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ABSTRACT
The color-magnitude relation of early-type galaxies differs slightly but significantly
from a pure power-law, curving downwards at low and upwards at large luminosities
(Mr > −20.5 and Mr < −22.5, respectively). This remains true of the color-size
relation, and is even more apparent with stellar mass (M∗ < 3 × 1010M⊙ and M∗ >

2×1011M⊙, respectively). The upwards curvature at the massive end does not appear
to be due to stellar population effects. In contrast, the color-σ relation is well-described
by a single power law. Since major dry mergers change neither the colors nor σ, but
they do change masses and sizes, the clear features observed in the scaling relations
with M∗, but not with σ > 150 km s−1, suggest that M∗ > 2 × 1011M⊙ is the scale
above which major dry mergers dominate the assembly history.

We discuss three models of the merger histories since z ∼ 1 which are compatible
with our measurements. In all three models, dry mergers are responsible for the flat-
tening of the color-M∗ relation at M∗ > 3 × 1010M⊙ – wet mergers only matter at
smaller masses. At M∗ > 2×1011M⊙, the merger histories in one model are dominated
by major rather than minor dry mergers. In another, although both major and minor
mergers occur at the high mass end, the minor mergers contribute primarily to the
formation of the ICL, rather than to the stellar mass growth of the central massive
galaxy. This model attributes the fact that α < 1 in the scaling M∗ ∝ Mα

dyn, to the
formation of the ICL. A final model assumes that the bluest objects today were assem-
bled by minor dry mergers of the bluest (early-type) objects at high redshift, whereas
the reddest objects were assembled by a mix of major and minor dry mergers. In this
model, the scatter of the color-magnitude relation should increase with redshift, and
the dependence on environment should also be more pronounced at higher redshift:
more clustered objects should be redder. Similar measurements of these relations at
high redshift will provide further valuable constraints on the mass scale at which major
dry mergers dominate the assembly history.

Key words: galaxies: formation

1 INTRODUCTION

The colors of early-type galaxies are tightly correlated with
their luminosities (Sandage & Visvanathan 1978). The mean
relation is well-described by a single-power law whose slope
evolves little out to z ∼ 1 (e.g. Kodama et al. 1998; Mei et al.
2009). This, and the small scatter around the mean relation,
are thought to imply that the stellar populations in these ob-
jects are old (e.g. Bower et al. 1992; Bernardi et al. 2003b,c),
although the total stellar metallicity, the α-elements-to-iron

⋆ E-mail: bernardm@physics.upenn.edu

abundance ratio, and light-weighted age, all increase along
the relation (e.g. Bernardi et al. 2006; Gallazzi et al. 2006).
Data sets are now large enough that significant departures
from simple power laws can be detected: the mean color-
magnitude relation appears to be steeper at faint luminosi-
ties (e.g. Baldry et al. 2004; Graham 2008; Skelton et al.
2009). This change in slope is thought to indicate that the
mechanism by which the stars were assembled into a single
object is different at low luminosities than at higher ones.

However, different morphological types define different
color-magnitude relations. Since the mix of morphological
types is a strong function of luminosity, it is possible that
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the observed curvature is really due to morphology, rather
than to a change in formation histories at fixed morphology.
Unfortunately, it is difficult to select large samples of a given
morphological type that are pure. In what follows, we com-
pare the color-magnitude relation obtained from a number
of different ways of defining an early-type sample. We argue
that while the steepening of the relation at faint luminosities
may be affected by morphological effects, it appears to be
present even in relatively pure samples of ellipticals – this
may arise from the fact that dwarf and giant ellipticals are
known to be different in other ways. However, we also show
that, at the very highest luminosities, Mr < −22.5, the re-
lation steepens again. In a companion paper, Bernardi et al.
(2010b) show that this steepening occurs on the same scale
where the size-luminosity and velocity dispersion-luminosity
relations steepen and flatten, respectively (Bernardi et al.
2007). In addition, the trend for axis-ratio and color-gradient
to increase with luminosity, reverse on this scale (Bernardi
et al. 2008; Roche et al. 2010). When expressed in terms of
stellar mass, the relevant scale is M∗ = 2× 1011M⊙.

Section 2 describes the SDSS sample, and a number
of ways for selecting early-types from it. Section 3 presents
the associated color-magnitude relations, and shows that the
trends we see are even more pronounced if we replace lu-
minosity with stellar mass. It also shows that, in contrast,
the color-σ relation is well-described by a single power law
over essentially the entire range of σ. Section 4 shows that
the curvature is not due to stellar population effects. Sec-
tion 5 compares our empirical results with simple models.
While these toy models are not intended to provide a precise
quantification of the color evolution, they provide a useful
framework within which to discuss our measurements. A fi-
nal section summarizes our findings, and discusses what they
suggest about how the formation and assembly of early-type
galaxies depend on mass and redshift.

Appendix A1 describes a way of selecting early-types
which exploits the fact that galaxy properties are approxi-
mately bimodal; Appendix A2 contrasts this with selection
based on eyeball classifications of morphology. A number of
tests of systematics – robustness to changes in the scale on
which rest-frame color is measured or inferred (color gradi-
ents and k+e corrections) – are described in Appendix B. A
final Appendix provides details of the expected changes to
galaxy sizes and velocity dispersions if galaxy mergers occur
along parabolic orbits and conserve mass and energy.

Where necessary we assume a flat background geometry
that is dominated at the present time by a cosmological
constant Λ0 = 1 − Ω0, where Ω0 = 0.3 is the background
density in units of the critical density, with Hubble constant
H0 = 70 km s−1Mpc−1.

2 SAMPLE

2.1 Data

In what follows, we will use the luminosities, colors, velocity
dispersions and stellar masses of a magnitude limited sample
of ∼ 250, 000 SDSS galaxies with 14.5 < mPet < 17.5 in the
r−band, selected from 4681 deg2 of sky. In this band, the
absolute magnitude of the Sun is Mr,⊙ = 4.67.

We use the cmodel magnitudes as well as the Petrosian

and model g − r colors output by the SDSS database. The
cmodel magnitude is a very crude disk+bulge magnitude
which has been seeing-corrected. Rather than resulting from
the best-fitting linear combination of an exponential disk
and a deVaucouleur bulge, the cmodel magnitude comes
from separately fitting exponential and deVaucouleur pro-
files to the image, and then combining these fits by finding
that linear combination of them which best-fits the image
(see Bernardi et al. 2010a for more discussion). The analysis
which follows does not depend on whether one uses cmodel
or Petrosian magnitudes. (Petrosian magnitudes are not
seeing corrected, and they underestimate the total light in
a deVaucouleurs profile by about 0.05 mags.)

However, choosing model rather than Petrosian colors
does matter, because of color-gradients: the Petrosian color
is associated with a larger scale, and so is typically bluer. For
faint galaxies, the model colors have higher signal-to-noise
ratio than do the Petrosian colors.

We apply k- and evolution-corrections to the luminosi-
ties and colors. We use k-corrections from Blanton & Roweis
(2007), which are based on fitting templates to the observed
colors. Because these are suspect at the bright end (Bernardi
et al. 2010a argue that they assume younger stellar popula-
tions than may be realistic), we also explore spectral based
k-corrections from Roche et al. (2009). Our evolution cor-
rection depends on the k-correction: we make high redshift
objects fainter by 0.9z (r−band) and redder by 0.15z for
Roche et al. k-corrections, and by 1.3z but with negligible
color evolution correction for Blanton & Roweis. See Sec-
tion B1 and Figure B3 for more discussion.

We also use the concentration index Cr, which is the
ratio of the scale which contains 90% of the Petrosian light
in the r-band to that which contains 50%. Finally, we use
the velocity dispersions and stellar masses of these objects
as described in Bernardi et al. (2010a). The stellar masses
were computed following Bell et al. (2003), who report that,
at z = 0, log10(M∗/Lr)0 = 1.097 (g− r)0 − 0.406, where the
zero-point depends on the IMF (see their Appendix 2 and
Table 7). We calibrate to a Chabrier IMF. (See Table 2 in
Bernardi et al. 2010a for how to transform between differ-
ent IMFs. Bernardi et al. also report a detailed comparison
between the different ways of computing stellar masses and
their biases – see their discussion of the stellar mass func-
tion and their Appendix A.) In Section 4 we make use of
age and metallicity estimates for the objects in our sample.
These come from Gallazzi et al. (2005), and are based on
absorption line features in the spectra.

