are largely rotationally supported. From 

the simulation, we constructed data cubes of the Hα emission at different resolutions 

and inclinations, which we then analyzed in the same manner as for SINS data cubes. 

At the resolution of our SINS data, the clumps in the simulated galaxy exhibit clear 

rotational signatures, and we extracted velocity gradients in the same manner as for 

the real SINS data. Since the intrinsic clump masses are known, it is then possible to 

compute b in equation (6). The simulated galaxy has much smaller galaxy and clump 

masses and radii than the SINS galaxies. We expect the clump quantities to scale with 

the galaxy properties, and vclump, rot ~ Rclump ~  (Mclump)
1/3 ~ (Mdisk)

1/3 (equation 5). So 

for clumps 10 times more massive (as in the more massive clumps in our sample), we 

expect the size and velocity of the typical clumps to be twice as large as the clumps in 

the simulations. In order to refer to clumps twice as extended as the simulated clumps, 

we can pretend that the beam smearing is half the true value, namely 

FWHM=0.1"=0.84 kpc. We read δ with that smoothing, and don't need to correct this 

value because V and R scale similarly. The filled magenta triangle and open black 

circle in Figure 13 give the average and scatter of four clumps in the simulated 

galaxy, scaled in this manner to clump masses of 3x109 M


 and 1010 M


, 

respectively. The inferred calibrations for b from the simulated galaxy are in excellent 

agreement with those from the toy model clumps. 

With this calibration (b=4.4) for rotationally supported clumps, we then proceeded 

to compute dynamical clump masses for the SINS clumps in Table 2, from the 

observed ‘raw’ velocity gradients. The inferred ‘rotational’ dynamical masses range 

between 2x108 and 2x109 M


 (row 32 of Table 2). As before, the gas masses were 

estimated from equation 2. The SINS galaxies have clump gas masses on average 6.4 

times larger (with a wide range from 3 to 75) than the rotational dynamical masses 
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estimated from their velocity gradients with b=4.4. Including stellar masses further 

increases the discrepancy. For instance the stellar mass of clump A in BX482 A is 

~3x109 M


 (Förster Schreiber et al. 2011b, in prep.), so that the total clump mass is 

1.4 times the gas mass. The discrepancy increases by another factor of ~2 if ‘residual’ 

velocity gradients are used for computing dynamical masses. 

How can one understand this discrepancy? Extended Hα emission surrounding the 

clump may decrease the rotational signal. If the clumps were much smaller than our 

resolution the rotational signal would be completely washed out by beam smearing 

(Figure 13). In that case equation (6) with b=4.4 would underestimate the dynamical 

masses significantly. However, the clumps should then in turn exhibit very large 

central velocity dispersions (100-170 km/s) caused by the same beam smearing.  

Such large velocity dispersion maxima centered on the clumps are not observed in 

our sample, although the data shown in Figures 10, 15 and 16 are consistent with a 

modest increase in velocity dispersion toward the clump centers. Genel et al. (2010) 

and Aumer et al. (2010) find in their simulations that clumps actually are minima in 

the galaxy wide velocity dispersions, and argue that turbulence created on large scales 

is dissipated more efficiently in the dense clump environment. If this were to apply to 

our SFGs, a significant amount of beam-smeared rotation could ‘hide’ in the current 

velocity dispersion maps.  

If the clumps are supported by a combination of rotation and pressure the 

appropriate measure for the dynamical mass is 

 

 5 2 2 2
 / / /            2.33 10 2       (M )     (7),dyn r p kpc km s km s kpc kpcM x R d R       
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where β is defined as in equation (6), and d is a dimensionless calibration factor. Our 

clump modeling suggest d=0.4-1.2. For d=1 and a clump velocity dispersion σ0 

between 50 and 95 km/s, the pressure term ranges between 1.5 and 5x109
 M

for the 

different clumps in Table 2, and appears to dominate over the rotational mass. 

Equation (7) then yields an average ratio of gas mass to dynamical mass of ~2d, and 

somewhat larger if stellar masses are included (row 35 of Table 2). For d=1 gas (plus 

stellar) masses still exceed the dynamical masses but for d=0.5 the estimates agree to 

within the uncertainties. The application of equation (7) to the SINS clumps may thus 

give a reasonable match to the estimated gas and stellar masses in these clumps, 

always keeping in mind the very substantial uncertainties in all these estimates. Note 

that the estimator (7) also works well for rotationally supported but unresolved 

clumps. 

The inferred discrepancy between the rotational masses from equation (6) and the 

gas masses is most strongly driven by the prominent clumps A in BX482 and 

ZC406690 (Figure 11). Even when allowing for large uncertainties, the relatively 

small observed velocity gradients in these two cases appear inconsistent with 

rotational support. These clumps may either be largely pressure supported, with 

rotation contributing perhaps 10-20% of the energy, or they are not virialized (Genel 

et al. 2010). In the smaller and probably more typical clumps of D3a15504 and 

ZC782941 rotational support is more significant and may even dominate, considering 

the uncertainties in our analysis, limitations in signal to noise ratio and the possible 

contamination by unrelated background emission. This is especially true if most of the 

mass and rotation of the clumps are on scales much smaller than our beam, and at the 

same time the clumps are local minima in the galaxy wide velocity dispersion.  
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There could also be physical reasons for low rotational velocities. The first is that 

the clouds may not be undergoing global collapse. Angular momentum may not be 

conserved due to outward transport by large scale torques or magnetic fields. Milky 

Way GMCs also typically have little rotation (δ~45 km/s/kpc: Blitz 1993, Phillips 

1992), similar to the values we find in our SINS clumps. A fraction of these GMCs 

also have a retrograde velocity gradient with respect to the rotation of the Milky Way 

(Blitz 1993), inconsistent with the simple spin-up scenario from initially differentially 

rotating disk gas. The most extreme clumps may also not have enough time for 

virialization before much of the gas is expelled, as is suggested by the simulations of 

Genel et al. (2010).  

 

3.5 Is the velocity dispersion isotropic?  

If the galactic turbulence is created by clump-clump interactions, the velocity 

dispersion may be anisotropic, with larger dispersion in the galactic plane than 

perpendicular to it, as in the simulations of Aumer et al. (2010). Figure 14 is an 

attempt to test this prediction for those well resolved disk galaxies within the SINS 

sample (Förster Schreiber et al. 2009) and other recent integral field data (Wright et 

al. 2007, van Starkenburg et al. 2008, Epinat et al. 2009, Lemoine-Busserolle & 

Lamareille 2010), where a reasonably robust value of the inclination is known from 

dynamical fitting (Cresci et al. 2009), or from the geometric aspect ratio of the 

emission.  

Keeping in mind the large uncertainties in sin(i) (Δ sin(i) ~ ±0.15, including 

systematic effects), there is a tantalizing trend for the more edge-on systems to have 

relatively larger line-of-sight dispersion σ0, or smaller vc/σ0 (see also Aumer et al. 

2010). Dividing up the data into two bins (sin(i)>0.64 and <0.64), the two sets differ 
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at ~2-2.7σ.  If real this trend would correspond to an anisotropy in the velocity 

dispersion ellipsoid of σplane/σpole~2 (grey curve in Figure 14).  

Two cautionary remarks are in order. One is that only two of the highest inclination 

disks (sin(i)>0.8) have AO data sets, and these two have fairly low velocity 

dispersion. The highest inclination (and high quality) disk BX389 (Cresci et al. 2009, 

Genzel et al. 2008) does have a very high velocity dispersion (σ0=87±10 km/s) but 

this result comes from seeing limited data. The other is that in a highly inclined disk 

velocity dispersion and rotation are more entangled than in a more face-on system. As 

a result the observed velocity dispersion in modest resolution data may be artificially 

increased by unresolved rotation and confusion of different regions along the line of 

sight. Given these concerns, we consider the trend in Figure 23 tantalizing but not 

convincing. 

 

3.6 Are there spatial variations in chemical abundances ?  

The flux ratio 6585 Ǻ [NII])/Hα in non-AGN SFGs is a measure of the oxygen to 

hydrogen abundance ratio (Pettini & Pagel 2004, Erb et al. 2006a). It is thus 

interesting to ask whether the intense star forming activity in the giant clumps is 

reflected in local enhancements in metallicity, and whether there are abundance 

differences between the central and outer parts of the galaxies because of the expected 

inside-out evolution of the galaxies (e.g. Somerville et al. 2008). 

We first analyzed specific regions from extracted spectra in order to maximize the 

SNR, with the quantitative results listed in Table 3. Very significant variations in 

[NII]/Hα are indeed present in ZC406690. This is easily seen by inspection of the 

spectra in Figure 7. The [NII] line is weak toward clump A or region D, while it is 

much stronger toward clumps B and C. In terms of inferred oxygen abundance (Table 
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3), these changes correspond to an increase of more than a factor of 2 from ZO~0.4 Z


 

in clump A to ZO~0.70 Z


 in clump B. Clumps A, B and C also form a downward 

sequence in the ratio of Hα line flux to rest-frame 2700Ǻ continuum flux density from 

the I-band imaging, which may be explained by a combination of increasing 

extinction and increasing age. The observations in ZC406690 may thus suggest a 

trend of increasing heavy element abundance with age of the star forming clumps in 

the young star forming ring of this galaxy. 

