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ABSTRACT

Aims. Three dimensional explicit hydrodynamic codes based oersgdi polar coordinates using a single spherical polat sfifer
from a severe restriction of the time step size due to theergence of grid lines near the poles of the coordinate sydtéone
importantly, numerical artifacts are encountered at tiarsgtry axis of the grid where boundary conditions have tofggosed that
flaw the flow near the axis. The first problem can be eased argkttand one avoided by applying an overlapping grid tecteiqu
Methods. A type of overlapping grid in spherical coordinates is agdptThis so called “Yin-Yang” grid is a two-patch overset
grid proposed by Kageyama and Sato for geophysical sinoalatits two grid patches contain only the low-latitude oegi of the
usual spherical polar grid and are combined together in @lsimanner. This property of the Yin-Yang grid greatly siifigs its
implementation into a 3D code already employing sphericédpcoordinates. It further allows for a much larger timepsin 3D
simulations using high angular resolutios 1°) than that required in 3D simulations using a regular sgiaégdrid with the same
angular resolution.

Results. The Yin-Yang grid is successfully implemented into a 3D i@rof the explicit Eulerian grid-based code PROMETHEUS
including self-gravity. The modified code successfully qgabsseveral standard hydrodynamic tests producing reshblth are in
very good agreement with analytic solutions. Moreover slations obtained with the Yin-Yang grid exhibit no peanlbehaviour
at the boundary between the two grid patches. The code habedn successfully used to model astrophysically relesiturdtions,
namely equilibrium polytropes, a Taylor-Sedov explosiand Rayleigh-Taylor instabilities. According to our rasuthe usage of
the Yin-Yang grid greatly enhances the suitability afitcency of 3D explicit Eulerian codes based on sphericalmpmbardinates
for astrophysical flows.

Key words. Methods: numerical — Hydrodynamics — Gravitation — Supesirogeneral

1. Introduction gularity that almost unavoidably will leave its mark on thenfl
Three dimensional hydrodynamic simulations employin sinear or across the axis.
y y ployinga There have been attempts to construct a new type of grid

gle spherical polar grid are C(_)mputationally expensive bg, ich is able to ease the pole problem. However, it is not pos-
cause of the convergence of g_nd_llnes_ towards the north 6_‘W|§|e to construct a single grid patch that can <':over the en-
south pole. The converging grid lines imply a severe restn[f ; ;

e surface of a sphere, is orthogonal, and at the same time

tion of the time step size for any hydrodynamic code us”éﬁ)es not contain any coordinate singularity except at the or
explicit time discretization due to the CFL condition. Thi in. Therefore multi)-/ atch arid andgoverlg in ?or oet)ys
so-called “pole problem” bothers astrophysicists whenusim¥"™: ! P g bping

lating self-gravitating flow in three dimensions (e.g., vecr grid approaches are employed. They are widely used in tie fiel
tion in stars, or stellar explosions) where the spher’icairco of computational fluid dynamlcs_where compl_ex grid struesur
dinate system is often preferable. In particular, simafei of are commaon. FO”'OYYS POSSES3Ing an qpproxmatgglobal-spher
corecollapse supernoiae ae a poblem wih vinch astwp21 SYTMEL: e cubed sphere orl (Roneh clal 19°6)
cists have been struggling. While observations show clear bhysical problems (Koldoba etlal. 2002; Romanova et al. [2003

idence of asymmetric (3D) complex structures in superno | : A . ;
ejecta, numerical simulations, in most cases, are carngd g‘i‘nk et al[2008] Fragile et #l. 2009, e.g.). It is an oversdl g

only in two spatial dimensions assuming axisymmetry (elgongstlng of six identical patches covering a solid andléno

Blondin & Mezzacappa 2006; Scheck et al. 2006; Ohnishilet uF'e':g?:g\r/]vsi.tEgg n\gtn l-)zzr:\gusgertlddir:]zssttrze Lat;?éaﬁ’g)pe"ré%’t}gﬂts
2007). Three dimensional core-collapse supernova siionkt P pny PP )

are rare (e.gl., Janka etlal. 2005; Mezzacappa et ali 200écksch The Yin-ang grid was introduced_ by Kageyama&f?ato
2006; Iwakami et &l. 2008). In addition to the severe rettmc (2004). 1t consists of two overlapping grid patches nameid™Y

of the time step size, boundary conditions that have to be ignd “Yang” grid. In comparison with other types of oversedgr
posed at the symmetry axise [0, ] flaw the simulations near in spherical geometry, the Yin-Yang grid geometry is simple

the axis by causing undesired numerical artifacts in 2Dyamis ashbof[h tlhe IYin a_rgld_ltﬂe Yangfgrid c_onsisft of adparte;f a usual
metric simulations, as e.g., jet-like flow features (Kifdisiet al. SPNerical polargrid. The transformation of coordinates egc-

2003). In 3D simulations, the axis represents a coordiriate stor components betW(_aen the two patches is _straightforv\md a
symmetric, thus allowing for an easy and straightforwarglen

* present address: Max-Planck-Institut fur Plasmaphysik, Boltz-mentation of the grid into a 3D code already employing spher-
mannstrale 2, D-85748 Garching ical polar coordinates. The Yin-Yang grid is successfulgd



http://arxiv.org/abs/1003.1633v1

2 Annop Wongwathanarat et al.: An axis-free overset grigptmesical polar coordinates for simulating 3D self-gratiitg flows

on massively parallel supercomputers in the field of geophys Grid
cal science for simulations of mantle convection and the- geo . _yandg
dynamo. In these applications the thermal convection émjuat Yin—

and the magnetohydrodynamic (MHD) equations are solvedon 1.0
the Yin-Yang grid using a second-order accurate finifeedénce

method. Here, we also adopt the Yin-Yang grid, and use itder a
trophysically relevant (finite-volume) hydrodynamic silations 0.5+
for the first time.

The paper is structured as follows. In section 2, we describe
the basics of the Yin-Yang grid configuration including trees- 0.0t
formations of coordinates and vectors between the Yin amgjYa ™~
grid patches. In section 3, we provide the details of the @npl
mentation of the Yin-Yang grid into the PROMETHEUS hydro- _ 0.5
dynamic code, and also discuss the resulting necessaryiozedi
tions of its 3D gravity solver that is based on spherical larm
ics. In section 4, we present the results of the test caionigt
we have performed including a test with self-gravity. Intgst
5, we discuss the conservation problem arising when applyin
the Yin-Yang grid. Then we report on thefieiency and per-
formance gain obtained with the Yin-Yang grid compared to a
spherical polar grid in section 6. Finally, we give the caisgbns
from our study in section 7.

Fig. 1. An axis-free Yin-Yang grid configuration plotted on a
spherical surface. Both the Yin (red) and Yang (blue) griel ar
2. Yin-Yang Grid the low latitude part of the normal spherical polar grid anel a
identical in geometry. The Yang grid is obtained from the Yin

The Yin-Yang grid configuration is shown in Fid. 1. Both theYi grid by two rotations, and vice versa.

and the Yang grid are simply a part of a usual spherical paidr g
and are identical in geometry. The angular domain of eaah gri

patch is given by where
-10 0]
Es 3 | 3 3 M= 0 01]. (5)
9—|:Z—6,Z+(S ﬂ¢—[—z—5,7+6] (1) 010

. i ) This Yin-Yang coordinate transformation can also be carsid
whered and¢ are the colatitude and azimuth, respectively. Notgs o subsequent rotations. Accordingly, the transfdonat
that it is necessary to a_dd at least one extréidoigrid Zone 10 matrix M can be written af,(90°) R,(180), whereR, andR,
both angular directions in order to ensure an approprig@€@y 4y the transformation matrices of rotations by 8und thex-
of the grids. The angular widifiof this bufer zone depends on 4yis and by 18Daround the-axis in counterclockwise direction,
the grid resolutioni.e, 6 = A6 = Ag, where for simplicity we gspectively. For the inverse transformation matix® = M
assumed equal angular spacingirandg¢-direction. The angu- po|ds.
lar domain is hereby extended by i both angular directions.  The relation between the spherical coordinates of the Yth an
The Yin and Yang grid are patched together in a specific mapang grid patches can be derived directly from the transéerm
ner forming a spherical shell with a small overlapping regioon matrix M. Because the Yin-Yang coordinate transformation
covering approximately 6% of a sphere’s surface. Stackmg thyolves only rotations, it implies that the radial cooralie is