2.2 Sample selection

In this paper we are interested in early-type galaxies. The
light profiles of such galaxies are more centrally concen-
trated, so they are expected to have larger values of Cr. Two
values are in common use: a more conservative Cr≥ 2.86
(e.g. Nakamura et al. 2003; Shen et al. 2003) and a more
cavalier Cr≥ 2.6 (e.g. Strateva et al. 2001; Kauffmann et al.
2003; Bell et al. 2003; Skelton et al. 2009). We can also se-
lect early-type galaxies following Hyde & Bernardi (2009),
who use a combination of photometric features (a revised
version of Bernardi et al. 2003a): i.e. fracDev = 1 in g- and
r-, r-band b/a > 0.6 and log10(re,g/re,r) < 0.15. This last
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condition is essentially a cut on color gradient (Roche et al.
2010).

Recently, Bernardi et al. (2010a) have shown that re-
quiring concentration indices Cr ≥ 2.6 selects a mix in which
E+S0+Sa’s account for about two-thirds of the objects; if
Cr ≥ 2.86 instead, then two-thirds of the sample comes from
E+S0s; whereas Es alone account for more than two-thirds
of a sample selected following Hyde & Bernardi (2009) (see
Figures 11 and 12, and Table 3 of Bernardi et al. 2010a).
E’s alone account for about 40%, 50% and 75% of the to-
tal stellar mass in samples selected in these three ways. In
Appendix A2, we also present results from a small subset of
this dataset for which eye-ball classifications of morphology
are available (from Fukugita et al. 2007).

There is a third method used to select early-type sam-
ples from the SDSS in addition to direct eye-ball classifi-
cations (e.g. Fukugita et al. 2007; Lintott et al. 2008) and
to the two common automated ways introduced above (i.e.
concentration index and Hyde–Bernardi). This is based on
the fact that the color-magnitude relation is bimodal (e.g.
Baldry et al. 2004; Blanton et al. 2005) at least out to red-
shifts of order unity (Willmer et al. 2006). This bimodal-
ity has sometimes been used as a simple way to select red
sequence galaxies. Typically, one selects objects which lie
redward of a straight color cut, or redward of a line which
lies below, but parallel to, the red sequence (e.g. Zehavi et
al. 2005; Blanton & Berlind 2007). The resulting sample is
then treated as though it is comprised of early-types, even
though it can contain a substantial fraction of edge-on spi-
rals (Mitchell et al. 2005; Bernardi et al. 2010a). Although
a cut on axis ratio can remove such objects (Bernardi et al.
2010a), this simple extra step is almost never taken.

We select a sample using ‘bimodality’ as follows. We
first divide the full galaxy sample into narrow bins in lumi-
nosity. We then model the color distribution in each luminos-
ity bin as the sum of two Gaussian components. The means
and rms values of the two Gaussians, obtained by fitting the
model to the data, give the red and blue sequences and their
scatter; the amplitudes of the Gaussians give the fraction of
galaxies in each component (e.g. Baldry et al. 2004; Skibba
& Sheth 2009). Appendix A1 provides details, and argues
that the double-Gaussian decomposition correctly assigns
the reddest objects at intermediate and low luminosities to
the blue sequence. The means and rms of the two Gaussians
and the fraction of galaxies in each component are listed in
Table A1.

3 CURVATURE

3.1 Curvature in the red sequence

Figure 1 shows that the different ways of selecting early-type
samples mentioned above (cuts in Cr, or following Hyde
& Bernardi 2009) produce almost indistinguishable color-
magnitude relations. This is remarkable, given that the mean
relation they define is not a simple power law. Rather, it
bends downward at low luminosities, and upward at high
luminosities, while being relatively flat at intermediate lu-
minosities. The changes in slope occur around Mr = −20.5
and Mr = −22.5 mags. Table 1 quantifies the slopes.

The flattening of the slope as one moves brightwards

Figure 1. Red sequence defined by various samples (as labeled)
when model colors and cmodel magnitudes are used and the k-
correction is from Blanton & Roweis (2007). Top: Symbols with
error bars show the mean g − r for bins in Mr, and dashed lines
show the rms scatter around this mean, for the different samples.
Thick solid lines show the three regimes (fits are reported in Ta-
ble 1) in the sample which is selected following Hyde & Bernardi
(2009). Dot-dashed lines show the steep and shallow slopes for
the faint and bright ends of this relation measured by Skelton et
al. (2009) on a sample selected with Cr > 2.6 and at z < 0.06.
Bottom: Same as top, except now, to reduce the dynamic range,
a mean trend has been subtracted from the colors. Plot shows
g − r − (0.361 − 0.019Mr) versus Mr: the reduction in dynamic
range highlights the curvature in the relation.

from the faintest luminosities is in excellent agreement with
that reported by Skelton et al. (2009) who selected galaxies
with Cr > 2.6 and at z < 0.06. The dot-dashed lines show
the relations they reported. Note, however, that they did
not report any upward curvature at the brightest end. This
may be because their sample was restricted to small redshifts
(z < 0.06), so they had many fewer objects at Mr < −23.
As a result, at the bright end, our measurements zig-zag
around their relation.

While our primary interest is in the fact that the re-
lation is curved, notice that the samples do have different
amounts of scatter around the mean relation: whereas they
have similar red envelopes, the scatter bluewards tends to
increase dramatically at faint luminosities, with the effect
being most pronounced in the Cr > 2.6 sample. Some of
this is because, at fainter luminosities, these samples are in-
creasingly contaminated by later-type galaxies (Bernardi et
al. 2010a), so one might worry that the steeper slope at the
faint end is due, at least in part, to this contamination. In
Appendix A2, we present a direct measurement of the color-
magnitude relation in (substantially smaller) subsamples of
fixed morphological type. This shows that there are three
distinct regimes in a sample composed only of Es.

The left hand panel of Figure 2 shows that the curvature
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Figure 2. Red sequence defined by various samples (as labeled) when Petrosian colors and magnitudes are used and the k-correction
is from Blanton & Roweis (2007). Top left: Symbols with error bars show the mean g − r for bins in Mr, and dashed lines show the rms
scatter around this mean, for the different samples. Thick solid lines show the three regimes (fits are reported in Table 1) in the sample
which is selected following Hyde & Bernardi (2009). Bottom left: Same as top panel, except now, to reduce the dynamic range, a mean
trend has been subtracted from the colors. Plot shows g − r − (0.434− 0.014Mr) versus Mr: the reduction in dynamic range highlights
the curvature in the relation. Top right panel shows a similar analysis of 〈g − r|M∗〉, where colors and stellar masses are derived from

Petrosian quantities. The bottom right panel shows g − r − (0.303 + 0.040 log10 M∗/M⊙) versus M∗.

Table 1. Coefficients of linear fits to the 〈g−r|Mr〉 and 〈g−r|M∗〉
relations in the Hyde & Bernardi (2009) sample, where g− r was
computed using the Blanton & Roweis (2007) k-correction.

PETROSIAN
Range slope z.p.

−20.25 <Mr < −19 −0.029± 0.003 0.131 ± 0.051
−22 <Mr < −20.75 −0.014± 0.001 0.434 ± 0.012
−23.5 <Mr < −22.25 −0.039± 0.003 −0.104± 0.061

9.8 < Log10M∗ < 10.2 0.092 ± 0.012 −0.249± 0.072
10.5 < Log10M∗ < 11.1 0.040 ± 0.003 0.303 ± 0.028
11.4 < Log10M∗ < 11.9 0.094 ± 0.002 −0.305± 0.027

MODEL
Range slope z.p.

−20.25 <Mr < −19 −0.029± 0.002 0.144 ± 0.024
−22 <Mr < −20.75 −0.019± 0.001 0.361 ± 0.013

−23.5 <Mr < −22.25 −0.029± 0.001 0.119 ± 0.027

9.8 < Log10M∗ < 10.2 0.090 ± 0.009 −0.215± 0.093

10.5 < Log10M∗ < 11.1 0.049 ± 0.001 0.224 ± 0.021
11.4 < Log10M∗ < 11.9 0.088 ± 0.006 −0.221± 0.065

does not depend on precisely how the colors and magnitudes
were defined: using Petrosian rather than model colors and
magnitudes makes little difference. Appendix B shows that
the small differences between model and Petrosian based

quantities arise because model colors probe smaller scales
than do Petrosian colors, and early-type galaxies have color
gradients. It also shows that the appearance of three regimes
is robust against changes in the k + e corrections.

Since Petrosian colors probe more of the total light,
we will use them, primarily, in what follows. The right hand
panel of Figure 2 shows that the three regimes are even more
pronounced if one replaces luminosity with stellar mass. This
is easily understood: logM∗ is obtained from logL by adding
1.097 (g − r) − 0.406. So, to make this plot, one slides the
reddest objects in the previous plot to the right, and the
bluest to the left. Table 1 shows that the slope at inter-
mediate masses is a factor of two shallower than at either
end. The changes in slope occur at M∗ = 3 × 1010M⊙ and
M∗ = 2× 1011M⊙.

