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ABSTRACT

Context. Global magnetohydrodynamic simulations show the growth ofKelvin-Helmholtz instabilities at the contact surface of two
merging neutron stars. That region has been identified as thesite of efficient amplification of magnetic fields. However, these global
simulations, due to numerical limitations, were unable to determine the saturation level of the field strength, and thusthe possible
back-reaction of the magnetic field onto the flow.
Aims. We investigate the amplification of initially weak magneticfields in Kelvin-Helmholtz unstable shear flows, and the back-
reaction of the field onto the flow.
Methods. We use a high-resolution finite-volume ideal MHD code to perform 2D and 3D local simulations of hydromagnetic shear
flows, both for idealized systems and simplified models of merger flows.
Results. In 2D, the magnetic field is amplified on time scales of less than 0.01 ms until it reaches locally equipartition with the kinetic
energy. Subsequently, it saturates due to resistive instabilities that disrupt the Kelvin-Helmholtz unstable vortexand decelerate the
shear flow on a secular time scale. We determine scaling laws of the field amplification with the initial field strength and the grid
resolution. In 3D, the hydromagnetic mechanism seen in 2D may be dominated by purely hydrodynamic instabilities leading to less
filed amplification. We find maximum magnetic fields∼ 1016 G locally, and r.m.s. maxima within the box∼ 1015 G. However, due
to the fast decay of the shear flow such strong fields exist onlyfor a short period (< 0.1 ms). In the saturated state of most models,
the magnetic field is mainly oriented parallel to the shear flow for rather strong initial fields, while weaker initial fields tend to lead
to a more balanced distribution of the field energy among the components. In all models the flow shows small-scale features. The
magnetic field is at most in energetic equipartition with thedecaying shear flow.
Conclusions. The magnetic field may be amplified efficiently to very high field strengths, the maximum field energyreaching values
of the order of the kinetic energy associated with the velocity components transverse to the interface between the two neutron stars.
However, the dynamic impact of the field onto the flow is limited to the shear layer, and it may not be adequate to produce outflows,
because the time during which the magnetic field stays close to its maximum value is short compared to the time scale for launching
an outflow (i.e., a few milliseconds).
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1. Introduction

The merger of two neutron stars is considered the most promis-
ing scenario for the generation of short gamma-ray bursts
(GRBs). After a phase of inspiral due to the loss of angular
momentum and orbital energy by gravitational radiation, the
merging neutron stars are distorted by their mutual tidal forces.
Finally, they touch each other at a contact surface. Due to a com-
bination of the orbital motion and the rotation of the neutron
stars, the gas streams along that surface, the flow directions on
either side of the surface being anti-parallel with respectto each
other.

As a consequence of this jump in the tangential velocity,
the contact surface is Kelvin-Helmholtz (KH) unstable. Growing
within a few milliseconds, the KH instability leads to the for-
mation of typical KH vortices between the neutron stars. These
vortices can modify the merger dynamics via the dissipation
of kinetic into thermal energy. The generation of KH vor-
tices is observed in actual merger numerical simulations (e.g.,
Oechslin et al. 2007).

The exponential amplification of seed perturbations can lead
to very strong magnetic fields as shown by Price & Rosswog
(2006), and Rosswog (2007). These fields, in turn, can modify

the dynamics of the instability described above, either already
during its linear growth phase or, for weak fields, in the satu-
rated state. Exerting stresses and performing work on the fluid,
the magnetic field does lose part of its energy. Thus, the max-
imum attainable field strength is limited by the non-linear dy-
namics.

In their merger simulations, Price & Rosswog (2006), and
Rosswog (2007) observed fields exceeding by far 1015 G. Their
numerical resolution, however, did not allow them to followthe
detailed evolution of the KH instability in the non-linear phase.
Thus, they could not draw any definite conclusions on the max-
imum strength of the field nor its back-reaction onto the fluid.
They observed that the maximum field strength is a function of
the numerical resolution: the better the resolution, the stronger
becomes the field.