Yin-Yang shells in radial direction results in a 3D grid th8t jgentical on the Yin and the Yang grid. The angular coordisat
identical to the usual spherical polar grid in radial dir@et It 3nsform as

is obvious that, unlike in the case of the spherical polat,ghie

problematic high latitude sections of the sphere are adpigied ¢© = arccos(sine(”) sinq)(”)), (6)
the angular zoning is almost equidistant. cosg™
The Cartesian coordinates #© = arctag —————|. @)
—sindM cosp™

(n) (M) ANy — inpM (n) inAM cin 4M (n) . .
(<. ¥, 27) = (r sing® cosp™. rsing® sing®., rcost®™)  \ote that the inverse transformation has the same forrfilas (6)

(2)  and (1) but exchangi i i

. L . ging the (grid) superscripts.

correspon(_:hng to th(_a Yin grid, denoted by a superscriptgnd Vector components in spherical coordinates transform ac-
the Cartesian coordinates

cording to
(x@,y@, 29) = (r sing® cosp®, r sing® sing@, r coss®) v v
o | ) Y 1= P Y% ®)
corresponding to the Yang grid, denoted by a supersa@jpa(e V¢e) Vgn)
related to each other through the transformation
where
X(e) X(n) 1 0 0
yO [ = M| y® (4) P=|0 —sing®sing® —cos¢sing® (9)
Z° Z" 0 cosp™/sing® —sing® sing™



Annop Wongwathanarat et al.: An axis-free overset grid tmesigal polar coordinates for simulating 3D self-gravitgtflows 3

is the vector transformation matrix. When switching (grsdiy
perscripts €) and ) in matrix P, the inverse vector transfor-
mation matrix is obtained. For a detailed derivation of Hams-
formation matrixP, we refer to section 3 of Kageyama & Sato
(2004). Note that the vector transformation matfiis singular
at sind® = 0, but this singular point is rectifiable. In practice,
one can always decompose vectors into their Cartesian compo
nents and perform the corresponding transformation.

3. Implementation /

We have implemented the Yin-Yang grid into our explicit fnit

volume Eulerian hydrodynamics code, PROMETHEUS, which < X /
integrates the equations of multidimensional hydrodyrams- £ig 2. A Mercator projection of an overlap region of the Yin-
ing the piecewise parabolic method (PPM; Collela &Wood\Na%ng grid. In case of bi-linear interpolation, four neighiog
1984) and dimensional splitting. The code also includes\@|yes of the underlying grid (red) will be used to determiie
Poisson solver based on spherical harmonics to handle sgifne-centered value of a ghost zone in the grid on top (blue).

gravity. The interpolation cofficients are determined by the relative dis-
tances, denoted by black lines, between the interpolatimt p
3.1. Hydrodynamics solver (diamond) and the four neighboring points (crosses).

Firstly, the Yin-Yang grid needs to be constructed. Sincthbo
the Yin and the. Yang grld are part of a sph_encal polar grid agy ihe radial part of the Yin-Yang grid is identical to thateof
analogous spatial discretization in angular directiontwansed. gpparical polar grid. It is straightforward to determine torre-
For example, the and¢ coordinates of the zone center of anyyqging interpolation cdicients. The mapping of vector quan-
angular zone j(K) of a Yin-Yang grid, havingNy zones iné- ities petween the Yin and Yang grid patches requires ar-addi
direction andN, zones inp-direction, are given by tional step. After interpolating the vector componentytimist

be transformed according to the transformation given in(@q.

0j = Omin + jAO - % for 1<j<Ng, (10) from the Yin to the Yang angular coordinate system, and vice
versa.
k= Puin + kAP — Ad for 1<k<N,, (11) We tested two interpolation procedures. In the first one all
2 primitive state variables (density, velocity, energy gsuere, tem-
where perature, abundances) are interpolated ignoring the tiegul
small thermodynamic inconsistencies. In the second proeed
AG = Bmax — Omin (12) we only interpolate the conserved quantities (density, grom
Ne tum, total energy, and abundances), and compute the welocit
Pmax — Pmin and the remaining thermodynamic state variables congligten
Ap = N, (13) viathe equation of state. Both procedures produce veryaimi
’ results which dier at the level of the discretization errors. As
are the respective angular grid spacings. the second procedure is more consistent we use it as the stan-
The range of values for the colatitudend the azimuth angle dard one in our code.
¢ are as given ir{{1), and for simplicity we s& = A¢. In radial An example of overlapping situations which are encountered

direction no modification is required. The geometric propef when using a Yin-Yang grid is shown in Fig. 2. For simplicity,
the Yin-Yang grid allows us to make use of the coordinatey@rrawe use bi-linear interpolation in order to prevent unwardsd
ri, 6;, and ¢ twice by enforcing the same grid resolution focillation. Because the grid patches are fixed in both anglitar
both grid patches. This approach avoids doubling the coatdi rections the interpolation céecients for each ghost zone need to
arrays. be calculated only once per simulation at the initializatsbep.
Only simple modifications are needed concerning the dadter initialization, the coéficient map is stored in an array for
and program structure. Arrays with three spatial indices, & later usage. Moreover, the symmetry property of the Yingran
j» andk, need an extra grid index, sdy,For example, the ar- transformation allows one to make use of the interpolatimefc
ray for the density field will be(i, j, k, 1) instead of(i, j, k). As ficients twice for both grids.
a consequence any triple loop running over indiges andk Because the Yin-Yang grid is an overlapping grid integral
in the program becomes a fourfold loop overj, k, andl in- quantities such as the total mass or total energy on the compu
stead. Otherwise, the Yin-Yang grid allows one to explothwi tational domain cannot be obtained by just summing locahgua
out any further modification any already implemented finitdities from every grid cells. Doing so will result in counghe
volume scheme in spherical coordinates to solve the equati@ontributions in the overlapping region twice. To circumignis
of hydrodynamics. problem, weights are given to each grid zone during the summa
Different from the spherical polar grid, the Yin-Yang gridion. Suppose a grid zone has an overlapping volume fraation
requires no boundary conditions in angular directions.hEathe cell will receive a weightv = 1.0 — 0.5«. Zones in the non-
grid patch communicates with its neighboring patch using imverlapping region receive the weight 001i.e., the entire zone
formation from ghost zones that is obtained by interpotati® contributes to the integral while, on the other hand, zonatsare
data between internal grid zones of the neighboring gridipat fully contained within the overlapping region have a weig!t
Interpolation is only required in the two angular coord@sat The volume fractionr does not depend on the radial coordinate
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and can be thought of as an area fraction since the grid patchational acceleration in radial direction is then
are not d@fset in radial direction. Prior to the area integration,

one needs to determine for each zone interface of the uridgrly —a(r, 9, ¢) =

grid the points where the interface is intersected by theandaty or |
lines of the other grid, e.g., points on the Yin grid inteteedy 2 4n d({ 1

the boundary lines of the Yang grid. The intersection pagats ~ —C Z 1+ 1 Z Y'™(e, ‘13)& (rﬁclm(r) + rIDIm(r)) - (17)
be determined using the Yin-Yang coordinate transformatio 1=0 m=—

(©) and [[T), respectively. The integration in the overlagmrea Writing the radial derivative in EG{17) as

is then carried out using the trapezoidal method. This hoce

is also described in Peng et al. (2006). Once the area oreolurd ( 1 lIm
fractiona is calculated, the weights for each cell are obtainegy (rﬁc (N+rD (r)) =
easily. Note that these weights need to be calculated ortheat d |
initialization step, and are stored for later usage in dftment + r'=D'™r)+ --r'D'™r), (18)
mapw(j, k), wherej andk are the indices referring to tideandg dr r

coordinates, respectively. The ¢heient map can be applied toand noticing that the first and third term on the right hane sid

both grids without any modification. Using the above desib of this expression cancel each other because of the idemtiti
approach, the volume or surface area of the grids can be-calcu

lated with an accuracy up to machine precision.

d
r+Ldr

1

mclm(r)

CLORS S

%( f f(x)dx = f(X) (19)
0

3.2. Gravity solver

The 3D Newtonian gravitational potential is computed frorand .

