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ABSTRACT
We analyze six X-ray bright elliptical galaxies, observed with Chandra and XMM-
Newton, and approximate their gravitational potentials by isothermal spheres ϕ =
v
2

c log r over a range of radii from ∼0.5 to ∼ 25 kpc. We then compare the circular
speed vc derived from X-ray data with the estimators available from optical data. In
particular we discuss two simple and robust procedures for evaluating the circular
speed of the galaxy using the observed optical surface brightness and the line-of-
sight velocity dispersion profiles. The best fitting relation between the circular speeds
derived from optical observations of stars and X-ray observations of hot gas is vc,opt ≃
η vc,X , where η = 1.10 − 1.15 (depending on the method), suggesting, albeit with
large statistical and systematic uncertainties, that non-thermal pressure on average
contributes ∼20-30% of the gas thermal pressure.
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1 INTRODUCTION

In spiral galaxies, disk rotation curves offer an accurate
and robust way of measuring total gravitational potentials
to distances as large as 10–30 kpc. To a first approxi-
mation the rotation curves are flat over a broad range
of radii, suggesting an isothermal (logarithmic) potential
characterized by ϕ(r) = v2c log r. In early-type galaxies,
measuring the gravitational potential is much more difficult
since there are no tracers such as cold gas or disk stars on
orbits of known shape. Several methods have been used
to measure the potentials of elliptical galaxies including
detailed modeling of stellar orbits (Kronawitter et al. 2000;
Cappellari et al. 2006; Thomas et al. 2007; Gültekin et al.
2009), tracers such as globular clusters, planetary neb-
ulae, and satellite galaxies (Romanowsky & Kochanek
2001; Coccato et al. 2009; Klypin & Prada 2009), strong

and weak lensing of quasars and background galax-
ies (Koopmans et al. 2006; Mandelbaum et al. 2006;
Gavazzi et al. 2007; Mandelbaum, van de Ven, & Keeton
2008) and (for the most massive galaxies) modeling the
hydrostatic atmospheres of X-ray emitting gas (Mathews
1978; Forman, Jones, & Tucker 1985; Fukazawa et al.
2006; Humphrey et al. 2006; Churazov et al. 2008). Recent
studies using stellar kinematics and lensing suggest that the
potentials of early-type galaxies are approximately isother-
mal (Gerhard et al. 2001; Treu et al. 2006; Gavazzi et al.
2007), similar to disk galaxies. Consistency of the mass
profile with M(r) ∝ r (implying an isothermal potential)
was also suggested for several elliptical galaxies based on
the analysis of X-Ray data (e.g., Trinchieri & Fabbiano
1985; Buote & Canizares 1994; Kim & Fabbiano 1995;
Nulsen & Bohringer 1995; Buote & Canizares 1998;
Fukazawa et al. 2006). Here we present independent evi-
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dence that the potentials of bright elliptical galaxies are
close to isothermal, from X-ray observations with Chandra
and XMM-Newton. If the potential of a typical elliptical
galaxy is indeed not far from being isothermal (for a
range of radii) then it can be characterized in that radius
range with a single number – the circular speed vc. This
makes the comparison of potentials derived from X-ray
and optical data especially simple since it does not require
a point-by-point comparison and for a pure isothermal
(logarithmic) potential the results are not sensitive to the
range of radii used for evaluation of vc. While deviations
from isothermality are certainly present at some level, we
believe this approach is useful. In this paper we develop
simplified methods for characterizing the X-ray and optical
data and comparing the results to place constraints on the
non-thermal pressure in the hot gas in elliptical galaxies.

By construction our method is quick and approximate
and is not intended to replace a careful and comprehensive
analysis of individual objects. It might be useful, for exam-
ple, in a larger sample, when detailed modeling is not prac-
tical due to noisy or missing data. We illustrate the method
on a small and rather arbitrarily selected sample of X-ray
bright elliptical galaxies.

The structure of this paper is as follows: in §2 we de-
scribe our sample of galaxies and how we derive the gravita-
tional potential from X-ray observations, and in §3 we dis-
cuss methods for determining the potential from optical ob-
servations of stellar velocity dispersions. The implications of
our results for the mass distribution and non-thermal pres-
sure contribution in these galaxies are discussed in §4 and
§5 contains conclusions.

2 THE SAMPLE AND X-RAY ANALYSIS

For our analysis we selected six nearby (distance less than
∼30 Mpc, see Table 1), X-ray bright galaxies, which were all
well observed with Chandra and XMM-Newton. All galaxies
in the sample are very bright and dominate (in terms of
mass or potential) their environment up to at least several
effective radii. This (at least partly) justifies the standard
practice of deriving mass/potential profiles from X-ray data
using the assumption that the X-ray emitting gas forms a
hydrostatic atmosphere.

For the analysis we used publicly available Chandra and
XMM-Newton data. Combining the data from these two in-
struments provides a cross-check of the results and also gives
better constraints on the innermost and outermost regions,
thanks to the superb angular resolution of Chandra and the
large field of view of XMM-Newton, respectively.

For Chandra the data were prepared following the pro-
cedure described in Vikhlinin et al. (2005). This includes fil-
tering of high background periods and application of the
latest calibration corrections to the detected X-ray photons,
and determination of the background intensity in each ob-
servation.

For XMM-Newton the data were prepared by remov-
ing background flares using the light curve of the detected
events above 10 keV and re-normalizing the “blank fields”
background to match the observed count rate in the 11-12

keV band. In the subsequent analysis we use the data from
the EPIC/MOS detector only.

The analysis of the X-ray data is based on
a non-parametric deprojection procedure, described in
Churazov et al. (2003, 2008, C08 hereafter). In brief, the
observed X-ray spectra in concentric annuli are modeled
as a linear combination of spectra in spherical shells; the
two sequences of spectra are related by a matrix describing
the projection of the shells into annuli. To account for the
projected contribution of the emission from shells at large
distances from the center (i.e., at distances larger than the
radial size rmax of the region well covered by actual ob-
servations) one has to make an explicit assumption about
the behavior of the gas density/temperature profile at large
radii. We assume that at all energies the gas volume emis-
sivity at radii beyond rmax declines as a power law with
radius. The slope of this power law is estimated based on
the observed surface-brightness profile within the range of
radii covered by observational data. Since we assume that
the same power law shape is applicable to all energy bands,
effectively this assumption implies constant spectral shape
and therefore the isothermality of the gas outside rmax (here
“isothermal” means that for r > rmax the gas temperature
is independent of radius, not that the gravitational poten-
tial is logarithmic). The contribution of these layers is added
to the projection matrix with the normalization as an addi-
tional free parameter. While the limitations of this approach
are obvious, the contribution of these outer shells is usually
important only in the few outermost radial bins inside rmax,
especially when the surface-brightness profile is steep. The
final projection matrix is inverted and the shells’ spectra are
explicitly calculated by applying this inverted matrix to the
data in narrow energy channels.

The resulting spectra are approximated in XSPEC
(Arnaud 1996) with the APEC one-temperature optically
thin plasma emission model (Smith et al. 2001). The red-
shift z (from the NASA/IPAC Extragalactic Database –
NED) and the line-of-sight column density of neutral hy-
drogen NH (based on Kalberla et al. 2005) have been fixed
at the values given in Table 1. For each shell we determine
the emission measure (and therefore gas density) and the
gas temperature. These quantities are needed to evaluate
the gravitational potential through the hydrostatic equilib-
rium equation. For cool (sub-keV) temperatures and approx-
imately solar abundance of heavy elements, line emission
provides a substantial fraction of the 0.5-2 keV flux. With
the Chandra and XMM-Newton spectral resolution the con-
tributions of continuum and lines are difficult to disentangle.
As a result the emission measure and abundance are anti-
correlated, which can lead to large scatter in the best-fit
emission measures. As an interim (not entirely satisfactory)
solution, we fix the abundance at 0.5 solar for all shells, using
the default XSPEC abundance table of Anders & Grevesse
(1989). We return to this issue in §2.1.

With known gas density n and temperature T in each
shell we can use the hydrostatic equilibrium equation to eval-
uate the gravitational potential ϕ:

1

ρ

dP

dr
= −dϕ

dr
(1)
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Table 1. Sample of elliptical galaxies. The columns are: (1) - common name of the galaxy; (2) - redshift from the NASA/IPAC
Extragalactic Database; (3) - adopted distance; (4) - hydrogen column density from Kalberla et al. (2005); (5) effective radius (eq. 14),
(6) Sérsic index, (7) - central velocity dispersion standardized to ∼ 0.6 kpc aperture from Hyperleda, except for NGC 4472, taken from
B94, (8) - line-of-sight velocity dispersion at the “sweet spot” Rs; (9) - circular speed estimated from the central velocity dispersion
as vc,c =

√
2σc, (10) - circular speed vc,s according to §3.4.1, (11) - circular speed vc,l according to §3.4.2. References for the effective

radius, Sérsic index and stellar kinematics: [D94] - D’Onofrio, Capaccioli, & Caon (1994); [C93] - Caon, Capaccioli, & D’Onofrio (1993);
[S08] - Spolaor et al. (2008); [M05] - Mahdavi, Trentham, & Tully (2005); [K00] - Kronawitter et al. (2000); [S00] - Saglia et al. (2000);
[B94] - Bender, Saglia, & Gerhard (1994); [G09] - Gebhardt & Thomas (2009); Murhphy & Gebhardt (2009), [D01] - De Bruyne et al.
(2001). Distances are from Tonry et al. (2001). Note that distances are not explicitly used in the subsequent analysis.

Name z D, Mpc NH Re, arcsec Sérsic index, n σc σ(Rs) vc,c vc,s vc,l
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC1399 0.00475 20.0 1.5 1020 117 12.24 [D94] 341 242 [S00] 482 412 394
NGC1407 0.00593 28.8 5.4 1020 70 8.35 [S08] 272 256 [S08] 385 435 408
NGC4472 (M49) 0.00333 16.3 1.5 1020 257 6.27 [C93] 320 289 [B94] 452 492 445
NGC4486 (M87) 0.00436 16.1 1.9 1020 145 6.51 [C93] 336 312 [G09] 475 530 536
NGC4649 (M60) 0.00373 16.8 2.0 1020 118 5.84 [C93] 336 244 [D01] 475 414 436
NGC5846 0.00572 24.9 4.3 1020 79 3.95 [M05] 241 215 [K00] 341 366 338

Table 2. Best fitting vc,X derived from Chandra and XMM-Newton data on the potential profiles approximated with a logarithmic law
ϕ(r) = v2c log r + b. The quoted uncertainties are pure statistical errors, determined from a Monte Carlo procedure. The last column is
the average of the results from Chandra and XMM-Newton in the preceding two columns.