Figure 3 displays the red and blue sequences defined
by our double-Gaussian fits described in Appendix A1 (the
parameters are reported in Table A1). Clearly, the red se-
quence defined in this way also shows three regimes. Notice
that the red sequence is considerably straighter and nar-
rower than the blue, and that the thickness of the two se-
quences is almost independent of luminosity, even though
this was not required during the fitting procedure. This is
significant, because we were previously concerned that the
bluewards flaring in the other samples might be signalling
that the mean relation had been affected. Here, that argu-
ment cannot be made. Nevertheless, the mean red sequence
is curved, in excellent agreement with that shown in Fig-
ure 2. The panel on the right shows that the three regimes
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Figure 3. Dependence of the red sequence on how it is defined. Panel on the left shows the color-magnitude relation; panel on the right
shows the color-M∗ relation. To highlight the curvature in the upper panels, bottom panels show the result of removing a linear trend:
g − r − (0.361 − 0.019Mr) vs Mr and g − r − (0.224 + 0.049 log10 M∗/M⊙) vs M∗. Small dots show a representative subsample of the
galaxies when model colors and cmodel magnitudes are used and the k-correction is from Blanton & Roweis (2007). Solid red and blue
curves show the result of our double-Gaussian decomposition (see Table A1 in Appendix A1); filled cyan circles show the color-magnitude
relation for a sample selected following Hyde & Bernardi (2009); open magenta squares show this relation for objects with Cr > 2.6.

Dashed lines show the rms scatter around the mean relations. The relation found by the double-Gaussian fit is narrower and almost
independent of Mr ; the sample with Cr > 2.6 has the largest scatter, particularly at Mr > −20.

are also present if one replaces luminosity with stellar mass.
Table A2 provides details of the double-Gaussian fits to the
associated red and blue sequences.

Before moving on, it is worth noting that the double-
Gaussian fits do not fare well over the range −18.5 ≥ Mr ≥

−20.5 (see Figure A1). At these luminosities, there appears
to be a set of objects which populate the ‘green valley’ be-
tween the red and blue sequences. However, this third com-
ponent is most needed at luminosities which lie below those
where the color-magnitude relation flattens. So our neglect
of, or contamination by this component is not to blame for
the flattening at intermediate luminosities, nor for the steep-
ening at the highest luminosities.

3.2 Curvature in the color-R and Mdyn relations
but little in color-σ

In contrast to the previous two correlations with color,
the color-size relation has been much less studied. Fig-
ure 4 shows that the color-R relation also shows three dis-
tinct regimes. These are somewhat more obvious if we use
Petrosian R50 than cmodel Re. Three distinct regimes are
also seen if the dynamical mass is used instead of stellar
mass, although the curvature at the high-mass end is less
steep (we have chosen to not show this plot).

In contrast to these relations which are rather curved,
the color-σ relation is rather well described by a single power
law. This is shown in Figure 5. At large σ, the relation is

independent of how the sample was selected. However, at
log10(σ/km s−1) < 2.1, samples which are more likely to in-
clude later types fall below the relation, suggesting that it is
the changing morphological mix which is driving the curva-
ture at small σ. Since major mergers are expected to change
the mass and size of a galaxy while leaving σ unchanged,
the lack of curvature at large σ is suggestive. We return to
this in Sections 5 and 6.

Before moving on, we note that, for the bulk of the
early-type population, the color-magnitude relation is a
consequence of the color−σ and σ−magnitude relations
(Bernardi et al. 2005). This means that σ determines both
the color and the luminosity of an object, at least for
the bulk of the population at lower luminosities. Now,
the σ−magnitude relation flattens at large luminosities
(Bernardi et al. 2007), and there is no curvature in the color-
σ relation (Figure 5). Hence, if there were no scatter around
these relations, we would expect the color-magnitude rela-
tion to flatten rather than steepen at Mr < −22.5. There-
fore, either σ is no longer the important parameter at these
high luminosities (and stellar masses), or the scatter around
these relations is important.
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Figure 4. Petrosian color vs size, cmodel Re (top) and Petrosian
R50 (bottom), for the three ways of selecting early-type samples
(compare Figure 2).

4 DEPENDENCE ON AGE AND
METALLICITY OF THE POPULATION

The previous subsections showed that the curvature in the
color-magnitude relation is clearly seen in a number of other
scaling relations with luminosity or stellar mass, but is es-
sentially absent in correlations with σ. We now turn to a
study of how the curvature depends on the age and metal-
licity of the population. Gallazzi et al. (2006) have shown
that both age and metallicity increase along the color-M∗

relation. Here, our primary interest is in seeing if the cur-
vature we have found is associated with stellar population
effects.

Our age and metallicity estimates come from Gallazzi et
al. (2005); they are based on absorption line features in the
spectra. About 50 percent of our sample has ages between
8 and 10 Gyrs; 20 percent have ages between 10 and 12
Gyrs and only a percent are older than 12 Gyrs; 20 percent
have ages between 6 and 8 Gyrs, and about 7 percent are
younger than 6 Gyrs. Figure 6 shows that, although both age
and metallicity tend to increase with mass, at fixed M∗, age
and metallicity are anti-correlated: older galaxies are more
metal poor, in agreement with previous work (Trager et al.
2000; Bernardi et al. 2005).

The top panel of Figure 7 shows that, at fixed metal-
licity and age, the color-magnitude relation is flat for galax-

Figure 5. Petrosian color vs velocity dispersion for the three
ways of selecting early-type samples (compare Figures 2 and 4).

ies with Mr > −22.5. The Figure actually shows results
for metallicities between 1.25 − 1.6Z⊙. At smaller metallic-
ity (not shown), the colors for the same age bins are offset
blueward with respect to those shown here, but the color-
magnitude relation remains flat. (This is because colors suf-
fer from an age-metallicity degeneracy; Gallazzi et al. used
spectral line indices to break this degeneracy.) In fact, the
relation is flat whatever the age or metallicity. The mid-
dle panel shows this is true for the color-M∗ relation (at
log10 M∗/M⊙ < 11) as well.

However, the color increases with luminosity (top) and
even more strongly with M∗ (middle), at the most massive
end which is dominated by the oldest galaxies. For younger
galaxies, the upturn may be due to correlated errors in the
M∗ and age estimates, but this is not a concern for the older
objects (see Bernardi 2009 for more discussion).

This upwards curvature is not seen in the color-σ rela-
tion (bottom). The slight increase of g − r with σ, at fixed
age and metallicity, may be due in part to the fact that the
model estimates assume that all galaxies have the same ra-
tio of α-elements with respect to Fe. (Models which account
for variations in α-abundance are only just becoming avail-
able – they were not available to Gallazzi et al.) However,
this ratio is known to be strongly correlated with σ: large σ
galaxies are α-enhanced (Trager et al. 2000; Bernardi et al.
2005). Thus, while it may be that the results shown in the
bottom panel are biased because this correlation has been
ignored, it is extremely unlikely that the upwards curvature
in the other two correlations (at fixed age and metallicity)
is due to α-enhancement related biases.

It is interesting that this same age and stellar mass scale
is seen in recent studies of the Re −M∗ relation. Shankar &
Bernardi (2009) show that, at M∗ < 2×1011M⊙, older early-
types tend to have smaller sizes than younger ones, perhaps
because they formed at higher redshift from more dissipa-
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Figure 6. Age-metallicity relation for a number of bins in stellar
mass. Although more massive objects are older and more metal
rich, at fixed mass, older objects are more metal poor.

tive mergers. However, at higher masses, this dependence
on formation time disappears. Shankar & Bernardi suggest
that this is because some later process has erased the trend.
Although it is possible that some process decreases the sizes
of younger early-types, Shankar & Bernardi focus on the
possibility that the sizes of the older ones have increased
(see also Shankar et al. 2010a). They argue that if older ob-
jects have undergone more dry mergers than their younger
counterparts (of the same mass), then this would puff up
their sizes, effectively erasing the trend which derives from
formation age/time.

5 DRY MERGER MODELS

In this section we are particularly interested in assessing
if a late, dry merger-driven evolution for massive and pas-
sive early-type galaxies, is consistent with the measurements
presented earlier in this paper.

Semi-analytic galaxy formation models make predic-
tions for the curvature and evolution of the color-magnitude
relation, so, in principle, they could be used to address this
question. However, Bernardi et al. (2007) have shown that
the red-sequence in these models is too red, and although it
turns blueward at intermediate luminosities, it does not turn
redward at the highest luminosities. In addition, Shankar et
al. (2010a,b) have shown that the bulge sizes in some models
could be somewhat discrepant with measurements.

