# Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars\*

# II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

T. Bensby<sup>1</sup>, S. Feltzing<sup>2</sup>, J.A. Johnson<sup>3</sup>, A. Gould<sup>3</sup>, D. Adén<sup>2</sup>, M. Asplund<sup>4</sup>, J. Melendéz<sup>5</sup>, A. Gal-Yam<sup>6</sup>, S. Lucatello<sup>7</sup>, H. Sana<sup>1,8</sup>, T. Sumi<sup>9</sup>, N. Miyake<sup>9</sup>, D. Suzuki<sup>9</sup>, C. Han<sup>10</sup>, I. Bond<sup>11</sup>, and A. Udalski<sup>12</sup>

<sup>1</sup> European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile

<sup>2</sup> Lund Observatory, Box 43, SE-221 00 Lund, Sweden

<sup>3</sup> Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA

<sup>4</sup> Max Planck Institute for Astrophysik, Garching, Germany

<sup>5</sup> Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal

<sup>6</sup> Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel

<sup>7</sup> INAF-Astronomical Observatory of Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy

<sup>8</sup> Universiteit van Amsterdam, Sterrenkundig Instituut 'Anton Pannekoek', Postbus 94249 – 1090 GE Amsterdam, Netherlands

<sup>9</sup> Solar-Terrestrial Enivironment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan

<sup>10</sup> Department of Physics, Chungbuk National University, Cheongju 361-763, Republic of Korea

<sup>11</sup> Institute of Information and Mathematical Sciences, Massey University, Albany Campus, Private Bag 102-904, North Shore Mail Centre, Auckland, New Zealand

<sup>12</sup> Warsaw University Observatory, A1. Ujazdowskie 4, 00-478, Warszawa, Poland

Received 26 November 2009 / Accepted 6 January 2010

#### ABSTRACT

*Context.* The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a stellar population, is under debate. In particular, recent observations of a few microlensed dwarf stars give a very different picture of the evolution of the Bulge from that given by the giant stars.

*Aims.* We aim to resolve the apparent discrepancy between Bulge metallicity distributions derived from microlensed dwarf stars and giant stars. Additionally, we aim to put observational constraints on the elemental abundance trends and chemical evolution of the Bulge.

*Methods.* We perform a detailed elemental abundance analysis of dwarf stars in the Galactic bulge, based on high-resolution spectra that were obtained while the stars were optically magnified during gravitational microlensing events. The analysis method is the same as for a large sample of F and G dwarf stars in the Solar neighbourhood, enabling a fully differential comparison between the Bulge and the local stellar populations in the Galactic disc.

**Results.** We present detailed elemental abundances and stellar ages for six new dwarf stars in the Galactic bulge. Combining these with previous events, here re-analysed with the same methods, we study a homogeneous sample of 15 stars, which constitute the largest sample to date of microlensed dwarf stars in the Galactic bulge. We find that the stars span the full range of metallicities from [Fe/H] = -0.72 to +0.54, and an average metallicity of  $\langle [Fe/H] \rangle = -0.08 \pm 0.47$ , close to the average metallicity based on giant stars in the Bulge. Furthermore, the stars follow well-defined abundance trends, that for [Fe/H] < 0 are very similar to those of the local Galactic thick disc. This suggests that the Bulge and the thick disc have had, at least partially, comparable chemical histories. At sub-solar metallicities we find the Bulge dwarf stars to have consistently old ages, while at super-solar metallicities we find a wide range of ages. Using the new age and abundance results from the microlensed dwarf stars we investigate possible formation scenarios for the Bulge.

Key words. gravitational lensing — Galaxy: bulge — Galaxy: formation — Galaxy: evolution — stars: abundances

# 1. Introduction

The Galactic bulge is a major stellar component of the Milky Way. Estimations of its mass range from 10% (Oort 1977) to 25% (Sofue et al. 2009) of the total stellar mass of the Galaxy. It is a peanut shaped barred bulge and occupies the in-

ner ~1 kpc of the Galaxy (Frogel 1988). Recent results for the Bulge shape give a scale length for the bar major axis of ~1.5 kpc (Rattenbury et al. 2007). The kinematic properties of the Bulge are intermediate between a rotationally supported system and a velocity dispersion dominated system (e.g., Minniti & Zoccali 2008). The markedly different stellar populations that inhabit this region of the Galaxy make it important to discern the formation and evolution as part of the understanding of the overall formation of the Galaxy. In addition, bulges are common fea-

Send offprint requests to: Thomas Bensby, e-mail: tbensby@eso.org \* Based on observations made with the European Southern Observatory telescopes, Program IDs 082.B-0453 and 083.B-0265.

tures among luminous galaxies, and determining the origin of the Bulge and the corresponding observational signatures (e.g., boxy isophotes, high  $[\alpha/Fe]$  ratios, no age dispersion) are important steps in decoding the formation of bulges in general.

The differences among the Bulge, the thin and thick discs in the Solar neighbourhood, and the Galactic stellar halo have been discovered and detailed through extensive photometric and spectroscopic observations of stars. Red giants are generally the only stars bright enough for high-resolution spectroscopy at the distance of the Bulge, and they have been intensively studied in the optical and infrared, particularly in a few fields including Baade's window (e.g. McWilliam & Rich 1994; Fulbright et al. 2006; Zoccali et al. 2008; Meléndez et al. 2008; Cunha & Smith 2006; Ryde et al. 2009). Chemically, the Bulge is decidedly more metal-rich than the stellar halo, with the mean [Fe/H] from the Zoccali et al. (2008) sample slightly below solar metallicity, and a possible vertical metallicity gradient of 0.6 dex per kpc, although a comparison with M giants in the inner Bulge may indicate a flattening of the gradient in the central regions (Rich et al. 2007). The abundance ratios show enhanced  $\left[\alpha/\text{Fe}\right]$ ratios that persist to higher [Fe/H] than in local thin disc stars, but show good agreement with thick disc giants (Meléndez et al. 2008; Alves-Brito et al. 2010). Furthermore, the stars at the Bulge main-sequence turnoff are red, and isochrone fitting has shown that the majority of the stars in the Bulge are old (e.g., Holtzman et al. 1993; Feltzing & Gilmore 2000; Zoccali et al. 2003; Clarkson et al. 2008).

These observations have fuelled an intense debate on the origin of the Bulge. The established concordance model of cosmology provides the framework to understand the formation of the Milky Way by hierarchical merging, but the formation of the components of the Galaxy requires important physics, such as star formation and feedback, that is unresolved and parametrised in current models. However, there are two basic scenarios by which a bulge is built up in simulations (see Rahimi et al. 2009, and references therein). The first is by mergers, where subclumps coming together in the early phases of Galactic evolution combine to form the Bulge out of both accreted stars and stars formed in situ. The second is secular evolution, where the Bulge is created gradually out of the Galactic disc (e.g., Kormendy & Kennicutt 2004). The merger model is favoured by the metallicity gradient, while the secular evolution model is favored by cylindrical rotation and by agreement (in terms of mean metallicity abundance trends, and ages) with the Galactic thick disc (e.g., Howard et al. 2009).

As mentioned above, spectroscopic observations of stars in the Bulge have usually been confined to giants. This limits our knowledge of the Bulge in several ways. First, because much of our knowledge of the Solar neighbourhood relies on dwarf stars (e.g. Edvardsson et al. 1993), any systematic offsets between the metallicity scale of giant and dwarf stars is cause for concern. In this context, Taylor & Croxall (2005) have shown that there is a lack of very metal-rich ([Fe/H] > +0.2) giants in the Solar neighbourhood and that the mean metallicity of local giants is lower than for dwarfs. Recent studies of nearby giants (Luck & Heiter 2007; Takeda et al. 2008) confirm the lack of very metal-rich stars. Santos et al. (2009) suggest that there may be systematic errors in the metallicity determinations of metal-rich giants. Secondly, there are several pieces of evidence that giant stars may not accurately represent all the stars. For the metal-rich cluster NGC 6791, Kalirai et al. (2007) proposed that the explanation for the large number of low-mass He white dwarfs was that about 40% of the stars do not become red clump stars, skipping entire phases of stellar evolution altogether because of high mass loss. Kilic et al. (2007) proposed a similar mechanism to explain the non-binary He white dwarfs found in the Solar neighbourhood. Finally, with turnoff stars, ages can be determined for individual stars, and an agemetallicity relationship derived, which is not possible for giant stars. This means that a true study of the Bulge requires the study of dwarf stars. However, at the distance of the Bulge, dwarf stars are too faint for abundance analyses based on highresolution spectra. Turnoff stars in the Bulge have V magnitudes around 19 to 20 (compare, e.g., the colour-magnitude diagrams in Feltzing & Gilmore 2000). However, in the event that a Bulge dwarf star is lensed by a foreground object, the magnitude of the star can increase by more than 5 magnitudes, in which case a high-resolution spectrum can be obtained and the star analysed in a similar manner as the dwarf stars in the Solar neighbourhood.

There were several spectroscopic observations of microlensed Bulge stars in the 1990s, but the first high-resolution spectrum of a dwarf star was presented in Minniti et al. (1998). Complete high-resolution spectroscopic abundance analyses have been published for eight microlensing events toward the Bulge (Johnson et al. 2007, 2008; Cohen et al. 2008, 2009b; Bensby et al. 2009a,b; Epstein et al. 2009). Initially, it appeared that the microlensed Bulge dwarf stars were typically much more metal-rich than the giants in the Bulge, and Epstein et al. (2009) found, using a Kolmogorov-Smirnow (KS) test, a very low probability of only 1.6% that these eight microlensed dwarf stars in the Bulge were drawn from the same metallicity distribution (MDF) as the sample of Bulge giants from Zoccali et al. (2008). Cohen et al. (2008) proposed that a similar mechanism to the one occurring in NGC 6791 was occurring in the Bulge, preventing the most metal-rich stars from being included in the giant surveys. Arguments against this idea presented by Zoccali et al. (2008) were based on the luminosity function along the main sequence and red giant branch, showing no lack of RGB stars, with respect to the prediction of theoretical models.

In addition, the microlensed Bulge dwarf stars showed good agreement in abundance ratios with the thick disc stars in the Solar neighbourhood (Bensby et al. 2009a,b). However, comparisons have been hampered because of the small number of microlensed stars that did not always cover the [Fe/H] range of interest. Also, individual age estimates were provided for stars near the turnoff subgiant branch, including some stars that could be younger than the canonical old Bulge population (Johnson et al. 2008; Bensby et al. 2009b).

We will here present detailed elemental abundance results for six new microlensing events toward the Galactic bulge. We also re-analyse the events previously studied by Cavallo et al. (2003); Cohen et al. (2009b) and Epstein et al. (2009). Combining these data with the results from Bensby et al. (2009a) and Bensby et al. (2009b) (which includes a re-analysis of the events from Johnson et al. 2007, 2008; Cohen et al. 2008) we now have a sample of 15 microlensed dwarf stars in the Bulge that have been homogeneously analysed using the exact same methods.

| Table 1. Summary <sup>†</sup> | of the, so far, | 15 dwarf star   | microlensing   | events in the   | Bulge that   | t have been | observed w | ith high-re | solution |
|-------------------------------|-----------------|-----------------|----------------|-----------------|--------------|-------------|------------|-------------|----------|
| spectrographs. They           | have been sorte | ed according to | their metallic | ities (as giver | n in Table 2 | 2).         |            |             |          |

| Object                           | RAJ2000<br>[hh:mm:ss] | DEJ2000<br>[dd:mm:ss] | <i>l</i><br>[deg] | b<br>[deg] | T <sub>E</sub><br>[days] | T <sub>max</sub><br>[HJD] | A <sub>max</sub> | T <sub>obs</sub><br>[MJD] | Exp.<br>[s] | S/N | Spec. | R      | Ref. |
|----------------------------------|-----------------------|-----------------------|-------------------|------------|--------------------------|---------------------------|------------------|---------------------------|-------------|-----|-------|--------|------|
| OGLE-2009-BLG-076S               | 17:58:31.9            | -29:12:17.8           | +1.21             | -2.56      | 36.9                     | 4916.46                   | 70               | 4916.291                  | 7200        | 30  | UVES  | 45 000 | B09a |
| MOA-2009-BLG-493S                | 17:55:46.0            | -28:48:25.8           | +1.25             | -1.84      | 13.2                     | 5094.61                   | 150              | 5093.980                  | 7200        | 40  | UVES  | 45 000 | TW   |
| MOA-2009-BLG-133S                | 18:06:32.8            | -31:30:10.7           | +0.05             | -5.19      | 26.6                     | 4932.10                   | 70               | 4932.233                  | 7200        | 35  | UVES  | 45 000 | TW   |
| MOA-2009-BLG-475S                | 18:02:27.3            | -27:26:49.9           | +3.16             | -2.45      | 34.0                     | 5084.92                   | 62               | 5084.980                  | 7200        | 20  | UVES  | 45 000 | TW   |
| MACHO-1999-BLG-022S <sup>‡</sup> | 18:05:05.8            | -28:34:39.5           | +2.46             | -3.51      | 265.0                    | 1365.50                   | 28               | 1366.315                  | 12600       | 80  | HIRES | 29 000 | C03  |
| OGLE-2008-BLG-209S               | 18:04:50.0            | -29:42:35.3           | +1.44             | -4.01      | 19.5                     | 4606.09                   | 30               | 4606.833                  | 5400        | 30  | MIKE  | 47 000 | B09b |
| MOA-2009-BLG-489S                | 17:57:46.5            | -28:38:57.8           | +1.61             | -2.14      | 58.9                     | 5095.52                   | 103              | 5094.982                  | 7200        | 65  | UVES  | 45 000 | TW   |
| MOA-2009-BLG-456S                | 17:48:56.3            | -34:13:32.3           | -4.16             | -3.34      | 36.2                     | 5090.94                   | 77               | 5090.982                  | 7200        | 45  | UVES  | 45 000 | TW   |
| OGLE-2007-BLG-514S               | 17:58:03.0            | -27:31:08.2           | +2.62             | -1.63      | 76.0                     | 4386.28                   | 1200             | 4385.985                  | 4800        | 30  | MIKE  | 25000  | E09  |
| MOA-2009-BLG-259S                | 17:57:57.6            | -29:11:39.1           | +1.15             | -2.45      | 69.1                     | 5016.77                   | 220              | 5016.227                  | 7920        | 50  | UVES  | 45 000 | TW   |
| MOA-2008-BLG-311S                | 17:56:53.7            | -31:23:40.3           | -0.87             | -3.35      | 15.7                     | 4655.40                   | 400              | 4654.952                  | 7200        | 85  | MIKE  | 29 000 | C09  |
| MOA-2008-BLG-310S                | 17:54:14.4            | -34:46:37.7           | -4.09             | -4.56      | 7.1                      | 4656.39                   | 280              | 4655.957                  | 7200        | 90  | MIKE  | 41000  | C09  |
| OGLE-2007-BLG-349S               | 18:05:23.0            | -26:25:27.1           | +4.38             | -2.52      | 109.4                    | 4348.56                   | 400              | 4348.237                  | 3050        | 90  | HIRES | 48 000 | C08  |
| MOA-2006-BLG-099S                | 17:54:10.2            | -35:13:34.9           | -4.48             | -4.78      | 30.1                     | 3940.35                   | 380              | 3940.090                  | 2400        | 30  | MIKE  | 19 000 | J08  |
| OGLE-2006-BLG-265S               | 18:07:18.9            | -27:47:44.0           | +3.38             | -3.55      | 28.6                     | 3893.24                   | 212              | 3892.581                  | 900         | 45  | HIRES | 45 000 | J07  |

<sup>†</sup> Given for each microlensing event is: RA and DE coordinates (J2000) read from the fits headers of the spectra (the direction where the telescope pointed during observation); galactic coordinates (*I* and *b*); duration of the event in days ( $T_E$ ); time when maximum magnification occured ( $T_{max}$ ); maximum magnification ( $A_{max}$ ); time when event was observed with high-resolution spectrograph ( $T_{obs}$ ); magnification at the time of observation ( $A_{obs}$ ); the exposure time (Exp.), the measured signal-to-noise ration per pixel at ~6400 Å; the spectrograph that was used; the spectral resolution; and the reference where the star first appeared: TW=This Work, B09a=Bensby et al. (2009a), B09b=Bensby et al. (2009b), J07=Johnson et al. (2007), J08=Johnson et al. (2008), C08=Cohen et al. (2008), C09=Cohen et al. (2009b), C03=Cavallo et al. (2003). <sup>\*</sup> MACHO ID: 109.20893.3423.