Poisson’s equation in its integral form using an expansio i d

spherical harmonics as describef in Miiller & SteinimetAE)9 ax f f(x)dx" = —f(x) (20)
Because the algorithm of these authors is based on a (single) X

spherical polar grid the density on the Yin-Yang sphere bas
be interpolated onto an auxiliary spherical polar grid. Triter-
polation used is first-order accurate, and due to the siibplic P © o
of the Yin-Yang grid configuration has to be performed only in—a(r, 6, ¢) = — GZ Z Y™, ¢)
the two angular dimensions. Concerning the resolution ef tir ) 2+1 el
auxiliary grid, it is natural to employ the same grid resmint l+1 1 |
as that used for the Yin-Yang grid in all three spatial dimen- (—— F=—=C"(r) + - - r'D'm(r)) . (21
sions. The orientation of the auxiliary grid can be choserlir rr r

in principle. However, it is convenient to align it with oné 0 The corresponding expressions for the gravitational aceel
the two grid patches (the Yin-grid in our case). Once the degyion in the two angular directions are easy to obtain sihee t
sity is mt_erpolated onto_the auxiliary spherical grid wenmute spherical harmonicg™ are the only angular-dependent terms in
the gravitational potential, as suggested by Miller & Stegtz Eq. (13). Therefore, we only need to consider the partiavder
(1995), at zone interfaces instead of at zone centers onthethjes of the spherical harmonics with respect to @rend¢ co-

Yin and Yang grid. The gravitational acceleration at zone-Ceqginates. As the spherical harmonics are given by
ters can then be obtained by centrafaliencing the potential.

Note that the interpolation céiecients for the density need to be Y™, ¢) = N™P'™(cosg)e™ , (22)
calculated only once per simulation, because both theiatil

grid and the Yin-Yang grid are fixed in angular directionsath whereN'™ is the normalization constant afi" the associated
dition, all angular weights, Legendre polynomials, andrtiie  Legendre polynomial, one finds

tegrals required for the calculation of the gravitationatigmtial

the gravitational acceleration in radial direction beceme

are stlored after th_e initializ_ation step for later usage. ﬁYlm(a ) = Nlmeimabiplm(cosg) (23)
It is also possible to directly calculate the gravitatioael 00 do
celeration at zone centers. The gravitational potentigivisn by and
(see Egs. (5), (6) and (7)lin.Muller & Steinmetz (1995)) 9 Y'm(g Vi Y'm(g | (24)
— ,$) =1m , D).

| o¢
4r Im 1 m IHim
2l +1 Z Y7(0.9) (rl+1c (r) + D7) The derivatives of the associated Legendre polynomialease
= (14) ily obtained using the recurrence formula

O(r,0,¢) = -G |
1=0

with d
r (- 1)d—X PM(x) = IxP"(x) — (I + m)P";(X). (25)
Clm — d Q/Ylm* 0.4 fd 71142 Y , 15
) f (.0 | drre(r. 6.0 (15) Thus, one finds for the gravitational acceleration in theudarg
o 0 directions
Dlm(r) — fdQ'Y'm*(G',q&’)fdr'r’l_'p(r’,G',qb’), (16) 19 ~ G o A | - d .
i r roo 09 = ; A+l 2N " cos)

whereY'™ andY'™ are the spherical harmonics and their com- (i

| IRl
plex conjugates; is the density, and Q = sing do d¢. The grav- C™(r) +r'DM(r)| (26)

r|+l
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and 1.0f

w |
1 9 G 4n "

) = Y'm

r sing d¢ (r.6.¢) rsing ; 21+1 Z imY™(0. ¢)

m=—|

(rl—{lc'm(r) + r'D'm(r)) . (27)

p (g/cm?)

Obviously, the expressions for three components of theitgrav
tional acceleration (see Eds.121).1(26), dnd (27)) arelaino
that for the gravitational potential itself (see Eql(14jence,
besides computing derivatives of Legendre polynomialsegti
tended Poisson solver can provide without much additiofial e
fort both the gravitational potential and the correspogdaiocel-
eration.

Usage of the analytic expressions for the gravitational ac- 0.0 ,
celeration avoids the errors arising from the numerictiédén- 0.0 mmmmmms
tiation of the gravitational potential. However, tests\shibat I ’
the results obtained using either the gravitational paieodm- {
puted with the “standard” Poisson solver and subsequenénum -
ical differentiation or directly the gravitational accelerationpr & -0.5 I
vided by the extended Poisson solvefteli only very slightly A /
(see next section). Thus, we decided to stick to the “statidar > i i

p (erg/cm?)

Poisson solver in our simulations and compute the grawitati —10L ImImTInITE
acceleration by numericalfiiérentiation, as it requires no mod- 2'9
ification of our code. T
~~
o
4. Test Suites L 2.3
o

4.1. Sod Shock Tube

The first problem of our test suite is the planar Sod shock tube 1.7k . S . .
problem, a classical hydrodynamic test problem (Sod [19/%8). 10 05 0.0 0.5 10
simulated this (1D Cartesian) flow problem using spherical ¢ : ’ ’ ’ )
ordinates and the Yin-Yang grid. The initial state consi$tsvo X (cm)
constant states given by

Fig. 3. One dimensional profiles of densjby pressurep, veloc-
10.1.0.00) if xP > 0.4 ity in x-directionvy, and specific internal energyare shown
(0, P, Vy) = {( 0,10,0.0) i o >oacm. (28) along thex-direction atZ” = 0.25 cm and/™ = 0cm (dashed-
(0.1250.1,0.0) if x¥ < 0.4cm dotted line in Figl#) for the shock tube simulation at evefy)
Open and filled symbols represent data points on the Yin and
wherep, p, andvy are the density, pressure and the velocity ifang grid, respectively. Solid lines give the distribusoralcu-
x-direction of the fluid, respectively. We assume the fluidiey |ated with an exact Riemann solver.
an ideal gas equation of state with an adiabatic ingdex 1.4.
The surface separating the two constant states is a plamagert
onal to thex-axis located ak™ = 0.4 cm, the (positivex-axis 0.25cm andy™ = 0cm (dashed-dotted line in FIg. 4) at dif-
corresponding to a radial ray with angular coordina®s= 7/2  ferent times. Our results agree very well with the solutidr o
and¢®™ = 0. Thus, this 1D planar Sod shock tube problem irtained with the exact Riemann solver. The grid resoluticsufs
vokes all three spherical velocity componentssy, andv, when ficiently high to give a sharp shock front and contact discon-
simulating the flow in spherical polar coordinates. Thi®wh tinuity while the rarefaction wave is smooth. The shock posi
us to test both the scalar and vector transformations asaselltion is correct at all time throughout the simulation. The re
the interpolation between the Yin and Yang grid patches. TBampled data yield an accuracy of approximately 6% on agerag
simulation was carried out on an equidistant Yin-Yang gfid dor shock positions. The shock wave and the contact disconti
400 ) x 92 (9) x 272 () x 2 zones (i.e., with an angular res-nuitP/ propagate smoothly across the Yin-Yang boundarytésta
olution of one degree; see Ed.(1)). In radial direction thme at x™ = 0.25 cm without any noticeablefect by the existence
putational domain ranges from= 0.05cm tor = 1.0cm. We of the boundary. To illustrate this behavior, Fijy. 4 showes
impose a zero-gradient boundary condition at both edgeseof bf constant density in the meridional plagé) = 0 at time
radial domain. t = 0.15s. The isocontours are nearly perfectly straight lines
The solution of the shock tube problem is well-known. Weerpendicular to the-axis that are urféected by the Yin-Yang
compare our results with the solution calculated using an eéxoundary (dashed line). The contour lines are slightly Inesair
act Riemann solver (Taro 1997). For comparison, data are tee outer radial edge of the computational domain due to the
sampled along the-direction with a spacings\x = 0.002cm. zero-gradient boundary condition we have imposed there.
Fig.[3 shows one dimensional profiles @f p, vy, ande (spe- In order to firmly demonstrate that the Yin-Yang bound-
cific internal energy), respectively, along tkelirection aZ” = ary does not cause numerical artifacts, we also computed thi
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Fi%.4. Snapshot of density contours in the meridional plane
¢ = 0 att = 0.15s for the shock tube test problem. Dashed
lines mark the Yin-Yang grid boundary, while the dotted airc
lar curves represent the inner and outer radial boundarkeof t
computational domain, respectively. The one dimensiona p
files shown in Fid. 1B are re-sampled along the dashed-datted |

atzZ” = 0.25cm.