Therefore, we now discuss a number of plausible scenar-
ios in light of our measurements, some of which we simulate
numerically. These are toy models: they do not provide a
precise quantification of the color evolution. In what fol-
lows, we will assume that after some sufficiently large red-
shift, which we will take to be z ∼ 1, the stars evolve pas-
sively, and this evolution is not differential. The absence of
differential evolution means that we can effectively remove
its effects from the following discussion, as including it sim-
ply results in an overall translation of the objects in the
color-magnitude plane, but does not alter any features in
the color-magnitude relation. To the extent that differential
evolution is expected, it goes contrary to the trend that we

Figure 7. Color-magnitude, M∗ and σ relations for galaxies with
fixed age and metallicity (as indicated). Curvature in the top two
panels is seen only for the oldest, most massive objects.

observe: the most massive objects are expected to contain
the oldest stars, so their luminosities and colors are expected
to evolve more slowly than those of the least massive ob-
jects. Hence, while differential evolution may contribute to
the flattening of the color-magnitude relation at interme-
diate luminosities, it seems an unlikely explanation for the
steepening towards redder colors at large M∗.

Finally, we note that all the models we describe below
assume that objects which are on the blue sequence at z =
1, but evolve on to the red sequence as their gas supply
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is removed or exhausted – i.e., no mergers are involved –
are either a negligible fraction of the population or, when
they join the red sequence, they do so with colors that are
representative of the red population for their mass (e.g., they
are not biased bluewards), and they then evolve via dry
mergers similarly to the other objects that were already on
the red sequence. This assumption is consistent with the
recent results of Peng et al. (2010) (see their Fig. 13 and 16)
and Eliche-Moral et al. (2010) (who suggest that z ∼ 0.8
might be more appropriate).

5.1 Similar initial conditions, but two types of
merger histories (Model I)

Suppose that at some sufficiently high redshift (which we
will take to be z ∼ 1), the color magnitude relation was
approximately a power law, and that, thereafter, the stars
evolve passively, and this evolution is not differential. Then,
dry mergers will cause the color magnitude relation to curve
bluewards (from the initial power law) at the bright end,
with the amount of curvature depending on the typical mass
ratio of the mergers, and how that ratio depends on mass.
We will loosely refer to mass ratios of 0.3:1 or greater as
being major mergers, and smaller ratios as being minor.

Suppose that objects which are low mass today were
assembled from both minor and major mergers, whereas the
most massive objects experienced only 1:1 mergers. Then,
the color magnitude relation will be flattened from the ini-
tial power law at low luminosities (minor mergers make the
merged product bluer), but it will simply be translated to
the right at high luminosities. Figure 8 shows this schemat-
ically. By adjusting the total mass growth and ratios at low
masses, and the mass scale at which the mergers become
major only, this scheme can be made to agree with our mea-
surements.

In this model, the lack of curvature in the color-σ re-
lation can be understood as follows. The major 1:1 mergers
will change neither g − r nor σ, so they still lie on the ini-
tial relation. Minor mergers which decrease the color also
decrease σ; this partially removes the flattening (in color-σ)
which is so much more evident in the color-magnitude rela-
tion. Thus, in this model, the color-σ relation at z ∼ 0 differs
from that at z ∼ 1 primarily because of passive evolution
of the colors – if the evolution is not differential, then the
local relation is simply offset from that at higher z. In addi-
tion, whereas major mergers change the size proportionally
to the mass, minor mergers change the sizes more than the
masses. This accounts for the larger range in Re for which
the color-Re slope is shallow.

It is worth stating explicitly that this model works be-
cause there is a color-magnitude relation at z ∼ 1. Then, the
additional requirement that the most massive galaxies are
formed from major mergers, means that the most massive
galaxies today formed from objects that were redder than
those which make intermediate mass galaxies. Bernardi et
al. (2007) noted that just such a conspiracy of mass/color-
dependent mergers was required to explain the red colors
of BCGs. Unfortunately, there is no obvious choice for the
transition mass scale which plays a crucial role in this model,
although, as we now argue, color gradients may hold an im-
portant clue.

In particular, Roche et al. (2010) show that color gradi-

Figure 8. Origin of the color-M∗ relation if the stellar mass
growth at log10 M∗/M⊙ > 11.3 is through major (1:1) dry merg-
ers only. Such mergers translate the initial power-law relation
(green solid line, here assumed to be for z = 1) to the right
(black solid line offset to right). Minor mergers at lower masses
tend to flatten the relation from the initial power-law (dotted
line), because the merger product must be bluer than its most
massive progenitor. Given an initial relation (here assumed to be
a power-law at z = 1) the free parameters in this model are the
mass scale at which 1:1 mergers dominate, the ratio of minor to
major mergers at lower masses. Solid cyan line and associated
error bars show the relation we see at z ∼ 0; dashed lines show
the rms spread around this mean relation.

ents are maximal atMr = −22 (see our Figure B1). Whereas
major mergers are expected to decrease color gradients, mi-
nor mergers should not change the gradients significantly, or
they may enhance them slightly. This is because the smaller
bluer object involved in the minor merger will deposit most
of its stars at larger distances from the center of the ob-
ject onto which it merged. Bernardi et al. (2010b) show
that this same scale appears in other scaling relations as
well. Thus, it may be that Mr < −22, which corresponds to
M∗ > 2× 1011M⊙, is the scale above which major mergers
dominate.

5.2 Similar initial conditions, but inclusion of
stripping/ICL (Model II)

This model is similar to the previous one, except that we
assume that the massive end is dominated by objects in
clusters, for which the effects of tidal stripping etc. matter
(Figure 9). In this case, we assume that mergers at the high
mass end may be both major and minor, but that sufficiently
minor mergers do not actually contribute to the stellar mass
of the final object, because they will be shredded; they con-
tribute to the intercluster light. Note that minor mergers will
produce changes in the size and velocity dispersion (hence
dynamical mass) of the merger product, just not to the stel-
lar mass. Thus, although the assembly history of BCG-like
objects will involve both minor and major mergers, the stel-
lar mass only grows in major mergers.

The net result will be similar to the previous model,
with shallowing at low masses where both types of mergers
happen (but stripping does not), and a parallel shift to larger
masses of the initial (steeper) relation at the high luminosity
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Figure 9. Origin of the color-M∗ relation if the stellar mass
growth at the most massive end is through major dry mergers,
because minor mergers (in this case, at log10 M/M⊙ > 11.3) con-
tribute primarily to the ICL. Note that although these minor
mergers will not change the stellar mass, they will affect the size
and velocity dispersion (hence dynamical mass) of the merger
product. Green solid line shows the relation we assume at z = 1,
dotted line shows the relation at z = 0 due to minor mergers at
lower masses, black solid line shows the z = 0 relation at large
M∗, where the minor mergers contribute to the ICL rather than
to M∗, and solid cyan line with associated error bars and dashed
lines (same as previous figure) show our z ∼ 0 measurements.

end (where stripping erases the effects of minor mergers on
the mass growth). I.e., in this model, the transition mass
scale is related to the formation of the ICL.

Note that color gradients of the satellites which are
stripped means that stars which do make it all the way to the
central object will be redder, further steepening (or produc-
ing less flattenning of) the color-M∗ relation at the massive
end. (If so, the ICL should be bluer than the BCG.) In ad-
dition, because some mass is lost to the ICL (some estimate
that there is at least as much mass in the ICL as there is
in the BCG), the color-magnitude relation will not extend
to as high masses as in our first model. And finally, in this
model, the ratio of stellar to dynamical mass should decrease
at large masses, in qualitative agreement with the observa-
tion that M∗ ∝ M0.75

dyn . On the other hand, by consigning
to the ICL some of the stellar mass that would otherwise
have ended up in massive objects, this model is constrained
by recent work suggesting that there is 50% more mass in
objects with log10 M∗/M⊙ > 11.3 than previously thought
(Bernardi et al. 2010b). This model must make such objects,
as well as the ICL.

5.3 Correlation between color-magnitude
residuals and mergers (Model III)

In this model, we distinguish between objects which lie red-
ward of the mean color-magnitude relation at z = 1, and
those which lie blueward (Figure 10). Here, we assume that
the redder objects are older, in agreement with the trend at
z = 0 (Kodama et al. 1998; Bernardi et al. 2005). We then
assume that these redder objects were involved in major and
minor mergers, whereas the bluer objects only experienced

Figure 10. Origin of color-M∗ relation if the oldest objects at the
present time formed from the oldest, reddest objects in the past,
through a sequence of major and minor dry mergers, whereas
the youngest objects today formed from minor mergers of bluer
objects. Upper red solid line shows the assumed color-M∗ relation
of the oldest objects at z = 1; lower blue solid line shows that
for the youngest objects at z = 1. The associated dotted lines
show how these relations have changed by z = 0. Error bars
and associated dashed lines (same as in previous Figure) show
〈color|M∗〉 for the full sample at z ∼ 0, and orange filled circles
with error bars show this relation for BCGs at z ∼ 0.

the most minor mergers, so they have increased their mass
little since z ∼ 1.