Performing numerical convergence tests, these authors did
not find an upper bound for the field strength attainable in the
magnetized KH instability. Thus, Price & Rosswog (2006) dis-
cussed, based on energetic arguments, but not supported by sim-
ulation results, two different saturation levels: the field growth
saturates when the magnetic energy density equals either the
kinetic (kinetic equipartition) or the internal energy of the gas
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(thermal equipartition), corresponding to fields of the order of
1016 G and∼ 1018 G, respectively. From their simulations they
were not able to identify the saturation mechanism applyingto
the KH instability in neutron-star mergers. Thus, we address this
question here again using highly resolved simulations and inde-
pendent numerical methods.

Most simulations of neutron-star mergers, including the
ones by Price & Rosswog (2006), and Rosswog (2007),
are performed using smoothed-particle hydrodynamics (SPH)
(Monaghan 1992). This free Lagrangian method is highly adap-
tive in space, and allows on to follow large density contrasts
without “wasting” computational resources in areas of very
low density. This property of SPH makes it highly advanta-
geous for the problem of mergers. On the other hand, its rela-
tively high numerical viscosity renders SPH inferior compared
to Eulerian grid-based schemes for the treatment of (magneto-
)hydrodynamic instabilities and turbulence (Agertz et al.2007).
Moreover, the spatial resolution of most merger simulations is
rather low, i.e., the reliability of their results concerning the de-
tails of the KH instability is limited.

A grid-based code such as ours is well suited for a
study of flow instabilities and turbulence. Using it to sim-
ulate the entire merger event, however, is cumbersome due
to the large computational costs required to cover the entire
system with an appropriate computational grid. In spite of
this fact, Giacomazzo et al. (2009) (see also Liu et al. (2008);
Anderson et al. (2008)) have performed full general-relativistic
MHD simulations using vertex-centered mesh refinement to as-
sess the influence of magnetic fields on the merger dynam-
ics and the resulting gravitational waveform. But, as we shall
show below, even their (presently world-best) grid resolution
(h ∼ 350 m) is still too crude to properly capture the disruptive
dynamics after the KH amplification of the field. For compar-
ison, we note here that our merger models employ a grid res-
olution of h ∼ 0.1 m in 2D (Sect. 6.2) andh ∼ 0.8 m in 3D
(Sect. 6.3), respectively.

We performed a set of numerical simulations of the KH in-
stability to understand the dynamics of magnetized shear flows
and to draw conclusions on the evolution of merging neutron
stars. The main issues we address in our study are motivated by
two different, albeit related, intentions:

– We strive for a better understanding of the magneto-
hydrodynamic (MHD) KH instability. This includes the in-
fluence of numerical parameters such as the grid resolution
on the dynamics, and generic properties of the saturation of
the instability. We address these questions by a series ofdi-
mensionlessmodels that use scale-free parameters as most
previous studies focusing on the generic properties of the KH
instability instead of a particular astrophysical application.

– We further want to verify the results of Price & Rosswog
(2006) and reassess their estimates of the saturation field
strength. Hence, we consider the growth time of the insta-
bility that has to compete with the dynamical time scale of
the merger event (a few milliseconds), the saturation mech-
anism, the saturation field strength, and generic dynamical
features of supersonic shear flows. Our results should also al-
low us to reassess the findings of global simulations extend-
ing the ones performed by Price & Rosswog (2006), e.g., the
simulations by Anderson et al. (2008) and Liu et al. (2008).

To this end we utilize a newly developed multidimensional
MHD code (Obergaulinger et al. 2009) that employs various
explicit finite-volume algorithms, and that is particularly well
suited for simulating instabilities and turbulent systems. As the

code is based on Eulerian high-resolution methods instead of
SPH as in Price & Rosswog (2006), our results are complemen-
tary to theirs, serving as an independent check.

Since we are unable to simulate the entire merger event us-
ing fine resolution, we focus on the evolution of a small, repre-
sentative volume around the contact surface. Thislocal simula-
tion allows us to concentrate on the dynamics of the magneto-
hydrodynamic KH instability. However, as our simulations lack
the feedback from the dynamics occurring on scales larger than
the simulated volume, its influence has to be mimicked by suit-
ably chosen boundary conditions. We neglect neutrino radiation,
and the gas obeys either an ideal-gas or a hybrid (barotropicand
ideal-gas) equation of state (EOS), the latter serving as a rough
model for nuclear matter.