In the comparably young star forming ring in BX482 (Genzel et al. 2008, Förster 

Schreiber et al. 2011b, in preparation) clumps A to C and the rest of the Hα-ring have 

similar abundances while the central ‘cavity’ near the kinematic center has an 

[NII]/Hα ratio 2.7σ larger. The inferred oxygen abundance increases from ZO~0.56 Z


  

in the bright Hα star forming ring to ZO~0.73 Z


 near the center. Correspondingly 

Förster Schreiber et al. (2011a, and 2011b, in preparation, section 4.2.2) find an age 

gradient from <100 Myrs in the ring clumps, to >200 Myrs near the center.  In the 

somewhat more mature galaxy ZC782941 the clumps near the kinematic center of the 

galaxy (B-E) have an [NII]/Hα ratio 3.3σ times greater than in the outer clump A (or 

minor merger) and the interclump regions, corresponding to an increase from 0.67 to 

0.84 Z


.  

Finally, the most mature galaxy (in terms of stellar age and abundances) in our 

sample, BzK15504, does not show any evidence for a difference between clumps and 

interclump gas in the main body of the disk. In our AO data the [NII] line is too faint 

in the outer parts of the galaxy disk for reliable statements on the oxygen abundance. 

However, on the basis of seeing limited data of D3a15504, which are sensitive to 

lower surface brightness, Buschkamp et al. (in prep.) deduce ~0.3-0.5 Z


 abundances 
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in the outer disk. The circum-nuclear region has a higher [NII]/Hα, corresponding to 

an increase in oxygen abundance from 0.9 Z


 in the disk to 1.07 Z


  near the nucleus.  

In agreement with our findings, Buschkamp et al. (in prep) find that [NII]/Hα 

increases from the outer regions toward the nuclei in two additional massive and 

mature SFGs, BX610 (z=2.2, see also Förster Schreiber et al. 2006) and BzK6004 

(z=2.4). In these cases the inferred abundances appear to increase from slightly below 

solar (~0.95 Z


) in the outer disk to super-solar (~1.2 Z


) near the center. In all these 

cases one needs to caution that such line ratio gradients may be caused by the 

presence of a central AGN. Indeed this explanation may apply to BzK15504 (Genzel 

et al. 2006). Evidence for a weak AGN causing a radial change in [NII]/Hα and 

[OIII]/Hβ line ratios has also been found for another z~1.5 SFG by Wright et al. 

(2010). 

We have also explored the data of BX482, BzK15504 and ZC782941 in more 

detail by analyzing the [NII]/Hα pixel to pixel variations statistically and by searching 

for correlations between [NII]/Hα and Σstar form. This analysis confirms the results on 

selected regions that we discussed in the last paragraph, but does not reveal significant 

additional trends. This is perhaps not surprising, since even with the superior data 

presented in this paper, the typical average SNR per pixel in the [NII] line is modest.   

In summary of this section, we find evidence for clump to clump and center to 

outer disk variations in the inferred gas phase oxygen abundance that are qualitatively 

consistent with the expected rapid heavy element enrichment in the young disks. The 

radial abundance gradients are broadly consistent with inside-out growth predicted 

from semi-analytic models (e.g. Somerville et al. 2008). These inside-out gradients 

have the opposite trend of the gradients inferred by Cresci et al. (2010) for three z~3 

Lyman break galaxies, which appear to have minima of metallicity towards the 
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brightest [OIII] emission line peaks near the galaxy centers, perhaps as the result of 

recent accretion of fresh, low metallicity gas. 
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4. Discussion  

The most important results of the last section can be summarized as follows, 

 The giant star forming clumps in the observed z~2 SFGs reside in 

regions where the Toomre Q-parameter is at or below unity. The giant 

clumps are thus plausibly bound and the high-z disks we have studied 

are unstable against gravitational collapse on galactic scales; 

 the giant clumps are the launching sites of powerful outflows, probably 

driven by the energy and momentum released by massive stars and 

supernovae in the clumps; 

 velocity gradients across clumps are modest (10-40 km/s/kpc) and 

comparable to the large scale galactic gradients. Given beam smearing 

effects, finite signal to noise ratios and contamination by diffuse 

emission, typical clumps may still be rotationally supported, but 

extreme clumps may not be. These may either be predominantly 

pressure supported, or they are not virialized; 

 the large velocity dispersions are spatially fairly constant. With the 

exception of the extreme clumps in ZC406690, the clumps leave little 

or only relatively small local imprints on this distributed ‘floor’ of 

galactic scale, local random motions (‘galactic turbulence’). The 

dependence of the amplitude of this floor on galactic or local star 

formation surface density is modest. The change in velocity dispersion 

across more than an order of magnitude in star formation surface 

density is less than a factor of two and comparable to the scatter of the 
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 there are modest but significant clump to clump, and center to outer 

disk variations of the [NII]/Hα ratios. Keeping in mind the possible 

contaminations from central AGNs, these variations are broadly 

consistent with active nucleosynthesis in inside-out growing disks, 

and/or with clump migration in a disk that is fed semi-continuously 

with fresh gas from the halo.  

In the following section we analyze the impact of these findings on the issues of 

star formation feedback and galactic ‘turbulence’. We begin with a quantitative 

analysis of the derived mass outflow rates, followed by discussions of the implied 

lifetimes and evolution of the giant clumps and the origin of their turbulence.  

 

4.1 Estimates of mass outflow rates 

4.1.1 modeling the Hα emission in the context of current models of 

galactic winds 

Previous work on z~0 galactic winds is based to a significant extent on 

observations of edge-on ‘starburst’ galaxies with optical emission lines, soft and hard 

X-ray emission, blueshifted interstellar absorption lines, outflowing molecular gas or 

a nonthermal radio continuum halo (Heckman, Armus and Miley 1990, Lehnert & 

Heckman 1996, Walter, Weiss & Scoville 2002, Heckman 2003, Veilleux et al. 2005, 

Strickland & Heckman 2009). According to the ‘standard’ model, the winds are set up 

by supernovae and stellar winds injecting kinetic energy and momentum into the 
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surrounding medium and creating an over-pressured bubble of hot gas. This bubble 

expands and sweeps up the ambient medium (Heckman 2003, Veilleux et al. 2005). 

An alternative or additional mechanism is the effect of radiation pressure onto dust 

grains, creating a ‘tepid’ but massive, cool outflow in luminous, ‘super-Eddington’ 

galaxies (Murray et al. 2005, Martin 2005, Murray et al. 2010a). This model may 

explain the empirical linear scaling of outflow velocities with galaxy circular 

velocities in z~0 ultra-luminous infrared galaxies (ULIRGs, Δvmax / vc ~1.5-3, Martin 

2005, Veilleux et al. 2005).   

In a stratified disk, the bubble will expand preferentially along the minor axis of 

the disk, and will eventually ‘blow out’ into the halo, although the magnitude and 

appearance of this blow out may be strongly modified and lowered in a strongly 

inhomogeneous interstellar medium (Cooper et al. 2008). The escaping wind fluid 

sweeps up, entrains and shocks ambient cloud material from the disk and halo 

(Veilleux et al. 2005 and references therein). Optical emission lines may originate in 

this shocked ambient medium. In nearby cases such as M82 Hα/[NII] emission tends 

to come from compact filaments and knots at the edge of the X-ray emission nebulae 

that may originate from internal shocks in the hot wind fluid and the interaction of the 

hot gas with the ambient medium (Heckman, Lehnert & Armus 1993, Westmoquette 

et al. 2007). Alternatively, the warm and cool dusty gas may initially be lifted to 

hundreds of parsecs by radiation pressure, and only then further accelerated by the hot 

wind component (Murray et al. 2010a).  

If this standard model also applies to the outflows in z~2 SFGs, the broad Hα/[NII] 

emission is well suited for quantifying the mass, outflow rate, momentum and energy 

in the warm/cool component of the high-z winds. The fundamental advantages of the 

Hα measurements presented above for estimating mass outflow rates are that they 
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directly yield outflow velocities, sizes and – if local electron densities are known – 

also hydrogen column densities/masses, without the need for an assumption of heavy 

element abundances, or correction for line radiative transport. The greatest 

disadvantage of Hα is that the line luminosity is proportional to ‘emission measure’ 

( ). As a result the derived mass outflow rates are sensitive to the adopted 

radial density structure but not to the geometry (e.g. opening angle) of the outflow. 

The Hα emission is obviously also sensitive to dust extinction in front of and mixed in 

with the outflow. Such ‘wind’ dust is clearly seen in the M82 outflow, for instance 

(Roussel et al. 2010). In our analysis we have corrected for foreground extinction 

derived from the UV/optical SED fitting of our galaxies (row 5 in Table 2). The 

preferentially blue-shifted broad wings show that differential extinction along the line 

of sight does indeed play an important role for the interpretation (section 3.2.1). Our 

current observations do not give any handle on how this internal dust is distributed. 

We thus adopt first order correction factors ranging between 1 and 2 (row 16 of Table 

2) depending on the asymmetry and blue-shift of the broad line emission.  

2
en dV 

In analogy to z~0 winds, the most likely excitation mechanism for the Hα emission 

is photoionization from the central ionization sources, or from hot, postshock gas in 

wind-gas collisions. If the gas is photoionized the data can be analyzed with standard 

case B recombination theory (Osterbock 1989). In Appendix B we present our 

detailed analysis with two different modeling assumptions on the density structure of 

the flow. In principle it may also be possible that the wind or postshock gas is hot 

enough that collisional ionization plays a role, although the evidence in z~0 starburst 

galaxies suggests that this mechanism is unlikely to dominate the overall excitation. 