Name r1(′) r2(′) vc,Chandra km s−1 vc,XMM km s−1 vc,X km s−1

NGC1399 0.1 5.0 403± 1.8 395± 2.1 399
NGC1407 0.1 2.0 368± 9.8 356± 9.8 362
NGC4472 (M49) 0.1 5.0 372± 4.0 367± 2.0 370
NGC4486 (M87) 0.1 5.0 448± 1.3 437± 1.6 443
NGC4649 (M60) 0.1 5.0 417± 2.4 422± 1.8 420
NGC5846 0.1 5.0 335± 3.1 331± 5.2 333

where ρ = µmpn is the gas density, P = nkT is the pres-
sure, µ is the mean atomic weight of the gas (µ = 0.61
assumed throughout the paper), mp is the proton mass and
k is the Boltzmann constant. Integrating the above equa-
tion one gets an expression for the gravitational potential
through the observables n and T :1

ϕ = − k

µmp

[
∫

T
d log n

dr
dr + T

]

+ C, (2)

where C is an arbitrary constant. We choose the constant C
such that ϕ(Re) = 0, where Re is the optical effective radius
(see eq. 14 and Table 1). The resulting potentials are shown
in Figure 1 with red (Chandra) and XMM-Newton (blue)
points. The error bars were evaluated by a Monte Carlo
procedure, starting from the measured values of n and T in
each shell, adding “noise” to the data points and re-deriving
the potential via equation (2) (see C08 for a discussion of
the limitations of this procedure).

As discussed in C08 the expression (2) for the potential
can be evaluated directly from deprojected data - density
and temperature profiles. Since the logarithmic derivative
of the density d log n

dr
is under the integral the enhancement

of errors due to differentiation is not a major issue and
evaluation of eq. (2) does not require any parametric de-

1 Throughout this paper, “log” denotes natural logarithm.

scription of the density and/or temperature profiles. This
removes the ambiguity in the choice of a functional form
for these profiles. Since the potential is calculated directly
via eq. (2) no apriori parametrization of the potential (or
mass) is required. If information on the gravitational poten-
tial is available from other data (e.g. from optical observa-
tions) the comparison of the potential profiles can be done
directly with the results of eq. (2). In C08 the relation be-
tween potential profiles derived from X-ray and optical data
was written as ϕX = aϕopt+ b and the value of a was evalu-
ated. In this case any transformation of the potential profile
to the circular speed (or equivalently to the mass profile)
which involves differentiation of the potential profile is not
needed and should be avoided.

Thus, the application of eq. (2) to the X-ray data is
essentially free from any parametrization and does not rely
on direct differentiation of the data. This is the main dif-
ference with most of the other techniques which either use
parametrization of the density/temperature profiles or make
an assumption on the form of the mass profile (see e.g.
Mathews 1978; Fabian et al. 1981; Forman, Jones, & Tucker
1985; Nulsen & Bohringer 1995; Humphrey et al. 2006;
Fukazawa et al. 2006, for various techniques of the mass pro-
file reconstruction). The most close approach to ours is that
of Humphrey et al. (2006), where the temperature and mass
profiles are parametrized, the hydrostatic equilibrium equa-
tion is solved to find the density and the best-fitting param-

c© 2009 RAS, MNRAS 000, 1–24
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Figure 1. Gravitational potentials derived from Chandra (red) and XMM-Newton/MOS (blue) observations of each galaxy. Potentials
are normalized to zero at Re. Vertical lines mark the range of radii used to approximate the data by a v2c log r+ b law, and the thin solid
lines are the best-fit approximations of the Chandra and XMM-Newton data to this law. The vertical dotted lines mark the effective
radius.

eters are iteratively found. As mentioned above in eq. (2) all
observables are on the r.h.s and one can reconstruct the po-
tential directly and defer the parametrization (if needed) to
a final step of manipulations with reconstructed potential.

We are now considering the case when limited infor-
mation on the potential from optical data is available. For

instance, consider a situation when only central velocity dis-
persion of the galaxy is known (see discussion in §3). In this
case to compare X-ray and optical potentials a parametriza-
tion of the potential derived from eq. (2) is needed. An es-
pecially simple and straightforward parametrization is pos-
sible if the potential is isothermal ϕ = v2c log r + b, since in

c© 2009 RAS, MNRAS 000, 1–24
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this case a single number – circular speed vc can character-
ize the potential. In fact, recent studies using stellar kine-
matics and lensing do suggest that the potentials of early-
type galaxies are approximately isothermal (Gerhard et al.
2001; Treu et al. 2006; Gavazzi et al. 2007), similar to disk
galaxies. Consistency of the mass profile with M(r) ∝ r
(implying an isothermal potential) was also suggested for
several elliptical galaxies based on the analysis of X-Ray
data (e.g., Trinchieri & Fabbiano 1985; Buote & Canizares
1994; Kim & Fabbiano 1995; Nulsen & Bohringer 1995;
Buote & Canizares 1998; Fukazawa et al. 2006). Below we
confirm an approximate isothermality of the potentials us-
ing the results of application of the non-parametric method
(eq. 2) and determine the best-fitting value of vc.

The axes in Figure 1 are log-linear and therefore an
isothermal (logarithmic) potential should look like a straight
line v2c log r + b. To first order this is true, although there
are statistically significant deviations, particularly at the in-
nermost and outermost radii, which we discuss below. The
agreement of Chandra and XMM-Newton data is good, ex-
cept for the inner region where the better spatial resolution
of Chandra is important. We choose to ignore the data in-
side the r1 = 0.1′ circle where this effect is apparent. We
also introduce a cutoff at large radii (typically r2 ≈ 5′),
where the results are sensitive to the assumed extrapola-
tion of the emissivity profile. The actual values of r1 and
r2 used in the analysis are given in Table 2 and are shown
in Figure 1 as a pair of vertical lines. Between r1 and r2
the potential was approximated with a logarithmic function
v2c log r+ b with vc and b being free parameters. Best fitting
values were found by minimizing the root-mean-square de-
viation between the model and observed potential profiles.
The resulting values of vc,X for Chandra and XMM-Newton
data are given in Table 2 as vc,Chandra and vc,XMM. The
statistical uncertainties determined from the Monte Carlo
procedure are also given in Table 2. In general there is
good agreement between the values obtained by the two in-
struments, confirming that the uncertainties introduced by
statistical errors and cross-calibration uncertainties between
the two instruments (including background subtraction pro-
cedures) are small. One can expect however that the real un-
certainties are dominated by systematic errors arising from
our model assumptions (e.g., the assumption of spherical
symmetry used in the deprojection analysis), which affect
both datasets in similar ways. For subsequent analysis we
use the average of the results from the two instruments,
vc,X ≡ (vc,Chandra + vc,XMM)/2 (last column in Table 2).

The deviations of the potential from the isothermal
shape ϕ = a log r + b can be studied by assuming a func-
tional form ϕ = arα+b and looking for the best-fitting value
of α. For the five galaxies with r1 = 0.1′ and r2 = 5′ the
best-fitting value of α varies from 0.03 for NGC1399 to 0.16
for NGC4472 (the mean value of α is 0.11). For NGC1407
(r1 = 0.1′ and r2 = 2′) the value of α is ∼ 0.5. This sug-
gests that on average the profiles are slightly concave, i.e.
circular speed slightly increases at large radii, which can be
seen in Fig. 1. This is consistent with the fact that these
massive ellipticals are sitting at the centers of more massive
group/cluster size halos which dominate at large radii. Given

the mean value of α = 0.11 one can estimate that changing
both r1 and r2 by a factor of two would on average change
the estimate of vc by a factor of only 2α/2 ∼ 4%.

We explicitly tested the sensitivity of vc to the values of
r1 and r2 for all objects in the sample by increasing the lower
boundary by a factor of two (i.e. r1 = 0.2′) and recalculating
vc. The results of this test are given in Table 3 (column
∆r1×2), where

∆r1×2 =
vc,r1×2 − vc,X

vc,X
, (3)

and vc,X is the circular speed from Table 2, and vc,r1×2 is
calculated as a mean value of circular speeds measured using
Chandra and XMM-Newton for increased r1 (similarly to
vc,X in Table 2). In a separated test we decreased the value
of r2 by a factor of two (i.e. r2 = 2.5′ for all objects except
for NGC1407, where r2 = 1′) and again recalculated vc (see
Table 3, column ∆r2/2). From Table 3 it follows that factor
of 2 changes in either r1 or r2 causes few per cent changes
in vc.

2.1 Flat abundance profile

We now illustrate the impact of our assumption of a flat
abundance profile, using NGC1399 as an example.

As is obvious from equation (2), the absolute normal-
ization of the gas density n does not affect the calculations
of the potential. From this point of view it is not the partic-
ular value of the heavy-element abundance in the spectral
models, but rather the radial variation of the abundance
that affects the derived potential profile. In elliptical galax-
ies one can expect an increase of metal abundance towards
the center of the galaxy. This is usually true for a range of
radii except for the very center, where a “dip” in the metal
abundance is often seen when fitting the data with a single
temperature plasma emission model (e.g., Matsushita et al.
2002).

As mentioned above, measuring the metal abundance
from X-ray spectra in cool systems is difficult because of
the ambiguity of separating line from continuum emission
with the limited energy resolution of X-ray CCDs. For a
multi-temperature plasma this separation is even more com-
plicated because fitting the emission with one-temperature
models leads to a biased estimate of the abundance (e.g.,
Buote 2000). In deprojected spectra, such as we use here,
the bias arising from a multi-temperature plasma is reduced
because the superposition of cooler and hotter emission com-
ing from different radii is removed (provided the object is
spherically symmetric), although if the plasma is intrinsi-
cally multi-temperature then the problem remains. On the
other hand the signal-to-noise of the deprojected spectra is
much lower than for the projected spectra. It is therefore
desirable to keep the number of free parameters in the fit as
small as possible.

As an example we show in Figure 2 (left) the gas param-
eters (electron density, temperature and abundance of heavy
metals) as a function of radius for NGC1399. In two models
(blue circles and green triangles) the abundance was fixed at
0.5 and 1 times solar, respectively. In the third model (red

c© 2009 RAS, MNRAS 000, 1–24
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squares) the abundance was a free parameter. One can see
that in the third model the errors on the abundance are sub-
stantial and, as expected, the abundance and the gas density
are anti-correlated. The potential profiles corresponding to
these spectral models are shown in the right panel of Figure
2. Clearly there is a significant change in the potential curves
(curves are normalized to zero potential at 1′.5). Formally
calculated values of vc for the three spectral models are:

vc = 421 km s−1; free abundance
vc = 403 km s−1; abundance= 0.5 × solar
vc = 396 km s−1; abundance= 1 × solar.

(4)

Thus, there is a substantial, but not dramatic effect of the as-
sumed abundance profile on the derived logarithmic slope of
the potential profile. Given that the limited statistics in our
deprojected spectra do not allow for a robust abundance de-
termination for all galaxies in the sample, we decided to keep
the assumption of a flat abundance profile so that we could
analyze all objects in a uniform way. It is likely that this
approximation introduces errors in the best-fitting value of
vc of roughly 5-15 km s−1. If all galaxies in our sample have
a similar abundance profile to the one derived in NGC1399,
one can expect the values of vc obtained under the assump-
tion of a flat profile with 0.5 × solar metallicity to be biased
low by 3-4%.

Relative changes in the circular speed when abundance
of heavy elements is a free parameter (constrained to be
in the range from 0 to 2) for all objects in the sample are
calculated in Table 3 (column ∆abund):

∆abund =
vc,free abundance − vc,X

vc,X
, (5)

where vc,free abundance is calculated as a mean value of cir-
cular speeds measured using Chandra and XMM-Newton,
similarly to vc,X (see §2).