If our previous model of stripping which contributes to
the formation of ICL (i.e. Model II) is realistic, then, in the
present context, it would apply only to the redder objects.
However, by ensuring that red objects merge with red ones,
mergers in this model produce less of a decrease in slope, so
less is required of processes like stripping to reproduce the
turn up towards redder color at the high-mass (luminosity)
end. Therefore, it may be easier for this model to produce
the observed amount of stellar mass locked-up in objects
with log10 M∗/M⊙ > 11.2 at z ∼ 0.

In many respects, this model is a variant of Model I.
There, major mergers were used to ensure that the most
massive objects formed by mergers of the reddest objects.
The present model achieves this by assuming that massive
objects are older, rather than making a specific assumption
of major vs minor mergers. Additionally, here, the minor
mergers which produce the lowest mass galaxies are pref-
erentially of bluer objects, so they tend to result in bluer
colors today. Thus, the conspiracy of mass/color-dependent
mergers noted by Bernardi et al. (2007) to explain BCGs
is here extended to the faint end as well. Note that, at the
high mass end, this conspiracy may alleviate the tension be-
tween α-enhancement ratios and late assembly models that
has been emphasized by Pipino & Matteucci (2008).

In the previous models (i.e. Model I and II), the curva-
ture is determined by the slope of the z ∼ 1 color-magnitude
relation: a flatter slope produces a smaller effect. Here, the
scatter in the z = 1 color-magnitude relation also matters:
a smaller scatter also produces a smaller effect (e.g., if there
were no scatter around the z ∼ 1 relation, we would have
no Model III).

It may help to think of the cluster population at z = 0
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Figure 11. Stellar mass versus velocity dispersion in the SDSS
(filled symbols). Long-dashed line shows our assumed relation at
z = 1. The other curves show the result of evolving it down to
redshift z = 0, as detailed in the text, for three choices of fMIN.

as being made of these redder objects, whereas the bluer
objects are now in lower density regions. This raises a po-
tential problem because, at the present time, the environ-
mental dependence of the color-magnitude relation of early-
type galaxies is small (e.g. Bernardi et al. 2006). However,
two effects in this model serve to help meet this constraint.
First, the flattening and rightwards shift of the sequence de-
fined by the older galaxies (red dotted line in Figure 10)
brings it into better agreement with the relation defined
by extrapolating the relation of the younger objects (blue
solid line) to higher masses, thus reducing the offset in col-
ors between cluster and field galaxies that would otherwise
result. And second, differential evolution (because now we
explicitly assume the populations have different ages) also
acts to erase the offset in colors between the younger and
older galaxies (which we have schematically represented by
shifting the dotted blue line slightly redwards of the solid
blue line). Together, both effects also make the scatter in
the color-magnitude relation smaller at z = 0 than at z = 1.
Note that, in addition to this testable prediction, this model
also suggests that the residuals from the high redshift rela-
tion should correlate more strongly with environment than
they do today. This is because, in this model, objects which
are redder than average at z ∼ 1 are in clusters at z = 0
– but in hierarchical structure formation models, objects in
clusters today were in overdense regions in the past (e.g. Mo
& White 1996; Sheth 1998; Sheth et al. 2006).

5.4 Numerical implementation of Model I

To illustrate Model I, we have performed crude numerical
simulations in which we prescribe the joint distribution of
color, stellar mass and velocity dispersion at z = 1. We
then let these galaxies merge at the rate expected from ob-
servations and halo occupation modelling, always assuming
zero-energy orbits with no energy dissipation. The assump-
tion that both the initial objects and the final ones are in
virial equilibrium allows one to determine the scaling rela-
tions of the population at late times from those of the initial
population (see Appendix C for details). We then compare

Figure 12. Same as Figure 11 but for the color-M∗ (top) and
color-σ (bottom) relations.

the resulting scaling relations with our measurements in the
SDSS at z = 0. Note that this approach assumes that ob-
jects which are on the blue sequence at z = 1, but evolve
on to the red sequence as their gas supply is removed or
exhausted – i.e., no mergers are involved – are a negligible
fraction of the population.

We set the scaling relations of the initial population as
follows. We assume the color-M∗ relation has the same slope
at z = 1 as at z = 0; this is consistent with observations (Mei
et al. 2009). We then assume that the σ − M∗ relation at
z = 1 is the same power-law (both slope and zero-point) as
the faint end of the z = 0 relation. At z = 0 the color-M∗

slope equals the product of the color-σ and σ − M∗ slopes
(Bernardi et al. 2005); we assume this is also true at z = 1.
So the one free parameter is the zero-point of the z = 1
color-M∗ relation; setting it also determines the zero-point
of the z = 1 color-σ relation. The low-z dependence of the
color-magnitude relation suggests that the g − r colors are
bluer at higher redshifts by approximately 0.2z (Figure B3).
Therefore, we assume that they continue to evolve in this
way upto z = 1.

We then evolve the z = 1 relations down to z = 0 by a
sequence of dry mergers. We do so by dividing the interval
0 < z < 1 into ten discrete steps. For each, we estimate how
the dry merger rate depends on stellar mass following Hop-
kins et al. (2010). This uses a convolution of the host halo
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merger rates with the average stellar-to-halo mass relation
at each redshift, while also taking into account the gas frac-
tion involved in each merger event (see Hopkins et al. 2010
for details, who provide a numerical algorithm to implement
their model). The relevant merger rates are in broad agree-
ment with a variety of direct observations (e.g Hopkins et
al. 2010; Robaina et al. 2010 and references therein) and
other theoretical estimates (e.g., Guo & White 2008). For
consistency with the observed rather passive evolution char-
acterizing the bulk of early-type galaxies (e.g Wake et al.
2008), we only consider dry mergers (with fgas ≤ 0.1) as
drivers of the late-time evolution. The exact threshold for
fgas does not change the overall trends discussed below.

The most important feature of these merger rates is
that the evolutionary paths of the highest stellar mass bins
are characterized by a larger number of major dry mergers.
As we show below, this means that the colors of the objects
which merge to make the most massive galaxies today are
typically redder than those which make intermediate mass
galaxies, whereas the more minor mergers which produce the
lowest mass galaxies are preferentially of bluer objects, so
they tend to result in bluer colors today. This is precisely the
conspiracy of mass/color-dependent mergers the Bernardi et
al. (2007) argued was required to explain the red colors of
BCGs – our model quantifies the resulting trends.

The merger rates, and our results, depend on the mass
ratio of the merging objects. If m is the initial object in a
given time step, then the merged object has mass m(1+ f).
An object initially of mass m0 and velocity dispersion σ0,
which undergoesN zero-energy (sometimes called parabolic)
dry mergers with other objects of mass mi < m0 and veloc-
ity dispersion σi, will result in an object of mass Mf and
velocity dispersion σf which are given by

Mf = m0 (1 +

N
∑

i=1

fi)

σ2
f = σ2

0

1 +
∑N
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where fi ≡ mi/m0 < 1 and Γr ≡ (M∗/M⊙)/(Lr/L⊙). Since
(g − r)0 > (g − r)i, the expression above shows that the
merger product Mf would be bluer than m0 if we were to
ignore the aging of the stellar population. To simplify this
expression for the color further, we assume that log Γr ∝

1.097 (g−r) with a redshift dependent zero-point. Since our
expression only involves ratios of Γrs, this zero-point cancels
out, making

g − r = (g − r)0 + 2.5 log10

(

1 +
∑

i
fi 10

1.097 ∆ci

1 +
∑

i
fi 101.497 ∆ci

)

∆ci ≡ (g − r)0 − (g − r)i. (2)

In our analysis, we require f > fMIN, and we study
how our results change as we increase fMIN. In practice, we
divide the interval 0 < z < 1 into a set of ten discrete time
steps. For a given time bin, we pick three equally spaced
bins of f which satisfy fMIN ≤ f ≤ 1 (we show results for

three choices of fMIN). For each bin of f we first compute
the mean numberNm of expected dry mergers undergone by
a galaxy of mass m0 and velocity dispersion σ0 with others
of mass m1 = fm0 and velocity dispersion σ1, and then
update mass, size, velocity dispersion and color according
to the relations discussed above. After the mass-weighting
update of the colors which results from the dry merger, we
shift them redwards by 0.2(zj − zj+1), where zj denotes the
redshift associated with the time-bin just before the merger.
We then iterate from z = 1 down to 0. Notice that σ0 < σ1

as m0 > m1; if neither f nor N vary with m0, then, at late
times, the σ−M relation shifts towards smaller σ for a given
M . In practice, since fN increases with M , the downwards
shift is larger for the most massive objects. This makes the
σ −M relation flatten at large M .