For completeness we also derive in Appendix B the mass loss rates for pure 

 47



collisional ionization, which turn out to be a factor  2 smaller than the recombination 

values. Table 2 (rows 20 to 23) lists the derived outflow rates.  

 

4.1.2 ionized outflow rates in clumps exceed star formation rates 

Our main finding is that the outflow rates in ionized gas are as large as or larger 

than the star formation rates. In the most extreme clump B in ZC406690 we infer an 

outflow rate 8.4 times greater than the star formation rate. Depending on the 

extinction corrections, geometries, modeling assumptions etc., the exact values of the 

derived outflow rates are probably uncertain by a factor of at least 3 (up, and down). 

Our findings are in very good agreement with the conclusions of Erb et al. (2006a) 

and Erb (2008) who deduce ratios of outflow to star formation rates between 1 and 4 

from an analysis of the z~2 stellar mass-metallicity and stellar mass-star formation 

relations. 

 

4.1.3 correction for other gas phases 

These outflow estimates are probably lower limits, since in addition to the warm 

ionized gas, there very likely are substantial components of very hot, as well as cold 

(atomic and molecular) gas. The latter may be especially important if radiation 

pressure onto dust grains in the outflows plays an important role, as the dusty 

molecular gas is coupled strongly to UV radiation. Unfortunately the relative 

contributions of the different gas phases are not well known even in z~0 SFGs. In the 

relatively low-mass starburst galaxy M82 the mass of atomic hydrogen in the 

outflowing nebula is estimated to be about 5x107 M


, which is comparable to the 

mass of hotter gas producing X-rays (Heckman, Armus and Miley 1990, Crutcher, 
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Rogstad and Chu 1978, Stark and Carlson 1984, Nakai et al. 1987, Watson, Stanger 

and Griffiths 1984, Schaaf et al. 1989, Fabbiano 1988), and about six times smaller 

than the amount of molecular gas associated with the outflow (~3x108 M


, Walter et 

al. 2002) . In contrast the mass of material responsible for optical line emission may 

be much smaller, ~ 2x105 M


. The warm and cold components in M82 move at 

roughly the same velocity, whereas the hot wind fluid has a velocity around ten times 

larger. Thus if one would scale directly from these observations of M82, the winds in 

z~2 SFGs would have mass outflow rates 2 to 3 orders of magnitudes greater than 

what is measured with Hα alone. It would seem highly implausible that this could 

apply to our z~2 SFGs.  

However, the structure of galactic winds in relatively low mass starburst galaxies 

(such as M82) at z~0 could very well differ greatly from that of more luminous, 

denser and more massive galaxies at both low-z (such as ULIRGs) and high-z, 

altering the relative contributions of the different wind components and drivers 

(supernovae vs. stellar winds and radiation). Weiner et al. (2009) has shown that 

powerful galactic winds are a common feature of most or all massive, luminous SFGs 

at z~1, while at z~0 they are only found in the relatively rare starburst and actively 

merging galaxies. One possible explanation for these differences may be that 

supernova driven hot gas may dominate in low mass galaxies, while cooler, radiation 

pressure driven winds may dominate in massive galaxies. In rows 36 & 37 of Table 2 

we compare the force of the outflows to that delivered by radiation. The ratios range 

from a few to about twenty (in clump B of ZC406690). Values at the lower end of this 

range could thus plausibly be understood in the radiation driven wind picture, while 

values in the upper range would require very large optical depths and multiple 

scattering of infrared photons (Murray et al.2010a,b).  
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4.2 Clump lifetimes and evolution 

4.2.1 gas expulsion time scale 

What do our observations tell us about the lifetimes of the giant clumps? We 

address this question in several ways. A first empirical estimate of the effect of gas 

expulsion by the outflows comes from the ratio of the molecular gas masses of the 

clumps to the outflow rates, with an upward correction by a factor of two based on the 

assumption that on average a clump is seen halfway through its evolution. There may 

also be atomic gas associated with the clumps but given their large gas columns 

(>>102 M


pc-2) that atomic fraction is probably small (Blitz & Rosolowsky 2006). 

The gas expulsion times estimated in this manner (row 24 in Table 2) range between 

170 and 1600 Myrs.  

 

4.2.2 stellar ages 

A second estimate for clump lifetimes can be made on the basis of the stellar ages of 

clumps estimated from population synthesis modeling. Elmegreen et al. (2009, see 

also Elmegreen & Elmegreen 2005) fitted constant star formation and exponentially 

decaying models to 4-6-band ACS/NICMOS photometry of clump-cluster and chain 

galaxies in the Hubble Ultra Deep Field. From this analysis they infer clump ages in 

z~2-3 clump-cluster and chain galaxies ranging widely between 10 and a few 102 

Myrs, with typical clumps having stellar ages of 100 to 200 Myrs and an upper 

envelope of about 300 Myrs. In the case of BX482 and D3a15504 it is possible to use 

the Hα-equivalent width as an age indicator that is fairly insensitive to extinction 
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(Förster Schreiber et al. 2011b, in prep.). The analysis requires the subtraction of the 

interclump background. For the bright clumps A-C in BX482 the result is fairly 

immune to the treatment of the background and yields fairly robust ages between 30 

and 100 Myrs (Förster Schreiber et al. 2011b, in prep.). In the case of D3a15504 the 

clumps are not apparent in the fairly low SNR NACO Ks-image and even in the Hα-

image the background is a significant contribution to the clump aperture fluxes. Only 

estimates based on integrated photometry at the location of clumps (i.e. without 

subtraction of the underlying host galaxy's light) can be reliably obtained. Inferred 

ages are in excess of ~ 1 Gyr, and represent upper limits given the contribution of the 

host galaxy's stellar population. For ZC782941 and ZC406690 the ACS I-band 

images sample the rest-frame UV, and the ratio of Hα to I-band flux density 

(restframe 2700 Ǻ) is very sensitive to extinction. No reliable ages can be deduced but 

we have estimated age ranges (80 to 800 Myrs for clumps A and B in ZC406690) 

based on various plausible star formation histories and extinctions. The deduced 

clump stellar ages are listed in row 25 of Table 2. 

The best available estimates of stellar ages of the giant clumps, while very 

uncertain, thus may set an upper limit to the clumps’ stellar ages, and thus plausibly 

their lifetimes, of ~300 Myrs. A cautionary remark is that the stellar lifetimes so 

deduced really sample only the average ages of the stars dominating the stellar (UV 

plus optical) light, and thus may underestimate the true ages of the star forming 

clumps if there is an underlying older population (Maraston et al. 2010). In addition 

the assumption of constant star formation histories may introduce systematic 

uncertainties in z~2 galaxies with ongoing large gas accretion (Maraston et al. 2010). 
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4.2.3 metal enrichement time scale 

Thirdly, we can also use the [NII]/Hα-ratio and the inferred oxygen abundances for 

obtaining upper limits to the clump ages. Given the [NII]/Hα values in Table 3 we 

calculate the metallicity using the prescription of Pettini and Pagel (2004) and, 

assuming the solar ratio of mass in oxygen to total mass in heavy elements, derive the 

total mass fraction of heavy elements (Z). Assuming an initially zero metallicity, we 

use both a “closed-box” and “leaky box” model (Erb 2008) to determine the time 

required to produce the observed Z. The derivation of the timescale is discussed in 

more detail in Appendix C. The closed box estimates range between 150 Myrs and 

900 Myrs (row 26 in Table 2).  

The timescales derived with the “leaky box” model are all longer than those of the 

“closed box” model, ranging from comparable ages to ones about three times longer 

(see row 27 in Table 2), with one outlier with an unrealistic ‘leaky box’ enrichment 

time scale. There are a few objects with very long metal enrichment timescales in the 

leaky box model. The aforementioned outlier could arise from measured SFRs that 

are much lower than in the past. As these estimates assume that the gas forming the 

clumps begins with zero metal mass fraction and therefore that all of the observed 

metals currently in the clumps were produced in them, they tell us about the 

maximum possible age of the clumps. The real metal enrichment time scales are 

smaller, since much of the gas in the clumps was likely somewhat enriched when the 

clumps formed. To explore this idea further, we have calculated the time required to 

enrich clump A of ZC406690 to the metallicity of clump B in the same galaxy. Clump 

A is the brightest, highest Hα equivalent width, and thus likely the youngest clump in 

ZC406690, and therefore could be representative of the initial metallicity of forming 

clumps. On the other hand, clump B appears to be much more evolved and potentially 
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past its peak in SFR. With the closed model, this timescale is 130 Myr, and 210 Myr 

with the leaky model. These are more convincing ages for evolved clumps like clump 

B, since they don’t assume the clumps formed from zero metallicity gas.  