Yet another parameter related to the chemical com-
position of the hot gas that is important for the eval-
uation of the gravitational potential is the mean atomic
weight µ (see eq. 2). For the solar photospheric abun-
dance table of Anders & Grevesse (1989) µ = 0.614 (as-
suming fully ionized plasma). If we lower the abundance
of heavy elements to 0.5 solar, µ changes to 0.610, i.e. by
0.7%. Changing the helium abundance would, of course,
have a much stronger impact on µ. For instance, doubling
the abundance of helium relative to the solar photospheric
mix would increase µ to 0.695, i.e., by 13%. One mech-
anism that could lead to helium enrichment beyond so-
lar abundance is gravitational sedimentation of heavy el-
ements (e.g., Gilfanov & Sunyaev 1984; Chuzhoy & Nusser
2003; Chuzhoy & Loeb 2004; Ettori & Fabian 2006). If sed-
imentation is indeed important for the interstellar gas in the
cores of elliptical galaxies, then it will also affect the emis-
sivity. In the present work we assume that µ = const = 0.61
at all radii, but one should bear in mind that the results
might change if the helium abundance changes with radius
or simply differs from the canonical value of 7.92 × 10−2

(number density relative to hydrogen) adopted here.

2.2 Deviations from spherical symmetry

To make a crude estimate of an impact on vc by possible
deviations from spherical symmetry one can make deprojec-
tion analysis in individual wedges and compare the results.
We divided the data on each object into two independent
halves - Northern and Southern and repeated the analysis
for each half separately. The difference in the circular speeds
between two halves is given in Table 3 (column ∆NS):

∆NS =
vc,N − vc,S

vc,X
, (6)

where vc,N and vc,S are the circular speeds for the Northern
and Southern halves respectively. For most of the objects
the difference is at the level of 2-4% (compared to ∼1%
pure statistical uncertainty).

The largest difference ∼8% is for NGC1407. Inspection
of the data have shown that this difference primarily comes
from XMM-Newton data. We note that NGC1407 was ob-
served by XMM-Newton with an offset angle of ∼ 8′ and
the PSF distortions might contribute to this difference.

In the analysis of optical data (§3) we discuss optical
constraints on the gravitational potential, assuming that the
galaxies are spherically symmetric. All objects in the sample
are round, being E0-E2 galaxies, although in some objects
(e.g. M87) the ellipticity increases with radius. We note here
that in the radial range where stars are dominating the mass,
the potential is more spherical than the distribution of the
stars themselves. The same is likely true even in outer re-
gions, given a steep decrease (R−2 or steeper) of the optical
surface brightness.

The analysis of independent wedges is not a useful indi-
cator of a possible error in the effective circular speed when
the object posses an axial symmetry and is viewed pole-on.
Possible effects of a non-spherical potential on optical es-
timates for a pole-on galaxy are discussed in C08 (Section
7.2 there). There we show that for an axis ratios (along
and perpendicular to the line-of-sight) of 0.5 (oblate) and 2
(prolate) the error in mass is factor of 0.79 and 1.04 respec-
tively2, and argue that the probability that many objects
in our sample are strongly oblate or oblate systems viewed
pole-on is rather low. Therefore on average the error is going
to be smaller than these extreme values.

X-ray analysis of the ellipsoidal objects is discussed
in Piffaretti, Jetzer, & Schindler 2003 and C08. If poten-
tial is logarithmic and the isothermal gas is in hydro-
static equilibrium, then the potential is recovered cor-
rectly from the spherically symmetric analysis (see Ap-
pendix B in C08). For a more complicated potential or non-
isothermal gas the deviations are present (see e.g. Fig.1 in
Piffaretti, Jetzer, & Schindler 2003, for an example of ex-
pected bias for prolate and oblate cases in A2390 cluster).
Although the effects of non-spherical potential are differ-
ent for X-ray and optical analysis, the sign of the effect for
oblate and prolate systems is the same. Therefore errors in
mass/potential partly compensate each other when effective
circular speeds are compared.

2 See C08 for the assumptions used in this calculation
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Figure 2. Left: Radial profiles of deprojected gas parameters (abundance, temperature, electron density) in NGC1399. The parameters
were obtained using a single-temperature APEC model (with fixed low-energy absorption and redshift) fit to the deprojected Chandra
spectra from a set of spherical shells. For the blue and green models (circles and triangles) the abundance was fixed at 0.5 and 1
times solar, respectively, while for the red model (squares) the abundance was a free function of the radius. Right: Potential profiles
corresponding to the spectral models shown in the left panel. Straight lines show best-fitting approximations ϕ = v2c log r + b.

We concluded that the assumption of a spherical po-
tential can contribute to the discrepancy between X-ray and
optical data, but it is unlikely that on average the magnitude
of the effect exceeds several per cent.

2.3 Contribution of unresolved LMXBs and weak
sources

The contribution of low-mass X-ray binaries (LMXB) can
dominate the X-ray emission in gas-poor elliptical galax-
ies (e.g., Trinchieri & Fabbiano 1985). Even when the spa-
tial resolution and sensitivity allows the resolution of some
LMXBs the remaining emission can still be dominated by
even weaker unresolved sources, such as accreting white
dwarfs (see, e.g., Revnivtsev et al. 2008, for the analysis of
the galaxy NGC3379).

Since all objects in our sample are gas-rich galaxies the
contribution of unresolved sources is not a major issue, espe-
cially for such bright objects as M87 and NGC1399. For less
luminous objects, because of their harder spectrum com-
pared to the hot gas emission, LMXBs can affect the ob-
served fluxes at the high end of the Chandra and XMM-
Newton energy bands. To test the magnitude of this ef-
fect we added a power law component with a photon index
Γ = 1.6 with a free normalization to represent the contri-
bution of unresolved sources (e.g., Irwin, Athey, & Bregman
2003; David et al. 2006; Humphrey & Buote 2006) and re-

calculated the circular speed for NGC4472. The resulting
values are only ∼1% lower than in Table 2.

Relative changes in the circular speed when a power
law component with a photon index Γ = 1.6 is added to the
spectral model for all objects in the sample are calculated
in Table 3 (column ∆LMXB):

∆LMXB =
vc,LMXB − vc,X

vc,X
. (7)

On average adding a power law component shifts the circular
speed few percent lower. The largest effect is for M87 and in
this very gas rich galaxy the change in vc likely reflects the
complexity of the spectrum rather then the contribution of
real LMXBs.

2.4 Summary on uncertainties in X-ray analysis

The summary of the uncertainties in determination of the
circular speed from X-ray data is given in Table 3. The
columns in the table show the relative deviation of the circu-
lar speed from the reference value vc,X given in Table 2 when
changes are made to the analysis procedure. The quoted un-
certainties in columns labeled Ërr.äre pure statistical errors.
They have clear meaning only when the difference between
the Northern and Southern parts of the galaxies are con-
sidered, since the data are independent. In all other cases
the quoted uncertainty corresponds to the largest statistical
error in one of the two values of vc used to calculate ∆.

The last two rows in the Table 3 give the mean change in
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the circular speed and the RMS value (relative to zero). The
values given in the Table allows one to get an idea of the
uncertainties introduced by the assumptions incorporated
into calculations of vc. For instance, letting abundance be a
free parameter on average shifts the value of vc up by ∼ 2%,
while adding a power law component (to control possible
contribution of LMXBs) on the contrary shifts vc down by
∼ 2%. Changing any of the bounds of the fitting range r1
and r2 by a factor of 2 changes vc by few % up or down.

While rigorous evaluation of combined uncertainties is
difficult, we can very crudely estimate it by adding RMS
values of ∆abund, ∆LMXB, ∆NS, ∆r1 and ∆r2 quadratically.
The resulting value 7.1% is crude a characteristic of the un-
certainties in the final value of vc,X introduced by the modi-
fications of our analysis procedure. Note that pure statistical
errors also contribute to the above estimate.

3 ROBUST ESTIMATORS OF THE
ISOTHERMAL POTENTIAL FROM
OPTICAL DATA

The results of the X-ray analysis suggest that the shape
of the potential profile of the galaxies in our sample is not
far from isothermal over the range of radii ∼ 0.5–25 kpc,
corresponding to ∼ 0.05–3 Re. Let us assume that this is
true at all radii and the total gravitational potential of a
galaxy is logarithmic,

ϕ(r) = v2c log r + const. (8)

It is natural to ask, given this assumption, how the velocity
dispersion of the stars in the galaxy is expected to be re-
lated to vc. A robust method to determine vc from optical
observations would enable us to check our results by com-
paring the derived values in Table 2, to determine vc and
thus the gravitational potential for many galaxies without
X-ray observations, and to look for evidence of non-thermal
pressure support in the X-ray gas.

For simplicity we shall assume that the galaxy is spher-
ical with known surface brightness I(R) and line-of-sight
velocity dispersion σ(R), and ask what is the best way to
determine vc from known I(R), σ(R) given that the poten-
tial is isothermal.

3.1 Circular speed from velocity dispersion for
distant (unresolved) galaxies

Since the acceleration of a star in the logarithmic potential
r̈ = −∇ϕ = v2cr/r

2, the virial theorem for such a system
reads

0 =
〈

ṙ2 + r · r̈
〉

=
〈

v2
〉

− v2c , (9)

where v = ṙ. Since the galaxy is spherical, the mean-square
velocity along any line of sight is equal to 1

3
〈v2〉 and there-

fore

v2c = 3

∫

∞

0
dRRI(R)σ2(R)
∫

∞

0
dRRI(R)

, (10)

i.e., the circular speed is equal to
√
3 times the integrated

line-of-sight dispersion for the whole galaxy. This formula

is useful for distant (unresolved) galaxies that lie entirely
within the spectrograph slit, or within the field of an
integral-field spectrograph. For nearby galaxies, however,
this formula is not useful since velocity-dispersion profiles
typically go out only to the effective radius Re (eq. 14),
which contains only half the light.

3.2 Circular speed from velocity dispersion for
Sérsic models

3.2.1 Constant anisotropy

Let us continue to assume that we have a spherical galaxy
in a logarithmic potential and consider three variants of the
stellar orbital anisotropy: isotropic orbits (i.e., the velocity-
dispersion tensor is isotropic), circular orbits, and radial or-
bits. It is straightforward to show from the Jeans equation
(see Appendix A) that the line-of-sight velocity dispersion
in these three models is given by:

σ2(R) = σ2
iso(R) ≡ v2c

R

I(R)

∫

∞

R

I(x)

x2
dx, (11)

for isotropic orbits,

σ2(R) = σ2
circ(R) ≡ 1

2

[

v2c − σ2
iso(R)

]

, (12)

for circular orbits and

σ2(R) = σ2
rad(R) ≡ 1

2
v2c

1

RI(R)

∫

∞

R

I(x)
(

1−R2/x2) dx, (13)

for pure radial orbits3. In Figure 3 the radial dependence of
the line-of-sight velocity dispersion is shown for the above
three cases, assuming that the surface brightness of the
galaxy is described by a Sérsic law I(R) ∝ exp(−aR1/n)
with index n = 1, 4, 12. The radius is plotted in units of the
effective radius Re, the radius containing half the light:
∫ Re

0

RI(R)dR =
1

2

∫

∞

0

RI(R)dR. (14)

From Figure 3 it is clear that for all n and for all three models
spanning the range of possible anisotropies the dispersions
are rather similar at about 0.5–0.6Re . This result suggests
that somewhere near this radius the line-of-sight velocity
dispersion may provide a measure of the circular speed of
the underlying isothermal potential that is relatively inde-
pendent of the details of the stellar velocity distribution.