Figure 11 shows the M∗−σ relation for three choices of
fMIN: solid, dot-dashed, and dotted lines represent models
with fMIN = 0.3, 0.2, 0.1, respectively, while the long-dashed
line shows the assumed z = 1 relation. Figure 12 shows the
associated changes to the color-M∗ and color-σ relations.
Notice that our dry merger models produce strong breaks
in the z = 0 color-M∗ relation while keeping the color-σ
relation closer to a power-law (bottom panel of Figures 12),
in reasonable agreement with our measurements.

6 DISCUSSION

Our study of the color-magnitude and color-M∗ scaling re-
lations has revealed interesting trends: one at M∗ ∼ 3 ×

1010M⊙ which had been noticed before (Kauffmann et al.
2003; Skelton et al. 2009), and another at high luminosities
(Mr ≤ −22.5) and masses (log10(M∗/M⊙) ≥ 11.3), which
is new to our work. These trends are qualitatively inde-
pendent of exactly how the early-type sample is selected.
In most cases, the (weak) dependence on precisely how the
sample was selected can be traced to contamination of the
red-sequence by edge-on spirals. In a related paper, Bernardi
et al. (2010b) show that a number of other scaling relations
also indicate that these luminosity and mass scales are spe-
cial.

The red sequence is considerably straighter and nar-
rower than the blue (Figure 3). However, it is not a simple
power law: it is shallower between −20.5 > Mr > −22.5
than at either the fainter or brighter ends (Figure 2 and Ta-
ble 1). This curvature is not due to contamination by later
morphological types at the faint end (Figure A6). It also
does not depend on whether one uses Petrosian or model

colors (Figure B1); although color-gradients mean that the
scale on which the color is defined does lead to small quanti-
tative differences. The curvature is also robust to (reasonable
changes in) the choice of k-correction provided one properly
accounts for evolution (Figure B3). Unless care is taken to
account for it, this curvature may be confused with evolu-
tion in magnitude limited surveys (discussion following Fig-
ure B3). All these properties of the color-magnitude relation
are also true of the color-stellar mass relation (Figures 2, 3,
A7 and Tables 1 and A2), and the color-Re relation (Fig-
ure 4).

The curvature towards redder colors at the brightest
(Mr ≤ −22.5), most massive (log10(M∗/M⊙) ≥ 11.3) end
is evident at fixed age and metallicity, suggesting that it



12 M. Bernardi et. al.

is not driven by stellar population effects (Figure 7). In
contrast, the color-σ relation shows no curvature at high
σ > 150 km s−1 (Figure 5). The fact that there is no fea-
ture at the largest σ, despite clear features in the scalings
with M∗, has strong implications for models of the assembly
histories of massive galaxies.

Skelton et al. (2009) have argued that the change from
a steeper slope at low luminosities to a shallower one at
Mr < −20.5 is due to a change in formation histories. They
associate the shallower slope with recent major dry mergers
which are expected to increase the luminosity and stellar
mass without changing the color significantly. Since such
mergers are expected to leave the velocity dispersion un-
changed, that fact that there is no curvature in the color-σ
relation (Figure 5) seems in striking agreement with the dry
major merger hypothesis. In addition, dry major mergers are
expected to increase the size in proportion to the mass, and
we do see some flattening in the color-Re relation (Figure 4).
However, if the flattening at intermediate luminosities (and
stellar masses, and sizes), with no curvature in the color-σ
relation is indeed due to major dry mergers, then it seems
difficult for such a scenario to explain the steepening at even
higher luminosities (Mr < −22.5 or log(M∗/M⊙) > 11.3),
even though these are precisely the objects for which the
dry merger hypothesis is most commonly invoked.

Therefore, we discussed three models that are compat-
ible with our measurements: one in which major mergers
dominate the mass growth at M∗ > 2× 1011M⊙ (Figure 8),
another in which mergers are both major and minor, but
the minor mergers at these largest masses contribute to the
intracluster light (Figure 9), and a third in which the red-
dest most massive objects today, which happen to also be
the oldest, formed from major and minor mergers of the
oldest, reddest objects in the past (Figure 10), whereas the
bluest objects formed from minor (but not major) mergers
of blue objects. Observations of the scatter and environmen-
tal dependence of the color-M∗ relation at z ∼ 1, and of the
color-Re relation at intermediate sizes, will discriminate be-
tween these models. (The color-σ relation is useful too; we
are assuming it is harder to measure at high z.)

Such tests, e.g., using the thickness of the red sequence
to constrain the formation histories of early-type galaxies,
must be done with care. This is because although samples
defined by cuts in concentration alone may provide a reliable
estimate of the mean shape of the red sequence, they pro-
vide a bad estimate of the thickness (see Figures 2 and 3).
In particular, the red sequence in such samples is thicker
at fainter luminosities, because of contamination by edge-on
galaxies. Appendix A1 shows that double-Gaussian fits to
the bimodal color-magnitude relation, while purely statis-
tical, provide a simple way of correcting approximately for
this contamination. For example, at intermediate luminosi-
ties (i.e., around L∗), this procedure correctly assigns the
reddest objects to the blue cloud, rather than to the red se-
quence (Figures A1 and A5). Appendix A2 shows that such
objects tend to be edge-on spirals, and can be a significant
source of contamination if one simply defines the red se-
quence by a straight color cut (Figure A6). While they can
also easily be removed by a cut on axis ratio (e.g. require
b/a ≥ 0.6), cutting on concentration index instead does not
remove these objects (compare Figures A2 and A4).

In contrast to samples defined by color or concentration,

the width of the red-sequence defined by double-Gaussian
fits is independent of luminosity. In our dataset, we find
this width to be 0.033 mags (Table A1). Since measurement
errors are of order 0.02 mags, the intrinsic width may be
more like 0.026 mags. Our results suggest that, to obtain
results which are less likely to be biased by contamination,
it is this width which should be compared with the analogous
quantity in higher redshift samples. On the other hand, we
found that the double-Gaussian decomposition was not able
to account for about 10% of the objects at luminosities below
Mr < −20.5; these objects tended to populate the green
valley between the red and blue sequences. So, if the double-
Gaussian fits are to be used at higher redshift, one must first
check that such objects are not much more common than
they are at z ∼ 0.1.

Our models assume that massive objects have experi-
enced major mergers since z ∼ 1, meaning that the total
stellar mass in early-types with M∗ > 2 × 1011M⊙ today
must have been smaller by about a factor of 2 at z ∼ 1. It
is not clear that this is consistent with current constraints.
E.g., although Faber et al. (2007) claim that the number
density of early-types has increased by a factor of at least
two since z ∼ 1, and Matsuoka & Kawara (2010) argue that
the number density of objects with M∗ > 2 × 1011M⊙ has
increased by an order of magnitude since z ∼ 1, Brown
et al. (2007), Wake et al. (2008) and Cool et al. (2008)
claim that the mass growth since z ∼ 0.7, for objects with
M∗ > 1011M⊙, must have been less than 50%. Eliche-Moral
et al. (2010) argue that some of the discrepancy between
these two claims is due to the difference between how the
samples were defined. However, most of these constraints are
based on parametrizations of the z ∼ 0 stellar mass func-
tion which may have underestimated the true abundance at
M∗ > 2×1011M⊙ by 50% (see Bernardi et al. 2010a and ref-
erences therein). If the true local abundance is indeed larger,
then major mergers may be required to reconcile the z ∼ 1
counts with those at z ∼ 0.

Finally, it is interesting to ask how BCGs, which are
amongst the most massive objects in the local universe, fit
into this picture? Although we do not show them explicitly
here, they define a similar color-M∗ relation (and other re-
lations as those shown in Figure 1 of Bernardi et al. 2010b)
for log(M∗/M⊙) > 11.3. However, there are some important
differences: compared to non-BCGs of similar mass or lumi-
nosity, their colors are slightly redder (Figure 10, and Roche
et al. 2010), they have smaller color gradients (Roche et al.
2010), and slightly larger sizes (Bernardi 2009). Whereas the
first two suggest merger histories dominated by major merg-
ers, consistent with their large masses, the fact that their
sizes are larger suggests more size growth than is usually
associated with major mergers. This suggests that although
major mergers erased their color gradients at some higher
redshift, minor mergers have puffed up their sizes, decreased
their velocity dispersions further and contributed to the for-
mation of ICL at lower redshift (Bernardi 2009).
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APPENDIX A: ROBUSTNESS TO CHANGES
IN HOW THE RED-SEQUENCE IS DEFINED

A1 Double-gaussian fits to the bimodality

The distribution of colors at fixed Lr is well-known to be
bimodal. The smooth curves in Figure A1 show the result
of fitting the sum of two gaussian components to the g −

r distribution at each Lr (e.g. Baldry et al. 2004; Skibba
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Figure A1. Double-gaussian fits to the bimodal color-magnitude relation provide a good description except in the range −18.5 ≤ Mr ≤
−20.5 (the “green valley”). Note that, at intermediate/high luminosities, the reddest objects are actually associated with the red tail
of the blue component, consistent with the physical expectation that the red sequence may be contaminated by edge-on disks at these
luminosities. The dotted line shows the red-end distribution of galaxies (i.e. objects redder than the mean of the red Gaussian component)
that also have b/a > 0.6. Clearly, the reddest objects have smaller b/a, consistent with their being edge-on disks.