# 2. Observations and data reduction

In order to trigger observations of these highly magnified stars we rely on the OGLE<sup>1</sup> and MOA<sup>2</sup> projects that every night monitor about 100 million stars toward the Bulge to detect variations in their brightnesses. If an object shows a well-defined rise in brightness, a microlensing alert is announced. Every year, 600-800 events are detected. Based on the photometric data obtained by the MOA and OGLE surveys it is possible to model the event, and make predictions of the length of the event, peak brightness, and time of peak brightness. Stars are identified as likely dwarf stars based on their unlensed magnitudes and colour differences relative to the red clump stars. This is done in instrumental magnitudes. The majority are low magnification events, and only a few have unlensed brightnesses of V = 18 - 20, characteristic of dwarf stars in the Bulge at a distance of ~ 8 kpc. During a regular Bulge season in the Southern hemisphere, typically around 10 high-magnification events of dwarf stars in the Bulge are detected<sup>3</sup>. To catch these unpredictable events, we have an ongoing Target of Opportunity (ToO) program at the ESO Very Large Telescope on Paranal in Chile. Observations can then be triggered with only a few hours notice.

#### 2.1. The 2009 events observed with UVES

On March 21, 2009, the OGLE early warning system identified OGLE-2009-BLG-076 to be a possible high-magnification microlensing event toward the Galactic bulge. As the magnitude of the source star before the microlensing event indicated that it was

either a dwarf or a subgiant star, we triggered observations with the UVES spectrograph (Dekker et al. 2000) located on UT2 at the ESO Very Large Telescope on Paranal. Due to the limited visibility of the Bulge in March, the target had to be observed towards the end of the night. Hence, OGLE-2009-BLG-076S was observed on March 26, a few hours after reaching peak brightness (see Fig. 1). A few weeks later, on April 11, we observed the MOA-2009-BLG-133, this time first alerted by the MOA collaboration, also with UVES. The third event was observed in the beginning of July, MOA-2009-BLG-259S. This object was observed during the UVES red arm upgrade, so we could only obtain a spectrum with the blue CCD that has a limited wavelength coverage of 3700-5000 Å. In September, the end of ESO observing period P83, we saw an explosion of microlensing events and another four source stars were observed with UVES: MOA-2009-BLG-475S on Sep 10, MOA-2009-BLG-456S on Sep 16, MOA-2009-BLG-493S on Sep 19, and MOA-2009-BLG-489S on Sep 20. The UVES red arm was now back with two new red CCDs with increased sensitivities.

For the 2009 observations with UVES listed above, each target was observed for a total of two hours, split into either four 30 min or three 40 min exposures. Using UVES with dichroic number 2, each observation resulted in spectra with wavelength coverage between 3760-4980Å (blue CCD), 5680-7500Å (lower red CCD), and 7660-9460Å (upper red CCD). In all cases a slit width of 1" was used, giving a resolving power of  $R \approx 45000$ .

On all occasions, right before or right after the observations of the microlensed targets in the Bulge, a rapidly rotating B star, either HR 6141 or HR 8431, was observed at an airmass similar to that of the Bulge stars. The featureless spectra from these B stars were used to divide out telluric lines in the spectra of the Bulge stars. Also, at the beginning of the night of April 11 we obtained a solar spectrum by observing the asteroid Pallas.

Data taken before the upgrade of the UVES red CCD in mid-July were reduced with the UVES pipeline (CPL version 3.9.0), while the data taken after the upgrade were reduced with version

<sup>&</sup>lt;sup>1</sup> OGLE is short for Optical Gravitational Lens Experiment, http://ogle.astrouw.edu.pl (Udalski 2003).

<sup>&</sup>lt;sup>2</sup> MOA is short for Microlensing Observations for Astrophysics, http://www.phys.canterbury.ac.nz/moa (e.g., Bond et al. 2001).

<sup>&</sup>lt;sup>3</sup> With the new OGLE-IV camera that will be in operation in the first half of 2010 the field-of-view will increase from the 0.3 square degrees of OGLE-III to 1.4 square degrees, resulting in a substantial increase in the number of detected microlensing events.



**Fig. 1.** Light curves for the eight new microlensing events. The photometry comes from the surveys indicated by their names (MOA or OGLE), except for MACHO-1999-BLG-022S that has data from from both OGLE (circles) and binned MACHO data (crosses). Each plot has a zoom window, showing the time intervals when the source stars were observed with high-resolution spectrographs. In each plot the un-lensed magnitude of the source star is also given ( $I_S$ ).

4.4.5. Typical signal-to-noise ratios per pixel at 6400 Å are given in Table 1.

The light curves for the seven microlensing events (including OGLE-2009-BLG-076S from Bensby et al. 2009a) observed with UVES in 2009 are shown in Fig. 1, in which we have also indicated the time interval during which they were observed with high-resolution spectrographs. Positions, amplifications, times of observation, and exposure times are given in Table 1.

# 2.2. Los MACHOs

Cavallo et al. (2003) presented the first detailed elemental abundance study of microlensed dwarf stars in the Bulge. Their analysis was of a "preliminary" nature, so we decided to reanalyse the stars that they classified as either dwarf or subgiant stars. There are four such stars: MACHO-1997-BLG-045S, MACHO-1998-BLG-006S, MACHO-1999-BLG-001S, and MACHO-1999-BLG-022S.

The observations of these stars were carried out from 1997 to 1999 with the HIRES spectrograph on the Keck I telescope on Hawaii. By using a 1.148" wide slit and a 2x2 binning, spectra with a resolution of  $R \approx 29000$  were obtained. These data were obtained when the HIRES detector had only a single CCD chip. The data are now publicly available and we gathered science and associated calibration files from the Keck Observatory Archive<sup>4</sup>.

The data reduction was carried out using the LONG and ECHELLE contexts of the MIDAS<sup>5</sup> software. Because the bias

level is changing on a time scale of a few minutes, we used the over-scan region to compensate for the observed variations and to bring all the raw data to an effectively homogenised bias level. Master calibration frames were created by averaging the relevant frames obtained close in time to the science observations. The data were then bias, dark and background-illumination subtracted using standard procedures of the ECHELLE context. The orders were traced directly on the science images and a 5-pixel window was used to extract the object spectra. Sky spectra were extracted from two smaller windows on both sides of the object window. Flat-field and wavelength calibration spectra were extracted using the exact same windows as the one used for object and sky extraction. The science and sky spectra were then flat-fielded and sky subtracted. Finally, because of little or no overlap between the orders, the wavelength calibration was performed individually for each order. In total, 27 orders were observed yielding an effective wavelength coverage from 4670 to 7180 Å, although with some gaps between the orders.

Only two of these four stars could be analysed. The reduced spectrum for MACHO-1997-BLG-045S was not of sufficient quality to allow for any measurements of equivalent widths or line synthesis necessary for a proper abundance analysis, and MACHO-1999-BLG-001S appears to be a spectroscopic binary. Also, as MACHO-1999-BLG-006S turned out to be a low-luminosity giant after our re-analysis (log  $g \approx 2 - 3$ ), the results for this star will be presented together with the other similar low-luminosity giant stars observed at ESO in a subsequent study. The light curve for MACHO-1997-BLG-022S is shown in Fig. 1 and event data given in Table 1.

<sup>&</sup>lt;sup>4</sup> Available at http://koa.ipac.caltech.edu

<sup>&</sup>lt;sup>5</sup> ESO-MIDAS is the acronym for the European Southern Observatory Munich Image Data Analysis System which is developed and maintained by the European Southern Observatory.



# 3. Bulge membership

# 3.1. Positions on the sky and radial velocities

The locations on the sky of the events are shown in Fig. 2. All the stars have negative Galactic latitudes because OGLE and MOA currently only monitor fields with b < 0. The angular distances to the Galactic plane are similar for all events, between 2-5°. The measured radial velocities for the stars have been indicated in Fig. 2. Arrows upward means positive radial velocities, arrows downward negative velocities, and the scale in the figure is 70 km s<sup>-1</sup> per degree. The high variation in  $v_r$  for the microlensed stars is consistent with the high velocity dispersion seen for Bulge giant stars (compare, e.g., the recent BRAVA radial velocity survey of red giants in the Bulge by Howard et al. 2008).

#### 3.2. Microlensing toward the Galactic bulge

Because we need to observe the microlensing events wherever they occur in the central regions of the Galaxy, we cannot choose stars along, e.g., the minor axis to maximise the contribution of the Bulge, leading to possible confusion about whether these stars are Bulge, disc or halo stars.

Our current approach to this is to regard the division into Bulge and disc for stars within 1 kpc of the Galactic centre as a semantic division. There is no evidence for a cold rotating extended disc that close to the Galactic centre for the fields that have been studied so far (Howard et al. 2009), and the creation of the Bulge from the Galactic disc is one of the scenarios we wish to test. So the question then becomes whether the microlensed dwarf and subgiant stars are located in the Bulge region, or in the disc on either this side or the far side of the Bulge. Nair & Miralda-Escudé (1999) estimate that about 15 % of the events toward the Bulge could have source stars belonging to the far side of disc, more than 3 kpc away from the Galactic centre. On the other hand, more recent theoretical calculations of the distance to microlensed sources, assuming a constant disc density and an exponential bulge, show that the distance to the sources is strongly peaked in the Bulge, with the probability of having D < 7 kpc very small (Kane & Sahu 2006).

Another argument that these are Bulge stars, rather than disc stars, are the large radial velocities for stars close to the Galactic centre (e.g. Epstein et al. 2009) as well as the fact that there are **Fig. 2.** Positions and radial velocities for the 15 microlensed stars. The arrows represent measured radial velocities and one degree corresponds to 70 km s<sup>-1</sup>. Upward pointing arrows indicate positive velocities. The curved line shows the outline of the southern Bulge based on observations with the COBE satellite (Weiland et al. 1994). The location of Baade's window (BW) is marked by the larger open circle. Stars have been labelled with the last number in their IDs.

stars with radial velocities in opposite directions on the same side of the Galactic centre (e.g., Cohen et al. 2008).

In addition, we have prior knowledge of the colours and magnitudes of the source stars when unmagnified. The stars we observed were all identified as dwarf or subgiant stars at the distance of the Bulge based on OGLE or MOA instrumental colours and magnitudes, estimated from the offsets from the red clump stars in the same field. The parameters for the stars determined in this manner have been repeatedly tested against the parameters derived spectroscopically and the overall consistency between these results (e.g. Johnson et al. 2007, 2008) again shows that these stars are likely located at the distance of the Bulge and not the near or far disc. The fact that the latitudes of the stars are closer to the Galactic plane may make disc contamination more likely for unmagnified sources; however, the combination of kinematics, colour-magnitude diagrams and microlensing statistics indicate that we are studying a stellar population belonging in the Bulge.

# 4. Analysis

#### 4.1. Stellar parameters and elemental abundances

The determination of stellar parameters and calculation of elemental abundances were carried out as described in method 1 of Bensby et al. (2009b). Briefly, this method is based on equivalent width measurements ( $W_{\lambda}$ ) and one-dimensional LTE model stellar atmospheres calculated with the Uppsala MARCS code (Gustafsson et al. 1975; Edvardsson et al. 1993; Asplund et al. 1997). The spectral line list is an expanded version of the list used by Bensby et al. (2003, 2005) and is in full given in Bensby et al. (in prep.). Equivalent widths were measured using the IRAF<sup>6</sup> task splor. Gaussian line profiles were fitted to the observed lines, but in special cases of strong Mg, Ca, Si and Ba lines, Voigt profiles were used to better account for the extended wing profiles of these lines.

The effective temperature  $(T_{\text{eff}})$  is found by requiring excitation balance of abundances from Fe<sub>1</sub> lines, the microturbulence parameter ( $\xi_t$ ) by requiring zero slope in the graph where abundances from Fe<sub>1</sub> lines are plotted versus the reduced strength

<sup>&</sup>lt;sup>6</sup> IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under co-operative agreement with the National Science Foundation.



**Fig. 3.** Diagnostic plots showing absolute Fe abundances versus reduced line strength and lower excitation potential. Open circles indicate abundances from Fe I lines and filled circles from Fe I lines. Similar plots for MOA-2006-BLG-099S, OGLE-2006-BLG-265S, OGLE-2007-BLG-349S, and OGLE-2008-BLG-209S can be found in Bensby et al. (2009b). Note the limited number of lines for MOA-2009-BLG-259S due to that this star was observed when only the UVES blue CCD was available.

 $(\log(W_{\lambda}/\lambda))$  of the spectral lines, and the surface gravity  $(\log g)$  from ionisation balance, i.e., requiring that the average abundances from Fe I and Fe II lines are equal. Only Fe I and Fe II lines with measured equivalent widths smaller than 90 mÅ are used in the determination of the stellar parameters. Figure 3 shows the diagnostic plots,  $\log \epsilon$  (Fe) versus  $\log(W_{\lambda}/\lambda)$  and lower excitation potential  $(\chi_e)$ , for the stars.

To relate the elemental abundances to those in the Sun we determine our own solar abundances. The equivalent widths we measure in the solar spectrum that was obtained by observing the asteroid Pallas with UVES on April 11, 2009, show very good agreement with the equivalent widths of several solar spectra (average of Ganymede, Ceres, Vesta, Moon, and sky spectra) in Bensby et al. (in prep.). On average the measurements of the

Table 2. Stellar parameters, ages, and radial velocities for the sample of microlensed dwarf stars.<sup>†</sup>

| Object                                                                                                                                                                  | T <sub>eff</sub><br>[K]                                                                                                                | log <i>g</i><br>[cgs]                                                                                                                                               | $\xi_t$ [ km s <sup>-1</sup> ]                                                                                                                                                       | [Fe/H]                                                                                                                                                                      | $N_{\rm FeI}$ , $N_{\rm FeII}$                                                 | Age<br>[Gyr]                                                                                                                           | $v_{\rm r}$ [ km s <sup>-1</sup> ]                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S                     | $5877 \pm 96$<br>$5457 \pm 98$<br>$5597 \pm 92$<br>$5843 \pm 173$<br>$5650 \pm 106$<br>$5243 \pm 65$<br>$5634 \pm 89$                  | $\begin{array}{c} 4.30 \pm 0.18 \\ 4.50 \pm 0.22 \\ 4.40 \pm 0.27 \\ 4.40 \pm 0.30 \\ 4.05 \pm 0.20 \\ 3.82 \pm 0.16 \\ 4.30 \pm 0.18 \end{array}$                  | $\begin{array}{c} 1.61 \pm 0.16 \\ 0.83 \pm 0.30 \\ 1.15 \pm 0.27 \\ 1.31 \pm 0.31 \\ 0.30 \pm 0.45 \\ 1.01 \pm 0.11 \\ 0.68 \pm 0.17 \end{array}$                                   | $\begin{array}{c} -0.72 \pm 0.07 \\ -0.70 \pm 0.14 \\ -0.64 \pm 0.17 \\ -0.54 \pm 0.17 \\ -0.49 \pm 0.14 \\ -0.30 \pm 0.06 \\ -0.18 \pm 0.11 \end{array}$                   | 66, 7<br>80, 5<br>68, 7<br>53, 4<br>97, 10<br>146, 19<br>114, 15               | $11.7 \pm 1.9 \\ 9.1 \pm 4.0 \\ 9.4 \pm 4.0 \\ 9.1 \pm 3.7 \\ 11.7 \pm 2.3 \\ 9.5 \pm 3.1 \\ 11.0 \pm 2.3$                             | +128.7<br>-14.5<br>+91.6<br>+137.8<br>+37.6<br>-173.6<br>+96.5           |
| MOA-2009-BLG-456S<br>OGLE-2007-BLG-514S<br>MOA-2009-BLG-259S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S | $5700 \pm 93$<br>$5644 \pm 130$<br>$5000 \pm 400$<br>$5944 \pm 68$<br>$5704 \pm 65$<br>$5229 \pm 63$<br>$5741 \pm 87$<br>$5486 \pm 70$ | $\begin{array}{c} 4.24 \pm 0.18 \\ 4.10 \pm 0.28 \\ 4.50 \pm 0.50 \\ 4.40 \pm 0.13 \\ 4.30 \pm 0.12 \\ 4.18 \pm 0.13 \\ 4.47 \pm 0.15 \\ 4.24 \pm 0.15 \end{array}$ | $\begin{array}{c} 1.00 \pm 0.10 \\ 1.00 \pm 0.20 \\ 1.55 \pm 0.29 \\ 0.50 \pm 0.75 \\ 1.17 \pm 0.12 \\ 1.05 \pm 0.11 \\ 0.78 \pm 0.13 \\ 0.84 \pm 0.14 \\ 1.17 \pm 0.12 \end{array}$ | $\begin{array}{c} +0.12 \pm 0.09 \\ +0.27 \pm 0.09 \\ +0.33 \pm 0.40 \\ +0.36 \pm 0.07 \\ +0.42 \pm 0.08 \\ +0.42 \pm 0.08 \\ +0.44 \pm 0.10 \\ +0.47 \pm 0.06 \end{array}$ | 91, 14<br>49, 8<br>16, 3<br>118, 16<br>122, 20<br>103, 18<br>119, 21<br>92, 14 | $7.9 \pm 1.6 \\ 6.9 \pm 1.6 \\ 9.4 \pm 4.0 \\ 2.3 \pm 1.0 \\ 4.5 \pm 1.0 \\ 13.6 \pm 1.0 \\ 2.8 \pm 1.3 \\ 7.9 \pm 1.3 \\ \end{cases}$ | -164.6<br>+158.8<br>+83.2<br>-34.1<br>+77.5<br>+113.0<br>+99.0<br>-154.0 |

<sup>†</sup> For the four stars analysed in Bensby et al. (2009b): OGLE-2008-BLG-209S, MOA-2006-BLG-099S, OGLE-2006-BLG-265S, and OGLE-2007-BLG-349S, we have here updated the estimations of the uncertainties using the method outlined in Epstein et al. (2009).