This paper is organized as follows. We describe the physics
of the magnetohydrodynamic KH instability in Sect. 2, and our
numerical code in Sect. 3. We discuss the simulations addressing
generic properties of the KH instability in two and three spatial
dimensions in Sect. 4 and Sect. 5, respectively. The resultsap-
plying to neutron-star mergers are given in Sect. 6. Finally, we
present a summary and conclusions of our work in Sect. 7.

2. The magnetohydrodynamic KH instability

The KH instability leads to exponential growth of perturbations
in a non-magnetized shear layer of a fluid of background density
ρ (e.g., Chandrasekhar 1961). If a plane-parallel shear layer ex-
tends over a thicknessd, all modes with wavelengthsλ > d are
unstable, shorter modes growing faster. After a phase of expo-
nential growth, a stable KH vortex forms.

If the shear layer is threaded by a magnetic field of field
strength,b, parallel to the shear flow (thex-direction in our mod-
els), magnetic tension stabilizes all modes, if theAlfvén number
of the shear flow

A ≡ U0/cA < 2, (1)

whereU0 andcA ≡
√

b2/ρ are the velocity difference across the
shear layer, and the Alfvén velocity, respectively. If thefield is
weaker, the instability can develop similarly to the non-magnetic
case, but its growth and its non-linear saturated state are af-
fected significantly (e.g., Frank et al. 1996; Jones et al. 1997;
Jeong et al. 2000; Ryu et al. 2000).

A magnetic fieldperpendicularto the shear flow and the
shearing interface (aby field in our models) is sheared into a
parallelbx field. Thus, the resulting flow dynamics is similar. A
field orthogonal to the shear flow but parallel to the interface (a
bz field in our models) acts mainly by adding magnetic pressure
to the thermal one, thus modifying the dynamics of the KH insta-
bility only if its strength approaches or exceeds the equipartition
field strength. Hence, we focus here on fields in the directionof
the flow, only.

Depending on the field strength, the above authors identified
three different regimes concerning the dynamics of the instabil-
ity.

Rather strong fields with an Alfvén number slightly below 2
lead tonon-linear stabilization. Too weak for stabilization ini-
tially, the field is amplified by the instability, and after less than
one turnover of the KH vortex, it is strong enough to suppress
further winding. The field, concentrated in thin sheets, annihi-
lates in localized reconnection and, mediating the conversion of
kinetic via magnetic into internal energy, destroys the vortex.
The late phases of the evolution consist of a very broad transi-
tion layer between those parts of the fluid moving in opposite
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directions. The flow is almost entirely parallel to the initial shear
layer, and no vortex is retained. The magnetic field has decreased
strongly due to reconnection, and is still concentrated in sheet-
like patterns.

Weaker fields give rise todisruptive dynamics. The ampli-
fication process takes longer to produce strong fields, i.e.,the
vortex survives several turnover times. The field is wound upin
increasingly thin sheets, that eventually reconnect due to(nu-
merical) resistivity. Afterwards the dynamics is similar to the
previous case: the vortex is disrupted, leading to a broad laminar
transition region threaded by filamentary magnetic fields.

For even weaker fields one encounters the flow regime of
dissipative dynamics. Even after a long phase of amplification,
the field is still too weak to affect the flow. Reconnection occurs,
but due to the weakness of the involved fields, it leads only to
a gradual conversion of kinetic into internal energy. The global
topology of the flow does not change as in the previous cases,
and the vortex exists throughout the evolution. Its velocity de-
creases slowly as kinetic energy is extracted from the vortex.

We note that the transition between these three dynamic
regimes is not sharp. In particular, it is not possible to define
a threshold Alfvén number separating disruptive and dissipative
dynamics.

Further complications arise in three spatial dimensions.
Here, the KH vortex can be disrupted even without the pres-
ence of a magnetic field by purely hydrodynamic instabilities
(Ryu et al. 2000), and the effects of a magnetic field overlay with
those of the non-magnetic instabilities.