 

4.2.4 expansion time scale 

Finally, we consider the Taylor-Sedov solution for an explosion in the radiative 

phase to estimate the time scale for the outflow to expand to its current size.  In the 

Taylor-Sedov solution (Osterbrock 1989), the radius of a shock is given by 
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where texp is the time since the explosion in years,  is the energy released by the 

SN in units of 1051 ergs, and 

51E

2 3
0 10n cm   is the ambient ISM density (McKee and 

Ostriker 1977). We take sR as the radius of the clump, assuming the expanding 

superbubble still follows this relation in the plane of the disk, even though the bubble 

has blown out along the minor axis. We estimate the input energy using a simple 

order of magnitude calculation, 

 

             2
exp                              (9),out ffE Mv t  

 

where we use the outflow velocities and rates listed in Table 2 and ff ~ 0.1 is an 

efficiency factor which takes into account the fact that most of the energy is released 
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perpendicular to the disk and not in the plane of the disk.. The resulting timescales are 

listed in row 28 of Table 2 and constitute lower limits to the clump life times. The 

values for texp in Table 2 have a median of 130 Myrs. 

 

4.2.5 average lifetime and fate of the clumps  

The discussion in the last sections suggests that the typical lifetimes of the giant 

gaseous clumps are probably less than 1 Gyr, and on average perhaps closer to 500 

Myrs, with large uncertainties and scatter. The powerful outflows probably play an 

important factor in setting these lifetimes. While the measurements are probably still 

too uncertain to be sure of the final outcome(s), less active clumps (BX482 A or the 

clumps in D3a15504) may convert approximately half of their initial gas to stars (row 

30 in Table 2) and remain basically intact. Given that the in-spiral time by dynamical 

friction is also less than 500 Myrs (equation 1, Noguchi 1999, Immeli et al. 2004a,b, 

Dekel et al. 2009b, Ceverino et al. 2010), these clumps could plausibly migrate all the 

way to the nuclear region (row 29 in Table 2). In the most active and compact clumps 

(such as ZC406690 A and B), however, the feedback may disrupt the clumps before 

they have converted a substantial fraction of their initial gas to stars. Such clumps 

may disperse in the outer disk before having had time to migrate into the center. The 

dissolving stellar component of the clump may still continue the in-spiral and 

contribute to the secular buildup of a central bulge, albeit with smaller efficiency than 

assumed in the original work of Noguchi (1999) and Immeli et al. (2004 a,b). An 

interesting question is whether globular clusters might be formed in this environment 

(Shapiro, Genzel & Förster Schreiber 2010) and if so, how they would survive the 

strong feedback.  
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Our findings are in broad agreement with an ‘average’ of the current analytical 

estimates (Murray et al. 2010a,b, Krumholz & Dekel 2010). The clump evolution in 

current hydro-simulations strongly depends on assumptions on sub-grid physics, 

reflecting the different discussion in the analytical work. None of these cosmological 

simulations come close yet to capturing the spatial structure and physical complexity 

of the interstellar gas physics (c.f. Wada & Norman 2001, Cooper et al. 2008). 

Exploring clump stability with different supernova energy feedback strengths 

Elmegreen et al. (2008) find that clumps live for a few hundred Myrs with the 

exception of a case with very strong feedback efficiency. Long clump lifetimes were 

also obtained by Ceverino et al. (2010) who also employed a supernova energy 

feedback scheme. In a recent simulation with radiation pressure, momentum feedback 

based on the Oppenheimer & Dave (2006) sub-grid recipes, Genel et al. (2010) find 

that the clumps are disrupted on a time scale of 50-100 Myrs, much more rapidly than 

indicated by the other theoretical estimates or our measurements. This is probably the 

result of their more extreme assumptions on the feedback efficiency, as compared to 

the original recipes of Oppenheimer and Dave (2006). As a result, the clumps in the 

Genel et al. (2010) simulation do not spiral inward much and do not have time to 

virialize. At the opposite extreme, even without winds, realistic clumps tend to be 

stripped by tidal forces and they loose maybe 50% of their mass before reaching the 

central bulge in 400-500 Myr (Bournaud et al. 2007).   

 

 

4.3 Origin of the large turbulent velocities 

What can our observations tell us about the origin of the large turbulent velocities 

that are characteristic of all z1 SFGs?  
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The first obvious conclusion is that the velocity dispersion in the z~2 SFGs of our 

sample is not obviously driven by local stellar feedback. The near ‘constant’ floor of 

velocity dispersion may instead point to a galaxy-wide driving mechanism, such as 

the release of gravitational energy. Such an energy release could come from the 

inward clump migration in the disk and be driven by large scale torques or clump-

clump collisions. Theoretical support for this mechanism is found in the simulations 

of Immeli et al. (2004 a,b), Agertz et al. (2009), Ceverino et al.(2010), and others. 

Alternatively gravitational energy might be released at the outer disk boundary by the 

accreting gas streams/flows from the halo. Support for this explanation comes from 

the simulations of Genel et al. (2010, and in prep.) who find that the most important 

driver of the local random motions is the accretion energy. Alternatively, and perhaps 

similar to the situation in the Milky Way, multiple agents may be at work 

simultaneously. The small spatial variations may then be the consequence of the fast 

communication speed of the drivers, which may include the fast outflows that couple 

to the disk over a wide range of scales (Elmegreen & Scalo 2004).  

Recent detailed studies of the turbulent structure function in Milky Way GMCs 

also find little dependence of the cloud random motions on size/mass, environment 

and star formation activity of these clouds (Heyer & Brunt 2004, Brunt, Heyer & 

McLow 2009). Brunt et al. (2009) conclude that GMC turbulence is driven by a 

universal driver acting mostly on large scales, such as supernova-driven turbulence, 

magneto-rotational instability, or spiral shock forcing. According to these authors, 

small-scale driving by sources internal to molecular clouds, such as outflows, can be 

important on small scales, but cannot replicate the observed large-scale velocity 

fluctuations in the molecular interstellar medium.  
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A feedback dominated scenario may still be viable if the feedback ‘signal’ is 

hidden by other dependencies. In a self-gravitating disk with feedback-dominated 

turbulence the upward pressure generated by feedback is exactly compensated by the 

weight of the gas column above it. Ostriker & Shetty (2011) argue that in this case 

and for a Kennicutt (1998) gas-star formation relation the average gas density thus 

scales with star formation surface density and the z-velocity dispersion is 

approximately constant. 
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5. Conclusions 

We have presented high quality SINFONI/VLT integral field spectroscopy of five 

massive, active star forming galaxies at z~2. Aided by natural and laser guide star 

adaptive optics, our data begin to constrain the nature and properties of the largest 

(diameter 1.5-3 kpc) and most massive (1-10x109 M


), giant star forming clumps that 

are characteristic of many ‘normal’ high-z star forming galaxies. 

We find clear evidence that the disks and giant star forming clumps are unstable to 

gravitational collapse and fragmentation. The giant star forming clumps plausibly 

represent the largest scale of gravitational instability in the high-z disks. 

 Spatially resolved, broad wings in Hα/[NII] emission associated with individual 

clumps make a strong case that the brightest giant star forming clumps launch 

massive galactic outflows driven by their intense star forming activity. We estimate 

that the mass outflow rates are comparable to or larger than the star formation rates, in 

one case by a factor of eight. These findings are in excellent agreement with other 

recent results on galactic outflows in high-z galaxies. The lifetimes of the giant 

clumps are strongly influenced and probably limited by these feedback effects to a 

few hundred million years but it is premature to be sure of the average clump 

evolution. For the less active clumps, a significant fraction of the original gas may be 

converted to stars at the end of this phase. Such clumps may even form bound entities 

that have a chance to migrate all the way to the nucleus and build up a bulge by 

secular effects. The most actively star forming clumps may, however, be destroyed 

before they have a chance to spiral much inward. In these cases stellar feedback and 

winds may thus limit the efficacy of the ‘violent disk instability’ mechanism for 
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building central bulges. Our data suggest that the presence of strong outflows and star 

formation surface density are correlated, consistent with radiation pressure being 

important in driving the outflows. 

The local rms-velocity dispersion of the ionized gas increases by less than a factor 

of 2 across a range of 20 in star formation surface density. This change is comparable 

to the scatter of velocity dispersions at any fixed star formation surface density 

throughout this range. To first order the large velocity dispersions in high-z galaxies 

are distributed as a spatially constant ‘floor’, similar to the situation in Milky Way 

GMCs. We also see only relatively modest intra-clump velocity gradients indicative 

of clump rotation. Our analysis suggests that two of the brightest giant clumps cannot 

be rotationally supported; these clumps may instead either be mainly pressure 

supported, or they are not virialized. Given our limited angular resolution and signal 

to noise ratios, the situation for most other clumps is less clear and in these cases 

rotational support may be significant or even dominant. 

The absence of a strong correlation between velocity dispersion and star formation 

surface density suggests that strong local feedback is not the dominant driver of the 

large turbulent motions, or that the feedback drives this turbulence mainly on super-

clump scales, unless secondary dependencies ‘hide’ the feedback signal. The diffuse 

and spatially constant nature of the random motions we observe may favor that the 

large scale release of gravitational energy is the key driver of the galactic 

‘turbulence’. This release could either occur within the disk as a result of the clumps’ 

inward migration, or at the outer boundary of the disk as a result of the interaction 

with the gas streams and clumps/minor mergers coming in from the halo. 
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We find moderately significant evidence for clump-clump and center-outer disk 

variations in the inferred gas phase oxygen abundance. These variations are 

qualitatively consistent with the expected rapid heavy element enrichment in the 

young disks. The radial abundance gradients are broadly consistent with the expected 

inside-out growth of the young galaxies and the scenario of inward clump migration. 
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Figure 1. Maps of individual velocity ‘channels’ of width ~34 km/s in the Hα line of 

D3a15504 (top row), BX482 (middle two rows) and ZC782941 (bottom row). The 

maps are resampled to 0.025” per pixel and have a resolution of FWHM ~0.17-0.22”. 