Pallas solar spectrum is only 0.3% larger, which is truly negligible. Hence, to ensure that the normalised abundances for the microlensed dwarf stars are on the same baseline as the sample of ~ 700 thin and thick disc dwarf stars in Bensby et al. (in prep.) we use the average equivalent widths based on measurements in all solar spectra (see Bensby et al. in prep.).

Final abundances are normalised on a line-by-line basis and then we take the median value for each element. In a few cases when the equivalent width of an Fe line in the Sun was larger than 90 mÅ, or when a Ti or Cr line were larger than 110 mÅ, and these lines were measured in the Bulge dwarf star, we normalised the abundance for that line with the average abundance from all other lines that were measured in the solar spectrum for that element. These cases are marked by "av" in col. 7 in Table 4.

Final stellar parameters for our targets are given in Table 2. All measured equivalent widths and elemental abundances for individual spectral lines are given in Table 4, while Table 5 gives the normalised abundance ratios.

#### 4.2. Additional dwarf stars

In order to increase the sample size of microlensed dwarf stars, we include the two stars MOA-2009-BLG-310S, and – 311S, recently published by Cohen et al. (2009b), and OGLE-2007-BLG-514S by Epstein et al. (2009). The metallicities that were found for these three stars by Cohen et al. (2009b) and Epstein et al. (2009) are [Fe/H] = +0.41, [Fe/H] = +0.26, and [Fe/H] = +0.33, respectively.

The spectra for these stars were kindly provided by the authors and we have re-analysed them using our methods in order to have all 15 microlensed dwarf stars on the same baseline. The values we find for these stars are listed in Table 2, and they are generally in good agreement with what were found in Cohen et al. (2009b) and Epstein et al. (2009). The main differences are that we derive a 240 K higher  $T_{\rm eff}$  and 0.2 dex higher log *g* for MOA-2009-BLG-311S, and a 0.2 dex lower log *g* for OGLE-2007-BLG-514S. The other differences are within the estimated uncertainties.

#### 4.3. Error analysis

A rigorous error analysis as outlined in Epstein et al. (2009) has been performed for the microlensed dwarf stars. This method takes into account the uncertainties in the four observables that were used to find the stellar parameters, i.e. the uncertainty of the slope in the graph of Fe I abundances versus lower excitation potential; the uncertainty of the slope in the graph of Fe I abundances versus line strength; the uncertainty in the difference between Fe I and Fe II abundances; and the uncertainty in the difference between input and output metallicities. The method also accounts for abundance spreads (line-to-line scatter) as well as how the abundances for each element reacts to changes in the stellar parameters.

The resulting errors in the stellar parameters are given together with the best fit values of the stellar parameters in Table 2. The errors in the abundance ratios are given in Table 5.

#### 4.4. Stellar ages

Stellar ages were determined as described in Meléndez et al. (2009). We interpolated a fine grid of  $\alpha$ -enhanced Yonsei-Yale (Y<sup>2</sup>) isochrones by Demarque et al. (2004), adopting  $[\alpha/Fe] = 0$  for [Fe/H] > 0,  $[\alpha/Fe] = -0.3 \times [Fe/H]$  for  $-1 \leq [Fe/H] \leq 0$ , and  $[\alpha/Fe] = +0.3$  for [Fe/H] < -1. At a given metallicity, we searched for all solutions allowed by the error bars in  $T_{\text{eff}}$ , log g and [Fe/H], adopting as final result the median age and as error the standard deviation. Column 6 in Table 2 give the median age, and column 7 the error. Figure 4 shows the 15 microlensed dwarf stars together with the Y<sup>2</sup> isochrones in the log  $T_{\text{eff}} - \log g$  plane.

# 4.5. Check 1: temperatures from microlensing techniques

De-reddened colours and magnitudes of the sources can be estimated using standard microlensing techniques (e.g. Yoo et al. 2004). The method for determining the colour does not make any assumption about the absolute reddening, nor about the ratio of selective to total extinction. It only assumes that the reddening toward the microlensed source is the same as the reddening toward the red clump, and that the red clump in the Bulge has  $(V - I)_0 = 1.05$  and  $I_0 = 14.32$  (e.g., Johnson et al.



**Fig. 4.** Illustration of the estimation of stellar ages using the  $\alpha$ -enhanced isochrones from Demarque et al. (2004). Each set of isochrones have been calculated with the same metallicity and  $\alpha$ -enhancement as derived for the stars. In each plot the solid lines represent isochrones with ages of 5, 10, and 15 Gyr (from left to right). Dotted lines are isochrones in steps of 1 Gyr, ranging from 0.1 Gyr to 20 Gyr. Error bars represent the uncertainties in  $T_{\text{eff}}$  and  $\log g$  as given in Table 2.

Table 4. Measured equivalent widths and calculated elemental abundances for each star.<sup>†</sup>

|            | λ                  | Xı           |                     | Sun                 |     | ob0           | 9076          | mb(           | 09133         | mb(           | )9456         | mb            | 09475         | mb(           | )9489         | mb            | 09493         | mb9           | 9022          |
|------------|--------------------|--------------|---------------------|---------------------|-----|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| El.        | [Å]                | [eV]         | $W_{\lambda,\odot}$ | $\epsilon(X)_\odot$ | flg | $W_{\lambda}$ | $\epsilon(X)$ |
| Alı<br>Alı | 5557.06<br>6696.02 | 3.14<br>3.14 | 10.4<br>44.9        | 6.44<br>6.62        | -   |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
| ÷          | ÷                  | :            | ÷                   | ÷                   | ÷   | ÷             | ÷             | ÷             | ÷             | :             | ÷             | ÷             | ÷             | ÷             | ÷             | :             | ÷             | ÷             | ÷             |

<sup>†</sup> For each line we give the log gf value, lower excitation potential ( $\chi_1$ ), measured equivalent widths ( $W_\lambda$ ), derived absolute abundance (log  $\epsilon(X)$ ). The table is only available in the online version of the paper and in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

**Table 3.** Comparison of colours and effective temperatures as determined from spectroscopy and microlensing techniques<sup> $\dagger$ </sup>.

| Object              | $M_I$ | (V–I) <sub>0</sub> | $T_{\rm eff}^{phot}$ | $T_{\rm eff}$ | $(V-I)_0^{spec}$ |
|---------------------|-------|--------------------|----------------------|---------------|------------------|
| OGLE-2009-BLG-076S  | 4.19  | 0.67               | 5775                 | 5877          | 0.65             |
| MOA-2009-BLG-493S   | 3.34  | 0.79               | 5325                 | 5457          | 0.75             |
| MOA-2009-BLG-133S   | 4.19  | 0.68               | 5730                 | 5597          | 0.71             |
| MOA-2009-BLG-475S   | 4.25  | 0.59               | 6150                 | 5843          | 0.65             |
| MACHO-1999-BLG-022S | _     | _                  | _                    | 5650          | 0.71             |
| OGLE-2008-BLG-209S  | 2.52  | 0.71               | 5670                 | 5243          | 0.82             |
| MOA-2009-BLG-489S   | 3.39  | 0.85               | 5200                 | 5634          | 0.71             |
| MOA-2009-BLG-456S   | 2.76  | 0.66               | 5870                 | 5700          | 0.71             |
| OGLE-2007-BLG-514S  | 4.68  | 0.70               | 5760                 | 5644          | 0.73             |
| MOA-2009-BLG-259S   | 2.91  | 0.79               | 5450                 | 5000          | 0.97             |
| MOA-2008-BLG-311S   | 3.85  | 0.66               | 5880                 | 5944          | 0.65             |
| MOA-2008-BLG-310S   | 3.46  | 0.69               | 5780                 | 5704          | 0.72             |
| OGLE-2007-BLG-349S  | 4.54  | 0.78               | 5490                 | 5229          | 0.87             |
| MOA-2006-BLG-099S   | 3.81  | 0.74               | 5620                 | 5741          | 0.70             |
| OGLE-2006-BLG-265S  | 3.59  | 0.68               | 5840                 | 5486          | 0.78             |

<sup>†</sup> Columns 2 and 3 give the absolute dereddened magnitudes and colours based on microlensing techniques; based on the colours in col. 3; col. 4 gives the inferred effective temperatures using the colour–[Fe/H]– $T_{\rm eff}$  calibrations by Ramírez & Meléndez (2005); col. 5 gives our spectroscopic temperatures (same as in col. 2 in Table 2); and col. 6 gives the colours, based on the colour–[Fe/H]– $T_{\rm eff}$  calibrations by Ramírez & Meléndez (2005), that the spectroscopic temperatures in col. 5 gives.

2008; Epstein et al. 2009). The absolute de-reddened magnitude and colour are then derived from the offsets between the microlensing source and the red clump in the instrumental colourmagnitude diagram (CMD). The absolute de-reddened magnitudes and colours for 14 of the 15 microlensed stars are given in Table 3. Photometry for MACHO-1999-BLG-022S could not be recovered at this time.

From the colour–[Fe/H]– $T_{\rm eff}$  calibrations by Ramírez & Meléndez (2005) we check what temperature we should expect given the de-reddened colour and the metallicity we determined. On average we find that the spectroscopic temperatures are 103 K lower than the ones based on the colour–[Fe/H]– $T_{\rm eff}$  relationships. The top panel of Fig. 5 shows a comparison between the two as a function of [Fe/H]. No obvious trends can be seen.

It is also possible to use the the same calibrations by Ramírez & Meléndez (2005) to see what (V-I) colours the spectroscopic effective temperatures and metallicities would give. These are listed in the last column of Table 3, and the comparison between photometric and "spectroscopic" (V - I) colours are shown in the bottom panel of Fig. 5. On average the spectroscopic colours are 0.03 mag higher, with no discernible trend with metallicity.

The offset that we see between spectroscopic and photometric values could be a result of the assumed magnitudes and colours of the red clump in the Bulge. Previously, it was assumed that the red clump stars in the Bulge had the same colour as the red clump stars in the Solar neighbourhood  $((V - I)_0 = 1.00)$ . Based on the first microlensing events of dwarf stars in the Bulge (Johnson et al. 2008; Cohen et al. 2008), and additional observational evidence (Epstein et al. 2009), this value was revised to  $(V - I)_0 = 1.05$ . Assuming that the spectroscopic temperatures are the correct ones, our results indicate that the  $(V - I)_0$  colour of the red clump stars in the Bulge should be revised upwards by an additional few hundredths of a dex to  $(V - I)_0 = 1.08$ .



**Fig. 5.** Top panel shows a comparison of our spectroscopic  $T_{\text{eff}}$ :s to those implied from the colour–[Fe/H]– $T_{\text{eff}}$  calibrations by Ramírez & Meléndez (2005) versus [Fe/H]. Bottom panel shows a comparison between the colours that our spectroscopic  $T_{\text{eff}}$ :s imply (using the colour–[Fe/H]– $T_{\text{eff}}$  calibrations by Ramírez & Meléndez 2005) and the colours based on microlensing techniques. Differences are in both cases given as *spectroscopic – photometric*.



**Fig. 6.** Effective temperature and surface gravity versus [Fe/H]. In each figure the regression parameters (slope and constant) are given, as well as their uncertainties. The error bars in the stellar parameters represent the total uncertainty (see Table 2 and Sect. 4.3).

#### 4.6. Check 2: trends with metallicity

Figure 6 shows how  $T_{\text{eff}}$  and  $\log g$  vary with metallicity. Regression lines, taking the errors in both *x* and *y* directions into account, are shown, as well as the regression parameters and their uncertainties. No significant trends with metallicity can be seen.

#### 4.7. Check 3: signal-to-noise and continuum bias

The two papers by Bensby et al. (2009a,b) found the two first microlensed dwarf stars with sub-solar iron abundances. In this study we find an additional 5 stars with sub-solar [Fe/H]. It has been suggested that the reason for this could be that these spectra have, on average, lower S/N than the other events studied,

especially compared to Cohen et al. (2009b) which all have very high [Fe/H]. The lower S/N should then result in that the continuum was set too low and thus the  $W_{\lambda}s$  underestimated, resulting in too low [Fe/H].

We looked in greater detail at MOA-2009-BLG-475S, the dwarf star with the spectrum that has the lowest S/N, and tested if we could make the star more metal-rich. This experiment was done by assuming that the star is actually metal-rich and that there are many weak lines that makes it difficult to identify the level of the continuum. The best way to set the continuum is then to assume that the high points in the spectrum are indeed the continuum. We re-measured the star under this assumption and determined new stellar parameters. On average the equivalent widths became 10 mÅ larger. This resulted in a change of the metallicity of +0.1 dex, but the other stellar parameters (log g,  $T_{\text{eff}}$ , and  $\xi_1$ ) were intact and did not change. Hence, we find it unlikely that our low-metallicity stars could be high-metallicity stars resulting from an erroneous analysis of their relatively low S/N spectra.

#### 4.8. In summary

Our analysis shows that the eight microlensed stars that we observed were successfully selected to be dwarf stars, varying in metallicity from [Fe/H] = -0.72 to +0.54. The first results for OGLE-2009-BLG-076S were presented in Bensby et al. (2009a) where we found a metallicity of [Fe/H] = -0.76. The refined analysis in this study gives a metallicity of [Fe/H] = -0.72, and it still holds (barely) the place as the most metal-poor dwarf star in the Bulge, with MOA-2009-BLG-133S just 0.01 dex higher.

The uncertainties in the stellar parameters are below or around 100 K in  $T_{\text{eff}}$ , around 0.2 dex in log g, and around 0.1– 0.2 dex in [Fe/H] (see Table 2). The clear exception is MOA-2009-BLG-259S where errors are exceptionally large. This is due to difficulties arising from the very limited wavelength coverage of the UVES spectrum that was obtained when only the blue CCD was available. The fact that it also turned out to be a metal-rich star at [Fe/H] = +0.32, further increases the errors due to line blending and uncertainties in the placement of the continuum. Also, the lack of weak lines, due to the high [Fe/H], made it especially difficult to determine the microturbulence parameter (see Fig. 3). A spectrum covering the whole optical region of MOA-2009-BLG-259S was obtained by another group using the HIRES spectrograph, and they find a 0.2 dex higher metallicity than what we do (Cohen et al. 2009a). Although the metallicity is in reasonable agreement with what others have found we think that the errors in  $T_{\text{eff}}$  and  $\log g$  are so large that this star is not conveying any information in the [Fe/H], age, or abundance plots. Therefore we do not include this star in the following discussions.

# 5. Metallicity distributions of dwarfs and giants

The most recent spectroscopic study of a large homogeneous sample of giant stars in the Bulge is by Zoccali et al. (2008). Using FLAMES, the multi-fibre spectrograph at the Very Large Telescope, they studied a sample of 521 giant stars at three latitudes in the Bulge: 204 stars in Baade's window at  $l \approx -4^{\circ}$ ; 213 stars at  $l \approx -6^{\circ}$ ; and 104 stars at  $l \approx -12^{\circ}$ . The 15 microlensed dwarf stars observed so far are all located at similar angular distances from the Galactic centre as Baade's window (see Fig. 2). Therefore, only the 204 stars in the  $l = -4^{\circ}$  field from Zoccali et al. (2008) will be used for comparison.