3. Numerical methods

We use a newly developed high-resolution code to solve the
equations of ideal (Newtonian) MHD (Einstein’s summation
convention applies),

∂tρ + ∇ j

[

ρv j
]

= 0, (2)

∂t p
i + ∇ j

[

piv j + P⋆δ
i j − bib j

]

= f i , (3)

∂te⋆ + ∇ j

[

(e⋆ + P⋆) v j − bivib
j
]

= f jv
j , (4)

∂tb = −c∇ × E, (5)

∇ jb
j = 0, (6)

where the mass density, momentum density, velocity, and total-
energy density of the gas are denoted byρ, p, v, ande⋆, respec-
tively; b is the magnetic field. The total-energy density and the
total pressure,P⋆, are composed of fluid and magnetic contri-
butions:e⋆ = ε + ρv2/2 + b2/2, andP⋆ = P + b2/2, where
ε and P = P(ρ, ε, . . .) are the internal energy density and the
gas pressure, respectively. The electric field,E, is given by
E = −(v/c) × b with c being the speed of light in vacuum. The
external force, arises from gravity, i.e,f = f G = −ρ∇Φ, where
Φ is the gravitational potential.

The above equations are implemented into our code in their
finite-volume form. We use Eulerian high-resolution shock-
capturing methods for their solution (see, e.g., LeVeque 1992).
To reconstruct the zone interface values of variables defined as
volume averages over grid zones, we use high-order algorithms
of one of the following types:

– Piecewise-linearreconstruction usingtotal-variation dimin-
ishing (TVD)methods (Harten 1983). While formally 2nd or-
der accurate in smooth parts of the flow and away from lo-
cal extrema, these methods achieve a stable representationof
discontinuities by reverting to 1st-order accurate piecewise-
constant reconstruction. The accuracy of the scheme depends
on its slope limiter for which different choices are possible,
e.g., the Minmod, the van Leer, or the MC (monotonized
central) limiters.

– The class ofweighted essentially non-oscillatory (WENO)
algorithms (Liu et al. 1994) offer a way of constructing
schemes of arbitrarily high order of accuracy. In these meth-
ods, an interpolant for a variable at a given point in space
(e.g., a zone interface) is constructed from a number of can-
didate polynomials by maximizing a measure of the smooth-
ness of these polynomials. In our scheme, based on the
one described by Levy et al. (2002), we use three candidate
parabolas, leading to a nominal order of accuracy of 4.

– Suresh & Huynh (1997) use a generalization of the TVD cri-
terion to construct high-ordermonotonicity-preserving (MP)
schemes. The new MP stability and accuracy constraints do
not lead to the clipping of extrema in smooth regions of the
flow that is innate to the TVD criteria. Thus, they allow for
a higher accuracy in smooth flows while retaining stability
close to discontinuities. Suresh & Huynh (1997) give MP
schemes of formally 5th, 7th, and 9th order that we imple-
mented in our code.

We compute the fluxes of the MHD equations from the re-
constructed interface states using approximate Riemann solvers.
Titarev & Toro (2005) and Toro & Titarev (2006) developed
multi-stage (MUSTA)Riemann solvers that are built on a combi-
nation of predictor and corrector steps using simple approximate
Riemann solvers. These solvers do not require a computation-
ally expensive decomposition of the MHD state into character-
istic variables, yet they achieve an accuracy comparable toexact
solvers.

In MHD simulations, it is important to use a numerical
scheme that keeps the magnetic field divergence-free. To this
end we employ in our code theconstraint-transport (CT)scheme
of (Evans & Hawley 1988) that uses a spatial discretization of
the magnetic field consistent with the curl operator in the induc-
tion equation, leading to a staggering of the collocation points
of b with respect to those of the hydrodynamic variablesρ, p,
and e⋆. According to the definition ofb the electric field,E,
is defined as the average over the zone edges. The staggering
of b requires interpolations between the staggered grids (to ob-
tain, e.g., the Maxwell stressbib j ; see Eqn. (3)), and special care
has to be taken in the computation of the electric field from
the (zone-centered) velocity and the (zone-interface) magnetic
field. Various implementations of the CT scheme have been de-
vised that differ mainly in the way the magnetic stress and elec-
tric field are calculated. Of these, our implementation resem-
bles most closely the recently developed upwind-CT schemes
(Londrillo & del Zanna 2004; Gardiner & Stone 2005, 2008).
We obtainE from the zone interface values of the velocity and
the magnetic field that are both computed by the (MUSTA)
Riemann solver. This guarantees that the electric field is con-
sistent with the solution of the Riemann problem.