Velocities relative to the systemic redshift indicated are given in km/s. Circles/ovals 

and symbols denote the clumps identified in these galaxies. Crosses denote the 

kinematic centers of the galaxy rotation. The color scale is linear and auto-scaled to 

the brightest emission in each channel. 
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Figure 2. FWHM ~0.2” Hα and restframe UV/optical continuum images of four 

massive luminous z~2 SFGs. All maps have been re-binned to 0.025” pixels. Top 

row.: 3-color composites of integrated Hα line emission (red), and continuum (blue-

green) images, along with the most prominent clumps identified by labels A, B…... 

Middle: Integrated SINFONI Hα emission. All four images are on the same angular 

scale, with the white vertical bar marking 1” (~8.4 kpc). Bottom. HST NIC-H band, 

ACS I-band, or NACO-VLT AO Ks-band images of the program galaxies, at about 

the same resolution as the SINFONI Hα maps. The color scale is linear and auto-

scaled. 
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Figure 3. Hα Gaussian fit velocities (top left), Hα Gaussian fit dispersion (bottom left) 

and inferred Toomre Q-parameter (right, equation 2) for D3a15504. Shown in the top 

center is also the map of Hα integrated flux from Figure 2. The locations of the main 

clumps (Figure 1) found in the individual velocity channel maps are denoted by 

circles/ellipses. The Hα, velocity and velocity dispersion maps (resolution 0.18” 

FWHM) were re-binned to 0.025” pixels. For construction of the Q-map the data were 

smoothed to 0.25” FWHM. The typical uncertainties in the Q-values are ±0.05 to ±0.3 

(1σ) throughout most of the disk of D3a15504. Pixels with ΔQ0.5 are masked out. 

 

 

 72



A 

2.1

1.9

1.5

1.2

0.8

0.4

0.2

Q
BX482 z=2.26

B

C

D

1”

ΔQ <0.5

Hα

A 

B

C

D

v

1”

+230

+150

+40

‐130

‐210 

A 

B
C

D

+200

+150

+100

+55

+30

σobs

A 

B
C

D

 

Figure 4. Maps of Hα Gaussian fit velocities (top left), Hα Gaussian fit dispersion 

(bottom left) and of the Toomre Q-parameter (right, equation 2) for BX482. Shown in 

the center is also the map of Hα integrated flux from Figure 2. The locations of the 

main clumps (Figure 2) are denoted by circles/ellipses. The Hα, velocity and velocity 

dispersion maps (resolution 0.18” FWHM) were re-binned to 0.025” pixels. For 

construction of the Q-map the data were smoothed to 0.25” FWHM. The typical 

uncertainties in the Q-values are ±0.03 to ±0.2 (1σ) along the bright ring of BX482. 

All pixels with ΔQ > 0.5 were masked out. 
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Figure 5. Maps of Hα Gaussian fit velocities (top left), Hα Gaussian fit dispersion 

(bottom left) and of the Toomre Q-parameter (right, equation 2) for ZC782941. 

Shown in the center is also the map of Hα integrated flux from Figure 2. The locations 

of the main clumps (Figure 2) are denoted by circles/ellipses. The Hα, velocity and 

velocity dispersion maps (resolution 0.18” FWHM) were re-binned to 0.025” pixels. 

For construction of the Q-map the data were smoothed to 0.25” FWHM. The typical 

uncertainties in the Q-values are ±0.06 to ±0.4 (1σ) for most of the outer disk of 

ZC782941. Pixels with ΔQ >0.5 were masked out. 
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Figure 6. Maps of Hα Gaussian fit velocities (top left), Hα Gaussian fit dispersion 

(bottom left) and of the Toomre Q-parameter (right, equation 2) for ZC406690. 

Shown in the center is also the map of Hα integrated flux from Figure 2. The locations 

of the main clumps (Figure 2) are denoted by circles/ellipses. The Hα, velocity and 

velocity dispersion maps (resolution 0.22” FWHM) were re-binned to 0.025” pixels. 

The typical uncertainties in the Q-values are ±0.01 to ±0.1 (1σ) for most of the outer 

disk of ZC782941. Pixels with ΔQ >0.3 were masked out. 
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Figure 7. Hα spectra of ZC406690 (z=2.195), for the entire galaxy (top left), as well 

as for selected clumps marked in the central Hα-ACS I-band composite (Figure 2). 

The dotted grey curves in all panels denote the SINFONI spectral response profile 

measured from OH sky lines. Before construction of the integrated spectrum, the 

galaxy rotation was removed for each pixel. The thin red curves show the broad Hα 

(clump A) or broad Hα+[NII] (integrated spectrum, clump B) components obtained 

from multi-component Gaussian fits. For region D the thin red curve is the scaled 

broad Hα component of clump B, and the velocity scale is relative to the systemic 

velocity of nearby clump B.  
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Figure 8. Spectra and images of BX599, BX482, ZC782941 and D3a15504. Top left: 

Hα spectrum toward the center of the compact dispersion dominated galaxy Q1623-

BX599. Top center: integrated Hα map of BX599, sampled to 0.025” per pixel and 

smoothed to a resolution of 0.2” FWHM. Top right: position (up-down)-velocity (left-

right) diagram of the Hα/[NII] emission of BX599 in a software slit at position angle -

390 through clump A in the central panel, constructed from ~0.2” FWHM LGSF data, 

re-sampled to 0.025” and 16.7 km/s per pixel, half the original pixel scales. Bottom: 

Hα spectra of the brightest clump A in BX482 (left), clump A in ZC782941 (middle) 

and an average of clumps A-E in D3a15504 (right). The thin red curves denote fits of 
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the broad Hα component, or the broad Hα+[NII] components in these clumps, as 

obtained from multi-component Gaussian fits. In the case of BX599 the broad Hα 

emission required two components. The dotted grey curve is the SINFONI spectral 

response function.  
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Figure 9. Average line profiles, compared to the instrumental line profile obtained 

from OH sky lines (dotted grey). Bottom left: Average Hα/[NII] spectrum (blue 

continuous) of the brightest clumps in D3a15504 (clumps A-F), BX482 (clump A), 

ZC782941 (clump A), ZC406690 (clumps A, B) and BX599 (clump A), after shifting 

to a common centroid. Top left: Average of ‘interclump-weaker-clump-emission’ in 

BX482, D3a15504 and ZC782941 (red continuous curve). The green continuous 

curve is a Gaussian fit (FWHM 86 km/s) to the instrumental profile, which is a good 

fit with some excess emission in the wings of the instrumental profile. The black 

continuous curve is the best fitting Gaussian to the ‘interclump’ emission profile 
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(FWHM 212 km/s, or σ=90 km/s). A fit with the instrumental profile gives a similar 

result (FWHM 202 km/s). Top right: Comparison of the interclump (red) and bright 

clump average (blue), demonstrating that the core of the bright clump emission is well 

fit by the interclump profile and that there is clear excess in the blue wing. Bottom 

right: Subtraction of 0.75 times the interclump profile from the bright clump profile 

(blue continuous) then results in the red residual profile, which is reasonably well fit 

by a Gaussian of FWHM 500 km/s centered at -48 km/s (black dotted).  
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Figure 10. Dependence of intrinsic velocity dispersion on star formation surface 

density, for galaxy averages, as well as for individual giant star forming clumps. In all 

cases the effects of large scale velocity gradients, beam smearing and instrumental 

resolution were removed, if applicable, prior to estimating the local velocity 
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dispersion. Open blue circles (and 1σ uncertainties) denote galaxy averages in SINS 

z~1.5-2.5 disks (Förster Schreiber et al. 2006, 2009, Genzel et al. 2006, 2008, Cresci 

et al. 2009, this paper) and open purple circles denote galaxy averaged z~1-2 disks 

from Wright et al. (2007), van Starkenburg et al. (2008), Epinat et al. (2009) and 

Lemoine-Busserolle & Lamareille (2010). Open red squares are flux weighted galaxy 

averages of dispersion dominated z~1.5-2.5 SFGs from Law et al. (2009). Filled black 

squares denote the brightest clumps in BX482, D3a15504, ZC400690 and ZC782941, 

as well as the central region (clump) of BX599, and the filled green triangles mark the 

flux weighted dispersions in low-mass lensed z~2-3 LBGs of Jones et al. (2010). The 

dotted grey and dashed magenta lines are the best weighted and unweighted linear fits 

to the log-log representation of all data. The light blue shaded area on the right marks 

the region with Σ  26 M


yr-1kpc-2, where no UV-bright star forming galaxies have so 

far been detected (Meurer et al. 1997, corrected to a Chabrier IMF). The grey hatched 

region shows the dependence of HI velocity dispersions in z~0 SFGs, as collected by 

Dib, Bell & Burkert (2006). 
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Figure 11. Velocity residual maps and position – velocity residual cuts across the 

brightest clump A in BX482 (top) and ZC406690 (bottom). The left panels are the 

residual maps (velocity (data) minus velocity (model or kinemetry)), the right panels 

give position- velocity residual (and ±1 σ errors) cross-cuts across the brightest 

clumps in each galaxy, along the direction of the galaxy’s maximum velocity gradient 

(line of nodes). The red points and dashed curve denote the Hα flux (right vertical 

axis) and the blue points and continuous curve denote the residual velocity (left 

vertical axis).  
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Figure 12. Velocity residual map of D3a15504 (left) and position-velocity cuts (right) 

through the five selected clumps along the line of nodes of the rotation of the galaxy 

(white arrow in left panel). The red points and dashed curves in the right panel denote 

the Hα fluxes (right vertical axis) and the blue points and continuous curves denote 

the residual velocities (left vertical axis). 