0 2 4 6 8 10

shock tube problem with a standard spherical polar gridgusifig. 6. Distributions of density (top), pressure (middle) and ra-
the same radial and angular resolution as for the Yin-Yaid) gdial velocity (bottom) versus radius from the explosion cen
described above.e., 400 () x 180¢) x 360 (). We imposed re- ter (located atX™, y(™, Z") = (7.0,0.0, 2.5) x 10'°cm for the
flecting boundary conditions ié+direction and periodic ones in Taylor-Sedov explosion problem plotted at every*) Open
¢-direction. Figlh shows a comparison of the results obthingymbols are data points from the Yin grid, while filled synsol
with both simulations. The two panels give the tangentitdee represent sampled data from the Yang grid. The solid limes gi
ity, defined a /(V)(/n))z + (\én))z, in the meridional plang® = 0 the corresponding analytic solution. The data are re-sadnpl

at timet = 0.15 s for the Yin-Yang grid (left), and the standarcillong the dashed-dotted line shown in Eig. 7.

spherical polar grid (right), respectively. This velocitgmpo-

nent should remain exactly zero because of the chosenlinififosion in an interstellar medium. Because the shock wave re
conditions. Thus, it is a sensitive indicator whether the-Yang  sulting from the explosion is spherically symmetric witlspect
boundary works properly, which obviously is indeed the casg the center of the explosion, we assume the explosionicente
as the left panel of Fig]5 shows no hint of the location of th@je |ocated at the poink{®, y™, ZM) = (7.0,0.0,2.5)x 10*9cm.
boundary. The modulus of the tangential velocity does noetheence, this second test problem also involves a non-zero flux
exceed a value of.05 cnys or approximately 5% of the shockof mass, momentum, and energy across the Yin-Yang bound-

velocity (in x-direction) except near the outer radial edge of thery, and as the previous shock tube test, it probes whether th
grids, where the boundary condition causes larger numeii€a poundary causes any numerical artifacts.

rors. Note that nonzero tangential velocities are encoadten The initial shock radius isy = 2.9625x 10'°cm orrespond-
both the Yin-Yang grid and the standard spherical polar @rid ing to a timetey, = 0.34x 10''s past the onset of the explosion,
the same grid regions at the same level. We thus conclude tha} ine explosion energy was seip= 10° erg. The ambient
they are the re§ult of numerical errors that unavqidablwoccmedium into which the shock wave is propagating is at rest. It
when propagating a planar shock across a spherical pot&r gfjas a constant density;, = 1025g/cn®, and a constant pressure
be it a standard one or a Yin-Yang grid. Pp = 1.4 x 10 B ergcn?. The fluid is described by an ideal gas
equation of state with an adiabatic indgx 5/3, resulting in a
density jump across the shock front of{ 1)/(y — 1) = 4. We
use a grid resolution of 40092x 272x 2 zones, a computational
As a second test for our code we consider the Taylor-Seddemain covering the radial intervak [0.5,15] x 10°cm, and
explosion problem. We set up the initial state for the prolemploy a zero-gradient boundary condition at both the ianer
lem by mapping a spherically symmetric analytic solutiothe outer radial boundary.

(Landau & Lifshitz | 1959) onto the computational grid. We  Our results are shown together with the analytic solution in
choose the parameters of the problem to mimic a supernova Eig.[d. We have re-sampled our data and calculated radial pro

4.2. Taylor-Sedov Explosion
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Fig. 5. Color maps of the tangential velocity defined

Cartesian) shock tube problem. The snapshots are compitegithe Yin-Yang grid (left) and a standard spherical pgtat (right)

at atimet = 0.15s. On the left panel, red and blue lines mark the boundefid®e Yin and the Yang grid patches, respectively.
On the right panel, the two red circles show the inner andrdagandary in the radial direction of the standard sphepocédr grid.
The labels at the color bars give the tangential velocityririsuof crnys. The color range is limited to.@5 cnys to emphasize the
smallness of the tangential velocity far from the outerabdiid boundary.
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obtained from our simulation of a Taylor-Sedov explosioneT
snapshot is taken at a simulation tiigg, = 2.0 x 10''s which
corresponds to an explosion timg, ~ 2.34x10s. The dashe
lines mark the Yin-Yang boundary, while the two dotted @
represent the inner and outer radial boundary of the compu
tional domain, respectively. The data presented in[FigeGer

sampled along the dashed-dotted line .
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Q&v@)z + (V)2 in the meridional plane™ = 0 resulting from the (1D

files of the density, pressurep, and radial velocity; along

a line in zdirection through the explosion center using a uni-
form radial spacing\r = 10'8cm. As one can see the numerical
results agree very well with the analytic solution. All flowan-
tities are smooth across the Yin-Yang boundasy, the shock
wave passes that boundary without any noticeable numerical
tifact. Due to the finite resolution the density jump acrdss t
shock front is slightly smaller in the simulation than thestic
value of four. However, the shock front is sharp throughbat t
whole simulation, and it propagates with the correct sp€eu
distinct feature of the Taylor-Sedov solution is its spbarsym-
metry. To illustrate that the Yin-Yang grid does not destitaig
symmetry of the solution, we show a set of lines of constant de
sity in the meridional plane™ = 0 in Fig[7. We also marked
the line (dashed-dotted) along which the data given in Elg. 6
are re-sampled. The contour lines, all of which are almost pe
fectly circular, are drawn at a simulation tirhg, = 2.0 x 10*'s
(i.e.,time step number 1276) corresponding to an explosion time
texp = 2.34 X 10Ms.

We further studied how the solutionftérs in the region
where the Yin and Yang grid overlap. To this end we compare
the total mass within the overlap region computed on the Yin
and the Yang grid, respectively. Hig. 8 shows the evolutibn o
the relative mass fference,i.e,the mass within the overlap

region computed on the Yin gridv'? minus the mass com-

g Puted on the Yang gridV2"P, divided by the sum of these two
| masses. We calculated this quantity for threffedent (angu-
lar) grids with 400x 32 x 92 x 2 zones e, 3° angular reso-
lution), 400x 92x 272x 2 zonesi(e., 1° angular resolution), and
400x182x542x2 (i.e., 0.5° angular resolution), respectively. For
all three grid resolutions the relative masffelience has a value
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Fig. 8. Evolution of the mass within the overlap region for thé&ig. 10. Position of the heads of the RTI bubbles versus time.
Taylor-Sedov test case computed on the Yin ghif"' minus Red symbols (circles, triangles, and squares) show datatfre
the mass computed on the Yang grﬁﬂﬁ"'p, divided by the sum Yin gnd_, while blue symbols (diamonds) represent data @ th
of these two masses. The dashed, dotted and solid lineshgive Yang 9rid.

solutions computed on a grid of 48B2x 92x 2 zones, i(e., 3°

angular resolution), 408 92 x 272x 2 zones (e, 1° angular The perturbation modd,(n) = (3, 2) yields a maximum radial
resolution), and 40& 182x 542x 2 zones ie,0.5° angular velocity in the directions

lution), ively.
resolution), respectively 0.6) = ((x— .0), (x— 7). (@.7/2). (@r—7/2)} . (32)

) ) o ) ~ wherea = arccos(V3/3). The remaining two velocity compo-
of about 10“. Although its evolution with time is dierent in nents of the perturbation mode are set equal to 0. The flues ar
case of the 3simulation (because the coarse angular grid caus@sscribed by an ideal gas equation of state with an adiainatic
large errors when mapping the analytic initial data ontoghie¢  dexy = 1.4. The simulation is carried out on a Yin-Yang grid
which determine the further evolution), Hig. 8 shows thatso  of 400x 92 x 272x 2 zones. To keep the fluid in hydrostatic
angular resolution better thaf the relative mass fference be- equilibrium, a zero-gradient boundary condition is usedfuth
haves similarly, its maximum value decreasing froh210*  the inner and outer boundary in radial direction. The inaeial
at 1° angular resolution to.% x 10~# at 0.5° angular resolution. boundary is located at= 0.1 cm.