Our code is written in FORTRAN 90 and parallelized for
shared or distributed memory computers using the OpenMP
or MPI programming paradigm, respectively. The code suc-
cessfully passed various standard tests including MHD shock
tube problems (e.g., the ones published by Ryu & Jones 1995),
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the propagation of MHD waves, and some multi-dimensional
flow problems such as the Orszag-Tang vortex (Orszag & Tang
1979). These tests demonstrate the stability and accuracy of
the code in handling flows involving discontinuities and turbu-
lent structures. According to the results of the wave-propagation
tests, the order of accuracy of the code is 2, 3.3, and 4.1 for
piecewise-linear, MP, and WENO reconstruction, respectively
(Obergaulinger 2008). The code has also been used to study
the magneto-rotational instability (MRI) in core collapsesuper-
novae (Obergaulinger et al. 2009).

The simulations reported in this paper were performed with
MP reconstruction based on 5th-order polynomials (theMP5
method), and the MUSTA solver derived from the HLL Riemann
solver. This reconstruction method represents a good trade-off
between accuracy and computational costs. Methods based on
higher-order polynomials increase the accuracy of the code, but
at the expense of a larger stencil, reducing the efficiency of the
parallel code, since the number of ghost zones that have to be
communicated among different processors is larger. The same
adverse effect on the computational efficiency can be observed
when comparing our WENO reconstruction to MP5.

4. The KH instability in 2D planar magnetized shear
flows

We performed a set of two dimensional simulations to study the
properties of the KH instability in 2D planar magnetized shear
flows. These simulations allow us to validate our numerical tool
and to assess the significance of results obtained in simulations
aiming at an understanding of the KH instability in neutron-star
mergers.

As we shall show below we reproduce, but also extend
the results obtained by Frank et al. (1996), Jones et al. (1997),
Baty et al. (2003), and Keppens et al. (1999) which are summa-
rized in Sect. 2.

We consider both subsonic and supersonic 2D planar shear
flows in thex − y plane inx-direction with an initial velocity
profile given by (note that all numerical values are given in di-
mensionless code units in the following!)

(

vx, vy

)T
=

(

v0 tanh
y
a
, 0
)T

, (7)

whereU0 = 2v0 is the shear velocity, anda is a length scale
characterizing the width of the shear flow. The background den-
sity and pressure are uniform, and the thermodynamic properties
of the fluid are described by an ideal-gas EOS with an adiabatic
indexΓ,

P = (Γ − 1) ε , (8)

whereε = e⋆ − 1
2ρv

2 − 1
2 b2 is the internal energy density of the

fluid. Initially, a uniform magnetic fieldb(t = 0) =
(

b0
x, .b

0
y

)T

threads the shear layer.
To trigger the KH instability we perturb the shear flow by a

transverse velocity

vy(t = 0) = v0
y f (y) sin(kxx) , (9)

where f (with f (y) ∈ [0, 1]) is a function localized at the shear-
ing interface, i.e., it vanishes beyond a distancea′ from the inter-
face. We seta′ = 4a here. The maximum perturbation velocity,
v0

y, is typically a factor 106...8 smaller than the shear velocity.
To test the influence of the form of the perturbations, we also
simulated some models (both magnetic and non-magnetic ones)

with random perturbations which do not selecta priori a single
sinusoidal unstable mode (see below).

Finally, we introduce thevolume-averaged kinetic energy
densities

ei
kin ≡

1
V

∫

dV 1
2
ρv2

i , (10)

andvolume-averaged magnetic energy densities

ei
mag≡

1
V

∫

dV 1
2

b2
i , (11)

with i ∈ x, y, z. These quantities will be useful for the following
discussion.

4.1. Linear growth

Our code reproduces the growth rate of the KH instability
very accurately. To demonstrate this we recalculated some of
the models studied by Keppens et al. (1999) (models grw-n in
Tab. A.1). The growth rates for these models are either given
in Keppens et al. (1999), or can be obtained from the figures of
Miura & Pritchett (1982).

The models have a uniform background densityρ0 = 1, and
a uniform background pressureP0. We impose open boundary
conditions in the transverse (y) direction, periodic ones inx-
direction, and vary the value of the shear velocity, the width of
the shear layer, and the grid resolution.