There are many possible ways to define the “optimal”
radius or “sweet spot” at which the relation between the
line-of-sight velocity dispersion and the circular speed is
likely to exhibit the smallest variation. In Figure 4 we plot
the radii where the line-of-sight dispersions from each pair
of the three models coincide, as a function of Sérsic index n.
From equations (11), (12) and (13) these are the solutions
of the equations

3 Here we ignore the possibility that some of the models con-
sidered may have unphysical (negative) distribution functions at
some radii. This is, for example, the case for a pure radial-orbit
model when r → 0 so long as the emissivity diverges more slowly
than j(r) ∝ r−2 (Richstone & Tremaine 1984).
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Table 3. Relative changes in circular speed with respect to the reference value vc,X given in Table 2 when changes are made to the
analysis procedure (see §2.4).

Galaxy ∆abund Err. ∆LMXB Err. ∆NS Err. ∆r1×2 Err. ∆r2/2 Err.

% % % % %

ngc1399 4.23 0.80 -2.01 0.44 2.36 0.64 1.40 0.94 1.22 0.39
ngc1407 0.76 5.67 -1.61 2.37 8.25 2.88 5.66 1.74 1.05 2.22
ngc4472 2.43 2.17 -0.98 0.79 -2.31 1.16 -0.42 0.76 -3.71 0.70
ngc4486 3.88 0.40 -5.69 0.37 -4.58 0.39 1.44 0.26 -1.00 0.31
ngc4649 -2.48 1.14 0.36 0.41 2.67 0.62 3.30 0.43 0.08 0.39
ngc5846 1.53 2.61 -1.82 1.02 -2.57 1.50 -1.68 0.81 -5.14 1.21

Mean 1.73 -1.96 0.64 1.62 -1.25
RMS 2.82 2.69 4.35 2.89 2.70

Name changes in the analysis Section

∆abund free metal abundance (§2.1)
∆LMXB a power law is added (§2.3)
∆NS difference between North and South (§2.2)
∆r1 r1 × 2 (§2)
∆r2 r2/2 (§2)

Figure 3. Line-of-sight velocity dispersion as a function of radius for spherical galaxy models with Sérsic index n = 1, 4, 12 – left,
middle, right panels respectively. The solid, dotted and dashed lines correspond to systems composed of isotropic, circular and radial

stellar orbits. The thin vertical line shows the position of the “optimal radius” or “sweet spot” at which the deviations among the three
models are minimized.

nΓ(n, z) = zne−z circular = radial
3znnΓ(−n, z) = e−z isotropic = circular
3z2nΓ(−n, z) = Γ(n, z) isotropic = radial,

(15)

where z = aR
1/n
s , and Γ is the upper incomplete gamma

function. Models of galaxy formation usually suggest that
the velocity-dispersion tensor is isotropic near the center and
radially biased (σ2

r > σ2
θ) in the outer parts of the galaxy,

so we should prefer the bottom half of the range of Rs indi-
cated by these curves. A natural choice for the sweet spot Rs

is the middle curve, where the line-of-sight velocity disper-
sions for radial and circular models are equal (thin vertical
lines in Figure 3). This can be written for arbitrary surface-

brightness profiles as

∫

∞

Rs

I(x)dx = RsI(Rs). (16)

The values of Rs, σiso(Rs), σcirc(Rs) and σrad(Rs) (the latter
two quantities coincide by the definition of Rs) are shown
in Figure 5 and in Table 4, as a function of Rs/Re.

The range of dispersions spanned by these three mod-
els is of course smaller than the range spanned by all possi-
ble equilibrium models (see for example Figures 1 and 2 of
Richstone & Tremaine 1984). Our results nevertheless sug-
gest that the line-of-sight velocity dispersion evaluated at
Rs ≃ 0.5Re is a better proxy for the circular speed in a
galaxy with a logarithmic potential than the dispersion at
any other radius (e.g., the central velocity dispersion).
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Figure 4. Radius Rs(n) at which the line-of-sight dispersions
(eqs. 11, 12, and 13) for systems composed from different types
of orbits coincide, as a function of Sérsic index n. Solid line:
σcirc(R) = σrad(R), dashed line: σiso(R) = σrad(R), dotted line:
σiso(R) = σcirc(R).

Figure 5. The line-of-sight dispersions evaluated at Rs(n) [where
σcirc(Rs) = σrad(Rs)] are shown with solid (for systems with in-
trinsically isotropic orbits) and dashed (radial and circular orbits)
lines.

Determination of the effective radius and the Sérsic in-
dex of real galaxies depends (sometimes strongly) on the
range of radii used to fit the surface brightness profile and on
the method of extrapolating to calculate the total flux. This
is especially true for galaxies with extended envelopes, char-
acteristic of central galaxies in clusters and groups. For such
galaxies the reported values of Re and n for the same object
may vary strongly. A striking example is M87: the effective
radius of 145′′ in Table 1 (D’Onofrio, Capaccioli, & Caon
1994) is a factor of almost five smaller than the most re-
cent value Re = 704′′ in Kormendy et al. (2009). Sim-
ilarly the reported values of the Sérsic index vary from
6.51 in D’Onofrio, Capaccioli, & Caon (1994) to 11.84 in
Kormendy et al. (2009). The position of the sweet spot
changes accordingly. Clearly such large variations have
two main causes: (i) deviations of the observed surface-
brightness profile from a pure Sérsic profile, and (ii) the
weak dependence of the surface-brightness slope on R/Re

and n or, more precisely, strong covariance between Re and
n when fitting to data. Indeed for the Sérsic profile the slope
is (e.g., Graham & Driver 2005)

− d log I(R)

d logR
≈ 2

(

R

Re

)1/n

. (17)

Obviously when n is large the variations of slope at a given
R are not very sensitive to the variations of Re.

This raises the question of which set of n and Re to use
and how strongly the final result (circular speed evaluated
near the sweet spot) depends on these parameters. The def-
inition of the sweet spot (eq. 16) does not explicitly use the
value of Re, but is instead most sensitive to the slope of the
surface brightness profile; thus, for example, if I(R) ∝ R−2

for R > R0 then any radius R > R0 can equally well serve
as the sweet point (see also §3.3). This implies that the eval-
uated circular speed should not be sensitive to the precise
values of Re and n so long as they provide a good fit to the
surface-brightness profile and our other assumptions (e.g.,
circular speed independent of radius) are satisfied.

To illustrate this point, let us assume that M87 has
circular speed independent of radius, isotropic velocity-
dispersion tensor, and surface-brightness profile that is ac-
curately fit by a Sérsic profile with the Kormendy et al.
parameters, Re = 704′′ and n = 11.84, and that we esti-
mate the circular speed using Table 4 and the D’Onofrio et
al. parameters Re = 145” and n = 6.51. The resulting error
in vc will be only 3% even though the values of Re differ by
a factor of almost five.

In practice the sweet spot at large radius is less favor-
able since measurements of the line-of-sight velocity disper-
sion have only a limited radial extent. In particular, to esti-
mate the circular speed using the effective radius from Ko-
rmendy et al. one needs the stellar velocity dispersion at a
radius of ∼ 0.5Re ∼ 5–6′, which is not known. For this rea-
son we decided to use the effective Re = 145′′ of D’Onofrio
et al.

It is possible that equation 16 does not have roots at
radii where good measurements of the line-of-sight velocity
dispersion are available. In this case one can look for the
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Table 4. Dependence of Rs and line-of-sight velocity dispersions
at Rs on the Sérsic index n. Here Rs is such that σcirc(R) =
σrad(R); Rs is measured in units of the effective radius Re, and
σ is measured in units of the circular speed vc.

n Rs/Re σiso σcirc = σrad (σiso − σcirc)/σiso

1 0.595824 0.635337 0.546053 0.140530
2 0.553551 0.615010 0.557567 0.0934008
3 0.530947 0.605640 0.562672 0.0709465
4 0.516328 0.600140 0.565611 0.0575356
5 0.505918 0.596490 0.567538 0.0485364
6 0.498051 0.593877 0.568907 0.0420463
7 0.491859 0.591909 0.569932 0.0371287
8 0.486838 0.590369 0.570730 0.0332661
9 0.482674 0.589130 0.571369 0.0301473
10 0.479156 0.588111 0.571894 0.0275738
11 0.476140 0.587256 0.572333 0.0254124
12 0.473523 0.586530 0.572705 0.0235703
13 0.471228 0.585904 0.573025 0.0219810
14 0.469199 0.585359 0.573304 0.0205953
15 0.467389 0.584881 0.573548 0.0193760
16 0.465765 0.584457 0.573764 0.0182946
17 0.464299 0.584078 0.573957 0.0173289
18 0.462968 0.583738 0.574130 0.0164609
19 0.461754 0.583432 0.574285 0.0156766
20 0.460642 0.583153 0.574427 0.0149643
∞ ∞ 0.577350 0.577350 0

radius R with measured σ(R) where the relative mismatch
of the left and right sides of equation 16 is smallest.

In the limit of large Sérsic index n, the surface bright-
ness of a galaxy at radii not too far from the effective radius
declines as R−2 (e.g., Graham & Driver 2005) and therefore
volume emissivity declines as r−3. While formally the total
mass and the effective radius diverge as n goes to infinity, at
the same time the line-of-sight velocity dispersion becomes
independent of the radius and the anisotropy of stellar or-
bits (Gerhard 1993) as long as the shape of the velocity-
dispersion tensor, σ2

θ/σ
2
r , does not depend on radius. In this

limit σ2(R) = const = v2c/3 at all radii (Table 4).

3.2.2 Anisotropy changing with radius

In the models considered above the anisotropy parameter
was independent of radius. We now consider several sim-
ple models in which anisotropy parameter β(r) = 1 −
σ2
θ(r)/σ

2
r(r) depends on radius according to

β(r) =
β2r

c + β1r
c
a

rc + rca
, (18)

where β1 and β2 are the anisotropy parameters at r = 0
and r → ∞ respectively, ra is the anisotropy radius, and
the exponent c controls the sharpness of the transition. The
radial velocity dispersion is then

σ2
r(r) =

v2c
j(r)W (r)

∫

∞

r

j(x)W (x)

x
dx, (19)

where

W (x) = x2β1(xc + rca)
2(β2−β1)/c. (20)

A similar model with c = 1, β1 = 0.2, β2 = 1 was used
to describe the anisotropy profile in M87 by Doherty et al.
(2009). Another special case of our parametrization is the
Osipkov–Merritt model (Osipkov 1979; Merritt 1985), cor-
responding to c = 2, β1 = 0, β2 = 1.

In the left panel of Figure 6 we show the behavior of
the anisotropy parameter β for c = 1, 2 and 4 and different
values of the anisotropy radius ra. The Doherty et al. models
(c = 1) are shown by black lines and the Osipkov-Merritt
models (c = 2) by red lines, both for ra = 0.1Re, 1Re, 5Re.
In the right panel of Figure 6 we show corresponding profiles
of line-of-sight velocity dispersion for an n = 4 Sérsic model.
The legends of the lines are the same as in the left panel. For
reference, the thick green lines show our standard isotropic,
circular and radial models.