A snapshot of the resulting density distribution obtainéithw
the Yin-Yang grid is displayed in Figl 9 at epotk 2.85s. The
left panel shows color coded contour lines in 3D, and thetrigh
We also simulated a single mode Rayleigh-Taylor instabilione a meridional cut ai™ = 0. The contour lines are drawn us-
(RTI) on a Yin-Yang sphere. The initial configuration cotsisf  ing different color tables for the Yin and Yang grid, respectively.
a spherical shell of a heavier fluid of density = 2 g/cm?® that  Four distinct bubbles of rising low density fluid (Yin: bluéang:
is supported against a constant gravitational fgl¢ 1cnys® bright gray) are clearly visible that reflect the initial pebation
pointing in negative radial direction by a spherical shédllao mode (,m) = (3, 2). High density fluid (Yin: yellovred; Yang:
lighter fluid of densityp, = 1gcm®. The boundary between dark grayblack) sinks down and settles at the inner part of the
the two fluid shells is initially located at a radius= 0.5cm. To sphere. One can also notice Kelvin-Helmholtz instabditike-
balance the gravitational force, the initial (radial) g% dis- veloping at the surface of the bubbles. This is particulalyi-

4.3. Rayleigh-Taylor Instability

tribution is set to ous in the meridional cut (right panel). One of the RTI bukble
is within the Yang grid, while the three others reside on tlve Y
P(r) = Po+don (1.0-1) if r>05cm (29) grid. It is obvious that the bubbles are distributed symioaliy
P(r=05)+go.(0.5-r) if r<0.5cm following the perturbation pattern regardless of the gradcp.

The 2D contour lines shown in the right panel of Eig. 9 empha-
whereP, = 1 ergcm®. A radial velocity varying in angular di- Size this fact. . i
rection as the spherical harmonk®(e, ¢) with | = 3andm=2  The RTI bubbles grow with nearly the same growth rate in
is used to perturb the initial configuration. The amplitude @Il four (perturbation) directions, as can also be seen fiogn
the velocity perturbation is.3% of the local sound speeg(r). [10 that displays the position of each bubble’s head versus. ti

Hence, the initial radial velocity is given by The four curves lie exactly on top of each other during thespha
of linear growth. There are slight discrepancies betweeffiahr
Vi(r, 6, ¢) = —0.025x cs(r) Y2(6, ¢). (30) curves in the non-linear regime, because the linear griolues

tion in angular direction is slightly non-equidistant (diaeits

The spherical harmonic€™(6, ) are connected with the associ! dependence). Two curves from the Yin grid coincide perjectl

ated Legendre polynomiaR" via the expression since they represent the two bubbles that lie symmetrieditywe
and below the equator in the Yin grid. The results confirm that

the Yin-Yang grid does not favor any angular direction on the
(I-m)! le(cosg)eim (31) sphere. Since our aim was only to demonstrate this important

Y" =
(0.4) (I +m)! fact, we do not further analyze the growth rate of the RTI.
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Fig. 9. Surfaces of constant density in 3D (left) and 2D (right; miemal cut aty(™ = 0) resulting from the simulation of the
Rayleigh-Taylor instability described in the texttat 2.85 s. Contour lines on the Yin grid are shown using the bluwecolors
while contour lines on the Yang grid are displayed using théevblack colors.

rolate spheroid sphere
component Poisson soI\F/)er exteE]ded Poisson solver Poisson solver egtended Poisson solver
f 4821x10°% 4.698x 1074 1.598x 102 1557x 10°7?
0 6.134x 1072 2.592x 1072 1.67x 1072 1.67x 1072
é 1.245x% 1072 2.435x 1072 1.655x% 1072 1.655x% 1072

Table 1.Mean errors in the gravitational acceleration.

4.4. Gravitational Potential of Homogeneous Spheroids monics ranging up td. = 25 for this convergence test. The

. . ) . grid resolutions used in the test are 4002 x 272x 2 zones,
We mvestlg.ate the accuracy of our gravity solver by. caliodn 400 x 47 x 137 x 2 zones, 200« 92 x 272 x 2 zones, and
the gravitational potential of homo_geneous spher0|_ds. W C 500x 47x 137x 2 zones, respectively. The maximum and mean
sider two homogeneous self-gravitating configurationsr@ p grqr of the gravitational potential are given as a functibi.
late spheroid with an axis ratio otl) and a sphere. The con-to; hoth considered configurations in the middle and right-pa
figurations have a constant density= 1g/cn, and are em- oiq of Fig[T1, respectively. Both errors show a convergémeee
bedded into a homogeneous background of much lower densjiy;jor with higher grid resolution, and tend to saturateaage
po = 1072°g/cm? in order to minimize the background's con+jyes of L. This behavior is similar to what is described in
tribution to the gravitational potential. The semi-majeisaof  (\1ijjjer & Steinmetz (1995). In addition, for lower grid rége
the spheroid aligns with the-axis, while its center is placed atyjo the accuracy saturates at a lower number of spherical ha
the origin of the Yin-Yang grid. To provide a morefidult test 5 ics compared to calculations with a higher grid resofuti
for our multipole based gravity solver, we shift the centeihe  riq i expected since higher order terms in the multipopeex

sphere & the origin of the computational grid by more than ongjon, are not well represented on grids of lower angular tesol
sphere radius. tio

The analytical form of the gravitational potential for both . . .
type of configurations are known. The solution for the p@lat. We also tested our extended Poisson solver discussed in sec-

spheroid can be found in chapter3Loj_QhandLas¢|{haLK196@ZPB:2' In Tablell we compare the mean errors in the com-

and the sphere’s potential can be easily calculated Highaws POnents of the gravitational acceleration for both the gimol

contour lines of the gravitational potential for both casethe SPheroid and the sphere test case computed with the nuierica

meridional planes®™ = 0. The potential is calculated on a grigdifférentiated gravitational potential given in Hq.l(14) witse

of 400x 92x 272x 2 zones with_ = 15, whereL is the number Obtained from the analytic expression given in Egs. (Z15),(2

of spherical harmonics taken into account (see sefionBt®) and [27), respectively. We used a grid of 40@2 x 272x 2

contour lines are smooth across the Yin-Yang boundary for bg?ones and. = 15 for this comparison.

the prolate spheroid and the sphere. For the prolate spheroid test case the “analytically” otséi
Concerning the convergence behavior of the solver, we caccelerations exhibit a smaller mean error, especiallyHen-

sider various grid resolutions and a number of spherical hand¢-component of the gravitational acceleration. This result
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Fig. 11. Contour lines of the gravitational potential (left colunfoj two homogeneous self-gravitating configurations: dgiso
spheroid (top row) with an axis ratio ofQ and a sphere (bottom row). The configurations are indidayethe dark-gray shaded
areas. Dashed lines show the Yin-Yang boundary, while ddites indicate the outer radial boundary of the computatigrid.
The middle and right columns give the maximum and mean efrttreonumerically calculated gravitational potential fafferent
grid resolutions as a function of the number of sphericahuarics used in our multipole gravity solver. The solid, ddttdashed,
and dashed-dotted lines in both columns correspond to aegalution of 400< 92 x 272x 2 zones , 40k 47 x 137x 2 zones,
200x 92x 272x 2 zones, and 20R 47 x 137x 2 zones, respectively.