& Sheth 2009). Note that the red sequence is considerably
narrower than the bluer component. The parameters of these
fits are provided in Table A1, and are used in the main text.

Figure A1 shows that, except in the range −18.5 ≤

Mr ≤ −20.5 or 9.5 ≤ logM∗/M⊙ ≤ 10.25 the double-
gaussian is a good description of the measurements. How-
ever, at intermediate L and M∗, it is unable to describe the

transition region between the two populations. (Table A1
shows that, in this regime, the double-Gaussian decompo-
sition only accounts for 90% of the objects.) Since this is
fainter than the scales on which we see curvature in the
color-magnitude relation, this is not a major concern. How-
ever, at slightly larger luminosities, the fits assign the red-
dest objects to the red tail of the blue component. Is this
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Figure A2. Distribution of axis ratio b/a for objects that are within 0.025 mags of the peak of the blue component (blue), 0.025 mags
of the peak of the red sequence (red), and 0.1 mags redder than the peak of the red sequence (brown). Compared to the other two
populations, this final population has an excess of small b/a values: many objects which are significantly redder than the mean red
sequence tend to be edge-on disks.

a limitation of the statistical decomposition, or does it re-
flect something physical? If it is physical, then this cautions
against using sharp cuts in color to isolate early-type galax-
ies.

The dotted line in Figure A1 shows the red-end distri-
bution of galaxies (i.e. objects redder than the mean of the
red Gaussian component) with b/a > 0.6. This distribution
is better fit by the red Gaussian component than by the
red tail of the blue component. This shows that the objects

which populate the extremely red tail of the blue Gaussian
component tend to have small b/a.

To address this further, Figures A2–A4 show the dis-
tribution of axis ratios b/a, and two measures of the shape
of the light profile, fracDev and concentration index, for
objects that lie close to the peak of the blue and red se-
quences, and that lie 0.1 mags redward of the red sequence.
Notice that these reddest objects tend to have small values
of b/a. This suggests that they are edge-on disks, something
which is corroborated by the fact that the distribution of
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Figure A3. Distribution of fracDev, i.e. the weight of the deVaucouleurs component in the best composite model, for objects that are
within 0.025 mags of the peak of the blue component (blue), 0.025 mags of the peak of the red sequence (red), and 0.1 mags redder
than the peak of the red sequence (brown). Objects near the peak of the blue/red sequence tend to have low/high values of fracDev,
as expected. However, objects which lie redward of the red sequence tend to have small values of fracDev more often than do objects
which lie at the peak of the red sequence.

fracDev also extends to smaller values, characteristic of late-
type galaxies, than it does for objects on the red sequence.
The distribution of concentrations, however, is just like that
for objects on the red sequence, but note that there is sig-
nificant overlap in between the distributions defined by the
red and blue sequences.

That the reddest objects at intermediate luminosity are
late-type galaxies is also seen in Figure 13 of Bernardi et al.
(2010a) which shows how the bimodal color-magnitude dis-

tribution is built up by objects of different morphological
type. Clearly, the reddest objects at Mr ≥ −22.5 are pri-
marily of type Sa and later – they are not ellipticals. In par-
ticular, they are not what one typically associates with the
red sequence. That edge-on disks are amongst the reddest
objects is not surprising. However, given the wide-spread use
of concentration as a way of identifying red-sequence galax-
ies, our finding that concentration does such a poor job of
identifying edge-on disks is disturbing. Our results caution
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Figure A4. Distribution of the concentration index Cr for objects that are within 0.025 mags of the peak of the blue component (blue),
0.025 mags of the peak of the red sequence (red), and 0.1 mags redder than the peak of the red sequence (brown). The reddest objects,
which the previous figures showed tend to have small b/a and fracDev, have Cr values which are indistinguishable from those of genuine
red sequence galaxies. Hence, cuts on concentration are not a reliable way to identify and eliminate such objects.

against using sharp cuts in color or concentration for iden-
tifying early-type galaxies.

A2 Dependence on morphology

One of our goals is to compare measurements on subsamples
defined by relatively simple criteria (e.g. concentration in-
dex, bimodality) with morphologically selected subsamples.
To this end, we use the morphological classification provided

by Fukugita et al. (2007). Briefly, Fukugita et al. have pro-
vided morphological classifications (Hubble type T) for a
subset of 2253 SDSS galaxies brighter than mPet = 16 in the
r−band, selected from 230 deg2 of sky. Of these, 1866 have
spectroscopic information. Here, we group galaxies classi-
fied with half-integer T into the smaller adjoining integer
bin (except for the E class; see also Huang & Gu 2009 and
Oohama et al. 2009). In the following, we set E (T = 0 and
0.5), S0 (T = 1), Sa (T = 1.5 and 2), Sb (T = 2.5 and 3),
and Scd (T = 3.5, 4, 4.5, 5, and 5.5). This gives a fractional
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Figure A5. Same format as Figure A1 but showing the double-gaussian fits to the bimodal color-M∗ relation.

morphological mix of (E, S0, Sa, Sb, Scd) = (0.269, 0.235,
0.177, 0.19, 0.098). Note that this is the mix in a magnitude
limited catalog – meaning that brighter galaxies (typically
earlier-types) are over-represented.

Figure A6 compares the red sequence defined by our
double-Gaussian fit to the color-magnitude relations de-
fined by the different morphological types in the (signifi-
cantly smaller) Fukugita et al. sample. The top left panel
shows that ellipticals do indeed lie along the same red se-
quence defined by the double-Gaussian fits; in particular,
the steeper slopes at low and high luminosities, returned

by our double-Gaussian fits to the full sample, are also evi-
dent in the smaller Fukugita et al. sample (see Huang & Gu
2009 for a more detailed analysis of the “blue” ellipticals
with g − r ≤ 0.6 – they show either a star forming, AGN
or post-starburst spectrum). Thus, the curvature is not due
to the fact that the mix of morphological types depends on
luminosity.

While S0s tend to define the same red sequence, a larger
fraction are blue (top right). The central panels show that
types Sa and Sb can be both very red and very blue, and even
types Sc and Sd can have rather red colors. These red late-
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Figure A6. Color-magnitude relation in the Fukugita et al. (2007) sample for types E, S0, Sa, and Sb. Small filled circles show the
objects, large filled circles connected by jagged line, show the mean color in bins of Mr having width 0.25 mags. Thick solid and associated
dashed lines (same in all panels), show the red sequence defined by our double-Gaussian fits to the full SDSS sample (see Table A1). Sas
and Sbs dominate the numbers redward of the red sequence.

Figure A7. Same as Figure A6, but with luminosity replaced by stellar mass. Table A2 provides the parameters of the red sequence
defined by double-Gaussian fits, shown here as the solid red line.
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Table A1. Parameters of double-Gaussian fits to the g − r model color distribution in narrow bins in Mr.

Mr g − r (RED) rms (RED) g − r (BLUE) rms (BLUE) % (RED) % (BLUE) Ngal

−23.62 0.815 0.043 0.000 0.000 1.000 0.000 517
−23.16 0.803 0.033 0.660 0.070 0.910 0.060 4413
−22.69 0.785 0.030 0.700 0.100 0.692 0.326 16906
−22.22 0.770 0.031 0.682 0.105 0.528 0.447 38080
−21.74 0.765 0.032 0.645 0.110 0.473 0.496 53391
−21.26 0.760 0.034 0.610 0.120 0.443 0.541 50603
−20.77 0.753 0.035 0.555 0.120 0.412 0.541 39172
−20.28 0.740 0.037 0.495 0.115 0.371 0.548 25833
−19.79 0.723 0.030 0.440 0.090 0.271 0.564 14081
−19.28 0.700 0.050 0.415 0.090 0.269 0.654 8114
−18.78 0.680 0.045 0.390 0.085 0.180 0.724 4817
−18.29 0.660 0.050 0.382 0.095 0.150 0.810 2892
−17.80 0.630 0.050 0.365 0.090 0.150 0.857 1506

Table A2. Parameters of double-Gaussian fits to the g − r model color distribution in narrow bins in log10 M⋆.