We did not check explicitly that these solutions of
the Jeans equation correspond to non-negative distribu-
tion functions. Sérsic models with β = 1, corresponding
to purely radial orbits, certainly have negative distribution
functions and thus are unphysical. For the Osipkov–Merritt
models, the smallest anisotropy radius shown in Figure 6 is
ra = 0.1Re, close to but outside the range ra . 0.05Re at
which the distribution function is negative (Merritt 1985).

Considering the models shown in the right panel of Fig-
ure 6 it is clear that the “sweet spot” at which the sensitivity
of the line-of-sight dispersion to the orbit structure is mini-
mized is near 0.5Re, just as we found in §3.2.1 from examin-
ing models with radial, circular, and isotropic orbits. How-
ever, and not surprisingly, the models with radially varying
anisotropy span a larger range in line-of-sight dispersion at
the sweet spot, with the largest deviations occurring when
ra/Re ∼ 1. For instance at R = 0.516Re (taken from Table
4 for n = 4) the Osipkov-Merritt model with ra = Re pre-
dicts a line-of-sight velocity dispersion 14% larger than the
isotropic model and 20% larger than a model composed of
circular or radial orbits. Making the transition in β smoother
(c = 1) or sharper (c > 2) makes the wiggle in the line-of-
sight velocity profile less (or more) pronounced as shown in
Figure 6.

So far we have discussed only systems with radial
anisotropy (“Type I” in the notation of Merritt 1985). We
have not discussed “Type II” systems in which the orbits
become predominantly circular at large radii, because such
systems are not produced in our current model of galaxy
formation. At least for the Osipkov-Merritt models (c = 2)
these curves have an abrupt change in the line-of-sight ve-
locity dispersion at R = ra (see Figure 5b in Merritt 1985).
These curves fill the area between the isotropic and circular
models and near R = Rs(n) they predict smaller dispersion
than the isotropic model.

Even though spatially varying anisotropy can increase
the spread of the expected value of the line-of-sight velocity
dispersion compared to our set of isotropic, radial and circu-
lar models, the dispersion at the radius R ≃ 0.5 Re remains
relatively insensitive to the orbital anisotropy and hence its
value at this radius provides a useful measure of the circular
speed of the underlying isothermal potential.
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Figure 6. Left: Radial dependence of the anisotropy parameter β. The Doherty et al. models (c = 1) are shown by black lines, and the
Osipkov-Merritt models (c = 2) by red lines. The curves corresponding to different values of the anisotropy parameter ra (see eq. 18)
are shown with dotted, solid and dashed lines for ra = 0.1Re, 1Re and 5Re respectively. Right: Corresponding profiles of line-of-sight
velocity dispersion for an n = 4 Sérsic model. The legends of the lines are the same as in the left panel. The thick green lines show for
reference our standard isotropic, circular and radial models.

3.2.3 Aperture dispersions and other extensions

The methods we have described for estimating the circu-
lar speed vc rely on the value of the line-of-sight velocity
dispersion σ(R) at a single radius Rs. Obviously, one could
imagine improved estimators based on some combination
of the dispersions at two or more radii Rs1, Rs2, . . .. A re-
lated possibility is to use weighted averages of the form
∫ A

0
I(R)σ2(R)f(R) dR/

∫ A

0
I(R)f(R)dR for some suitably

chosen function f(R). Here we discuss only one possibility,
the use of aperture dispersions (f(R) = R), which we shall
find to be less useful than dispersions measured at a single
radius.

Similar to the derivations in Appendix A, one can
find analytic formulae for the luminosity-weighted dis-
persions inside an aperture of radius A, σ2

ap(A) =
∫ A

0
I(R)σ2(R)RdR/

∫ A

0
I(R)RdR for systems composed of

isotropic, radial or circular orbits in a logarithmic potential.
Thus

σ2
ap,iso(A) =

1

3
v2c + v2c

A3
∫

∞

A
I(x)/x2dx

3
∫ A

0
I(x)xdx

σ2
ap,circ(A) =

1

3
v2c − v2c

A3
∫

∞

A
I(x)/x2dx

6
∫ A

0
I(x)xdx

(21)

σ2
ap,rad(A) =

1

3
v2c + v2c

A
∫

∞

A
I(x)dx

2
∫ A

0
I(x)xdx

− v2c
A3

∫

∞

A
I(x)/x2dx

6
∫ A

0
I(x)xdx

.

In Figure 7 the dependence of the luminosity-weighted dis-

persions on the aperture size A is shown for Sérsic laws with
index n = 1, 4, 12. The dispersions converge to the same
value vc/

√
3 at very large aperture (as required by eq. 10),

but strongly diverge at small radii. For example for an n = 4
Sérsic model, the difference between aperture dispersions
(σap,rad − σap,circ)/vc at A/Re = 0.5, 1, 2 and 5 is 0.27, 0.17,
0.10 and 0.034; for comparison the difference between the
line-of-sight velocity dispersions σiso(R)−σrad(R) evaluated
at R = Rs(n = 4) is 0.034vc.

We conclude that the aperture dispersion, as a measure
of the circular speed, is more sensitive to the anisotropy pro-
file than the dispersion at a single “sweet spot” radius Rs

unless the aperture is & 5Re. For spatially resolved galaxies
this implies that the dispersion at the sweet spot is a more
powerful tool for estimating the circular speed than the aper-
ture dispersion. Nevertheless the aperture dispersion is often
the only available quantity which can be used to estimate
the circular speed (e.g., Padmanabhan et al. 2004).

3.3 Circular speed from velocity dispersion using
local measurements

The methods outlined in the previous subsection require
determining the galaxy’s effective radius and Sérsic index,
which is often difficult, especially for the most massive and
extended galaxies. Moreover, some galaxies are not well de-
scribed by a Sérsic law. In some cases one can use equations
(11), (12) or (13) to predict the line-of-sight velocity dis-
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Figure 7. Velocity dispersion within an aperture as a function of aperture radius for Sérsic index n = 1, 4, 12. The solid, dotted, and
dashed lines correspond to systems composed from isotropic, circular and radial stellar orbits.

persion in terms of vc without first fitting to a Sérsic law;
however, the use of these equations formally requires the
knowledge of I(R) up to R → ∞.

Let us now assume that we have an observed surface-
brightness profile I(R), perhaps available only over a limited
range of radii, and we wish to estimate the circular speed
vc from measurements of the line-of-sight dispersion σ(R)
assuming that the potential is isothermal. One can differ-
entiate equations (11), (12), or (13) with respect to R to
obtain a relation between the circular speed and the local

properties of I(R) and σ(R). Thus

σ2
iso(R) = v2c

1

1 + α+ γ

σ2
circ(R) = v2c

1

2

α

1 + α+ γ
(22)

σ2
rad(R) = v2c

1

(α+ γ)2 + δ − 1
,

where

α ≡ −d log I(R)

d logR
, γ ≡ −d log σ2

d logR
, δ ≡ d2 log[I(R)σ2]

d(logR)2
. (23)

Although the terms γ and δ can be evaluated accu-
rately if there is sufficiently good data on the dispersion
curve σ(R), in a typical galaxy we expect these to be sub-
dominant compared to α and α2. This is illustrated in Figure
8 for a galaxy with Sérsic index n = 4. If one neglects the
subdominant terms then the expressions simplify further to

σ2
iso(R) = v2c

1

α+ 1

σ2
circ(R) = v2c

1

2

α

α+ 1
(24)

σ2
rad(R) = v2c

1

α2 − 1
.

For pure radial orbits we can also use the expression which
neglects all derivatives of the line-of-sight velocity disper-
sion, but keeps the second derivative of the surface bright-
ness. Namely,

Figure 8. Various terms contributing to the relation between the
circular speed vc and the line-of-sight velocity dispersion. (see eq.
23 for definitions). Each term is evaluated for an n = 4 Sérsic
model. The γ terms are calculated for isotropic, circular, and
radial orbits; the δ term is calculated for radial orbits. The term
α related to the slope of the surface-brightness profile (the upper
curve) dominates.

σ2
rad(R) = v2c

1

α2 + δI − 1
, (25)

where δI ≡ d2 log[I(R)]/d(logR)2.

In the case of a power-law surface-brightness law I(R) ∝
R−α in which the anisotropy parameter β is independent of
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Figure 9. Relation between the line-of-sight velocity dispersion
and the circular speed for the case of a pure power law surface
brightness distribution I(R) ∝ R−α.

radius the expression is (see also Figure 9):

σ2(R) = v2c
1

α+ 1− 2β

(

1− β
α

1 + α

)

. (26)

As pointed out by Gerhard (1993), for α = 2 the anisotropy
parameter cancels out. In this case the relation between cir-
cular speed vc and the line-of-sight velocity dispersion at
a given radius R solely depends on the local slope of the
surface-brightness profile (for β = const).

The above considerations suggest that one can get a rea-
sonable estimate of the circular speed using the observed sur-
face brightness I(R) and line-of-sight dispersion σ(R) pro-
files over a limited range of radii, together with equations
(22). Similar to equations (15) we can introduce different
types of sweet spots (hereafter R2) where pairs of orbital
models with observed quantities σ(R), α, γ and δ corre-
spond to the same circular speed4. In particular

R2,ic : α = 2 isotropic = circular
R2,ir : α+ γ = 2 (if δ = 0) isotropic = radial.

(27)

The expression for R2,cr (circular = radial) is more compli-
cated (see eq. 22) but based on the example of a Sérsic profile
we expect that R2,ir < R2,cr < R2,ic so the range between
the two radii in equation (27) should include R2,cr. When
both δ and γ are small then all three models intersect at
the same point R2 where α = 2 and σiso(R2) = σcirc(R2) =
σrad(R2) = vc/

√
3.

4 Note that these sweet spots are not the same as defined in
§3.2.1.

We illustrate the application of this procedure to
two well-studied systems—M87 and NGC3379 (the first
is in our X-ray sample but the second is not). Shown
in Figures 10 and 11 are the observed surface brightness
and line-of-sight dispersion profiles (panels A and B) to-
gether with smooth curves approximating their large-scale
trends. For M87, the photometry is from Kormendy et al.
(2009). The line-of-sight velocity dispersion is a combi-
nation of van der Marel data (van der Marel 1994) for
the central regions, SAURON (Emsellem et al. 2004) for
the mid-radial regions and VIRUS-P (Hill et al. 2008) as
presented in Murhphy & Gebhardt (2009) for the outer-
most stellar kinematics. Gebhardt & Thomas (2009) present
an analysis using the SAURON data, van der Marel
data, and kinematics from globular cluster kinematics. For
NGC3379 the photometry is from Capaccioli et al. (1990)
and Gebhardt et al. (2000), and the velocity dispersion is
from Statler & Smecker-Hane (1999) and Kronawitter et al.
(2000). We also use planetary nebula velocity dispersions
at large distances where stellar velocity dispersions are not
available. For M87 we use data from Arnaboldi et al. (2004)
and Doherty et al. (2009), and for NGC3379 we use disper-
sions as calculated by de Lorenzi et al. (2009) from data in
Douglas et al. (2007). The use of these data in our analysis
is based on the empirical result that the spatial distribution
of planetary nebulae tracks the spatial distribution of the
stars Coccato et al. (2009), but see the discussion below.