 

 

 82



0.5

1.0

0 0.1 0.2

0 0.5 1.0 1.5

~Gauss, mass 5e8 - 1e10
~Gauss, 5e9, inclination 20-80 degree
 ~ Gauss, 5e9 clumps, 

0
=0

R
clump

(intrinsic, HWHM) (arcsec)

M
cl

um
p / 

(M
ro

t+
 M

di
sp

) 
0

5

10

15

0 0.1 0.2

0 0.5 1.0 1.5

Ceverino simulation, scaled to 3e9 Msun clumps
Ceverino simulation, scaled to 1e10 clumps
~uniform, 5e9 clumps, 

0
=0

HWHM
obs

=0.11"

R
clump

(intrinsic, HWHM) (arcsec)

M
cl

um
p / 

M
ro

t

R
clump

(kpc)

 

Figure 13. Properties of rotationally supported model clumps. Left panel: ratio of 

clump mass to the ‘rotation’ mass estimator in equation 6 (with b=1), for Gaussian 

and uniform density clumps of different intrinsic clump radii (HWHM for Gaussian, 

outer radius for uniform density), masses, and inclinations, convolved with the 

SINFONI spatial (FWHM 0.22”) and spectral (FWHM 85 km/s) resolutions and 

sampled with 0.05” and 34 km/s pixels. Filled symbols denote the estimator in 

equation (6) applied at the observed clump HWHM. The crossed black circle and the 

filled magenta triangle denote the ratio derived from an average of four prominent 

clumps in a z=2.3 galaxy from the AMR simulations of Ceverino et al. (2010), but 

scaled to clump masses of 1010 and 3x109 M


, respectively. The simulated data were 

analyzed with the same method and effective resolution as the real SINFONI data 
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sets. The right panel gives the ratio of the clump mass to the mass estimator in 

equation (7), which combines the observed velocity gradient and velocity dispersion. 
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Figure 14. Dependence of intrinsic velocity dispersion σ0 (left panel, corrected for 

large scale velocity gradients, beam smearing and instrumental resolution) and vc/σ0 

(right panel) on the inferred inclination (typical uncertainty ±0.1 in sin(i)) for the 

SINS disks (filled and open blue circles) and disks from other publications (open red 

squares, see references in the caption of Figure 10).  Mean and 1σ uncertainty in the 

mean are indicated for the ranges sin(i) less than and greater than 0.64.  
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Appendix A 

We have explored possible intra-galaxy variations of the intrinsic velocity dispersion 

σ0 as a function of position in the deep AO-data on the four SFGs reported in this 

paper. To remove large scale velocity dispersion gradients artificially created by 

beam-smeared velocity gradients (caused by rotation, for instance) we analyze 

residual velocity maps (section 2.2). Figures A1 and A2 give the results. We have 

found that the key issue is error estimation and significance. Overlays of spatially 

resolved residual velocity dispersion as a function of position on the Hα maps 

(Figures A1 & A2) at first glance seem to show in several galaxies a mild trend for 

Hα bright clumps to be associated with lower velocity dispersion than in the 

surrounding regions. However, a more detailed analysis of the fit uncertainties 

derived from our Monte Carlo bootstrapping method reveals that most of this trend is 

due to poor signal to noise ratio in the interclump region. When weighted fits to the 

pixel-to-pixel variations of the residual velocity dispersions δσ (section 2.2) as a 

function of ΣHα are considered for the higher signal to noise ratio regions, only 

relatively weak, or no (positive) correlations are found. These mild trends are in good 

agreement with the galaxy averages and selected clumps shown in Figure 10. 
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Figure A1. Dependence of residual velocity dispersion on Hα surface brightness for 

D3a15504 (top) and BX 482 (bottom). The left maps show the spatial distribution of 

the residuals (δσ= σ(data) minus σ(model) in upper plots and σ(data) minus 

σ(kinemetry averages) in lower plots) within each of the two galaxies. The input 

velocity dispersions are intrinsic values after removal of the instrumental broadening 

and beam smeared large scale velocity gradients (such as rotation).  Minima and 

maxima of the color codes are indicated, as well as the location of the prominent 

clumps from Figure 2. Analysis of the 2d-maps requires careful attention to error 

analysis, as most of the obvious variations in the D3a15504 velocity dispersion 

residual map, for instance, is caused by biases due to large uncertainties of σ in low 

surface brightness regions. The right maps show the pixel to pixel correlations, after 

culling low significance data. Filled blue circles denote those data with fit 

uncertainties Δσ less than 30 km/s, after rebinning the data to 0.1” per pixel. For these 
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data the red and grey crosses denote the distribution of Hα surface brightness and δσ 1 

σ errors, respectively. The black line is the weighted (wi=1/Δσi
2) linear regression fit 

to the filled blue circles. Fit parameters (and 1σ uncertainties in parentheses) are given 

in the legend. 
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Figure A2. Dependence on residual velocity dispersion on Hα surface brightness for 

ZC782941 (top) and ZC406690 (bottom). The left maps show the spatial distribution 

of the residuals (δσ= σ(data) minus σ(model) in lower plots and σ(data) minus 

σ(kinemetry averages) in upper plots) within each of the two galaxies. Minima and 

maxima of the color codes are indicated, as well as the location of the prominent 

clumps from Figure 2. The input velocity dispersions are intrinsic values after 

 87



removal of the instrumental broadening and beam smeared large scale velocity 

gradients (such as rotation). Analysis of the 2d-maps requires careful attention to error 

analysis, as the apparent increases in the velocity dispersion residual map at the 

southern and northern edges of ZC782941, for instance, are caused by biases due to 

large uncertainties of σ in low surface brightness regions. In the case of the ZC406690 

dispersion residual map, the dispersion enhancements in the integrated line profiles 

(as shown) near/on clumps A and B are almost entirely caused by the broad wind 

component affecting the rms dispersion of the overall line profiles (Figure 7). The 

narrow component does not show larger dispersions toward these clumps. The right 

graph shows the pixel to pixel correlation for ZC782941, after culling low 

significance data. Filled blue circles denote those data with fit uncertainties Δσ less 

than 30 km/s after re-binning the data to 0.1” per pixel. For these data the red and 

grey crosses denote the distribution of Hα surface brightness and δσ 1 σ errors, 

respectively. The black line is the weighted (wi=1/Δσi
2) linear regression fit to the 

filled blue circles. Fit parameters (and 1σ uncertainties in parentheses) are given in the 

legend. 

 

Appendix B 

In this section we discuss our quantitative analysis of the broad Hα emission for 

deriving estimates of the mass outflows rates in the various galaxies of our sample. 

 

B.1 Outflow estimates for photoionized, recombining gas 

We estimate masses and outflow rates of the warm ionized gas in our program 

galaxies/clumps for three simple models. In all models we assume an outflow into 
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solid angle Ω and a radially constant mass loss rate and outflow velocity. The latter is 

motivated by observations of the M82 outflow (e.g. McKeith et al. 1995) and 

theoretical work on both energy and momentum driven outflows (Veilleux et al. 2005, 

Murray et al. 2005). In the first two models we assume that the gas is photoionized, 

and in case B recombination with an electron temperature of T4=104 K (Osterbrock 

1989). In the first model the average electron density scales with R-2 (for a constant 

mass outflow rate) but the local electron density of filaments or compact clouds from 

which the Hα emission derives does not vary significantly with radius and takes on a 

value of . This choice is motivated by observations of electron 

densities in the z~0 outflows derived from the [SII] 6718/6733Ǻ doublet (Heckman, 

Armus and Miley 1993, Lehnert & Heckman 1996). In the second model we assume 

that the ionized gas fills the entire volume of the outflow cone. In that case both the 

average and the local electron density scale with R-2. For purely photoionized gas of 

electron temperature  and case B recombination, the effective volume 

emissivity is (Osterbrock 1989). The total 

ionized mass outflow rate can then be obtained from the extinction corrected Hα 

luminosity LHα,0 via 

2 1/ 2 -3~ 100 cmen 
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Here 1.36 pm   is the effective mass, for a 10% helium fraction, and  in 

Table 2. Rout is the outer radius of the outflow that initially is launched near the center 

maxexv v 
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of the disk/clump at Rin<<Rout. To compute an extinction corrected luminosity for the 

broad component in Table 2 we corrected the observed fluxes both for the general 

galaxy obscuration estimated from the UV-continuum colors (and a Calzetti 2001 

extinction law with Agas=Astars/0.44), as well as for additional differential extinction 

through the clump/galaxy, as estimated very approximately from the asymmetry of 

the broad line emission (factor γred in Table 2). The expressions for ζ and neff depend 

on the assumed geometry and density distribution of the outflow and are different for 

our two models. For model 1 we adopt and Rout~RHWHM . For 

model 2 we have 

2 1/ 2 -3100 cmeff en n  

( ) in
eff in in

out

Rn n R R and given the galaxy wide distribution of the 

outflowing gas in ZC406690 we assume Rout ~ 6 kpc~Rdisk~10 Rin. This assumption is 

motivated by the modeling of UV absorption line gas velocities vout ( R ) (Figures 23 

and 24 in Steidel et al. 2010). Because of the -scaling of the Hα emission, RHWHM 

~2.3 Rin. These choices for Rout probably bound the true (emission weighted value) of 

Rout from below and above. For both models (constant expansion velocity) ζ=1.  