**Fig. 7.** The top panel shows the MDF for the 204 giant stars in Baade's window from Zoccali et al. (2008), and the middle panel the MDF for the fourteen microlensed dwarf stars (MOA-2009-BLG-259S excluded). Their cumulative metallicity distributions (CMDF) are shown in the bottom panel (giant CMDF marked by solid line, and the dwarf star CMDF by dash-dotted line). The two-sample Kolmogorov-Smirnov *D* statistic (maximum vertical distance between two distributions) and the corresponding significance level, *prob*, of *D* are indicated.

The average metallicity of the 14 microlensed dwarf and subgiant stars in the Bulge (MOA-2009-BLG-259S excluded, see Sect. 4.8) is  $\langle [Fe/H] \rangle = -0.08 \pm 0.47$ . This is in agreement with the average metallicity of the 204 RGB stars in Baade's window that have  $\langle [Fe/H] \rangle = -0.04 \pm 0.40$ . However, when comparing the two distributions, a two-sided Kolmogorov-Smirnow (KS) test gives a significance level of the null hypothesis, that they are drawn from the same distribution, of 30% (see Fig. 7). Hence, we can not reject the null hypothesis that the MDF for the 14 microlensed dwarf stars and the MDF for the 204 Bulge RGB stars from Zoccali et al. (2008) are identical.

As discussed by, e.g., Santos et al. (2009) it is possible that a systematic shift in [Fe/H] between analyses of dwarf stars and giant stars, perhaps by as much as 0.2 dex, exists. However, the difference in the average metallicity between dwarf and giant stars is essentially zero. If there was a real difference of 0.2 dex between the dwarf stars and the giant stars, how many dwarf stars would we need to observe in order to statistically measure that difference?

In order to estimate the number of stars required to reject the null hypothesis, that the MDF for the sample of 204 RGB stars,  $S_{RGB}$ , is not different from the MDF for the observed dwarf stars, we will use a non-parametric bootstrap method. First, we construct a sample,  $S_{RGB,0.2}$ , of stars that is shifted 0.2 dex from the original RGB sample,  $S_{RGB}$ . Secondly, we bootstrap *n* number of stars from sample  $S_{RGB,0.2}$ , thus creating a new sample,  $S_{n,0.2}$ , that contains *n* stars. Next, we perform a two-sided KStest between samples  $S_{RGB}$  and  $S_{n,0.2}$ . If the KS-test yields that the distributions are not the same at the 95% confidence level, we reject the null hypothesis. We repeat this process *i* = 10000



**Fig. 8.** *Upper panel:* Probability of detecting a difference between the Bulge RGB MDF and the microlensed dwarf MDF as a function of the number of stars in the dwarf sample. Solid and dashed line indicate the probability if the difference is 0.2 and 0.1 dex, respectively, in the mean of the MDFs. Dotted line indicates the probability if the difference is that the microlensed dwarf MDF has more metal rich, [Fe/H] > 0.0, stars (i.e, a more symmetric MDF) than the RGB MDF. *Lower panel:* The significance of the agreement between the average of the metallicities of the RGB MDF and microlensed dwarf MDF, as a function of a speculated (still undetected) difference.

times and take the average,  $\langle p \rangle$ , of  $p_i$ , where  $p_i = 1$  if the null hypothesis was rejected, and 0 otherwise (type II error). Thus,  $\langle p \rangle$  is our probability to identify an intrinsic difference of 0.2 dex in the mean in the MDF for RGB and microlensed dwarf stars. Figure 8 shows how this probability varies with the number of stars in the hypothetical dwarf star sample. In order to statistically verify a difference of at least 0.2 dex, at the 95 % level, we need to observe around 40 stars. Also in Fig. 8 we show how the probability varies if we want to verify a difference of only 0.1 dex between dwarfs and giants. Note that the detection of such a small difference would require the observation of many more microlensed dwarf stars.

Above we shifted the entire MDF by 0.1 and 0.2 dex and did not consider other statistical parameters that describe the MDF such as variance, skewness and kurtosis. However, these parameters will most likely make it easier to reject the null hypothesis, that the distributions are the same, if they are considered in the test. Additionally, we only considered 0.1 and 0.2 dex as a difference between the samples. A larger difference will also make it easier to reject the null hypothesis. Our estimate of  $\langle p \rangle$  is therefore a lower limit.

Additionally, the average metallicity for the 14 microlensed dwarf stars is in agreement with the average metallicity of the RGB stars. The question is then, what is the significance of this result, given the low number statistics of the microlensed dwarf stars, i.e., can we rule out a shift of 0.2 dex between the MDF for the RGB stars and the MDF for the dwarf stars? We estimate the significance of the agreement between the average metallicities using 10<sup>5</sup> Monte Carlo realisations. In each realisation, we draw 14 stars randomly from the RGB sample. We determine the significance of the agreement between the average of the metallicities by computing the fraction of realisations that fail to produce a dwarf star average metallicity lower or equal to the average metallicity of the RGB stars. Next, we shift the MDF for the RGB stars by a small positive amount,  $\delta$ , and repeat the above given exercise. Figure 8, lower panel, shows the significance as a function of  $\delta$ . We find that for  $\delta \sim 0.2$ , the significance has dropped to 0.05 which indicates that we can rule out the possibility that there is a systematic shift in [Fe/H] of 0.2 dex between the MDF for the RGB stars and the MDF for the dwarf stars. However, we need to put this in relation to the standard deviation of the difference between the averages given by

$$\tau_d = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
(1)

where subscript 1 and 2 indicate the RGB star sample and dwarf star sample, respectively,  $\sigma$  is the sample standard deviation, and *n* is the number of elements in each sample. We find a  $\sigma_d$  of 0.12, which is not even  $2\sigma$  from 0.2 dex. Thus, given the small number of dwarf stars in our sample,  $n_2 = 14$ , we can not rule out a possible systematic shift of 0.2 dex between the MDF for the RGB stars and the MDF for the dwarf stars, even though the distributions at this point have the same average metallicity. Thus, more microlensed events are needed for the agreement between the averages to be significant.

The above discussion focused on a systematic offset between the dwarf and giant abundances, caused either by systematic effects in the data analysis or differences in the surface compositions of dwarfs and giants because of their differing evolutionary states. However, instead of an overall shift, the dwarf MDF may be different from the giant MDF only at the high metallicity end. Kalirai et al. (2007) suggested that up to 40 per cent of the stars at the metallicity of NGC6791 ([Fe/H] = +0.3) skip the He burning phase, resulting in a depletion of the HB and AGB phases. Therefore, an MDF based on giants may not reflect the MDF for the dwarf stars (i.e. there are metal rich stars missing in the MDF for the RGB stars). The question is then, how many microlensed dwarf stars are required to reject the null hypothesis that the MDF for these dwarfs, that has an excess of metal-rich stars compared to  $S_{RGB}$ , is no different than the MDF for  $S_{RGB}$ ? Based on this, we construct a dwarf star sample with more metal-rich stars than  $S_{RGB}$ ,  $S_{RGB, Kalirai}$ , under the assumption that 100% of the dwarfs with [Fe/H] < 0.0 evolve to RGBs, but that the number of dwarfs that evolve to RGBs decrease linearly down to 60% at [Fe/H] = +0.3. We extrapolate this linearly for more metal-rich stars, i.e. going down to  $\sim$ 34% at [Fe/H] = +0.5. Thus, we add stars, more metal-rich than [Fe/H] = 0.0, to  $S_{RGB}$  to create a hypothetical sample of dwarf stars in the Bulge, S<sub>RGB,Kalirai</sub>. Additionally, we add stars, drawn from a Gaussian distribution centred on [Fe/H] = +0.2with  $\sigma = 0.4$ , to  $S_{\text{RGB,Kalirai}}$  for the metal rich region where there are no observed RGB stars. Thus, making the sample more symmetric. The dotted line in Fig. 8 shows how  $\langle p \rangle$  varies for this analysis with the number of stars in  $S_{\text{RGB,Kalirai}}$ . We note that about 100 stars are required in order to verify that  $S_{RGB}$  is different than S<sub>RGB,Kalirai</sub>.

Also, there has been some claims that the microlensing event itself alters the spectrum of the source star, and that this is the reason for the very high metallicities of some of the dwarf stars



**Fig. 9.** Ages versus [Fe/H] for 14 microlensed dwarf and subgiant stars in the Bulge (MOA-2009-BLG-259S has been excluded). The error bars represent the total uncertainty [Fe/H] and age (see Table 2 and Sects. 4.3 and 4.4).

in the Bulge (e.g. Zoccali et al. 2008). Recently, Johnson et al. (2009) investigated the effect that differential limb darkening has on abundance analysis of microlensed dwarf stars. They do find changes in the measured equivalent widths as a result of the differential limb darkening. However, the effect is very small, leading to changes in  $T_{\rm eff}$  less than 45 K, log *g* less than 0.1 dex, and [Fe/H] less than 0.03 dex. Hence, a possible differential limb darkening can not be responsible for the MDF discrepancy (if any) between dwarf and giant stars.

In summary, it is evident that the extremely super-metal-rich MDF proposed by Cohen et al. (2009b), exclusively based on dwarf stars with super-solar [Fe/H], has shifted toward lower metallicities. The MDF of the 14 microlensed dwarf stars is still poorly determined, currently being double peaked with excesses of low- *and* high-metallicity stars. Whether this is an effect of small number statistics or not is unclear. More microlensed events will certainly help to clarify the dwarf star MDF and to refine the comparison with the giant star MDF. Also, an outstanding issue is the puzzle presented in Cohen et al. (2009a) of the correlation between  $A_{max}$  and [Fe/H], which we hope to diagnose as future events are observed.

# 6. Ages and metallicities

The 14 microlensed dwarf and subgiant stars (MOA-2009-BLG-259S excluded, see Sect 4.8) in the Bulge have an average age of  $8.4\pm3.3$  Gyr. Figure 9 shows the age-metallicity diagram and it is evident that stars with sub-solar [Fe/H] all have high ages, while at super-solar [Fe/H] there is a large spread in age, covering the whole age-range seen in the Galactic disc(s) (e.g., Twarog 1980; Feltzing et al. 2001). That the large age-range seen for super-solar [Fe/H] is real is exemplified by two stars: OGLE-2007-BLG-349S and MOA-2008-BLG-310S. The first star has a high age while the second has a low age. That the ages are robust can be seen in Fig. 4 and we also note that their stellar parameters

have small errors and are derived from a large number of Fe I and Fe II lines (see Table 2 and Fig. 3).

In spite of the small sample, it is notable that we only see the low ages for the metal-rich stars while all stars with sub-solar [Fe/H] are consistent with the classical view of the Bulge as an old population (e.g., Holtzman et al. 1993; Feltzing & Gilmore 2000; Zoccali et al. 2003). As the stars with sub-solar [Fe/H] also have enhanced levels of  $\alpha$ -elements (see Fig. 10), these stars all appear to adhere to the classical picture of the Bulge as a stellar population that formed rapidly early in the history of the Galaxy (see, e.g., models and discussions in Matteucci 2001).

Overall, the evidence for young stars in the Bulge is scarce. For instance, the extremely deep CMD of  $\sim 180\,000$  field stars in the Bulge by Sahu et al. (2006) show no traces of a young population. It is therefore surprising to find three (MOA-2008-BLG-310S, MOA-2008-BLG-311S, and MOA-2006-BLG-099S) out of 14 stars to have young ages. At this point we can only speculate on their origin. One interpretation would be that the older stars are all bona fide Bulge stars while the young, metal-rich stars are disc interlopers. In the Galactic disc a young age and a high metallicity is common (e.g., Twarog 1980; Feltzing et al. 2001; Nordström et al. 2004). Also, the innermost Galactic disc is expected to be more metal-rich than the Solar neighbourhood (e.g. Colavitti et al. 2009). However, we still do not now if it is supposed to be young too.

It should furthermore be noted that these young Bulge stars are not brighter than the main old turnoff, they are just too blue to fall on old isochrones (see Fig. 4). Also, there are some theoretical limitations of the isochrone fitting method. First, isochrones at [Fe/H] > +0.3 have very few calibrators, and, second, the colour of the main sequence is strongly affected by the Y (helium) content, which for the Bulge, or any population with such high metallicity, is poorly known. However, we find a whole range of ages at high metallicities, so we don't see a bias in our ages.

# 7. Abundance trends in the Bulge

### 7.1. General appearance

Figure 10 shows the abundance results for 13 of the 15 the microlensed dwarf and subgiant stars in the Bulge (MOA-2009-BLG-259S were excluded, see Sect. 4.8, and for the Epstein et al. (2009) star OGLE-2007-BLG-514S we only determined stellar parameters and Fe abundances.).

Regarding the  $\alpha$ -elements (Mg, Si, Ca, and Ti), the Bulge dwarfs show enhanced [ $\alpha$ /Fe] ratios at sub-solar [Fe/H], that decline when approaching solar metallicities. At higher metallicities the [ $\alpha$ /Fe] ratios are around or slightly higher than solar. The oxygen trend is similar to the  $\alpha$ -element trends at sub-solar metallicities, but differs at super-solar [Fe/H] where it continues to decrease. The oxygen abundances that are based on the infrared triplet lines at 773 nm have been NLTE corrected the according to the empirical formula given in Bensby et al. (2004).

Generally, abundance trends of the dwarf stars in the Bulge are very well-defined. The scatter in the [Ti/Fe]-[Fe/H] plot for instance is remarkably low. The canonical interpretation of the plateau of high  $\alpha$ -element abundances relative to iron at low metallicities is due to early and rapid chemical enrichment of the Bulge by massive stars. When these stars die, they explode as core-collapse supernovae, producing a lot of  $\alpha$ -elements relative to iron. At some point low-mass stars start to contribute to the chemical enrichment, and since these produce less of the  $\alpha$ -elements the [ $\alpha$ /Fe] ratio will start to decline.



**Fig. 10.** Abundance results for 13 microlensed dwarf and subgiant stars in the Bulge (marked by filled bigger circles). Thick disc stars from Bensby et al. (2010, in prep.) are shown as small circles, and the solid line is the running median of the shown thick disc sample, and the dashed line the running median of the (not shown) thin disc sample from Bensby et al. (2010, in prep.). The error bars represent the total uncertainty in the abundance ratios (see Sect. 4.3 and Table 5).



**Fig. 11.** Comparisons of [Na/Fe], [Mg/Fe], and [Al/Fe] between our microlensed dwarf stars (filled circles), giants from Fulbright et al. (2007) (empty squares), giants from Lecureur et al. (2007) (asterisks), nearby thick disc stars from Bensby et al. (in prep.) (small open circles). Solid and dashed lines represent the running median of the thick and thin disc stars, respectively (same as in Fig. 10).

The enhanced  $[Na/Fe] \approx +0.1$  for metal-rich disc stars was already noticed by Edvardsson et al. (1993), Feltzing & Gustafsson (1998), Shi et al. (2004), and also in Bensby et al. (2005) an upturn in [Na/Fe] can be seen. Our microlensed dwarf stars are in full agreement with these disc results.

The [Ba/Fe] trend is flat and slightly under-abundant compared to the Sun for all [Fe/H].

# 7.2. Comparisons to the Galactic thick disc

In Fig. 10 we also show the thick disc abundance trends based on dwarf stars in the Solar neighbourhood (taken from Bensby et al. 2003, 2005, and Bensby et al., in prep.). These thick disc stars have been analysed using the exact same methods (spectral line lists, atomic data, model stellar atmospheres, etc.) that we use for the microlensed dwarf stars. Hence, any differences between the stars from the two stellar populations should be real, and not due to unknown systematic effects.

The first thing that can be taken away from Fig. 10 is that, at sub-solar metallicities, the abundance trends for the Bulge dwarf stars are very similar to those of the thick disc stars. The solid lines shown in the figures indicate the median abundance ratio as a function of metallicity for thick disc stars. Even though the appearance of the abundance trends at sub-solar [Fe/H] are very similar between the Bulge and the thick disc, it is also evident that for many elements the Bulge stars appear to be slightly more enhanced than the median thick disc. The Bulge stars seem to occupy the upper envelope of the thick disc abundance trends. Part of this apparent shift in the abundance trends between the two populations could be due to that the thick disc sample is kinematically selected, and hence will unavoidably be mixed, to some degree, with kinematically hot thin disc stars (see Bensby et al. 2007). The median thick disc line that we show in Fig. 10 will then be slightly too low. However, this effect should only be important when approaching solar metallicities, and we do see a shift between the Bulge and the thick disc at lower [Fe/H] as well, where the kinematic confusion between the thin and thick discs should be negligible. However, the shift is not for all elements, and it is small, on the order of 0.05 dex or less. More microlensing events will help us to clarify if this shift is real or not.