Log10M∗/M⊙ g − r (RED) rms (RED) g − r (BLUE) rms (BLUE) % (RED) % (BLUE) Ngal

12.04 0.843 0.048 0.000 0.000 1.000 0.000 89
11.81 0.820 0.040 0.000 0.000 0.922 0.000 1313
11.58 0.795 0.035 0.000 0.000 0.939 0.000 7943
11.35 0.780 0.028 0.750 0.080 0.688 0.311 24943
11.11 0.770 0.030 0.708 0.085 0.541 0.447 48026
10.88 0.760 0.032 0.665 0.100 0.457 0.551 55556
10.63 0.751 0.032 0.590 0.090 0.425 0.530 45702
10.39 0.735 0.032 0.545 0.095 0.313 0.643 31315
10.14 0.720 0.030 0.480 0.090 0.203 0.699 19064
9.89 0.702 0.032 0.433 0.085 0.136 0.788 11693
9.64 0.675 0.033 0.405 0.085 0.091 0.852 7077
9.39 0.645 0.045 0.380 0.080 0.079 0.902 4388
9.15 0.610 0.045 0.355 0.080 0.062 0.882 2463

type galaxies are edge on disks; whereas any straight color
cut will misleadingly group such objects together with early-
types, the double-Gaussian decomposition correctly assigns
these reddest objects at intermediate and low luminosities
to the blue sequence.

APPENDIX B: SYSTEMATIC EFFECTS

B1 Effects of color gradients

Because the curvature in the red sequence we reported in
the main text is small, we have checked if it is robust to
changes in how we estimate the colors and luminosities.

The main text showed that the color-magnitude relation
shows three distinct regimes (Table 1 reports fits), whether
one uses model or Petrosian quantities (compare Figures 1
and 2), despite the fact that Petrosian colors are slightly
bluer than model colors. The blueward shift occurs because
the model color probes the half-light radius, whereas the
Petrosian color is based on a larger physical scale, and
early-type galaxies have negative color gradients (i.e., the
are redder in the core; e.g. Wu et al. 2005). Although color
gradients decrease with σ, they are a complicated function of
luminosity: Gradients are largest for objects withMr = −22,
and are smaller for brighter or fainter objects (Roche et al.
2010). Figure B1 shows a direct comparison: the difference

Figure B1. Dependence of color-magnitude relation on the scale
on which colors were defined. Model colors, which have higher

signal-to-noise ratio, probe smaller scales, so are redder than
Petrosian colors. The color offset is largest at Mr ∼ −22, the
luminosity scale at which color gradients are maximal (Roche et
al. 2010).

between the Petrosian and model color-magnitude relations
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Figure B3. Dependence of color-magnitude relation on the choice of k- and evolution corrections: Blanton & Roweis (2007; BR07 – left
panels) and Roche et al. (2009; RBH09 – right panels). Different lines (colors) show the color-magnitude relation in different redshift
bins as labeled. No evolution correction has been applied in the top panels. Once luminosity evolution has been accounted for (bottom
panels) the curvature does not depend on the k-correction (note that the evolution correction does depend on the k-correction).

Figure B2. Dependence of color-magnitude relation on the
choice of k-correction: Blanton & Roweis (2007; BR07) and Roche

et al. (2009; RBH09). Spectral-based k-corrections (i.e. RBH09)
appear to result in bluer colors and less curvature; some of this is
simply a consequence of the fact that the spectra are taken using
fibers of a fixed aperture.

in the Hyde-Bernardi sample is largest at Mr ∼ −22 (note
that the Mr is the cmodel quantity).

For our purposes here, the main point is that three dis-

tinct regimes are seen whatever our choice of color, although
it is interesting that they are slightly more obvious using col-
ors which sample more of the total light of the galaxy: at
intermediate luminosities, the slope of the color-magnitude
relation is flatter by a factor of two for Petrosian rather
than model colors. (The scatter around the mean relations
is larger for Petrosian quantities, in part because of mea-
surement errors – recall from Section 2.1 that the model
magnitudes are better measured.)

B2 Dependence on k- and evolution corrections

We have also tested for systematic effects which arise from
k- and evolution corrections. Our default has been to use
values from Blanton & Roweis (2007), which are based on
fitting templates to the observed colors. However, Roche et
al. (2009) have recently described the results of estimating
k-corrections from the spectra themselves. If we do not ac-
count for evolution, then the colors from the spectral-based
k-corrections are slightly bluer at the bright end (Figure B2),
resulting in weaker curvature. However, we have yet to ac-
count for luminosity evolution. The top panels in Figure B3
show the color-magnitude relation in different redshift bins,
before correcting for evolution, for the Blanton & Roweis
(left) and Roche et al. (right) k-corrections. (The plot uses
Petrosian colors, but the discussion is valid for the model

colors as well.) It is clear that we measure different evolution
in the two cases: the evolution in g−r is negligible when us-
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ing the Blanton & Roweis k-corrections (bottom left), while
g − r should be reddened by 0.15z for Roche et al. (bot-
tom right). Once the color has been corrected for evolution
in this way, the curvatures at the faint and bright ends are
similar.

There is an additional subtle effect which arises from
the fact that the spectra come from fibers having a fixed
angular diameter of 3 arcsecs. Color gradients mean that
the restframe light in the fiber from a higher redshift ob-
ject will be slightly bluer, and this affects the spectral-based
k-correction of Roche et al. (2009). In a magnitude limited
sample, the more luminous objects are seen to higher red-
shifts, so this aperture effect can make the k-corrections
masquerade as or erase curvature in the color-magnitude
relation. The top right panel of Figure B3 also shows that if
we restrict the sample to narrow redshift ranges, thus reduc-
ing both the evolution and simplifying aperture effects, the
curvature in the color-magnitude diagram is still evident, at
least in those bins where we have a sufficiently large range
of luminosities. (Of course, the significance of the curvature
is smaller, because of the smaller sample sizes.)

This is important because Hao et al. (2009) report that
the slope of the color magnitude relation is steeper at z ∼ 0.3
than at z ∼ 0.1, and they interpret this as evolution in the
slope of the relation. We see this too – the highest redshift
samples (which span Mr < −22.5) appear to define steeper
relations than those at z < 0.1. However, because ours is
a magnitude limited sample, these highest redshifts do not
probe faint objects. Our lowest and intermediate redshift
samples, which include a wider range of luminosities, show
a slight upturn from intermediate to high luminosities, even
at fixed redshift. Therefore, rather than concluding that the
slope is evolving, we conclude that the slope depends on
luminosity.

APPENDIX C: SIZES AND VELOCITY
DISPERSIONS IN ZERO-ENERGY MERGERS

We assume that the final object is in virial equilibrium, that
it formed from the merger of two smaller virialized objects in
which mass was conserved, and that the total energy of the
orbits which led to the merger was zero (sometimes called
parabolic orbits).

The virial condition means that −W = 2K for all of
the objects, meaning that the total energy for each object is
K+W = K−2K = −K = W/2. If the mergers are of equal
mass objects, each of mass m, then the total energy of the
system before the merger is −mv2/2−mv2/2 = −2m (v2/2)
(because there is no contribution from the orbital energy).
However, the final object will have mass 2m. This with en-
ergy conservation and the constraint that the final object is
virialized means that v must be unchanged.

If the mergers are not equal mass, then

−
mv2

2
−

MV 2

2
= −

MV 2

2
(f(v/V )2 + 1) (C1)

= −
G(1 + f)2M2

2R(Rf/R)
= −(1 + f)

MV 2
f

2
,

where the larger object has mass M , size R and velocity dis-
persion V , the smaller one has mass m = fM and velocity

dispersion v ≤ V , and Rf and Vf are the size and veloc-
ity dispersion of the final object which has mass M(1 + f).
Eliminating a factor of M(1+ f) from the second and third
expressions, and then using the fact that −GM/2R = V 2/2,
gives an expression for Rf/R in terms of f and v/V :

Rf

R
=
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1 + f(v/V )2
. (C2)

In addition, equating the second and final expressions yields
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The density of the final object is proportional to

V 2
f

R2
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V 2
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Since v/V ≤ 1, the size will increase, and the velocity dis-
persion and density will both decrease. The limiting case is
when f = 1: then Rf = 2R, Vf = V and the density is
smaller by a factor of 4. This is the basis for the claim that
major mergers double the size without changing the velocity
dispersion. (Doubling the size decreases the density by a fac-
tor of 4 rather than 23 = 8, because the mass has increased
by a factor of 2.) When f ≪ 1 then Rf/R → 1+2f whereas
Vf/V → 1 − f/2: for minor mergers, the fractional change
to the size is larger than that to the velocity dispersion. The
fractional change in density due to a minor merger is even
larger: it scales as −5f .
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