2
en

For model 2 we assume that near the launch point the ionized gas in the wind is in 

pressure equilibrium with the star forming gas in the clump, such that 

. One direct estimate for this base density comes from the [SII] 

6718/6733Ǻ ratio that can be determined empirically for several of the 

galaxies/clumps in Table 2, as shown in Figure B.1. The average/median of these 

estimates (row 15 in Table 2) is 900 cm-3. Unfortunately the uncertainty is very large 

for each of the individual entries, sometimes including zero or infinite density. A 

second estimate for the base density comes from estimates of the total mass/gas 

densities in the giant clumps. Assuming that the clumps are virialized their average 

,( ) ~in in e clumpn R n
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matter densities (gas plus stars) are 
2
0
2

~clump
clump

n
GR




  , corresponding to densities 

between 10 and 40 M


pc-3, or 300 to 1100 H cm-3 for the clumps in Table 2, Figure 

10 and in the well resolved lensed SFGs observed by Jones et al. (2010). Assuming 

gas fractions of about 50% (Tacconi et al. 2010, Daddi et al. 2010a), this corresponds 

to (cold) gas densities of 150 to 550 cm-3. Another approach is to take the observed 

star formation densities and convert to gas densities with the Kennicuut-Schmidt 

relation, as already discussed in 3.1. For clump A in ZC406690, for instance, this 

approach yields an average (cold gas) density of ~70 cm-3. The bottom line is that 

these average cold gas densities across the giant clumps are very similar to those in 

Milky Way Giant Molecular Clouds (GMCs, <ngas,GMC> ~ 170 cm-3 (e.g. Blitz 1993, 

Harris & Pudritz 1994). However, in these GMCs the actual star forming gas has 

much higher densities, nSF~104.5 cm-3, with local pressures of nSFTSF~106.4±0.5 K cm-3. 

Assuming again pressure equilibrium the ionized gas in these star forming regions 

would have electron densities of 102.6±0.5
 cm-3 for Te(MW)~7000 K. If the high-z 

clumps have similar conditions, this consideration yields an upper limit to 

nin(Rin)~1200 cm-3, similar to the average value from the [SII] line ratios in Table 2. 

For model 2 we adopt nin(Rin)~1000 cm-3. With these assumptions model 2 yields 

outflow rates 4 times lower than for model 1. 

Rows 21 & 22 of Table 2 list the derived ionized gas outflow rates for these case B 

photoionization models, for individual clumps and galaxy averages in the five 

galaxies of our sample. The key finding in all clumps considered here is that in the 

photoionized case the derived outflow rates are comparable to or larger than the star 

formation rates, in one case (clump B in ZC406690) by a factor of 8.4 in the average 

of models 1 and 2.  
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B.2 Outflow estimates for collisional ionization 

If the gas temperature is high enough, it is possible that the gas responsible for the 

Hα emission is collisionally ionized in the wind. Based on [SII]/Hα, [OI]/Hα and 

[NII]/Hα line ratios Heckman, Armus and Miley (1990), Shopbell & Bland-Hawthorn 

(1998) and Veilleux and Rupke (2002) find that the outer region of the outflowing gas 

of M82 and NGC 1482 is likely shock-heated by the galactic wind fluid, while the 

inner region is photoionized by the starburst. Veilleux and Rupke (2002) characterize 

the ionization mechanism based on the [NII]/Hα ratio, such that values less than 0.5 

are representative of HII regions and therefore indicative of ionization by O stars, 

whereas larger values characterize HH objects and other regions for which shocks are 

important. The low [NII]/Hα ratio found in the inner region of the M82 outflow is 

unusual for a galactic wind and suggests that the gas is ionized by a relatively young 

and active starburst (Veilleux and Rupke 2002). They further argue that, in the 

absence of an AGN, the large values of [NII]/Hα found in the outer regions of the 

M82 wind nebulae and characteristic of other galactic winds require an additional 

heating source, namely shock-heating by the wind fluid. If the gas is shock-heated, 

ionization can occur either through photoionization by EUV/soft X-rays produced in 

the shock, or through collisional processes (Heckman, Armus & Miley 1990). 

We thus consider as our third model collisional ionization and excitation of line 

radiation, which will dominate at high densities and temperatures. A simple model 

estimating the photoionizaton rate based on the size of clump A in ZC406690, an 

electron density of 100 cm-3, an average cross-section for ionization of 10-18 cm2, and 

photoionization of gas located 3 kpc from the disk, suggests that collisional ionization 

begins to dominate at T  2x104K.  
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We estimate the mass outflow rate assuming collisional excitation and ionization 

at , which is also the peak temperature for collisional-based emission 

(Goerdt et al. 2010). For , the outflow rates are about an order of magnitude 

larger. The Hα luminosity becomes 

42 10T   K

K510T 
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p H io

n H

n h q n

 


  , 3100 p en n cm   and 127.1 10excq    cm3s-1 and 

 cm3s-1 are the collisional excitation and ionization rate coefficients, at 

Te~2x104 K from Osterbrock (1989). The mass outflow rates for collisional-excitation 

are listed in row 22 of Table 2. The bottom line is that if the outflowing gas comes 

from collisionally excited gas at Te~2x104 K, the inferred masses and outflow rates 

are lowered by about a factor of 2 compared to the average case B recombination 

cases (row 23 in Table 2). If the temperature is lower, the difference is less. 

123.4 10ionq  

We find relatively small values of [NII]/Hα for the broad components of clumps A 

and B in ZC406690 ([NII]/Hα ~0.3), as well as for the stacked spectrum in Figure 9 

([NII]/Hα 0.4). These ratios favor the photoionization model. However, the analysis 

of Veilleux and Rupke (2002) is based on near-solar metallicity galaxies in the local 

universe, whereas several of the high-z SFGs are less chemically evolved, and thus 

one might expect the critical [NII]/Hα -value differentiating between shock-heated 

and photoionized gas to be lower as well. Nevertheless it is likely that the gas 

outflowing from clumps A and B of ZC406690 is primarily photoionized and not 

shock-heated, based on the relatively low [NII]/Hα values in the broad component of 

emission from these clumps, and the fact that they appear to be very young, extremely 
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active star forming regions. We thus will adopt the case B/photoionization outflow 

rates as our base values for the further analysis. 
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Figure B.1. [SII] 6718/6733Ǻ doublet spectra for the most prominent clumps of four 

of our program galaxies. The locations of the two lines are shown by red arrows. An 

OH line strongly affects the blue side of the 6733 line in ZC406690 A/B.  
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Appendix C 

In this section we derive the metal enrichment timescales using the “closed” and 

“leaky” box models from Erb (2008). Erb’s models are derived from the Kennicutt-

Schmidt-relation (Kennicutt 1998a) in order to determine the time dependence of star 

formation and the effect of infall and outflow on the metallicity. For the “closed box” 

model 

 

  

   

 
*

*
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1 ,  resulting in

1
  and    (C1),

g

g i

d ZM
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g
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where Mg is the gas mass, Mi is the total initial mass, M* is the stellar mass, α is the 

mass fraction locked in stars (which we take as 0.8). The parameter y is the true yield, 

which is the ratio of the mass of metals produced and ejected by star formation over 

the mass locked in stars. We follow Erb (2008) and adopt y = 0.019. Assuming that y, 

α and the star formation rate SFR are constant, and using the observed gas mass, as 

calculated with the Kennicutt-Schmidt relation, and our observed value of the metal 

mass fraction,  fZ t , we solve the differential equation numerically to determine 

Zt (the time required to produce  ZZ t ) (see row 26 in Table 2). 

We also consider a “leaky box” model (Erb 2008), where an outflow component is 

included with an outflow rate equal to that calculated for the photoionization model 

with a constant local density (Table 2, row 20).  In this case, equation (C1) becomes 
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 is the mass fraction in the outflow with respect to the SFR and outM  

is the mass outflow rate. 
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Table 1. Observing Log 

Galaxy band/pixel 

scale 

mode FWHM 

resolution 

(arcseconds) 

integration time,  

observing date 

reference 

Q1623-BX599 

(z=2.332) 

K 0.05”x0.1” LGS 0.23” 2h00 
2010 Apr 12-13 

Erb et al. 2006b, 
Förster Schreiber et 
al. 2009 

Q2346-BX482 
(z=2.258) 

K 0.05”x0.1” 
 

LGS 
 

0.25” 
 
 

9h30 
2007 Oct 27-29 
2007 Nov 13-15 
2008 Jul 27-31 
2009 Nov 11-13 &17 

Erb et al. 2006b 
Genzel et al. 2008, 
Cresci et al. 2009; 
Förster Schreiber et 
al. 2009 

 
D3a15504 
(z=2.383) 

K 0.05”x0.1” 
 

LGS, NGS 
 

0.18” 
 

18h40 
2006 Mar 16-20 
2009 Apr 30 
2009 May 1 & 16 
2009 Jun 16 
2010 Feb 11-13 
2010 Mar 9 
2010 Apr 2 

Kong et al. 2006, 
Genzel et al. 2006; 
2008; Cresci et al. 
2009; 
Förster Schreiber et 
al. 2009 

 
ZC782941 
(z=2.182) 

K 0.05”x0.1” NGS 0.22” 10h30 
2007 Apr 16-23 
2009 Apr 18 
2010 Jan 9 & 13 
2010 Feb 10 

Genzel et al. 2008; 
Cresci et al. 2009; 
Förster Schreiber et 
al. 2009; Mancini 
et al. in prep.; Peng 
et al. in prep. 