We then use the interpolated curves I(R) and σ(R) to
calculate the derivatives α, γ and δ defined in equation (23).
The values of α, γ, δ and the sum α+ γ are shown in panel
C with red, blue, green and black lines respectively. The
term δ, which depends on the second derivative of the sur-
face brightness and the line-of-sight velocity dispersion, is of
course most sensitive to the way the data are interpolated,
but usually makes only a small contribution to the estimate
of circular speed. Some of the wiggles in δ seen in panel C
of Figures 10 and 11 are certainly spurious.

As we argued before there are two robust methods to
estimate the circular speed (for a logarithmic potential): (i)
fit the photometry to a Sérsic or other model and determine
the circular speed from the line-of-sight velocity at the sweet
spot Rs (§3.4.1); (ii) determine the circular speed from the
range of radii between points where α ≈ 2 and γ + α ≈ 2
(§3.4.2). At these radii the anisotropy of orbits does not af-
fect the estimate of the circular speed (all three black curves
intersect in the vicinity of this point).

M87 is fit well by a Sérsic model with n = 6.5, and the
first method yields Rs = 72 arcsec and vc ≃ 1.7σ(Rs) =
530 km s−1 (Tables 1 and 4). The second approach, based
on radii ∼ 125 arcsec, yields vc ≈ 536 km s−1 in good agree-
ment. In principle one can extend this analysis to larger
radii using planetary nebulae (PNe), the data points shown
as red open symbols in Figures 10 and 11. However, there are
two problems in determining circular velocities from these
outer data points: (i) the PNe dispersions are reported for
R > 800′′, leaving considerable freedom in the interpola-
tion of σ(R) between ∼ 200′′ and 800′′; (ii) at these large
distances, the logarithmic surface brightness gradient α ap-
plicable to the outer halo of M87 has some uncertainty, due
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to both the uncertain details of the inferred truncation of
the halo Doherty et al. (2009) and the possible contribution
from the intracluster light (ICL) to the outer surface bright-
ness profile.

NGC3379 is fit by a de Vaucouleurs model (a Sérsic
model with n = 4) with Re ≃ 50 arcsec (Capaccioli et al.
1990), so the first method yields Rs ≃ 26 arcsec and
vc = 1.7σ(Rs) ≃ 281 km s−1. The second approach, based
on radii near 50 arcsec, yields vc ≃ 272 km s−1 in good
agreement. For NGC3379 the stellar and PNe dispersions
overlap in radius, and no ICL has been found in the Leo
group Castro-Rodŕıiguez et al. (2003), so we used the stellar
surface brightness profile and the combined stellar plus PNe
line-of-sight velocity dispersion profile (solid line in panel B
of Figure 11) for the analysis.

In the bottom panel (D) of Figures 10 and 11 we show
the estimated values of the circular speed as a function of ra-
dius, for various assumptions about the velocity anisotropy.
Red points are derived from the values of the line-of-sight
velocity dispersion, shown in panel B, which were converted
to the circular speed using equation (22) for isotropic orbits,
i.e.,

vc(R) = σopt(R)×
√

1 + α+ γ. (28)

The black solid, dotted, and dashed curves are the result of
applying equations (22) for isotropic, circular and radial or-
bits respectively to the smoothed curve approximating the
line-of-sight dispersion profile σ(R) (black curve in panel B,
see also Fig. 12). The agreement of the black solid curve with
the red points in panel D is a measure of the errors intro-
duced by smoothing. Our starting assumption was that the
galaxy potential is logarithmic at all radii (i.e., the circular
speed is constant), so the results in Figures 10 and 11 are
self-consistent only if the circular speed shown in panel D is
approximately independent of radius. In M87 the solid black
curve is rising at radii larger than a few tens of arcseconds,
while in NGC3379 the black curve is instead declining with
radius. This implies that either the assumption of isotropy
is incorrect—in which case the potential may still be log-
arithmic, and the methods of §3 will still give an accurate
assessment of the circular speed—or the assumption of con-
stant circular speed is incorrect. As discussed in §3.3.1 if the
orbits are indeed isotropic then the black curves in panels D
of Figures 10 and 11 are approximately correct. In case the
anisotropy of orbits is not known the estimates of the local

circular speed are still robust, but only in the vicinity of the
radius where −d log I(R)/d logR ≈ 2.

Thin blue lines in Figure 12 show the circular
speeds from published detailed dynamical analyses of M87
by Romanowsky & Kochanek 2001, their models NFW1,
NFW2 and NFW3. The green solid line in Figure 12
shows the best fitting model of Gebhardt & Thomas
(2009). The difference in the circular speeds between
Romanowsky & Kochanek 2001 and Gebhardt & Thomas
(2009) can be traced largely to the difference in the
line-of-sight velocity dispersion data and to the absence
of a central black hole in the Romanowsky & Kochanek
2001 model. Our estimates of the circular speed, based
on SAURON and VIRUS-P data of Gebhardt & Thomas

(2009); Murhphy & Gebhardt (2009) and the assump-
tion of isotropic orbits, agree reasonably well with
Gebhardt & Thomas (2009) between 20 and 200 arcsec.
Compared to Romanowsky & Kochanek (2001) our results
(the solid black line) predict significantly larger circular
speed over the entire range of radii. This is not surpris-
ing, since new measurements (Gebhardt & Thomas 2009;
Murhphy & Gebhardt 2009) give larger line-of-sight veloc-
ity dispersions. They also disagree inside 10 arcsec but here
the Romanowsky & Kochanek models exhibit substantial
orbit anisotropy so we would not expect agreement with our
isotropic models. In addition, the Romanowsky & Kochanek
models do not include a central black hole, which makes a
significant contribution to the circular speed inside 2–3 arc-
sec. Finally, the thick gray curve in Figure 12 is the circular
speed derived from heavily smoothed X-ray data. For this
curve we used the potential profile obtained from XMM-
Newton data (see Fig. 1), which was smoothed using a a
Gaussian filter similar to the filter described in eq. B1 of
Appendix B with ∆R = 0.5. We differentiate smoothed po-
tential to obtain the circular speed v2c = r dϕ/dr. As dis-
cussed in Churazov et al. (2008), the X-ray data agree well
with the NFW2 model of Romanowsky & Kochanek (2001).
This is also seen from the comparison of circular speeds in
Figure 12 - compare the thick gray line (X-rays) and the
blue line, corresponding to NFW2 model (the curve with
the largest circular speed at ∼ 1000′′). The new optical data
suggest substantially higher circular speed and a larger con-
tribution of the non-thermal pressure is needed to bring the
X-ray and optical data in agreement. We also note that all
methods suggest the increase of the circular speed in M87
from ∼400-500 km s−1 inside central 2′ to ∼600-700 km s−1

outside 10′.

In NGC3379 our prescription for evaluation of the cir-
cular speed assuming isotropic orbits (black solid line) is
remarkably consistent with detailed models (blue lines) be-
tween radii of 3 arcsec and 100 arcsec, even through the
circular speed in the detailed models is far from flat. We
note here that the models with the highest and lowest circu-
lar speeds at 400′′ are formally ruled out by the likelihood
analysis in de Lorenzi et al. (2009); the preferred models are
the middle three.

Alternatively one can neglect the contribution of γ and
δ and use equation (24) instead. The accuracy of the recov-
ered value of vc is illustrated in Figure 13 for several val-
ues of the Sérsic index n. We used this simplified approach
to plot the data for M87 globular clusters from Côté et al.
(2001). We plot the line-of-sight velocity dispersions from
Table 1 of Côté et al. in Figure 10 with magenta squares
(panel B). From Figure 12 of Côté et al., we estimated the
power law slope of the surface density of globular clusters
as α ≈ 1.35 and used equation (24) for isotropic, circular
and radial models to evaluate vc in panel D of Figure 10. As
one can see the range of values of vc spanned by these three
models overlaps reasonably well with the results based on
the stellar velocity dispersion, and the rise in vc for r & 100
arcsec appears to be mirrored in the magenta points. How-
ever the rather shallow surface density of globular clusters
I(R) ∝ R−1.35 leads to relatively large uncertainties in vc.
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Figure 10. Circular speed in M87 estimated from the line-of-sight velocity dispersion using equations (22). Shown in panel A is the
observed surface-brightness profile in the V band from Kormendy et al. (2009) (I(R) = 100−µ/5, where µ is in magnitudes per arcsec2).
Shown in panel B is the line-of-sight dispersion profile from Doherty et al. (2009). Black solid lines in panels A and B show smooth fitting
curves. The magenta points with large error bars in panel B are the globular cluster data from Côté et al. (2001); these are shown for
reference but are not used in any fits. The last two data points at 800-2000′′ are the PNe data from Arnaboldi et al. (2004) (open circle)
and Doherty et al. (2009) (open triangle). The fitting curves were used to compute α = −d log I(R)/d logR, γ = −d log σ2(R)/d logR,
δ = d2 log[I(R)σ2]/d(logR)2, and the sum α+ γ, which are shown in panel C by red, blue, green, and black lines. Shown in panel D are
the estimated values of the circular speed. Red points in panel D correspond to the measured values of the line-of-sight velocity dispersion
(shown in panel B), which were converted to the circular speed using equation (22) for isotropic orbits and the fitted curve for α + γ
in panel C. The black solid, dotted and dashed curves are the result of applying equations (22) for isotropic, circular and radial orbits
respectively to the smoothed curves approximating the surface brightness I(R) and the line-of-sight dispersion σ(R). The magenta points
in panel D are the globular-cluster data converted to circular speed by approximating the surface density of globular clusters as a power
law with α ≈ 1.35 and using equation (24) for circular (stars), isotropic (solid squares) and radial (open squares) models. Thin vertical
lines in panels B and D show the radii used to estimate the circular speed using the methods, described in §3.2.1 and §3.3, respectively.
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Figure 11. The same as in Figure 10 for NGC3379. Panel A shows the surface-brightness profile from wide-field B-band photome-
try by Capaccioli et al. (1990) and HST V-band observations from Gebhardt et al. (2000). The velocity dispersion (panel B) is from
Statler & Smecker-Hane (1999) and Kronawitter et al. (2000), supplemented by planetary nebula velocity dispersions (points shown as
open squares with large error bars at R > 30′′ in panel B, as calculated by de Lorenzi et al. 2009 from data in Douglas et al. 2007). Thin
blue lines in panel D show the circular speeds from models A–E of de Lorenzi et al. (2009).