A possible link between the Bulge and the Galactic thick disc based on similarities of abundances was first suggested by Prochaska et al. (2000), pointing out the "excellent agreement" between the abundance ratios in their sample of ten thick disc stars to those of the Bulge giants of McWilliam & Rich (1994). As the thick disc sample of Prochaska et al. (2000) only reached [Fe/H]  $\approx -0.4$ , the downturn in [ $\alpha$ /Fe] that we now see in the thick disc at [Fe/H]  $\approx -0.35$  (e.g. Feltzing et al. 2003; Bensby et al. 2007) was at that time not known. Hence, when later studies of giant stars in the Bulge showed that the  $[\alpha/Fe]$  remained high even at super-solar metallicities (e.g. Fulbright et al. 2007), in contrast to the declining thick disc trends, the possible connection between the Bulge and the thick disc became less clear. It should also be noted that Prochaska et al. (2000) did not analyse both the Bulge and thick disc samples. Also, recently, Meléndez et al. (2008) presented a consistent analysis of giant stars in both the Bulge and the thick disc that found a similarity between them for C, N, O (recently confirmed by Ryde et al. 2009). The agreement is extended to other  $\alpha$ -elements in the upcoming study by Alves-Brito et al. (2010). However, the first confirmation that the Bulge and the thick disc have similar abundance patterns based on dwarf stars came from Bensby et al. (2009b,a), and with this study it now appears well established that the Bulge and the thick disc have had, to some degree, similar histories.

Before interpreting the apparent agreement between the Bulge and thick disc abundance trends, it is important to recognise that the MDFs for the thick disc and the Bulge differ in the average as well as width of their MDFs. The metallicity distribution for the thick disc peaks at  $[Fe/H] \approx -0.6$  (e.g., Carollo et al. 2009), and its metal-rich tail likely reach solar metallicities (Bensby et al. 2007). Stars with [Fe/H] > 0 that can be kinematically classified as thick disc stars, are heavily biased to belong to the high-velocity tail of the thin disc (Bensby et al. 2007). Even though the average metallicity of the Bulge and the shape of its MDF is under debate (see Sect. 5) it is clear that it spans the full range of metallicities of the thick disc, and in addition reaches very high, super-solar [Fe/H]. Hence, the agreement, as regards the abundance trends, between the Bulge and the thick disc can currently only be established for sub-solar metallicities. The comparison that can be made at super-solar [Fe/H] is between the Bulge stars and thin disc stars (dashed lines in Fig. 10) that reach similar high metallicities. As the abundance trends in

Fig. 10 show, the agreement between the Bulge and the thin disc at [Fe/H] > 0 is good. Looking at, e.g., the [Na/Fe], [Ni/Fe], and [Ba/Fe] trends, which are not simply flat at the highest [Fe/H], the Bulge stars nicely extend the trends that are seen for the nearby thin disc stars. However, Epstein et al. (2009) found a [Ba/Fe] value noticeably below the disc for OGLE-2009-BLG-514S. The Ba II lines are strong and very sensitive to the micro-turbulence parameter, and therefore measuring the abundances of another heavy element, such as La, would be a useful check.

With this study where we compare Bulge *dwarf* stars with disc *dwarf* stars, and with the recent studies by Meléndez et al. (2008) and Alves-Brito et al. (2010), all using internally consistent methods, it appears clear that the Bulge and thick disc abundance trends are similar. The agreement between the Bulge and the thick disc means that conclusions from recent theoretical works, developed under the assumptions that the abundance trends in the Bulge and thick disc are different, may not be valid.

We caution that the comparisons that we do and that have been done by others are between the Bulge stars close to the Galactic centre and thin and thick disc stars in the vicinity of the Sun, i.e., at a distance of approximately 8 kpc from the Galactic centre. In order verify a possible connection between the Bulge and the Galactic thick (and thin) disc(s) we need disc stellar samples much closer to the Bulge, say at 4 kpc from the Galactic centre. At that distance the contamination of Bulge stars in a disc stellar sample should be small, allowing us to directly compare the populations. If, for instance, the star formation has been more rapid in the inner disc than in the Solar neighbourhood, or in the outer disc, we should expect the "knee" in the  $\alpha$ -element abundance trends at higher [Fe/H] than what we see in the Solar neighbourhood. Then that could explain the apparent slight shift in the abundance trends between the Bulge and the thick disc in the Solar neighbourhood that we see. However, no such inner disc sample is currently available.

# 7.3. Comparisons to Bulge giants

It should be noted that some recent studies of Bulge giant stars claim that the Bulge is enhanced in the  $\alpha$ -elements with respect to the stars of the Galactic disc. For instance, Rich & Origlia (2005) compare their Bulge giants to nearby thin disc giants and find the Bulge ones to be more enhanced; Zoccali et al. (2006); Fulbright et al. (2007) and Lecureur et al. (2007) find their Bulge giants to be more enhanced than comparison samples of nearby thin and thick disc dwarf stars. In contrast, the recent study by Meléndez et al. (2008), and the upcoming study by Alves-Brito et al. (2010), compare Bulge giants with nearby thick disc giants, and find the Bulge and thick disc abundance trends to be similar.

In Fig. 11 we compare [Na/Fe], [Mg/Fe] and [Al/Fe] between our microlensed Bulge dwarfs, the giants from Fulbright et al. (2007) and Lecureur et al. (2007), and the Solar neighbourhood thin and thick disc dwarfs from Bensby et al. (2003, 2005, and in prep.). It is evident that the giants from Lecureur et al. (2007) are much more enhanced in Na, Mg, and Al than any of the other comparison samples, with our dwarf stars having lower abundances, the Fulbright et al. (2007) giants having intermediate abundances. The higher abundances of the giant stars might be due to the way these abundances have been normalised to the Sun. For dwarf stars with spectral types similar to the Sun in the same way and then subtract the solar abundance. However, for giants, having very different log g:s

and  $T_{\rm eff}$ :s than the Sun, the normalisation is usually done to another standard star, such as, e.g.,  $\mu$  Leo. This could partly explain the levels of the abundances, progressing from our dwarf stars, to the Fulbright et al. (2007) giants, and to the Lecureur et al. (2007) giants.

Looking closer at the Lecureur et al. (2007) data it appears as if there is a very well defined lower envelope just above the thick disc trend, and on top of that a large scatter of stars with higher abundance ratios, spreading upwards. We suspect that this might be due to line blending, and possibly lack of accurate continuum points, in the extremely crowded spectra that metal-rich giants have. The lower envelope that is seen in the Lecureur et al. (2007) is what could be expected if blending is the case. A number of stars that have less (or very few) blends forming the wellbehaved lower envelope of the trends, while others are more affected, leading to randomly increased equivalent widths, and hence randomly increased abundances.

#### 7.4. No Na-O anti-correlation

The Na-O anti-correlation that has seen in all globular clusters studied so far is not present for field stars (e.g., Carretta et al. 2009). Therefore, one of the most striking results from Lecureur et al. (2007) was the Na-O anti-correlation that they found for their Bulge giants, and they claim it is probably an effect of the Bulge chemical evolution. However, Fig. 12 (*left panel*) shows the Na-O plot for our microlensed dwarf stars and there is no Na-O anticorrelation present. Instead [Na/Fe] versus [O/Fe] is flat. Given the large spreads that Lecureur et al. (2007) see for Na, Mg, and Al (see Fig. 11) it appears likely that their results are affected by systematic errors (blending presumably).

#### 7.5. Metallicity dependent oxygen yields

In Fig. 12 (right panel) the evolution of [O/Mg] vs [Mg/H] is shown, which reveals a very tight correlation. Our results from microlensed dwarfs have significantly less scatter than the corresponding values for Bulge red giants (e.g. Lecureur et al. 2007; Fulbright et al. 2007; Alves-Brito et al. 2010) presumably due to the lesser influence of blends and better determined stellar parameters. The dwarf-based slope is also slightly shallower than for the giants. A declining trend in [O/Mg] towards higher metallicity is expected with traditional metallicity-dependent supernovae yields such as those of Woosley & Weaver (1995) but our slope is steeper, which may signal an metallicity-dependence introduced for example by mass-loss in massive stars (e.g. Maeder 1992; Meynet & Maeder 2002) as discussed by McWilliam et al. (2008) and Cescutti et al. (2009). These findings are based on the increased Wolf-Rayet stellar wind efficiency at higher metallicity that removes a larger fraction of He and C before they are converted to O and thus decreasing the O production but leaving the Mg-yield largely unaltered. The similarity between the Bulge and disc results implies that these metallicity-dependent nucleosynthesis yields are a general feature but also argues against substantial differences in the initial mass function (IMF) between the two populations.

# 8. The origin of the Galactic bulge

To summarise our observations, we find that the stars with high  $[\alpha/Fe]$  and low-metallicity in the Bulge are old, but the stars with high metallicities and solar (or subsolar)  $[\alpha/Fe]$  ratios span a



**Fig. 12.** [Na/Fe] versus [O/Fe] (*Left panel*) and [O/Mg] versus [Mg/H] (*Right panel*) for our microlensed dwarf stars (filled circles), the giants from Fulbright et al. (2007) (open squares), the giants from Lecureur et al. (2007) (asterisks), and thick disc dwarf stars in the Solar neighbourhood (Bensby et al. 2003, 2005, and in prep.) (small open circles).

range of ages from 10 Gyr to 3 Gyr. What does this mean for the origin of the Bulge?

The old age, high  $\left[\alpha/\text{Fe}\right]$  population can be explained through the standard chemical pattern in systems dominated by Type II SNe that is common to all stellar systems. That the high [ $\alpha$ /Fe] ratio persist to [Fe/H] > -0.6 indicates that star formation proceeded very efficiently in the event(s) that created the Bulge. Such events could be early mergers of subhalos which drive efficient star formation as well as contributing their own high  $\left[\alpha/\text{Fe}\right]$  and low  $\left[\text{Fe}/\text{H}\right]$  stars (Rahimi et al. 2009), or early fragmentation of the disc into clumps of stars and gas which then rapidly merge to form the Bulge (Immeli et al. 2004). These results may also be consistent with the secular evolution of the disc, depending on the age-metallicity- $\left[\alpha/\text{Fe}\right]$  relation present in the inner disc. In the models of Schönrich & Binney (2009), the inner disc is composed of stars that have old ages and higher  $[\alpha/Fe]$  at the same [Fe/H] than stars formed in the thin disc in the Solar neighbourhood. Some of these inner disc stars then migrate outwards to form the local thick disc. Thus it would not be surprising that the Bulge (=puffed up inner disc) stars should be chemically similar to the local thick disc (=migrated inner disc) stars, which is exactly what we see. The model by Schönrich & Binney (2009) requires a number of assumptions/approximations/parameterisation of the migration and heating processes, and is tuned to explain the thick disc in the Solar neighbourhood, so observational evidence (still missing) of the nature of the inner disc is, once again, important. Our results are not in agreement with the models of Immeli et al. (2004) where the gas cools less efficiently and the instability that forms the bar sets in at later times, because those models predict a decline in  $[\alpha/\text{Fe}]$  starting at much lower metallicities (see their Figure 10).

The solar  $[\alpha/Fe]$  and high metallicity stars that span a range of ages are more of a puzzle. The old stars imply that part of the Bulge got a head start on its chemical evolution, so that some 10 Gyr old stars were formed from a population that was already

producing Type Ia SNe, while other 10 Gyr stars were forming out of gas that had just been enriched with Type II SNe. Old, low  $\left[\alpha/\text{Fe}\right]$  stars are found in the dwarf spheroid galaxies, but accreting a Sagittarius-like object would not explain the pattern, because the low  $\left[\alpha/\text{Fe}\right]$  stars in Sagittarius have too low metallicities (e.g., Venn et al. 2004). In the simulations of Rahimi et al. (2009), the bulges experience a series of mergers over a period of ~5 Gyr, leading to populations of "old", "intermediate" and "young" stars. The distributions of [Mg/Fe] for these populations do show some old stars with low [Mg/Fe], (as well the expected shift to low [Mg/Fe] for the younger stars) but they caution that their code suppresses mixing among gas particles, leading to artificially high abundance ratio dispersions. Nonetheless, this is what we see in our data, so perhaps the Galaxy found a way to suppress mixing as well, maybe with a merger history different than the two cases in Rahimi et al. (2009), where two of the subclumps that merged had different starting times for star formation relative to today.

Finally, the younger, low [ $\alpha$ /Fe] and high metallicity stars show that star formation persisted in the components that created the Bulge. These stars are seen in the disc fragmentation models of Immeli et al. (2004), where, for the cold gas model that agrees with the turnover in the [ $\alpha$ /Fe] vs. [Fe/H] diagram, 30% of the baryons are not rapidly converted to stars. Instead, low level star formation occurs for several Gyr and produces a peak in the [Mg/Fe] histogram of the Bulge at [Mg/Fe] = -0.2. This kind of stars are also seen in the models of Rahimi et al. (2009) where new stars formed after mergers at later times are polluted with Type Ia ejecta as well. Finally, depending on the star formation of the thick disc, these stars may be present in that component and then used to make the Bulge.

To distinguish further among these models, the inner disc of the Galaxy needs to be better characterised observationally. In addition, more Bulge dwarfs with accurate ages, metallicities and abundance ratios would help clarify whether the age spread is confined to the higher metallicities and whether the oldest low  $[\alpha/\text{Fe}]$  stars are as old as the lower metallicity high  $[\alpha/\text{Fe}]$  stars. Finally, the elements produced in Type Ia SNe are not the only chemical evolution "clock" available, and measuring elements produced in AGB stars (C, N and s-process), for example, would test whether chemical evolution really began earlier for some stars now in the Bulge than for others.

# 9. Summary

With this study we have doubled the number statistics on the data for microlensed dwarf and subgiant stars in the Bulge. All stars have been observed with high-resolution spectrographs and from a detailed elemental abundance analysis we present results for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba. The method we utilise is identical to the method used for a large sample of 702 F and G dwarf stars in the thin and thick discs in the Solar neighbourhood. Therefore, any differences between the Bulge stars and the disc stars should be genuine, and not due to unknown (systematic) uncertainties. We have also determined stellar ages for the stars, a task that is impossible to do with giant stars.

The main results and conclusions that can be drawn from our sample of 15 microlensed stars in the Bulge are:

- 1. The stars span a wide range of metallicities between [Fe/H] = -0.72 up to super-solar metallicity of  $[Fe/H] \approx$ +0.54.
- 2. The mean metallicity of the 14 microlensed dwarf and subgiant stars is  $\langle [Fe/H] \rangle = -0.08 \pm 0.47$  in good agreement with the 204 giant stars in Baade's window from Zoccali et al. (2008) that have an average metallicity of -0.04 dex. However, a two-sided KS-test gives only a low 30% probability that microlensed dwarf stars and giant stars in Baades window have the same MDFs. The low probability is due to the skewed and uneven metallicity distribution of the dwarf stars, with excesses at both low and high metallicities. More observations of microlensed dwarf stars will certainly refine the comparison. It is clear though that the extremely metal-rich MDF for the Bulge that Cohen et al. (2009b) propose is not borne out by the larger sample presented here.
- 3. The abundance trends that the microlensed dwarf stars show are surprisingly well-defined. At sub-solar [Fe/H] they are more or less coincident with the abundance trends of the Galactic thick disc as traced by nearby dwarf stars (Bensby et al. 2003, 2005, 2007). At super-solar [Fe/H] they follow the trends we see for nearby thin disc dwarf stars. However, due to the high ages that some of the Bulge stars possess at super-solar [Fe/H], and due to the lack of Bulge stars at sub-solar [Fe/H] with thin disc abundance ratios we see no obvious connection between the Bulge and the thin disc.
- 4. All stars with sub-solar [Fe/H] are old (around 10 Gyr) and have high  $\left[\alpha/\text{Fe}\right]$  ratios, consistent with fast enrichment by core-collapse supernovae during the early stages of the formation of the Galaxy. At super-solar [Fe/H] we have a few old stars but also three stars with ages lower than 5 Gyr. This is inconsistent with, e.g., recent CMDs of field stars in the Bulge based on deep imaging with HST/ACS, that show no evidence for a young stellar component in the Bulge. The average age for our sample of microlensed dwarf stars is  $8.4 \pm 3.3$  Gyr.
- 5. Additionally, our results indicate that the red clump stars in the Bulge have  $(V - I)_0 = 1.08$ .

Based on these results and conclusions we speculate on the origin of the Bulge and we must conclude that it is still poorly constrained.