 
ZC406690 
(z=2.196) 

K 0.05”x0.1” 
 
 
 
K 0.125”x0.25” 

NGS 
 
 
 
Seeing limited 

0.22” 
 
 
 
0.5“ 

10h00  
2010 Apr  17  
2010 May 25 
2010 Nov 30                 
2010 Dec 7, 10, 29, 
30, & 31,               
2011 Jan 2 & 3 
 
1h00;  2009 Dec 30   
 

Mancini et al. (in 
prep);  Peng et al. 
(in prep.) 

 



Table 2. Derived galaxy properties 
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Source  BX599 
all 

BX482 
clump A 

D3a15504 
clumps A-F 

ZC782941 
clump A 

ZC406690 
clump A 

ZC406690 
clump B 

ZC406690 
clump C 

z 1 2.33 2.26 2.38 2.18 2.2 2.2 2.2 
DL (Gpc) 2 19.1 18.3 19.6 17.6 17.7 17.7 17.7 

kpc/” 3 8.33 8.38 8.3 8.42 8.41 8.41 8.41 
Fobs(Hα) 
1e-16 

erg/s/cm2 

4 3.3 0.35 0.04 0.2 1.4 0.57 0.4 

A(Hα)1 5 0.73 1.1 1.8 2.1 1.1 1.1 1.1 
L(Hα)0 
erg/s2 

6 2.8e43 3.8e42 9.4e41 5.2e42 1.4e43 5.7e42 4.0e42 

SFR M /yr3 


7 66 12 3.3 17 40 11 14 
Mmol-gas M

3 8 3.3e10 7.8e9 3.0e9 8.7e9 1.6e10 7.8e9 9.6e09 
Σmol-gas 

M

pc-2 3 

9 4.4e3 2.1e3 6.9e2 4e3 8.4e3 1.4e3 1.8e3 

RHWHM-intr
3 

kpc 
10 1.5 1 1 0.8 0.8 1.2 1.2 

Σstar-form 
M


/yr/kpc2 

11 4.6 2.7 0.72 5.7 13.6 1.6 2.2 

fbroad 12 0.5(0.13) 0.32(0.08) 0.26(0.15) 0.31(0.1) 0.4(0.1) 0.6(0.1) 0.25 
[SII] 

6718/6733 
13 - 0.7(0.2) 0.9(0.3) 1.1(0.35) 0.75(0.07) 1.09(0.1) - 

σclump km/s4 14 76(20) 62(3.4) 53(7) 95(7) 81(4) 88(4) 78(3) 
n(e)clump

5
 

cm-3 
15 - 2000(+, 

-1000) 
900(+2500, 

-700) 
400(+1100, 

-350) 
1500(+900, 

-400) 
420(+230,   

-140) 
- 

γred
6 16 1 1.5 1.5 2 2 2 2 

L(Hα)broad,0 
erg/s 

17 1.4e43 1.8e42 3.7e41 3.2e42 1.1e43 6.9e42 2.0e42 

Δvmax km/s 18 1000 350 ~400 420 440 810 - 
Mbroad M  


19 4.5e8 6e7 1.2e7 1.1e8 3.6e8 2.2e8 6.5e7 

dMout/dt 
(case 1)7 

M

/yr 

20 300 21 6 54 200 150 22 

dMout/dt 
(case 2)7 

M

/yr 

21 68 5 1.4 13 46 34 5 

dMout/dt 
(case 3)7 

M

/yr 

22 94 6.5 2.2 17.5 62 49 ≤7 

dMout 1/2/dt / 
SFR 8 

23 2.8 1.0 1.1 2.0 3.1 8.4 0.9 

texpulsion
9 

Myr 
24 360 1.2e3 1.6e3 520 265 170 <1.5e3 

t* Myr10 25 - 30-100 >1e3  80-800 100-3e4 80-800 
tZ(closed)10 

Myr 
26 360 360 930 350 150 560 400 

tZ(leaky)10 
Myr 

27 920 480 1600 650 260 2e4 510 

texpansion 
10 

Myr 
28 120 310 360 140 86 120 - 

tdiss/torbit 29 10 12 14 7 1.7 1.1 10 
M*,final/Mgas,0 

11 
30 0.27 0.49 0.48 0.34 0.25 0.11 0.52 

Δv/(sini 2 
Rclump) 

12 

km/s/kpc 

31 - 19(-10) 30(±12) 42(10) 20(-30) 60(+30) 30(+15) 

4.4 Mdyn-

rot
13 M  

32 - 4.3e8 1.1e9 1.1e9 2.2e8 2.1e9 2.1e9 

Mmol-gas/ 4.4 
Mdyn-rot  

33 - 18 3 8 75 4 5 

Mdyn-press 
11 

M

 

34 - 2.1e9 1.5e9 3.9e9 2.8e9 5.2e9 3.9e9 

Mmol-gas/ 
(Mdyn-rot + 
Mdyn-press) 

35 - 3.6 1.7 2.1 5.7 1.4 2.2 

Frad= L/c 
dynes 

36 8.5e34 1.6e34 4.2e33 2.2e34 5.1e34 1.4e34 1.8e34 

(Δvmax 
dMout 1/2/dt)/ 

Frad 

37 14 2 3 4 7 34 2 



Footnotes for Table 2 
1A(Hα)=7.4 E(B-V), with E(B-V)stars=0.44 E(B-V)gas (Calzetti 2001) 
2 extinction corrected 
3 SFR (M


/yr) =L(Hα)0/(2.1e41 erg/s), Mmol-gas(M

)=1.2e9 SFR(M


/yr) 0.75
 R(kpc)0.54

 

(equation 2, Kennicutt et al. 2007). L(Hα)0 is extinction corrected. Radii here and 
elsewhere in the table (e.g. row 10) are ‘intrinsic’ radii, with the instrumental 
resolution removed in squares  

4 intrinsic local velocity dispersion, after removal of beam smeared rotation and 
instrumental resolution 

5 from [SII] 6718/6733 ratio (Osterbrock 1989) 
6 correction for intrinsic differential extinction 
6 Δvmax=<vbroad> - 2 σbroad 
7 estimates of outflow rates (Appendix B) for two models of photodissociation/case B 

recombination and for collisional excitation 
8 uses the average of the estimated of the two photodissociation/case B models in 

rows 20 and 21 
9 time scale for expulsion of gas by outflows: texpulsion= 2 Mmol-gas/ (dMout 1/2/dt). The 

lifetime of a clump is shorter, given that in addition to gas outflows there is also 
star formation 

10 time estimates from stellar age dating (4.2.2), chemical enrichment (4.2.3, 
Appendix C) and expansion (4.2.4) 

11 ratio of final (stellar) mass at the time when all the gas is expelled by winds, 
relative to the initial gas mass, M*,final/Mgas, t=0=1/(1+[(dMout/dt)/SFR]) 

12 maximum observed velocity gradient across clump in ‘raw’ velocity maps (in 
parentheses ‘residual’ maps); positive sign is prograde and negative sign retrograde 
with galaxy rotation 

13 Mdyn-rot(M ) =b 2.31e5 (RHWHM(kpc))3 (Δv (km/s)/(2 sini RHWHM(kpc)))2 
14 Mdyn-press(M

) =b 5.63e5 (σclump(km/s))2 RHWHM(kpc) 
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Table 3. Abundance measurements 
 
 

SOURCE [NII]/Ha Δ(NII/Ha) μ=12 + log (O/H)(1) Δμ 

     

1 2 3 4 5 

     
BX599 all 0.19 0.08 8.49 0.18 

BX482 clump A 0.14 0.017 8.41 0.05 

BX482 clumps B+C 0.11 0.024 8.35 0.09 

BX482 nucleus 0.22 0.027 8.53 0.05 

D3a15504 clumps A-F 0.31 0.02 8.61 0.03 

D3a15504 interclump 0.33 0.02 8.63 0.03 

D3a15504 nucleus 0.43 0.04 [8.69](2) 0.04 

ZC782941 clumpA 0.18 0.026 8.48 0.06 

ZC782941 clumps B-E 0.28 0.021 8.58 0.03 

ZC782941 interclump 0.205 0.021 8.51 0.04 

ZC406690 all 0.097 0.017 8.32 0.08 

ZC406690 clumpA 0.073 0.015 8.25 0.09 

ZC406690 clumpB 0.22 0.017 8.53 0.03 

ZC406690 clumpC 0.14 0.019 8.41 0.06 
     
(1) μ=8.90+0.57 log([NII]/Hα) (Pettini & Pagel 2004), with μ


=8.66 (Asplund et al. 2004)   

(2) suspect because of possible influence of central AGN (Genzel et al. 2006)    
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