from a strong decrease of the maximum error, which is largetionary equilibrium, respectively. In addition, the ratef poly-
regions where the angular components of the gravitatiotral arope also serves to test the proper working of the Yin-Yang
celeration approach zeroe., near the major and minor axes ofooundary treatment, as it involves a considerable andrsyte

the prolate spheroid. However, in these regions the aat@es flow of mass, momentum and energy flux across that boundary
in & and ¢-direction are orders of magnitude smaller than thdue to the polytrope’s rotation.

radial component. Thus, they contribute only a tiny fractio The polytropes have a polytropic index= 1, a polytropic

the total acceleration. In the sphere test case both var@nt constank = 1.455x 10°, and a central density @, = 7.905x

the extended Poisson solver produce similar mean errosedaj 04 g/cm?®. For our test runs we interpolated equilibrium poly-
on these results we conclude that the extended Poissorr,solifgpes calculated with the method|of Eriguchi & Milller (£98
which provides the gravitational acceleration using a@gx- onto a Yin-Yang sphere, and simulated their dynamic evafuti
pressions, works properly. Moreover, it gives a slightlyrenac-  (occurring as the interpolated configuration is not in petrfey-
curate gravitational acceleration, as it does not involvmer- drostatic equilibrium). The central region€¢ 1 km) of the poly-
ically differencing the gravitational potential. Nevertheless, f(w’ope is cut out and replaced by a corresponding point mass to
the reasons stated in section3.2, we prefer to use the Roisgmow for a larger time step.

solver of Milller & Steinmeiz (1995) in our simulations. We use an artificial atmosphere technique to handle those re-
gions of the computational grid that lie outside the (rotgti.e.,
non-spherical) polytrope. The density in the atmosphereis
equal to a valugym = 10%;, wherep. is the central density
Using our Yin-Yang grid based hydro-code we have also coofthe polytrope. Here, atmosphere denotes any grid zonsavho
sidered self-gravitating, non-rotating and rotating égrium density is less than the cuffodensity peut—oft = 107 Pmax-
polytropes. Both kinds of polytropes provide another téshe Furthermore, for all zones in the atmosphere the velocigiso
Poisson solver, and a test of how well our hydrodynamics codero in order to keep the atmosphere quiet. This procedage is
can keep a self-gravitating configuration in hydrostatid ata- plied at the end of every time step throughout the simulation

4.5. Self-gravitating Polytropes
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(nearly) equilibrium polytrope as a function of time. 7 05 F ]
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zero-gradient boundary condition is imposed at the outdiata 'é ’ -
boundary, and a reflecting boundary condition at the inner on— _osk
The polytrope’s evolution is followed for 10 ms correspargli > r
to approximately 10 dynamic time scales in order to check how C
well the initial approximate equilibrium configuration isain- -1.0E
tained by the Yin-Yang code. 0.0 0.5 1.0 1.5
For the non-rotating polytrope, we employ a grid of 400 r [10° cm]

20x 56 x 2 zones. Note that we are able to use a relatively Iopig. 13. Density (top) and radial velocity (bottom) of a non-
angular resolution compared to the other tests, becaugedbe qa1ingn = 1 equilibrium polytrope as a function of radius after
lem has spherical symmetry. Our results show that the @BgIr ¢ _ 19 ms of “evolution”. In the top panel, the solid line shows
stays perfectly spherically symmetric throughout the sation, he injtial density profile. Red circles and blue trianglesre-

and that_ the non-radial velocities inside the pol_ytropea'iam spond to data from the Yin and the Yang grid, respectively.
zero. This demonstrates that the Yin-Yang grid is able te pre

serve the initial spherical symmetry. Higl 12 shows the@iah
of the central density (more precisely of the density of tireet- ' ' ' ]

o

most radial zone at = 1km), which exhibits oscillations with __ 4 I i \

an amplitude of the order of 1Hwithout any sign of a system- " 2 i | N x

atic trend. Comparing the initial radial distributions betden- = AoA R ‘ A h N\ N ‘
]

l,

I

| I
sity (Fig[I3, upper panel) and the radial velocity (Fid.lb%er o i J BRI PIERI
panel) of the polytrope with those after 10 ms of evolutioe, w & _ i . .l i\ | |
find no significant deviations. Relative changes in the dgnsi > | \ af o (. _
profile are of the order of 10, comparable to the size of the S —4 Vo ’ v o N Pl

Il \ f 1

fluctuations of the central density. Only for zones near tigee i |

of the polytrope the deviations can reach a level of up to 20%, . : : L.
in particular in the zone next to the atmosphere. The figuse al 0 2 4 6 8
shows that data points from the Yin and the Yang grid lie on top Time (ms)

of each other confirming that the code preservesthe injilés . . . .
ical symmetry of the polytrope very well. Except for the aneFlg. 14.Same as Fi@. 12 but for a rotating polytrope. The solid

at the polvtrope’s surface. where the radial velocity istflagin and dashed curves show the relative variation of the density

POIytrope's st ’ (OCIty IStPRONG * 515ng an equatorial rayp@ = 7/2; ¢™ = 0) and along the
at a level of approximately 2 10° cnys, the radial velocities are le @™ = 0), respectivel
less than 19cnys (i.e., less than.% of the local sound speed).IOO 0" =0), resp Y-
Thus, we conclude that a non-rotatimg=£ 1) equilibrium poly-
trope is correctly handled by our Yin-Yang hydro-code.

The rotating polytrope needs a higher grid resolutiom-in
direction, as it is no longer spherically symmetric. Thus,w8ed 10 ms of evolution we have simulated with the Yin-Yang code
a grid resolution of 406 92x 272x 2 zones for this simulation. (Fig.[I5, upper panel). The axis ratio has slightly increlatse
The initial oblate equilibrium configuration has an axisoaf a value of 0719. The radial velocities (Fig._15, lower panel)
0.7. We, again, evolve the configuration for 10 ms to test the cetre larger than in the non-rotating case by about an order of
rect treatment of the situation by our Yin-Yang hydro-code. magnitude, because it is obviously mordfidult to keep a ro-
Fig.[14 shows the relative variation of the central density &ating polytrope in equilibrium than a non-rotating (sgbally

a function of time along an equatorial ra§f{ = 7/2; ™ = 0) symmetric) one. We again find the largest radial velocitaes (
and along the poles{” = 0), respectively. One also recognizes éew times 16 cnys) near the surface of the polytrope, especially
slight systematic trend in the behavior of the density flatin, along the equator. However, these velocities vary with time
which is steeper along the equator than at the pole. Howewathen averaged over time (in the time intertval [9, 10] ms) the
in both cases the relative increase of the central densitgrig profiles become flatter and the velocities smaller. This corsfi
small (~ 1073). The initial radial density profiles along the polethat the polytrope is oscillating around its equilibriunméigu-
and the equator do not show any significant change during tta¢ion.
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Fig. 15. Density (upper panel) and radial velocity (lower paneltpil in|[Peng et al.[(2006), and summarized below. According t
of an = 1 rotating polytrope in stationary equilibrium as a functhis algorithm scalar fluxes at the outer edges of boundargzo
tion of radius aftet = 10 ms of “evolution”. In both panels the of both the Yin and the Yang grid are replaced by scalar fluxes
solid and dashed lines show the profiles along an equatasial computed using only “interior” fluxes from adjacent grid esn
(@™ = 7/2, 6™ = 0) and along the poled(? = 0), respec-  As an illustration, consider the Yin-Yang grid overlap con-
tively. Red circles and blue triangles in the upper panetecor figuration in Fig[ 1V, wher®QRS is a grid zone at the boundary
spond to data from the Yin and the Yang grid, respectively. bf the Yang grid (blue) which overlaps with the underlyingdgr
the lower panel, we show in addition time averaged (overrhe izoneABCD of the Yin grid (red). Fluxes referring to the Yin and
tervalt = [9, 10] ms) velocity profiles along the equatorial raythe Yang grid are denoted Hyandg, respectively.
(dotted) and the pole (dashed-dotted). The boundary fluxgeg of the Yang grid is replaced by the
flux
feq = frq + fpr, (33)