3.3.1 Circular speed varying with radius

Experiments in solving the Jeans equation for a galaxy with
an n = 4 Sérsic surface-brightness profile have shown that
the local approximation works reasonably well at all radii

even if the circular speed is not constant, provided that the
orbital anisotropy is known and does not vary much with ra-
dius. This is illustrated in the left panel of Figure 14. Three
types of model vc(r) profiles are shown in this figure with
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Figure 12. Circular speed in M87. Enlarged version of panel D of Figure 10. Blue lines show the circular speeds from the detailed
dynamical analysis of Romanowsky & Kochanek (2001)—their models NFW1, NFW2, NFW3. The green line shows the best-fitting
model of Gebhardt & Thomas (2009). The magenta points are the globular-cluster data converted to circular speed by approximating
the surface density of globular clusters as a power law with α ≈ 1.35 and using equation (24) for isotropic systems. The thick gray curve
is the circular speed derived from heavily smoothed X-ray data.

thick solid lines: (i) vc(r) = const, (ii) vc(r) steadily rising
with radius and (iii) vc(r) having a maximum at r ∼ Re

and declining towards smaller and larger radii. For each of
the vc(r) profiles we calculated the projected velocity dis-
persion σ(R), assuming constant anisotropy (β = 0,−9, 1)
and converted σ(R) back to vc(r) using eq. 22 for the ap-
propriate type of anisotropy. The recovered vc(r) curves are

shown in Figure 14 (left panel) with thin solid, dotted and
dashed lines for isotropic, circular and radial orbits respec-
tively. The vertical gray line shows the radius R2 where
−d log I(R)/d logR = 2, which is close to the expected loca-
tion of the region where the sensitivity of recovered vc(r) to
the orbital anisotropy is smallest. Clearly the circular speed
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Figure 14. Left: Recovery of the non-constant circular speed profile from the the line-of-sight velocity dispersion profiles using eq.
22 when the anisotropy parameter is constant and known. Three types of model vc(r) profiles are shown with thick solid lines: (i)
vc(r) = const, (ii) vc(r) steadily rising with radius and (iii) vc(r) having a maximum at r ∼ Re and declining towards smaller and larger
radii. For each of the vc(r) profiles the line-of-sight velocity dispersion σ(R) was calculated for β = 0, -9, and 1 and converted back to
vc(r) using eq. (22) for the isotropic (thin solid), circular (dotted) and radial (dashed) orbits. The vertical gray line shows the radius R2

where −d log I(R)

d logR
= 2. The circular speed is recovered well even far away from R2, if we know the anisotropy of orbit distribution. Right:

Ratio of the recovered circular speed profile to the true circular speed profile when the true vc(r) is non-constant and the (unknown)
anisotropy parameter varies with radius. The vertical gray line shows the radius R2. Without prior knowledge of the orbital anisotropy
the circular velocity profile can not be recovered accurately, except in the vicinity of R2 where the spread in the vc values (including
models with variable vc and β) is small.

is recovered well even far away from R2, if we can guess the
anisotropy of the orbit distribution correctly.

If the anisotropy varies with radius the error introduced
in the circular speed is similar in amplitude to that for the
case of a logarithmic profile (Figure 6). Near the sweet point,
defined according to equation (27), the value of vc is recov-
ered to within ∼10-20% even if the circular speed is varying
with radius. This is further illustrated in the right panel
of Figure 14. In this figure we use the same three mod-
els of vc(r) profiles as in the left panel and five different
models for the orbital anisotropy: the constant anisotropies
β = 0,−9, 1, a model with orbits changing with radius from
isotropic to radial (c = 1, β1 = 0, β2 = 1, ra = 2 in eq.
18) and a model with orbits changing from isotropic to cir-
cular (c = 1, β1 = 0, β2 = −9, ra = 2 in eq. 18). For each
combination of vc(r) and β(r) we calculate the projected
velocity dispersion σ(R) and convert it back to the circular
speed eq. 22 assuming constant anisotropy β = 0,−∞, 1.
This results in a total 3 × 5 × 3 = 45 recovered circular
speed profiles. The ratio of the recovered profiles to the true
circular speed profiles is shown in Figure 14. Not surpris-
ingly without any prior knowledge of the orbital anisotropy
the circular speed profile can not be recovered accurately.

However, in the vicinity of R2 the spread in the vc values
(including models with variable vc and β) is smallest: the
ratio vc/vc,true varies between 0.78 and 1.12 for the whole
set of models.

At the radii where α is far from 2 (either smaller or
larger) our method does not guarantee the recovery of vc
without a firm prior on the anisotropy parameter. At these
radii additional sources of information such as higher order
velocity moments (h3, h4) and more elaborate methods (like
Schwarzschild’s method) are needed. One example of a loca-
tion where our method fails is the inner few arcsec in M87
where a black hole of a few times 109 M⊙ dominates the
mass. Because the surface brightness is much flatter than
R−2 in this region the allowed range for the circular speed
vc (for anisotropy β between −∞ and 1) is very wide (panel
D of Fig. 10), easily large enough to accommodate a black
hole with a mass ranging from 0 to 1010 M⊙ or even larger5.

5 Note that for the innermost (R 6 1′′) points in the line-of-sight
velocity dispersion data (which are from van der Marel 1994) the
seeing and the size of the slit can strongly affect the dispersion
measurement. No attempts to correct for these effects were made
in the present study
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Figure 13. Circular speed estimated from the line-of-sight ve-
locity dispersion using approximate equation (24) for isotropic
(solid), circular (dotted) and radial (dashed) orbits, instead of the
exact equation (22). The former equation uses a pure power law
approximation to the surface brightness profile and completely ig-

nores the terms γ and δ (see §3.3). For radial orbits more accurate
values of the circular speed are obtained (dash-dotted lines) from
another approximate equation (25). Colors denote Sérsic models
with n = 4, 8, 12, and 20.

3.4 Summary of suggested procedures for vc
determination

3.4.1 For a galaxy with the surface-brightness profile well

described by a Sérsic law

Use Table 4 (column 2) to find the “sweet spot radius”
Rs/Re for a given n; use the line-of-sight velocity dispersion
at this radius and convert it to the circular speed using col-
umn 3 of Table 4; we call this vc,s (see Table 1). Use column
4 from the same table to crudely estimate the uncertainty
in vc.

3.4.2 For a generic surface-brightness profile

Make a suitable interpolation of the surface-brightness pro-
file (see, e.g., Appendix B) and the line-of-sight velocity dis-
persion profile. Calculate the slopes of these profiles (quanti-
ties α, γ, δ, as defined in §3.3). Convert interpolated line-of-
sight velocity dispersion into circular speed using equations
(22). Locate the sweet spot where the three curves are as
close as possible (approximately corresponding to a range
between radii where α ≈ 2 and α+ γ ≈ 2) and use the cir-
cular speed value predicted by the curves in the vicinity of
this radius. We call this vc,l. When the curves do not inter-
sect within the radial range well covered by the data (or in

which, at least, the extrapolation is reasonable) one can use
the radius where the range of circular speeds spanned by
isotropic, circular and radial models is minimal. The differ-
ence between vc predicted by the three curves can be used
to crudely characterize the uncertainty.

4 RESULTS AND DISCUSSION

Guided by the above considerations we compiled velocity
dispersion measurements from the literature for the galaxy
sample in Table 1.

• For the central velocity dispersion (σc) we rely on the
Hyperleda database. The corresponding circular speed was
estimated as vc,c =

√
2σc, an approximation often used in

the literature but with little or no theoretical justification
(column 9 in Table 1).

• For the “sweet spot” estimates Rs we
use the values of the effective radius and the
Sérsic index from Caon, Capaccioli, & D’Onofrio
(1993), D’Onofrio, Capaccioli, & Caon (1994),
Mahdavi, Trentham, & Tully (2005), and Spolaor et al.
(2008). The values of Rs were determined from the effective
radius and Sérsic index using Table 4. The line-of-sight ve-
locity dispersions at Rs were taken from Kronawitter et al.
(2000), Spolaor et al. (2008), Doherty et al. (2009) (and
references therein), and De Bruyne et al. (2001). The
corresponding values σ(Rs) are given in column 8 of the
Table 1. In practice, for the selected sample Rs is always
close to 0.5Re and the ratio σiso/vc ≃ 0.6. For one case
when kinematic data do not extend to Rs (NGC4472) we
used the outermost data points to evaluate σ. Given the
uncertainties in Re, n and the kinematics data, the accuracy
of σ is unlikely to be better than ±5–10 km s−1. In column
10 we estimate the circular speed using equation (11) for
isotropic orbits (see also the entries for σiso in Table 4).

• For a second estimate of the circular speed we use
the procedure described in §3.3: that is, we locate the re-
gion in which the logarithmic slopes α and α + γ (eqs.
23) are as close as possible to 2, find the line-of-sight
dispersion σ at this radius, and then estimate the circu-
lar speed using equation (22) for an isotropic model, as

vc,l = σ (1 + α+ γ)1/2. The values of vc,l for each galaxy in
our sample are given in column 11 of Table 1. The most un-
certain is the value of vc,l for NGC4472, where the kinematic
data of Bender, Saglia, & Gerhard (1994) end at R ≃ 40′′,
while the Sérsic approximation to the surface brightness pro-
file (Kormendy et al. 2009) suggests that the intersection of
curves occurs at ∼ 200′′.

Following the discussion in §2 we compare the circular
speed derived from the X-ray analysis (Table 2) with the
three estimates of the circular speed from the optical data
as shown in Figure 15. Assuming that vc,opt = η × vc,X we
derive the following best fitting relations:

vc,c = 1.12× vc,X RMS = 0.07
vc,s = 1.14× vc,X RMS = 0.11
vc,l = 1.10× vc,X RMS = 0.09,

(29)
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Figure 15. Relation between vc,X , the estimate of the circular
speed from X-ray data, and three forms of vc,opt, the estimate
from the optical data. Red squares - vc,c, blue triangles - vc,s,
black circles - vc,l. The dashed line corresponds to vc,0pt = vc,X ,
and solid red, blue and black lines to the best fitting relations be-

tween vc,X and vc,c, vc,s and vc,l respectively. Small black squares
shows the values of vc,X obtained when changes are made to the
analysis procedure (see §2.4). These changes include: letting the
abundance of heavy elements be a free parameter; adding a power
law to account for potential contribution of LMXBs; varying lower
or upper limits of the radial range used for vc,X calculations and
separate calculations of the circular speed for the Northern and
Southern parts of each galaxy. These different values of vc,X are
plotted at fixed vc,Opt = vc,c for each object. The black error
bars show the crude estimate of the uncertainty in vc,X discussed
in §2.4.

where root-mean-square deviations were evaluated as

RMS =
[

∑N
i=1{vc,opt,i/vc,X,i − η}2/(N − 1)

]1/2

, where

summation is over the objects in the sample, N = 6. We
note here that the smallest scatter in the above relation is
found for the circular speed estimated from the central ve-
locity dispersion vc,c =

√
2σc, rather than for more sophisti-

cated estimates, which were constructed to be least sensitive
to unknown orbit anisotropy. However, given the small size
of our sample, no firm conclusion on the quality of different
proxies to the circular speed is possible.

When five of the six objects are analyzed the value of
η varies from 1.07 to 1.13 for vc,l (compared to 1.10 for
the full sample of six objects). The conclusion that η > 1
continues to holds. One can also estimate the significance of
the statement that η > 1 from the fact that almost all of the
points are in Figure 15 are in the upper left part of the plot.
Assuming that η can equally probably be larger or smaller
than unity the probability that 6 out of 6 points (for vc,c)

or 5 out of 6 (for vc,s and vc,l) are found with η > 1 is 0.016
and 0.11 respectively.