Acknowledgements. S.F. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. Work by A.G. was supported by NSF Grant AST-0757888. A.G.-Y. is supported by the Israeli Science Foundation, an EU Seventh Framework Programme Marie Curie IRG fellowship and the Benoziyo Center for Astrophysics, a research grant from the Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. A.U. acknowledges support by the Polish MNiSW grant N20303032/4275. S.L. research was partially supported by the DFG cluster of excellence 'Origin and Structure of the Universe'. J.M. is supported by a Ciência 2007 contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC) and he acknowledges financial support from FCT project PTDC/CTE-AST/098528/2008. T.S. acknowledges support from grant JSPS20740104. D.A. thanks David Bolin at the Centre for Mathematical Sciences (Lund University) for help with statistics. We would like to thank Bengt Gustafsson, Bengt Edvardsson, and Kjell Eriksson for usage of the MARCS model atmosphere program and their suite of stellar abundance (EQWIDTH) programs. We also thank Judy Cohen and Courtney Epstein for providing reduced spectra of their microlensing events. This research has also made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration.

#### References

- Alves-Brito, A., Mélendez, J., Asplund, M., Ramírez, I., & Yong, D. 2010, A&A, in press
- Asplund, M., Gustafsson, B., Kiselman, D., & Eriksson, K. 1997, A&A, 318, 521
- Bensby, T., Feltzing, S., Johnson, J. A., et al. 2009a, ApJ, 699, L174
- Bensby, T., Feltzing, S., & Lundström, I. 2003, A&A, 410, 527
- Bensby, T., Feltzing, S., & Lundström, I. 2004, A&A, 415, 155
- Bensby, T., Feltzing, S., Lundström, I., & Ilyin, I. 2005, A&A, 433, 185
- Bensby, T., Johnson, J. A., Cohen, J., et al. 2009b, A&A, 499, 737
- Bensby, T., Zenn, A. R., Oey, M. S., & Feltzing, S. 2007, ApJ, 663, L13
- Bond, I. A., Abe, F., Dodd, R. J., et al. 2001, MNRAS, 327, 868
- Carollo, D., Beers, T. C., Chiba, M., et al. 2009, arXiv:0909.3019v1 [astroph.GA]
- Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009, A&A, 505, 139
- Cavallo, R. M., Cook, K. H., Minniti, D., & Vandehei, T. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4834, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. P. Guhathakurta, 66-73
- Cescutti, G., Matteucci, F., McWilliam, A., & Chiappini, C. 2009, A&A, 505, 605
- Clarkson, W., Sahu, K., Anderson, J., et al. 2008, ApJ, 684, 1110
- Cohen, J. G., Gould, A., Thompson, I. B., et al. 2009a, arXiv:0911.5081v1 [astro-ph.GA]
- Cohen, J. G., Huang, W., Udalski, A., Gould, A., & Johnson, J. A. 2008, ApJ, 682, 1029
- Cohen, J. G., Thompson, I. B., Sumi, T., et al. 2009b, ApJ, 699, 66
- Colavitti, E., Cescutti, G., Matteucci, F., & Murante, G. 2009, A&A, 496, 429
- Cunha, K. & Smith, V. V. 2006, ApJ, 651, 491
- Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, in Proc. SPIE Vol. 4008, p. 534-545, Optical and IR Telescope Instrumentation and Detectors, Masanori Iye; Alan F. Moorwood; Eds., ed. M. Iye & A. F. Moorwood, 534-545
- Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667
- Edvardsson, B., Andersen, J., Gustafsson, B., et al. 1993, A&A, 275, 101
- Epstein, R. E., Johnson, J. A., Dong, S., et al. 2009, arXiv:0910.1358v1 [astroph.SR]
- Feltzing, S., Bensby, T., & Lundström, I. 2003, A&A, 397, L1
- Feltzing, S. & Gilmore, G. 2000, A&A, 355, 949
- Feltzing, S. & Gustafsson, B. 1998, A&AS, 129, 237
- Feltzing, S., Holmberg, J., & Hurley, J. R. 2001, A&A, 377, 911
- Frogel, J. A. 1988, ARA&A, 26, 51
- Fulbright, J. P., McWilliam, A., & Rich, R. M. 2006, ApJ, 636, 821
- Fulbright, J. P., McWilliam, A., & Rich, R. M. 2007, ApJ, 661, 1152
- Gustafsson, B., Bell, R. A., Eriksson, K., & Nordlund, A. 1975, A&A, 42, 407
- Holtzman, J. A., Light, R. M., Baum, W. A., et al. 1993, AJ, 106, 1826 Howard, C. D., Rich, R. M., Clarkson, W., et al. 2009, ApJ, 702, L153
- Howard, C. D., Rich, R. M., Reitzel, D. B., et al. 2008, ApJ, 688, 1060
- Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004, A&A, 413, 547

- Johnson, J. A., Dong, S., & Gould, A. 2009, arXiv:0910.3670v1 [astro-ph.GA]
- Johnson, J. A., Gal-Yam, A., Leonard, D. C., et al. 2007, ApJ, 655, L33
- Johnson, J. A., Gaudi, B. S., Sumi, T., Bond, I. A., & Gould, A. 2008, ApJ, 685, 508
- Kalirai, J. S., Bergeron, P., Hansen, B. M. S., et al. 2007, ApJ, 671, 748
- Kane, S. R. & Sahu, K. C. 2006, ApJ, 637, 752
- Kilic, M., Stanek, K. Z., & Pinsonneault, M. H. 2007, ApJ, 671, 761
- Kormendy, J. & Kennicutt, R. C. 2004, ARA&A, 42, 603
- Lecureur, A., Hill, V., Zoccali, M., et al. 2007, A&A, 465, 799
- Luck, R. E. & Heiter, U. 2007, AJ, 133, 2464
- Maeder, A. 1992, A&A, 264, 105
- Matteucci, F. 2001, The chemical evolution of the Galaxy (The chemical evolution of the Galaxy, Astrophysics and space science library, Volume 253, Dordrecht: Kluwer Academic Publishers)
- McWilliam, A., Matteucci, F., Ballero, S., et al. 2008, AJ, 136, 367
- McWilliam, A. & Rich, R. M. 1994, ApJS, 91, 749
- Meléndez, J., Asplund, M., Alves-Brito, A., et al. 2008, A&A, 484, L21
- Meléndez, J., Casagrande, L., Ramírez, I., & Asplund, M. 2009, A&A, submitted
- Meynet, G. & Maeder, A. 2002, A&A, 390, 561
- Minniti, D., Vandehei, T., Cook, K. H., Griest, K., & Alcock, C. 1998, ApJ, 499, L175+
- Minniti, D. & Zoccali, M. 2008, in IAU Symposium, Vol. 245, IAU Symposium, ed. M. Bureau, E. Athanassoula, & B. Barbuy, 323–332
- Nair, V. & Miralda-Escudé, J. 1999, ApJ, 515, 206
- Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989
- Oort, J. H. 1977, ARA&A, 15, 295
- Prochaska, J. X., Naumov, S. O., Carney, B. W., McWilliam, A., & Wolfe, A. M. 2000, AJ, 120, 2513
- Rahimi, A., Kawata, D., Brook, C. B., & Gibson, B. K. 2009, arXiv:0909.4491v1 [astro-ph.GA]
- Ramírez, I. & Meléndez, J. 2005, ApJ, 626, 465
- Rattenbury, N. J., Mao, S., Sumi, T., & Smith, M. C. 2007, MNRAS, 378, 1064
- Rich, R. M. & Origlia, L. 2005, ApJ, 634, 1293
- Rich, R. M., Origlia, L., & Valenti, E. 2007, ApJ, 665, L119
- Ryde, N., Gustafsson, B., Edvardsson, B., et al. 2009, arXiv:0910.0448v1 [astro-ph.GA]
- Sahu, K. C., Casertano, S., Bond, H. E., et al. 2006, Nature, 443, 534
- Santos, N. C., Lovis, C., Pace, G., Melendez, J., & Naef, D. 2009, A&A, 493, 309
- Schönrich, R. & Binney, J. 2009, MNRAS, 396, 203
- Shi, J. R., Gehren, T., & Zhao, G. 2004, A&A, 423, 683
- Sofue, Y., Honma, M., & Omodaka, T. 2009, PASJ, 61, 227
- Takeda, Y., Sato, B., & Murata, D. 2008, PASJ, 60, 781
- Taylor, B. J. & Croxall, K. 2005, MNRAS, 357, 967
- Twarog, B. A. 1980, ApJ, 242, 242
- Udalski, A. 2003, Acta Astronomica, 53, 291
- Venn, K. A., Irwin, M., Shetrone, M. D., et al. 2004, AJ, 128, 1177
- Weiland, J. L., Arendt, R. G., Berriman, G. B., et al. 1994, ApJ, 425, L81
- Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181
- Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, ApJ, 603, 139
- Zoccali, M., Hill, V., Lecureur, A., et al. 2008, A&A, 486, 177
- Zoccali, M., Lecureur, A., Barbuy, B., et al. 2006, A&A, 457, L1
- Zoccali, M., Renzini, A., Ortolani, S., et al. 2003, A&A, 399, 931