5. Conservation problem _
wherefrg and fpr are the fluxes through the segmefRt3 and

The Yin-Yang grid has a disadvantage common with other typpg respectively.
of overlapping grids (see, e.d.. Chesshire & Henshaw 11994, ¢ fix f., in Eq.[33) is calculated using information from

Wang 1995, Wu et al. 2907). The communication via interpoldg e ABCD. The evolution of a scalar quantitieco of zone
tion between the two grid patches does not guarantee C@seiNgp is given by

tion of conserved quantities even though the finite-voluiffed
ence scheme employed on each grid patch is conservative. Non LAl _ ot _ _
conservation occurs when a flow across the Yin-Yang boundary §agco = aeco + (fas — feo + fec = fao). (34)
is present. This is the case in most of our tests except for t8gnilarly, for the fraction of the zon&BCD defined by the poly-
simulation of the non-rotating polytrope that involvesyrd- gon ABFED one has,
dial flow.
Nevertheless, we are still able to obtairfatiently good re- AL . DE BE
sults for all the test simulations discussed in the previmation.  éasrep = €asrep + (fas— fCD% + fBCﬁ — fap — fer). (35)
The degree of non-conservation is highly problem dependent
simulation involving a considerable and systematic flonoasr Assuming a piecewise constant state within the z8BED,
the Yin-Yang boundary, asg., in the case of the rotating poly- Eqs.[3%) and(35) lead to
trope, will result in a larger degree of non-conservatioe. k-
serve that the total mass increases Wy796 within 10 ms (or a(g};ééD — Ehgep) = EnabED — EaBFED (36)
about ten dynamical timescales) in the case of the rotatihg p
trope. For the Taylor-Sedov test case, which is the cledasst wherea is the overlapping volume fraction (area) described in
case in this respect (as it involvesy., no boundary ffects like section 3. Therefore,
the shock tube, anelg., no artificial atmosphere like the rotating o o
polytrope), we find a mass loss of the order of3Gnly. As f ; f fVof ; DE f BF f f
Fig.[T6 demonstrates this mass loss can be reduced by usir?é( e — foo + fac — fap) = fas — °Ep + e T F
higher angular resolution. (37)
Conservation of conserved scalar quantities can be olgtaindote that the fluxee is the only unknown in EJ.(37). Since the
to machine precision by applying the algorithm describedien intersection point& andF are already known from the step to
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computational domain | angular grid resolution| gain factor
full 47 sphere 3 26
2° 40
D 1 80
| sphere except for a cone
of 5° half opening angle| I 7
cut-out at both poles

Table 2. Expected gain factor when using the Yin-Yang grid.

restricted most strongly by the size of the zoneg-direction,
which is smaller than the size #hdirection by the factor sifas-
o -~ suming an equal angular resoluti®s A6 = A¢ in both angular

directions.
For a spherical polar grid the factor gimmplies (assuming
zone centered variables) a minimum zone size

Fig. 17.lllustration of the Yin-Yang grid overlap configuration, g =5 sin@/2)
wherePQRS is a grid zone at the boundary of the Yang grid ¢

(blue) which overlaps with the underlying grid zoABCD of (in radians) ing-direction for the first zone next to the pole.
the Yin grid (red). Fluxes referring to the Yin and the Yanglgr Typically, sing/2) ~ 10-2. On the other hand, applying the Yin-

are denoted by andg, respectively. Yang grid yields
d;¥ = ¢ sin(r/4-6/2)
calculat_e the volume fra_cticm, thg lengths of all segments Canfor the size of the smallest zonegdrdirection, which is typically
be obtained. The flueq is then given by about 07. Hence, for the Yin-Yang grid the smallest zone size in
FQ azimuthal direction is larger by the ratio
fro = fer=. 38) ™
EF di"  sin(/4-5/2) 20
After obtaining the still missing fluxpe in Eq.(33) by a similar g sinE/2) (40)
procedure, the scalar quanidipnrs of the boundary zonBQRS ¢
is updated according to compared to the spherical polar grid.
AL X Tabld2 gives the value of this ratio for grids of various angu
&pars = &pors + (9or — ps + Ors — frq).- (39)  Jar resolution, and various computational domains. These-n

This procedure is then repeated to update all boundary gh@s Provide an estimate of the gain in computation time ane c
Z0NnEs. expect when using the Yin-Yang grid instead of the spherical

After implementing the above algorithm we are able to comolar grid. h in lculated f h lati id
serve mass and total energy up to machine precision. However HOWeVer, the gain factor calculated from the relative gri

the conservation of momentum is more complicated since thgacings does not determine the gain in the size of the tiepe st

momentum equations in spherical coordinates involve nit o _s.the latter is given in a more complicated way by the CFL con-
flux (i.e., divergence) terms but also source terms (due to tAHON
presence of fictitious and pressure forces), and due to tie “m ( V) 7

A6

r
ing” of momentum components as the Yin and Yang grid patchéBJFL <C Ar
are rotated relative to each other (see[Ei§). 17).

As we have not yet devised and implemented a correspond- 2 -2
ing momentum conservation algorithm, momentum is not yet Ar2 + (rA9) + (T SiN6AG)? ) . (41)
perfectly conserved in our code. For that reason we alsairefr
from using the scalar conservation algorithm described/@bowhereC, v;, vy, vy, andcs are the Courant factor, the flow veloc-
since in some simulation®.¢J.,in the Taylor-Sedov explosion ities in radial, colatitude and azimuthal direction, and thcal
simulation) we encountered a negative internal energy fineso sound speed, respectively. The CFL condition shows thdhthe
zones due to the inconsistency arising from the perfectarenscrease in the size of the CFL time step is somewhat smallar tha
vation of mass and total energy on one hand and the imperfgnplied by the gain factor resulting from the ratio of theesiof
conservation of momentum on the other hand. In our test hens the smallest zones of the Yin-Yang grid and the sphericampol
momentum violation is smalk.g.,amounting to 0.24% (0.03%) grid. In addition, the increase of the time step is problemete
angular momentum loss in the case of the rotating polytrope tlent.
a grid with three (one) degree angular resolution. Besides the performance gain due to the increased size of the
CFL time step, the Yin-Yang grid also requires less computa-
tional zones to cover the full sphere, and thus less conipuogdt
time. For an angular resoluti@grthe spherical polar grid needs
One of the main purposes in implementing the Yin-Yang grid is (n/6) x (27/3)
to ease the severe restriction imposed on the size of thestiepe
for any explicit hydrodynamics scheme by the CFL condition izones to cover the full sphere, while the Yin-Yang grid regsli
the polar regions of 3D simulations using a grid in sphefcal only
lar coordinates. In most applications the size of the tirep & (m/26 + 2) x (3m/26 + 2) x 2

[
+ |
I sinfA¢

6. Performance and Efficiency
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zones. Hence, up to 25% fewer computational zones are velving mass, momentum (all three components) and enengy flu
quired. The gain depends only weakly on angular resolutiah aacross the Yin-Yang grid boundary, and a polytrope whose rot
is problem independent. tion leads to considerable and systematic mass, momentiyn (o

However, employing the Yin-Yang grid also requires somangular components) and energy flux across the Yin-Yang grid
extra amount of computation compared to the spherical polawundary — the Yin-Yang grid does not introduce any numer-
grid (see Sec. 3). In the following we only consider the extiaal artifact at the internal Yin-Yang boundary. The tedsoa
costs of calculations during the actual simulation, butthet confirm that the numerical solutions obtained with the Yeny
extra costs arising during the initialization, since thaseneg- grid do not show any evidence of a preferred radial direction
ligible. We emphasize again that there are two major exti sas it eliminates numerical axes artifacts which serioushy the
of calculations necessary when applying the Yin-Yang grite  flow near the coordinate symmetry axis when using a spherical
first set concerns the interpolation of the ghost zone vahegs polar grid. Besides successfully simulating a Taylor-Seebo-
are needed for the communication between the Yin and Yapipsion and self-gravitating (rotating and non-rotatiegilib-
grid patches. The second set arises from the interpolafitheo rium polytropes the code has also passed another astrophysi
density onto the auxiliary spherical polar grid grid and iite relevant test involving the growth of Rayleigh-Taylor ialsii-
terpolation of the gravitational potential back from theiiary ties.
grid onto the Yin-Yang grid. Exploiting the algorithms ddabed Because the communication between the two grid patches in-
in Sec. 3, the computational cost for both parts is almosli-negvolves interpolation, flows across the Yin-Yang boundanysea
gible compared to the total computing time. Interpolatibthe some small amount of non-conservation of conserved quanti-
ghost zone values requires only32o of the total computing time ties. However, even for the (in this respect) severe test oés
per cycle in simulations with self-gravity, while the inp@lation the rotating polytrope involving large flows across the Yiang
of density and gravitational potential performed withie tfrav- boundary, we observe only a small amount (less than one per-
ity solver accounts for.5% of the computing time needed forcent) of non-conservation.
the gravity solver. This corresponds to approximateBge of The Yin-Yang grid dfers a large gain in computing time
the computing time per cycle. arising from two sources. Firstly, the number of computadio

To obtain actual numbers for the gain, we performed severaines needed is reduced by 20% approximately depending on
timing tests including simulations with and without setkgity the angular resolution. This gain reduces the computing ier
using four diterent grid resolutions. The tests were carried on aycle and is problem independent. Secondly, the size of Bie C
IBM Power6 using a single processor. According to theses tesime step is considerably enhanced, because the polamsegio
the computing time per cycle for the Yin-Yang grid averagedith converging meridional coordinate lines are not présen
over five cycles is approximately 15% and 20% smaller than foase of the Yin-Yang grid. The corresponding gain in time ste
the spherical polar grid for simulations without self-gtgvaand — size highly depends on the problem simulated. The extras cost
with 2° and T angular resolution, respectively. For simulationfor interpolation between the two grid patches and the pai-
including self-gravity, the gain factor decreases by 3%rapp tion performed in the gravity solver are negligible compkt@
mately. the gain in the time step size.

Concerning the gain from the less restrictive CFL condition In conclusion, our implementation of the Yin-Yang grid into
we consider the case of the rotating polytrope since thedfizethe multi-dimensional hydrodynamics code PROMETHEUS
the time step does not vary much throughout the simulation. Forings about the possibility to simulate three dimensicedi-
an angular resolution of°1we find a gain of approximately a gravitating hydrodynamic flows in spherical coordinatesalth
factor of 63 when using the same Courant number both for themost cases, have been computationally inaccessiblengpato
Yin-Yang grid and the spherical polar grid. due to the prohibitively large computational costs. Wita gos-
sibility to add more physics such as neutrino transport kwor
in progress), the new code version can be used to carry out,

7. Conclusion e.g.,core collapse supernova simulations in 3D.

A two-patch overset grid in spherical coordinates called t')-\ckno wiedgements. This research was supported by the Deutsche

“Yin-Yang” grid is successfully implemented into our 3Dggrschungsgemeinschaft through the Transregional Gutidise Research
Eulerian explicit hydrodynamics code, PROMETHEUS, ineluctenters SFRR 27 “Neutrinos and Beyond” and SFER 7 “Gravitational Wave
ing in particular the treatment of self-gravitating flow$i€lYin-  Astronomy”, and the Cluster of Excellence EXC 153 “OrigindaBtructure of
Yang grid eases the severe restriction of the time stepls'nimi the Universe”. The simulations were performed at the Rextrenum Garching
. . . RZG) of the Max-Planck-Society. We would like to thank PrafKageyama
polar _reglons of the sph(_are, because each Yin-Yang ,g”(‘hp sharing with us his Yin-Yang interpolation routine faragayvector fields,
contains only the |OW_'|at'tUde part of the USU‘_”" sphericaBp  and the anonymous referee for hisr useful and supportive comments.
grid. From our experiences, the implementation steps &g ea
and straightforward for a hydrodynamics code using dioseti
splitting and having 3D spherical polar coordinates alysast References
plemented due to the simplicity of the Yin-Yang transforim@at gjongin, J. M. & Mezzacappa, A. 2006, ApJ, 642, 401
and its symmetry property. Basically it involves doublifget Chandrasekhar, S. 1969, Ellipsoidal figures of equilibriifale Univ. Press)
state variable arrays, calling the 1D core hydrodynamibseso Chesshire, G. & Henshaw, W. 1994, SIAM J. Sci. Comput,, 18, 81
in angular directions for both the Yin and the Yang grid, angc?”e'a'.':’- & Woodward, P. R. 1984, J. Comput. Phys., 54, 174
ddi b X hat handl he Yin-Y: f .Eriguchi, Y. & Mller, E. 1985, A&A, 147, 161

adading a su rou'[!ne that .an es the Yin-Yang trans c)'-"m""'“Fragile, P. C., Lindner, C. C., Anninos, P., & Salmonson, J2@09, ApJ, 691,
and the interpolation of variables between both grids. 482

We validated the code with several standard hydrodynanti@kami, W., Kotake, K., Ohnishi, N., Yamada, S., & Sawada,2K08, ApJ,
tests. The test results show good agreement with analytic §aor16k7:' |1_|20T7 Scheck. L. Kifonidis, K. Miller. E.. & PlawT. 2005, in
lutions if these are available. Furthermore, as dempwrby . Ast}onomibal Sociéty o’f the Paci%ic éonferer{ce éeries, 88k, The I’:ate
three of our test problems — a planar shock crossing the Yin-qf the Most Massive Stars, ed. R. Humphreys & K. Stanek, 363—

Yang grid boundary, anfBicenter Taylor-Sedov explosion in-Kageyama, A. & Sato, T. 2004, Geochemistry Geophysics Getes)s, 5



Annop Wongwathanarat et al.: An axis-free overset grid tmesigal polar coordinates for simulating 3D self-gravitgtflows

Kifonidis, K., Plewa, T., Janka, H.-T., & Mlller, E. 200384\, 408, 621

Koldoba, A. V., Romanova, M. M., Ustyugova, G. V., & Lovelaée V. E. 2002,
ApJ, 576, L53

Landau, L. & Lifshitz, E. 1959, Fluid mechanics, Vol. 6 (Pangon)

Mezzacappa, A., Bruenn, S., J.M.Blondin, Hix, W., & Mes&2r,2006, in AIP
Conference Proceedings, Vol. 924, 234-242

Muller, E. & Steinmetz, M. 1995, Comput. Phys. Commun., 488,

Ohnishi, N., Kotake, K., & Yamada, S. 2007, ApJ, 667, 375

Peng, X., Xiao, F., & Takahashi, K. 2006, Q.J.R. Meteorok.S©32, 979

Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., Wick, J, & Lovelace,
R. V. E. 2003, ApJ, 595, 1009

Ronchi, C., lacono, R., & Paolucci, P. S. 1996, J. ComputsRhp4, 93

Scheck, L. 2006, PhD thesis, Technical University Munich

Scheck, L., Kifonidis, K., Janka, H.-T., & Milller, E. 2008&A, 457, 963

Sod, G. A. 1978, J. Comput. Phys., 27, 1

Toro, E. F. 1997, Riemann solvers and numerical methodstfior dlynamics - a
practical introduction (Springer)

Wang, Z. 1995, J. Comput. Phys., 122, 96

Wu, Z.-N., Xu, S.-S., Gao, B., & Zhuang, L.-S. 2007, Compuids, 36, 1657

Zink, B., Schnetter, E., & Tiglio, M. 2008, Phys. Rev. D, 77

15



	1 Introduction
	2 Yin-Yang Grid
	3 Implementation
	3.1 Hydrodynamics solver
	3.2 Gravity solver

	4 Test Suites
	4.1 Sod Shock Tube
	4.2 Taylor-Sedov Explosion
	4.3 Rayleigh-Taylor Instability
	4.4 Gravitational Potential of Homogeneous Spheroids
	4.5 Self-gravitating Polytropes

	5 Conservation problem
	6 Performance and Efficiency
	7 Conclusion