As discussed in §2.4 changing the assumptions made in
the analysis of X-ray data affects the value of vc,X . This
includes the effect of variable metalicity, contribution of
LMXBs, dependence on the radial range used for evaluation
of vc,X and independent calculations of the circular speed
for the Northern and Southern parts of each galaxy. The
values of vc,X obtained in each of the tests described in §2.4
are shown with small black squares in Figure 15. For clarity
these values of vc,X are plotted at the same vc,Opt = vc,c.
The black error bars show the crude estimate of the uncer-
tainty in vc,X of ∼7% obtained in §2.4 under simplifying
assumption that the contributions of different effects co-add
quadratically.

As discussed in C08 the derived value of vc,X is sensi-
tive to non-thermal forms of pressure support6. This non-
thermal support can be parametrized by its impact on the
relation between vc,X and the true circular speed vc:

v2c = v2c,X

(

1 +
Pn

Pg

)

, (30)

where Pn and Pg are the non-thermal and gas thermal pres-
sures respectively. Thus the observed relation (eq. 29) pro-
vides a measure of Pn/Pg:

Pn

Pg
≈ η2 − 1 ≈ 0.21− 0.29, (31)

depending on the adopted estimator of the optical velocity
dispersion in equation (29).

There are a number of obvious caveats (both on the X-
ray and the optical sides) associated with the above analysis.
In particular there is considerable uncertainty in the heavy
metal abundance determination, mentioned in §2, which
may affect the estimates of the potential at the level of a few
per cent. Some of our galaxies sit in massive group/cluster
halos; in such cases the circular speed increases at large radii
(e.g. M87 - see Figure 12), so the approximation of the po-
tential as a logarithmic law characterized by a single circular
speed may not be sufficient for accurate comparison of the
X-ray and optical data over several decades of radius. Minor
deviations from hydrostatic equilibrium, visible as wiggles in
the potential profiles, could also contribute to the scatter.
Nevertheless we believe that our main result—that the depth
of the potential well derived from X-ray data (from hot gas)
is systematically shallower (by few tens of percents) than
the corresponding optical value (from stars)—is robust. As
mentioned in C08 these values are consistent with the cur-
rent paradigm of AGN controlled gas cooling/heating in the
centers of clusters and individual massive elliptical galax-
ies (e.g., Churazov et al. 2002). The key assumptions of this
paradigm are that:

• Gas radiative cooling losses are balanced by the me-
chanical energy provided by a central black hole (AGN);

• Dissipation of the mechanical energy is occurring on

6 In C08 instead of notation ϕ = v2c,X log r we used ϕ =

2σ2
X log r, where vc,X ≡

√
2σX .
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time scales comparable (within a factor of few) to the sound
crossing time of the cooling region;

• The ratio of the dissipation and cooling time scales (of
the order of 0.1–0.2) sets the ratio of the non-thermal and
thermal energy densities.

We finally note that the sample considered here is not
statistically complete and generalization of these results to
all gas-rich ellipticals must be done with caution.

5 CONCLUSIONS

Using non-parametric method we reconstructed gravitating
potentials for a sample of six X-ray bright elliptical galaxies
observed with Chandra and XMM-Newton. Their gravita-
tional potentials can be reasonably well approximated by the
isothermal (logarithmic) law vc,X log r+ b over the range of
radii from ∼0.5 to ∼25 kpc, corresponding to ∼ 0.05–3 Re.
This result is in line with recent lensing data which also
suggest isothermality of the gravitational potentials of the
early-type galaxies and earlier results based on stellar kine-
matics and X-ray data. Many galaxies in our sample are
located at centers of massive groups/clusters and the X-ray
data going beyond the optical extent of galaxies show the
steepening of the potential at large radii.

We suggest two new methods to derive an estimate of
a galaxy’s circular speed if its potential is described by the
isothermal law. (i) For a spherical galaxy with a given Sérsic
index n, the line-of-sight stellar velocity dispersion σopt(Rs)
evaluated at Rs = Rs(n) ≈ 0.5Re turns out to be rela-
tively insensitive to the anisotropy of stellar orbits. (ii) We
suggest the extension of this method for a generic surface-
brightness profile which allows one to estimate the circular
speed through the “local” values of the line-of-sight veloc-
ity dispersion and the logarithmic derivatives of the surface
brightness and the velocity-dispersion profiles.

Application of these methods to a sample of six mas-
sive elliptical galaxies and the comparison to the results of
X-ray analysis suggests that on average 20% of the gas pres-
sure in these galaxies is provided by non-thermal compo-
nents (e.g., micro-turbulence or cosmic rays). This result
is in broad agreement with the current paradigm of AGN
controlled gas cooling/heating in the centers of clusters and
individual massive elliptical galaxies.
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ApJ, 590, 225

Churazov E., Forman W., Vikhlinin A., Tremaine S., Ger-
hard O., Jones C. 2008, MNRAS, 388, 1062

Chuzhoy L., Nusser A. 2003, MNRAS, 342, L5
Chuzhoy L., Loeb A. 2004, MNRAS, 349, L13
Coccato L., et al. 2009, MNRAS, 394, 1249
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APPENDIX A: LINE-OF-SIGHT VELOCITY
DISPERSION IN A LOGARITHMIC
POTENTIAL

The goal of this Appendix is to derive formulae for the
line-of-sight velocity dispersion profile σ(R) for a spherical
galaxy with surface-brightness profile I(R), assuming that
the gravitational potential is logarithmic,

φ(r) = v2c log r + const. (A1)

The line-of-sight dispersion will depend on the shape of the
velocity-dispersion tensor, defined by its radial and tangen-
tial components σ2

r(r) and σ2
φ(r) = σ2

θ(r). We examine three
simple cases that should span the range of possible behav-
iors: (i) isotropic orbits (σ2

r = σ2
φ = σ2

θ); (ii) radial orbits
(σ2

φ = σ2
θ = 0); (iii) circular orbits (σ2

r = 0).
In a spherical system, the volume emissivity j(r) and

the surface brightness I(R) are related by

I(R) = 2

∫

∞

R

r dr√
r2 −R2

j(r),

j(r) = − 1

π

∫

∞

r

dR√
R2 − r2

dI

dR
. (A2)

If the system is isotropic, the Jeans equation reads

d

dr
jσ2

r = −j
dφ

dr
. (A3)

Specializing to the logarithmic potential and integrating

j(r)σ2
r(r) = v2c

∫

∞

r

du

u
j(u). (A4)

The line-of-sight dispersion at projected radius R, σiso(R),
is given by

I(R)σ2
iso(R) = 2

∫

∞

R

r dr√
r2 −R2

j(r)σ2
r (r)

= 2v2c

∫

∞

R

r dr√
r2 −R2

∫

∞

r

du

u
j(u)

= 2v2c

∫

∞

R

du
√
u2 −R2

u
j(u). (A5)

Replacing j(u) from equation (A2) and exchanging the order
of integration,

I(R)σ2
iso(R) = −2v2c

π

∫

∞

R

dx
dI

dx

∫ x

R

√
u2 −R2 du

u
√
x2 − u2

. (A6)

The inner integral is 1
2
π(1 − R/x) so after integrating by

parts

I(R)σ2
iso(R) = Rv2c

∫

∞

R

I(x)

x2
dx, (A7)

which is equation (11).
If the orbits are circular, a set of stars with random

orientation at radius r and projected radius R contributes
a line-of-sight dispersion 1

2
v2cR

2/r2. Thus the line-of-sight
dispersion at R is given by

I(R)σ2
circ(R) = R2v2c

∫

∞

R

dr

r
√
r2 −R2

j(r). (A8)
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Replacing j(r) from equation (A2) and exchanging the order
of integration,

I(R)σ2
circ(R) = −R2v2c

π

∫

∞

R

dx
dI

dx

×
∫ x

R

dr

r
√
r2 −R2

√
x2 − r2

. (A9)

The inner integral is 1
2
π/(Rx) so after integrating by parts

σ2
circ(R) = 1

2
v2c − Rv2c

2I(R)

∫

∞

R

I(x)

x2
dx

= 1
2
v2c − 1

2
σ2
iso(R), (A10)

which is equation (12).
Finally, if the orbits are radial, the Jeans equation reads

d

dr
r2jσ2

r = −jr2
dφ

dr
. (A11)

Specializing to the logarithmic potential and integrating,

j(r)σ2
r(r) =

v2c
r2

∫

∞

r

duuj(u). (A12)

If the orbits are radial, a set of stars at radius r and projected
radius R contributes a line-of-sight dispersion σ2

r(r)(r
2 −

R2)/r2. The line-of-sight dispersion at projected radius R,
σrad(R), is then given by

I(R)σ2
rad(R) = 2

∫

∞

R

dr
√
r2 −R2

r
j(r)σ2

r (r)

= 2v2c

∫

∞

R

dr
√
r2 −R2

r3

∫

∞

r

duuj(u). (A13)

Replacing j(u) from equation (A2) and exchanging the or-
der of integration,

I(R)σ2
rad(R) = −2v2c

π

∫

∞

R

dr
√
r2 −R2

r3

∫

∞

r

dx
√

x2 − r2
dI

dx

=
2v2c
π

∫

∞

R

dr
√
r2 −R2

r3

∫

∞

r

x dx√
x2 − r2

I(x)

=
2v2c
π

∫

∞

R

dxxI(x)

∫ x

R

dr

r3

√
r2 −R2

√
x2 − r2

. (A14)

The inner integral is 1
4
π(x2 −R2)/(Rx3), so

I(R)σ2
rad(R) =

v2c
2R

∫

∞

R

I(x)(1−R2/x2)dx, (A15)

which is equation (13).

APPENDIX B: SMOOTHING THE
SURFACE-BRIGHTNESS PROFILE

The procedure for evaluating the circular speed that is de-
scribed in §3.3 requires calculations of the derivatives of the
surface brightness I(R) and the line-of-sight velocity disper-
sion σ(R). The derivative of the surface brightness is ex-
pected to be the most important term (see Fig. 8). The
observed surface-brightness profiles typically have enough
data points with small errorbars to make the selection of
a simple analytic model difficult. To counter this problem
we used a simple procedure to smooth the data. Consider a

set of surface brightness measurements I(Ri), i = 1, . . . , n.
Given that we are interested primarily in logarithmic deriva-
tives it makes sense to use fi = logRi and Si = log I(Ri)
instead of R and I . We can then fit the linear relation be-
tween fi and Si as Si = afi + b, where a and b are the free
parameters of the fit. We want to find “local” values of a
and b in the vicinity of a given radius R0, which are based
on a set of measurements not far from R0. We do that by
choosing a weight function

W (R0, R) = exp

[

− (logR0 − logR)2

2∆2
R

]

, (B1)

where the parameter ∆R controls the width of the weight
function. The best fitting parameters a and b (minimizing
RMS deviation) for a given value of f0 ≡ logR0 are given
by

a(R0) =

∑

fiWiSi

∑

Wi −
∑

WiSi

∑

fiWi
∑

f2
i Wi

∑

Wi − (
∑

i fiWi)2
, (B2)

where Wi = W (R0, Ri), the sums are over i = 1, . . . , n, and

b(R0) =

∑

i WiSi − a
∑

i fiWi
∑

i Wi
. (B3)

The smoothed function Ĩ(R) = ea(R) logR+b(R) is shown in
panel A in Figures 10 and 11 with a black solid line. We
used ∆R = 0.3 for both objects.
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