Table 5. Elemental abundance ratios, errors in the abundance ratios, and number of lines used, for 13 of the 15 microlensed dwarf stars<sup>†</sup>.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Fe/H]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [O/Fe] <sup>‡</sup>                                                                                                                                 | [Na/Fe]                                                                                                                              | [Mg/Fe]                                                                                                                                                                      | [Al/Fe]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [Si/Fe]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [Ca/Fe]                                                                                                                                                                                                                                                                              | [Ti/Fe]                                                                                                                                      | [Cr/Fe]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [Ni/Fe]                                                                                                                                                                                                                                                                                    | [Zn/Fe]                                                                                                                                                                                    | [Y/Fe]                                                                                                | [Ba/Fe]                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OGI F-2009-BI G-0768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                                                                                                                                | 0.11                                                                                                                                 | 0.36                                                                                                                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                 | 0.30                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | _                                                                                                     | -0.07                                                                                                                                                          |
| MOA-2009-BLG-493S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                | 0.13                                                                                                                                 | 0.37                                                                                                                                                                         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.17                                                                                                                                                                                                                                                                                 | 0.34                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                       | _                                                                                                     | -0.07                                                                                                                                                          |
| MOA-2009-BLG-133S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.47                                                                                                                                                | 0.13                                                                                                                                 | 0.39                                                                                                                                                                         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.21                                                                                                                                                                                                                                                                                 | 0.26                                                                                                                                         | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                            | _                                                                                                     | -0.19                                                                                                                                                          |
| MOA-2009-BLG-475S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.33                                                                                                                                                | _                                                                                                                                    | 0.25                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.14                                                                                                                                                                                                                                                                                 | 0.33                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | _                                                                                                     | -0.18                                                                                                                                                          |
| MACHO-1999-BLG-022S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                   | 0.01                                                                                                                                 | 0.35                                                                                                                                                                         | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.18                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                         | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | 0.01                                                                                                  | 0.15                                                                                                                                                           |
| OGLE-2008-BLG-209S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.34                                                                                                                                                | 0.08                                                                                                                                 | 0.34                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.18                                                                                                                                                                                                                                                                                 | 0.29                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                       | 0.16                                                                                                                                                                                       | -0.08                                                                                                 | 0.05                                                                                                                                                           |
| MOA-2009-BLG-489S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.18                                                                                                                                                | -0.01                                                                                                                                | 0.24                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09                                                                                                                                                                                                                                                                                 | 0.16                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                       | 0.17                                                                                                                                                                                       | -0.05                                                                                                 | -0.07                                                                                                                                                          |
| MOA-2009-BLG-456S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.12                                                                                                                                               | -0.03                                                                                                                                | 0.09                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.03                                                                                                                                                                                                                                                                                      | -0.03                                                                                                                                                                                      | -                                                                                                     | -0.08                                                                                                                                                          |
| MOA-2008-BLG-311S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.27                                                                                                                                               | 0.12                                                                                                                                 | 0.03                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                         | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.12                                                                                                                                                                                                                                                                                       | 0.06                                                                                                                                                                                       | 0.11                                                                                                  | -0.15                                                                                                                                                          |
| MOA-2008-BLG-310S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.27                                                                                                                                               | 0.08                                                                                                                                 | 0.08                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.03                                                                                                                                                                                                                                                                                | 0.09                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                       | -0.03                                                                                                                                                                                      | 0.06                                                                                                  | 0.03                                                                                                                                                           |
| OGLE-2007-BLG-349S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.14                                                                                                                                               | 0.15                                                                                                                                 | 0.05                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.06                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                         | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                                                                                                                                                       | 0.11                                                                                                                                                                                       | -0.12                                                                                                 | -0.13                                                                                                                                                          |
| MOA-2008-BLG-099S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.10                                                                                                                                               | 0.05                                                                                                                                 | 0.04                                                                                                                                                                         | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05                                                                                                                                                                                                                                                                                | -0.01                                                                                                                                        | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.02                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                       | -0.04                                                                                                 | 0.00                                                                                                                                                           |
| OGLE-2006-BLG-265S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.25                                                                                                                                               | 0.14                                                                                                                                 | 0.13                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05                                                                                                                                                                                                                                                                                | -0.06                                                                                                                                        | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                                                                                                                                                       | -0.05                                                                                                                                                                                      | 0.02                                                                                                  | -0.08                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sigma_{\rm [Fe/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{\rm [O/Fe]}$                                                                                                                               | $\sigma_{\rm [Na/Fe]}$                                                                                                               | $\sigma_{\rm [Mg/Fe]}$                                                                                                                                                       | $\sigma_{\rm [Al/Fe]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [Si/Fe]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_{\rm [Ca/Fe]}$                                                                                                                                                                                                                                                               | $\sigma_{\mathrm{[Ti/Fe]}}$                                                                                                                  | $\sigma_{\rm [Cr/Fe]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sigma_{\rm [Ni/Fe]}$                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Zn/Fe]}$                                                                                                                                                                     | $\sigma_{\rm [Y/Fe]}$                                                                                 | $\sigma_{\rm [Ba/Fe]}$                                                                                                                                         |
| OGLE-2009-BLG-076S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.17                                                                                                                                                | 0.04                                                                                                                                 | 0.06                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | _                                                                                                     | 0.10                                                                                                                                                           |
| MOA-2009-BLG-493S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.51                                                                                                                                                | 0.07                                                                                                                                 | 0.10                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17                                                                                                                                                                                                                                                                                       | 0.38                                                                                                                                                                                       | _                                                                                                     | 0.18                                                                                                                                                           |
| MOA-2009-BLG-133S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.62                                                                                                                                                | 0.13                                                                                                                                 | 0.21                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | _                                                                                                     | 0.51                                                                                                                                                           |
| MOA-2009-BLG-475S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.39                                                                                                                                                | _                                                                                                                                    | 0.09                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.18                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                          | _                                                                                                     | 0.31                                                                                                                                                           |
| MACHO-1999-BLG-022S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                   | 0.07                                                                                                                                 | 0.13                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.13                                                                                                                                                                                                                                                                                 | 0.24                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                       | 0.19                                                                                                                                                                                       | 0.31                                                                                                  | 0.12                                                                                                                                                           |
| OGLE-2008-BLG-209S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                                                                                | 0.07                                                                                                                                 | 0.10                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                       | 0.18                                                                                                                                                                                       | 0.20                                                                                                  | 0.08                                                                                                                                                           |
| MOA-2009-BLG-489S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                                                | 0.12                                                                                                                                 | 0.07                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                       | 0.34                                                                                                  | 0.10                                                                                                                                                           |
| MOA-2009-BLG-456S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                | 0.05                                                                                                                                 | 0.08                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                       | 0.17                                                                                                                                                                                       | -                                                                                                     | 0.09                                                                                                                                                           |
| MOA-2008-BLG-311S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                | 0.12                                                                                                                                 | 0.09                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                       | 0.19                                                                                                  | 0.11                                                                                                                                                           |
| MOA-2008-BLG-310S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.16                                                                                                                                                | 0.10                                                                                                                                 | 0.09                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                       | 0.23                                                                                                  | 0.09                                                                                                                                                           |
| OGLE-2007-BLG-349S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                | 0.15                                                                                                                                 | 0.14                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                       | 0.17                                                                                                  | 0.08                                                                                                                                                           |
| MOA-2006-BLG-099S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                | 0.11                                                                                                                                 | 0.10                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                                                                                                                 | 0.11                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                       | 0.30                                                                                                  | 0.10                                                                                                                                                           |
| OGLE-2006-BLG-265S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.17                                                                                                                                                | 0.11                                                                                                                                 | 0.10                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                       | 0.23                                                                                                  | 0.08                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                       |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sigma_{\rm [Fe/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{\rm [O/H]}$                                                                                                                                | $\sigma_{\rm [Na/H]}$                                                                                                                | $\sigma_{\rm [Mg/H]}$                                                                                                                                                        | $\sigma_{\rm [Al/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{\rm [Si/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\rm [Ca/H]}$                                                                                                                                                                                                                                                                | $\sigma_{\mathrm{[Ti/H]}}$                                                                                                                   | $\sigma_{\rm [Cr/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ni/H]}$                                                                                                                                                                                                                                                                      | $\sigma_{\rm [Zn/H]}$                                                                                                                                                                      | $\sigma_{\mathrm{[Y/H]}}$                                                                             | $\sigma_{\rm [Ba/H]}$                                                                                                                                          |
| OGLE-2009-BLG-076S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ <sub>[Fe/H]</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ <sub>[O/H]</sub>                                                                                                                                  | $\sigma_{\mathrm{[Na/H]}}$                                                                                                           | σ <sub>[Mg/H]</sub>                                                                                                                                                          | $\sigma_{[Al/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sigma_{\rm [Si/H]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ <sub>[Ca/H]</sub>                                                                                                                                                                                                                                                                  | $\sigma_{\mathrm{[Ti/H]}}$                                                                                                                   | σ <sub>[Cr/H]</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma_{\rm [Ni/H]}$                                                                                                                                                                                                                                                                      | σ <sub>[Zn/H]</sub>                                                                                                                                                                        | σ <sub>[Y/H]</sub>                                                                                    | σ <sub>[Ba/H]</sub>                                                                                                                                            |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\sigma_{\rm [Fe/H]}}{0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σ <sub>[O/H]</sub><br>0.10<br>0.38                                                                                                                  | σ <sub>[Na/H]</sub><br>0.05<br>0.09                                                                                                  | σ <sub>[Mg/H]</sub><br>0.06<br>0.16                                                                                                                                          | σ <sub>[Al/H]</sub><br>0.05<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ <sub>[Si/H]</sub><br>0.05<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ <sub>[Ca/H]</sub><br>0.10<br>0.43                                                                                                                                                                                                                                                  | σ <sub>[Ti/H]</sub><br>0.08<br>0.13                                                                                                          | σ <sub>[Cr/H]</sub><br>-<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{[Ni/H]}$<br>0.06<br>0.05                                                                                                                                                                                                                                                          | σ <sub>[Zn/H]</sub><br>- 0.26                                                                                                                                                              | σ <sub>[Y/H]</sub>                                                                                    | σ <sub>[Ba/H]</sub><br>0.11<br>0.18                                                                                                                            |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>[Fe/H]</sub><br>0.07<br>0.14<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46                                                                                                          | $\sigma_{\rm [Na/H]}$<br>0.05<br>0.09<br>0.05                                                                                        | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36                                                                                                                                  | σ <sub>[Al/H]</sub><br>0.05<br>0.07<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma_{\rm [Si/H]}$<br>0.05<br>0.06<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | σ <sub>[Ca/H]</sub><br>0.10<br>0.43<br>0.52                                                                                                                                                                                                                                          | σ <sub>[Ti/H]</sub><br>0.08<br>0.13<br>0.12                                                                                                  | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{[Ni/H]}$<br>0.06<br>0.05<br>0.04                                                                                                                                                                                                                                                  | σ <sub>[Zn/H]</sub><br>- 0.26<br>-                                                                                                                                                         | σ <sub>[Y/H]</sub><br>-<br>-                                                                          | σ <sub>[Ba/H]</sub><br>0.11<br>0.18<br>0.36                                                                                                                    |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ <sub>[Fe/H]</sub><br>0.07<br>0.14<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23                                                                                                  | $\sigma_{\rm [Na/H]}$<br>0.05<br>0.09<br>0.05                                                                                        | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17                                                                                                                          | $\sigma_{\mathrm{[Al/H]}}$<br>0.05<br>0.07<br>0.18<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sigma_{\rm [Si/H]}$<br>0.05<br>0.06<br>0.06<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\text{[Ca/H]}}$<br>0.10<br>0.43<br>0.52<br>0.31                                                                                                                                                                                                                             | $\sigma_{\mathrm{[Ti/H]}}$<br>0.08<br>0.13<br>0.12<br>0.14                                                                                   | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{\mathrm{[Ni/H]}}$<br>0.06<br>0.05<br>0.04<br>0.07                                                                                                                                                                                                                                 | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-                                                                                                                                                      | σ <sub>[Y/H]</sub><br>–<br>–                                                                          | $\sigma_{[\mathrm{Ba}/\mathrm{H}]}$<br>0.11<br>0.18<br>0.36<br>0.21                                                                                            |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ <sub>[Fe/H]</sub><br>0.07<br>0.14<br>0.17<br>0.17<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23                                                                                                  | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14                                                                                          | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23                                                                                                                  | $\sigma_{\rm [Al/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\text{[Ca/H]}} \\ 0.10 \\ 0.43 \\ 0.52 \\ 0.31 \\ 0.25 \\ \end{array}$                                                                                                                                                                                                      | $\sigma_{\mathrm{[Ti/H]}}$<br>0.08<br>0.13<br>0.12<br>0.14<br>0.16                                                                           | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07<br>-<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08$                                                                                                                                                                                                                              | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>-<br>0.10                                                                                                                                         | σ <sub>[Y/H]</sub><br>-<br>-<br>-<br>0.22                                                             | $\sigma_{[Ba/H]}$<br>0.11<br>0.18<br>0.36<br>0.21<br>0.15                                                                                                      |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-135S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\mathrm{[Fe/H]}}$ 0.07 0.14 0.17 0.17 0.14 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16                                                                                     | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11                                                                                     | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23<br>0.15                                                                                                          | $\sigma_{\rm [Al/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\$        | $\sigma_{\text{[Ca/H]}} \\ 0.10 \\ 0.43 \\ 0.52 \\ 0.31 \\ 0.25 \\ 0.17 \\ \end{array}$                                                                                                                                                                                              | $\sigma_{\rm [Ti/H]} \\ 0.08 \\ 0.13 \\ 0.12 \\ 0.14 \\ 0.16 \\ 0.06$                                                                        | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 - 0.11 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.03$                                                                                                                                                                                                              | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>-<br>0.10<br>0.16                                                                                                                                 | σ <sub>[Y/H]</sub><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.22<br>0.16        | $\sigma_{\text{[Ba/H]}} \\ 0.11 \\ 0.18 \\ 0.36 \\ 0.21 \\ 0.15 \\ 0.08 \\ \end{cases}$                                                                        |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-133S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\rm [Fe/H]} \\ 0.07 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.14 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.06 \\ 0.11 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\$ | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15                                                                             | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13                                                                                | $\sigma_{\rm [Mg/H]} \\ 0.06 \\ 0.16 \\ 0.36 \\ 0.17 \\ 0.23 \\ 0.15 \\ 0.14 \\ \end{array}$                                                                                 | $\sigma_{\rm [Al/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\$ | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [Ca/H]} \\ 0.10 \\ 0.43 \\ 0.52 \\ 0.31 \\ 0.25 \\ 0.17 \\ 0.21 \\ \end{array}$                                                                                                                                                                                         | $\sigma_{\rm [Ti/H]} \\ 0.08 \\ 0.13 \\ 0.12 \\ 0.14 \\ 0.16 \\ 0.06 \\ 0.09 \\ 0.09$                                                        | σ <sub>[Cr/H]</sub> - 0.07 0.07 - 0.11 0.06 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04$                                                                                                                                                                                                      | σ <sub>[Zn/H]</sub> - 0.26 - 0.10 0.16 0.06                                                                                                                                                | σ[Y/H]<br>-<br>-<br>0.22<br>0.16<br>0.29                                                              | $\sigma_{\rm [Ba/H]} \\ 0.11 \\ 0.18 \\ 0.36 \\ 0.21 \\ 0.15 \\ 0.08 \\ 0.09 \\ 0.09$                                                                          |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S                                                                                                                                                                                                                                                                                                                                                                      | $\sigma_{\rm [Fe/H]} \\ 0.07 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.14 \\ 0.06 \\ 0.11 \\ 0.09 \\ 0.09 \\ 0.01 \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\$ | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14                                                                     | σ <sub>[Na/H]</sub><br>0.05<br>0.09<br>0.05<br>-<br>0.14<br>0.11<br>0.13<br>0.07                                                     | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12                                                                                                                | $\sigma_{\rm [Al/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\$ | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma_{\text{[Ca/H]}} \\ 0.10 \\ 0.43 \\ 0.52 \\ 0.31 \\ 0.25 \\ 0.17 \\ 0.21 \\ 0.15 \\ \end{array}$                                                                                                                                                                              | $\sigma_{\rm [Ti/H]} \\ 0.08 \\ 0.13 \\ 0.12 \\ 0.14 \\ 0.16 \\ 0.06 \\ 0.09 \\ 0.10 \\ \end{array}$                                         | σ <sub>[Cr/H]</sub> - 0.07 0.07 - 0.11 0.06 0.07 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04$                                                                                                                                                                                              | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>0.10<br>0.16<br>0.06<br>0.15                                                                                                                      | σ[Y/H]<br>-<br>-<br>0.22<br>0.16<br>0.29<br>-                                                         | $\sigma_{\rm [Ba/H]} \\ 0.11 \\ 0.18 \\ 0.36 \\ 0.21 \\ 0.15 \\ 0.08 \\ 0.09 \\ 0.10 \\ \end{array}$                                                           |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S                                                                                                                                                                                                                                                                                                                                                 | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14<br>0.12                                                             | σ <sub>[Na/H]</sub><br>0.05<br>0.09<br>0.05<br>-<br>0.14<br>0.11<br>0.13<br>0.07<br>0.17                                             | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14                                                                                                           | $\sigma_{\rm [Al/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>[Si/H]</sub><br>0.05<br>0.06<br>0.06<br>0.08<br>0.06<br>0.03<br>0.03<br>0.04<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17                                                                                                                                                                                                                   | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07                                                                           | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07<br>-<br>0.11<br>0.06<br>0.07<br>0.14<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ni/H]}$ 0.06 0.05 0.04 0.07 0.08 0.03 0.04 0.04 0.04 0.04                                                                                                                                                                                                                    | σ <sub>[Zn/H]</sub> - 0.26 - 0.10 0.16 0.06 0.15 0.07                                                                                                                                      | σ[Y/H]<br>-<br>-<br>-<br>0.22<br>0.16<br>0.29<br>-<br>0.13                                            | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07                                                                                             |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S                                                                                                                                                                                                                                                                                                                            | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14<br>0.12<br>0.10                                                     | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14                                                                 | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13                                                                                                      | $\sigma_{\rm [Al/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ <sub>[Si/H]</sub><br>0.05<br>0.06<br>0.06<br>0.08<br>0.06<br>0.03<br>0.03<br>0.04<br>0.06<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15                                                                                                                                                                                                              | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08                                                                      | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07<br>-<br>0.11<br>0.06<br>0.07<br>0.14<br>0.06<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sigma_{\rm [Ni/H]}$ 0.06 0.05 0.04 0.07 0.08 0.03 0.04 0.04 0.04 0.04 0.04 0.05                                                                                                                                                                                                          | σ <sub>[Zn/H]</sub> - 0.26 0.10 0.16 0.06 0.15 0.07 0.08                                                                                                                                   | σ <sub>[Y/H]</sub><br>-<br>-<br>-<br>0.22<br>0.16<br>0.29<br>-<br>0.13<br>0.21                        | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12                                                                                        |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S                                                                                                                                                                                                                                                                                                      | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13                                                                            | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19                                                            | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18                                                                                                 | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.07 0.09 0.10 0.09 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | σ[Si/H]           0.05           0.06           0.08           0.03           0.03           0.04           0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\text{[Ca/H]}}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17                                                                                                                                                                                                      | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09                                                                 | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07<br>-<br>0.11<br>0.06<br>0.05<br>0.07<br>0.14<br>0.06<br>0.05<br>0.07<br>0.07<br>0.14<br>0.06<br>0.05<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.01<br>0.06<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                         | σ <sub>[Zn/H]</sub> - 0.26 0.10 0.16 0.06 0.15 0.07 0.08 0.10                                                                                                                              | σ[Y/H]<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.12                                                                              |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S                                                                                                                                                                                                                                                                                 | σ[Fe/H]           0.07           0.14           0.17           0.14           0.07           0.14           0.07           0.14           0.07           0.14           0.06           0.11           0.09           0.07           0.08           0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12                                                                  | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14                                                  | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23<br>0.15<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.13<br>0.18<br>0.18<br>0.18                                  | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.15 0.17 0.20 0.21 0.15 0.17 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.15 0.17 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07                                                            | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.07 \end{array}$                                                                                                                         | σ <sub>[Zn/H]</sub> - 0.26 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.42                                                                                                                    | σ[Y/H]<br>-<br>-<br>0.22<br>0.16<br>0.29<br>-<br>0.13<br>0.21<br>0.17<br>0.25<br>0.25                 | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.12 0.09 0.00                                                                    |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S                                                                                                                                                                                                                                                           | $\sigma_{\rm [Fe/H]} \\ 0.07 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.14 \\ 0.06 \\ 0.11 \\ 0.09 \\ 0.07 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.06 \\$ | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12                                                                  | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14                                                  | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.18 0.14                                                                                  | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.08 0.08 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14                                                                                                                                                                                               | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08                                                       | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.06 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \end{array}$                                                                                                                         | σ <sub>[Zn/H]</sub> - 0.26 - 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43                                                                                                                  | σ[Y/H]<br>-<br>-<br>0.22<br>0.13<br>0.29<br>-<br>0.13<br>0.21                                         | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08                                                                         |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-311S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S                                                                                                                                                                                                                                                           | σ <sub>[Fe/H]</sub><br>0.07<br>0.14<br>0.17<br>0.17<br>0.14<br>0.06<br>0.11<br>0.09<br>0.07<br>0.08<br>0.08<br>0.08<br>0.10<br>0.06<br><i>N</i> <sub>Fe1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14<br>0.12<br>0.10<br>0.13<br>0.11<br>0.12<br>N <sub>O</sub>           | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub>                           | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23<br>0.15<br>0.14<br>0.12<br>0.14<br>0.13<br>0.18<br>0.18<br>0.14<br><i>N</i> Mg                                   | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm Ai}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.04 \\ N_{\rm Si} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$                                                                                                                                                                                  | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 $N_{\rm Ti}$                                          | σ <sub>[Cr/H]</sub><br>-<br>0.07<br>0.07<br>-<br>0.11<br>0.06<br>0.05<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.14<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.06<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.                                                                                                                                                                                                                                                                                                                                                                         | $\sigma_{\rm [Ni/H]}$ 0.06 0.05 0.04 0.07 0.08 0.03 0.04 0.04 0.04 0.04 0.05 0.06 0.07 0.04 $N_{\rm Ni}$                                                                                                                                                                                   | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>0.10<br>0.16<br>0.06<br>0.15<br>0.07<br>0.08<br>0.10<br>0.09<br>0.43<br>N <sub>Zn</sub>                                                           | σ[Y/H]<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$                                                            |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-456S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-311S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S                                                                                                                                                                                                                                                           | σ <sub>[Fe/H]</sub><br>0.07<br>0.14<br>0.17<br>0.17<br>0.14<br>0.06<br>0.11<br>0.09<br>0.07<br>0.08<br>0.09<br>0.07<br>0.08<br>0.10<br>0.06<br><i>N</i> Fe <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14<br>0.12<br>0.10<br>0.13<br>0.11<br>0.12<br>N <sub>O</sub><br>3      | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1                         | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23<br>0.15<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.13<br>0.18<br>0.18<br>0.14<br>0.14<br><i>N</i> Mg<br>5      | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm AI}$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.04 \\ N_{\rm Si} \\ 15 \\ 15 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\$      | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10                                                                                                                                                                               | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 $N_{\rm Ti}$ 2                                        | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.06 0.07 N <sub>Cr</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | σ <sub>[Ni/H]</sub><br>0.06<br>0.05<br>0.04<br>0.07<br>0.08<br>0.03<br>0.04<br>0.04<br>0.04<br>0.05<br>0.06<br>0.07<br>0.04<br><i>N</i> <sub>Ni</sub><br>11                                                                                                                                | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>0.10<br>0.16<br>0.06<br>0.15<br>0.07<br>0.08<br>0.10<br>0.09<br>0.43<br>N <sub>Zn</sub>                                                           | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2                                                          |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-311S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S                                                                                                                                                                                                                                                           | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 $N_{\rm FeI}$ 57 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | σ <sub>[O/H]</sub><br>0.10<br>0.38<br>0.46<br>0.23<br>-<br>0.16<br>0.15<br>0.14<br>0.12<br>0.10<br>0.13<br>0.11<br>0.12<br>N <sub>O</sub><br>3<br>3 | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 $N_{\rm Na}$ 1 1                                 | σ <sub>[Mg/H]</sub><br>0.06<br>0.16<br>0.36<br>0.17<br>0.23<br>0.15<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.13<br>0.18<br>0.18<br>0.18<br>0.14<br><i>N</i> Mg<br>5<br>6 | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm Al}$ 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.05 \\ 0.04 \\ \hline N_{\rm Si} \\ 15 \\ 19 \\ 15 \\ 19 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0$ | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10                                                                                                                                                                            | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 $N_{\rm Ti}$ 2 5                                      | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.06 0.07 <i>N</i> <sub>Cr</sub> - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \end{array} $                                                                                              | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>0.10<br>0.16<br>0.06<br>0.15<br>0.07<br>0.08<br>0.10<br>0.09<br>0.43<br>N <sub>Zn</sub><br>-<br>1                                                 | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4                                                        |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-133S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-076S<br>MOA-2009-BLG-076S<br>MOA-2009-BLG-0733S                                                                                                                                                                                                                                      | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 $N_{\rm FeI}$ 57 80 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2                                                         | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1                   | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4                                                                    | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm Al}$ 4 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10                                                                                                                                                                         | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 $N_{\rm Ti}$ 2 5 4                                    | $\begin{array}{c} \sigma_{\rm [Cr/H]} \\ - \\ 0.07 \\ 0.07 \\ - \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.06 \\ 0.07 \\ \hline \\ N_{\rm Cr} \\ - \\ 2 \\ 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ \hline 11 \\ 21 \\ 15 \\ \end{array} $                                                                              | σ <sub>[Zn/H]</sub><br>-<br>0.26<br>-<br>0.10<br>0.10<br>0.16<br>0.06<br>0.15<br>0.07<br>0.08<br>0.10<br>0.09<br>0.43<br>N <sub>Zn</sub><br>-<br>1<br>-<br>-<br>1<br>-<br>-<br>-<br>-<br>- | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4 3                                                      |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-265S<br>OGLE-2009-BLG-076S<br>MOA-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-433S<br>MOA-2009-BLG-475S                                                                                                                                                  | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 <i>N</i> Fe <sub>1</sub> 57 80 68 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1                                                       | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 $N_{\rm Na}$ 1 1 1 -                             | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4 5                                                                  | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.09 0.10 0.09 0.00 0.09 0.08 0.08 0.07 <i>N</i> Al 4 6 6 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.04 \\ N_{\rm Si} \\ 15 \\ 19 \\ 17 \\ 12 \\ 12 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 $      | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10 9                                                                                                                                                             | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 <i>N</i> <sub>Ti</sub> 2 5 4 2 2                      | σ <sub>[Cr/H]</sub><br>- 0.07 0.07 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.04 0.06 0.07 0.06 0.07 <i>N</i> Cr - 2 1 - 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \\ 15 \\ 14 \\ \end{array} $                                                                       | σ <sub>[Zn/H]</sub> - 0.26 - 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1                                                                                              | σ[Y/H]<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4 3 3                                                    |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S<br>OGLE-2009-BLG-076S<br>MOA-2009-BLG-075S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S                                                                                                                            | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.17 0.17 0.06 0.06 0.01 0.09 0.07 0.08 0.08 0.10 0.06 <i>N</i> Fe1 57 80 68 53 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1                                                       | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 - 3                 | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4 5 1                                                                | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm All}$ 4 6 6 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma_{\rm [Si/H]} \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.04 \\ N_{\rm Si} \\ 15 \\ 19 \\ 17 \\ 12 \\ 7 \\ 7 \\ 12 \\ 7 \\ 7 \\ 12 \\ 7 \\ 7 \\ 12 \\ 7 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 12 \\ 7 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 9 16                                                                                                                                                                       | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 <i>N</i> <sub>Ti</sub> 2 5 4 2 14                     | $\sigma_{\rm [Cr/H]}$ 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.06 0.07 Ncr - 2 1 - 2 1 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ \end{array} $                                                         | σ <sub>[Zn/H]</sub> - 0.26 - 0.10 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1                                                                                         | σ[Y/H]<br>                                                                                            | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4 3 3 3 3                                                |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S<br>MOA-2009-BLG-076S<br>MOA-2009-BLG-075S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S                                                                                                                            | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 $N_{\rm Fe1}$ 57 80 68 53 97 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3                                                   | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 - 3 4             | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.14 <i>N</i> Mg 5 6 4 5 1 5                                                                    | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.07 $N_{\rm AI}$ 4 6 6 6 3 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17 12 7 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.16 10 10 10 10 9 16 19                                                                                                                                                                                | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 14 36                         | $\sigma_{\rm [Cr/H]}$ 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.06 0.07 0.06 0.07 0.06 1.07 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\sigma_{\rm [Ni/H]}}{0.06}$ 0.05<br>0.04<br>0.07<br>0.08<br>0.03<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.06<br>0.07<br>0.04<br>$\frac{N_{\rm Ni}}{11}$ 11<br>15<br>14<br>21<br>40                                                                                      | $\sigma_{[Zn/H]}$ - 0.26 - 0.10 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1                                                                                           | σ[Y/H]<br>                                                                                            | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4 3 3 3 3 4                                              |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-076S<br>MOA-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S                                                                                                                                                   | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 $N_{\rm Fe_1}$ 57 80 68 53 57 80 68 53 57 146 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3                                               | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 - 3 4 2           | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4 5 6 4 5 1 5 6                                                 | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.09 0.10 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm AI}$ 4 6 6 3 2 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17 12 7 7 27 27 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 N <sub>Ca</sub> 10 10 10 10 9 16 19 13                                                                                                                                                        | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 14 36 16                      | $\begin{array}{c} \sigma_{\rm [Cr/H]} \\ & - \\ 0.07 \\ 0.07 \\ & - \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ \hline \\ 0.07 \\ 0.06 \\ \hline \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.$ | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline \\ N_{\rm Ni} \\ \hline \\ 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 14 \\ 21 \\ 40 \\ 37 \\ \end{array} $                            | $\sigma_{[Zn/H]}$ - 0.26 - 0.10 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1 1 3 3 3                                                                                   | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 $N_{\rm Ba}$ 2 4 3 3 3 4 4 4                                            |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S<br>OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S                                       | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 <i>N</i> <sub>Fe1</sub> 57 80 68 53 97 146 114 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3 3 3 3                                         | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 1 3 4 2 2 2       | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.18 0.14 <i>N</i> Mg 5 6 4 5 6 4 5 1 5 6 5 5                                              | $ \begin{array}{c} \sigma_{\rm [AI/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.07 \\ \hline N_{\rm Al} \\ \hline \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17 12 7 7 27 27 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10 10 10 10 10 10 10 10 10 10 11 11                                                                                                                                        | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 5 4 2 14 36 16 7              | $\begin{array}{c} \sigma_{\rm [Cr/H]} \\ & - \\ 0.07 \\ 0.07 \\ & - \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ \hline \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.$                                       | $ \begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ \hline 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 14 \\ 21 \\ 14 \\ 21 \\ 37 \\ 33 \\ \end{array} $                      | $\sigma_{[Zn/H]}$ - 0.26 - 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1                                                                                                | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 N <sub>Ba</sub> 2 4 3 3 3 4 4 4 2                                       |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-265S<br>OGLE-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S                                     | $ \begin{array}{c} \sigma_{\rm [Fe/H]} \\ 0.07 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.14 \\ 0.06 \\ 0.11 \\ 0.09 \\ 0.07 \\ 0.08 \\ 0.08 \\ 0.00 \\ 0.08 \\ 0.10 \\ 0.06 \\ \hline N_{\rm FeI} \\ \hline 57 \\ 80 \\ 68 \\ 53 \\ 97 \\ 146 \\ 114 \\ 91 \\ 118 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3 3 3 3 3                                       | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 1 - 3 4 2 2 4     | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.14 <i>N</i> Mg 5 6 4 5 6 4 5 1 5 6 5 5                                                   | $ \begin{array}{c} \sigma_{\rm [AI/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.07 \\ \hline N_{\rm Al} \\ \hline \\ \hline \\ N_{\rm Al} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17 12 7 7 27 26 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10 10 10 10 10 10 10 10 11 17                                                                                                                                              | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 14 36 16 7 14                 | $\begin{array}{c} \sigma_{\rm [Cr/H]} \\ & - \\ 0.07 \\ 0.07 \\ & - \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ \hline \\ N_{\rm Cr} \\ \hline \\ \hline \\ 2 \\ 1 \\ - \\ 2 \\ 1 \\ 0 \\ 6 \\ 3 \\ 9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ \hline 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 40 \\ 37 \\ 33 \\ 36 \\ \end{array}$                  | $\sigma_{[Zn/H]}$ - 0.26 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1 3 3 3 3 1                                                                                        | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 N <sub>Ba</sub> 2 4 3 3 3 4 4 4 2 3                                     |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-475S<br>MACHO-1999-BLG-02S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2009-BLG-311S<br>MOA-2008-BLG-310S                                                                                    | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.00 0.06 NFe I 57 80 68 53 97 146 68 53 97 146 114 91 118 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3 3 3 3 3 3                                     | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 - 3 4 2 2 2 4 4   | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.13 0.18 0.18 0.14 <i>N</i> <sub>Mg</sub> 5 6 4 5 1 5 6 5 5 4                                            | $\sigma_{\rm [AI/H]}$ 0.05 0.07 0.18 0.13 0.06 0.07 0.07 0.07 0.09 0.10 0.09 0.08 0.08 0.07 $N_{\rm Al}$ 4 6 6 6 3 2 7 7 6 6 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.05 0.04 <i>N</i> <sub>Si</sub> 15 19 17 12 7 27 27 27 26 26 26 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10 10 10 10 10 10 10 10 10 11 17 17                                                                                                                                        | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 14 36 16 7 14 22              | $\begin{array}{c} \sigma_{\rm [Cr/H]} \\ & - \\ 0.07 \\ 0.07 \\ 0.07 \\ - \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.14 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ \hline \\ N_{\rm Cr} \\ \hline \\ \hline \\ 2 \\ 1 \\ - \\ 2 \\ 1 \\ 0 \\ 6 \\ 3 \\ 9 \\ 13 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 40 \\ 0 \\ 37 \\ 33 \\ 36 \\ 42 \\ \end{array}$              | $\sigma_{[Zn/H]}$ - 0.26 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1                                                                                                  | σ[Y/H]                                                                                                | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 N <sub>Ba</sub> 2 4 3 3 3 4 4 4 2 3 3 3                                 |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-456S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S                      | $\sigma_{\rm [Fe/H]}$ 0.07 0.14 0.17 0.17 0.14 0.06 0.11 0.09 0.07 0.08 0.08 0.10 0.06 <i>N</i> Fe1 57 80 68 53 97 146 114 91 118 122 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                 | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 <i>N</i> <sub>Na</sub> 1 1 1 1 - 3 4 2 2 4 4 4 4 | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.12 0.14 0.13 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4 5 1 5 6 6 4 5 5 6 4 3                                    | $\begin{array}{c} \sigma_{\rm [AI/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.$                        | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 9 16 19 13 11 17 17 18                                                                                                                                           | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 <i>N</i> <sub>Ti</sub> 2 5 4 2 14 36 16 16 7 14 22 24 | $\sigma_{\rm [Cr/H]}$ 0.07 0.07 0.07 0.11 0.06 0.07 0.14 0.06 0.07 0.14 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 - 2 10 - 2 10 6 3 9 13 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 37 \\ 33 \\ 36 \\ 42 \\ 39 \\ \end{array}$ | $\sigma_{[Zn/H]}$ - 0.26 - 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1 3 3 3 3 1 1 1 3                                                                                | σ[Y/H]<br>                                                                                            | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.12 0.09 0.08 N <sub>Ba</sub> 2 4 3 3 3 4 4 4 2 3 3 3 4 4 4 2 3 3 3 4 4 4 4           |
| OGLE-2009-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-133S<br>MOA-2009-BLG-022S<br>OGLE-2008-BLG-209S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-311S<br>MOA-2006-BLG-099S<br>OGLE-2006-BLG-076S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-493S<br>MOA-2009-BLG-495S<br>MOA-2009-BLG-489S<br>MOA-2009-BLG-489S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-311S<br>MOA-2008-BLG-310S<br>OGLE-2007-BLG-349S<br>MOA-2006-BLG-099S | $ \begin{array}{c} \sigma_{\rm [Fe/H]} \\ 0.07 \\ 0.14 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.17 \\ 0.06 \\ 0.017 \\ 0.08 \\ 0.00 \\ 0.07 \\ 0.08 \\ 0.00 \\ 0.06 \\ \hline \\ NFe_1 \\ \hline \\ S7 \\ 80 \\ 68 \\ 53 \\ 97 \\ 146 \\ 114 \\ 91 \\ 118 \\ 122 \\ 103 \\ 119 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sigma_{\rm [O/H]}$ 0.10 0.38 0.46 0.23 - 0.16 0.15 0.14 0.12 0.10 0.13 0.11 0.12 No 3 3 2 1 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                 | $\sigma_{\rm [Na/H]}$ 0.05 0.09 0.05 - 0.14 0.11 0.13 0.07 0.17 0.14 0.19 0.18 0.14 $N_{\rm Na}$ 1 1 1 - 3 4 2 2 4 4 4 4 4           | $\sigma_{\rm [Mg/H]}$ 0.06 0.16 0.36 0.17 0.23 0.15 0.14 0.12 0.14 0.12 0.14 0.13 0.18 0.18 0.14 $N_{\rm Mg}$ 5 6 4 5 1 5 6 5 5 4 3 4 3 4                                    | $ \begin{array}{c} \sigma_{\rm [AI/H]} \\ 0.05 \\ 0.07 \\ 0.18 \\ 0.13 \\ 0.06 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.10 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.09 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.007 \\ 0.$                        | $\sigma_{\rm [Si/H]}$ 0.05 0.06 0.08 0.06 0.03 0.03 0.03 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sigma_{\rm [Ca/H]}$ 0.10 0.43 0.52 0.31 0.25 0.17 0.21 0.15 0.17 0.15 0.17 0.20 0.14 $N_{\rm Ca}$ 10 10 10 9 16 19 13 11 17 17 18 18                                                                                                                                               | $\sigma_{\rm [Ti/H]}$ 0.08 0.13 0.12 0.14 0.16 0.06 0.09 0.10 0.07 0.08 0.09 0.07 0.08 N <sub>Ti</sub> 2 5 4 2 14 36 16 7 14 22 24 30        | $\sigma_{\rm [Cr/H]}$ 0.07 0.07 0.07 - 0.11 0.06 0.07 0.14 0.06 0.05 0.07 0.14 0.06 0.05 0.07 0.06 0.07 0.06 0.07 - 2 10 - 2 10 6 3 9 13 9 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \sigma_{\rm [Ni/H]} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.03 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.06 \\ 0.07 \\ 0.04 \\ \hline N_{\rm Ni} \\ 11 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 15 \\ 14 \\ 21 \\ 33 \\ 36 \\ 42 \\ 39 \\ 37 \\ \end{array}$ | $\sigma_{[Zn/H]}$ - 0.26 - 0.10 0.16 0.06 0.15 0.07 0.08 0.10 0.09 0.43 N <sub>Zn</sub> - 1 3 3 3 3 1 1 3 3 3                                                                              | $\sigma_{\rm [Y/H]}$                                                                                  | $\sigma_{\rm [Ba/H]}$ 0.11 0.18 0.36 0.21 0.15 0.08 0.09 0.10 0.07 0.12 0.09 0.00 <i>N</i> Ba <i>N</i> Ba <i>2</i> 4 4 3 3 3 4 4 4 2 3 3 4 4 4 4 2 3 3 4 4 4 4 |

<sup>†</sup> No abundances are given for MOA-2009-BLG-259S as the errors in the stellar parameters were too large, and for OGLE-2007-BLG-514S we only redeteremined stellar parameters and [Fe/H]. Abundance ratios for OGLE-2007-BLG-514S can be found in Epstein et al. (2009). <sup>‡</sup> Note that the abundance ratios for oxygen have been corrected for NLTE effects according to the empirical formula given in Bensby et al. (2004).