We derive growth rates,Γnum, from the exponential growth
of ey

kin, and compare these to the values,ΓMP, given by
Miura & Pritchett (1982) and Keppens et al. (1999), respec-
tively. We note in this respect thatey

kin(t) ∝ v2
y ∝
(

expΓt
)2 (see

Eq. 10) grows at twice the rate of the KH instability. The agree-
ment between the theoretical predictions and our numericalre-
sults is, in general, very good (see Tab. A.1 and Fig. 1).

After the initial phase of exponential growth, a roughly cir-
cular vortex develops in the perturbed non-magnetized shear
layer which should be eventually dissipated by (numerical)vis-
cosity. However, this process is very slow for our models (we
see no sign of dissipation until the end of our simulations),as
the numerical viscosity of our code is very low.

The formation of asingleKH vortex rather than of a mul-
titude of small vortices is not an artifact of the form of the ini-
tial perturbation (Eq. (9)). To demonstrate this, we simulated a
non-magnetic model with random rather than sinusoidal pertur-
bations of the transverse velocity with an amplitude of 10−6 of
the shear velocity (see Fig. 2 for two snapshots of the model
simulated with 10242 zones att = 16 andt = 25.5 (panels (a)
and (b), respectively). Initially, three small KH vorticesdevelop
(panel (a)), but after two subsequent mergers of these vortices,
only one large vortex remains (panel (b)), resembling closely
the flow field of a model with sinusoidal perturbation. Due to
this evolution towards a single large-scale vortex, we focus on
models with sinusoidal perturbations in the following1.

4.2. Non-magnetic models

We simulated a set of non-magnetic models (summarized in
Tab. A.2) to study the influence of the box size and boundary
conditions on the evolution of transonic and supersonic (M =
U0/cs ≥ 1.8) shear flows. As noted by Miura & Pritchett (1982),

1 Without elaborating in more detail, we note that a similar result
holds for magnetized models.
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Fig. 1.Linear growth phase of the KH instability in model grw-3.
The solid black line shows the volume-averaged kinetic energy
densityey

kin, as a function of timet. The dashed line gives the
theoretical growth rate.

there is no growing mode for aM ≥ 2 shear flow, but in models
with closed boundaries we find nevertheless a growing instabil-
ity whose growth mechanism is, however, different (see below).

We first consider models withM = 1.8. For these models
the instability grows faster when the vertical domain size is en-
larged, and open boundaries yield larger growth rates than re-
flecting ones. The reason for this behavior is that the instabil-
ity affects a larger region of the flow than in the case of slow
shear flows. To demonstrate this we compare models HD2o-1
and HD2o-1-s that differ only in the size of the computational
domain iny-direction: y ∈ [−1; 1] andy ∈ [−0.25; 0.25] for
models HD2o-1 and HD2o-1-s, respectively. According to Fig. 3
the volume-averaged kinetic energy density,ey

kin, grows faster
and leads to much larger values in model HD2o-1 than in model
HD2o-1-s. Furthermore, in model HD2o-1-s the growth ofey

kin
shows superimposed oscillations. In both models waves are cre-
ated at the shear layer which travel outwards iny-direction carry-
ing (transverse) kinetic energy. If the waves are allowed totravel
over a sufficiently long distanceδy (which is the case for model
HD2o-1), they steepen into shock waves when the fluid veloc-
ity exceeds the sound speed. The shocks propagate mainly in
x-direction, advected by the shear flow. Kinetic energy is dissi-
pated into internal one in these shocks, and the flow developsa
vortex-like structure. If the boundaries of the computational do-
main are too close to the shear layer, the waves leave the domain
before they can affect the flow, i.e., the growth rate is reduced.
Each time a wave leaves the computational domain, it carries
away kinetic energy giving rise to the oscillations ofey

kin visible
in Fig. 3.

For an intermediate domain size ofy ∈ [−0.5; 0.5] (model
HD2o-1-s), we find despite the absence of oscillations a smaller
growth rate than for models HD2o-1 (y ∈ [−1; 1]) and HD2o-
1-1 (y ∈ [−2; 2]), respectively. The boundaries are sufficiently
close to the shear layer to affect the growth of the instability.
Saturation occurs by the same mechanism as in case of a larger
domain, namely by the development of shock waves.

The distance the waves travel in transverse direction in-
creases with increasing Mach number of the shear flow. For
M = 1 the waves are contained essentially in the regiony ∈

Fig. 2. Logarithm of the modulus of the flow vorticity and the
velocity field (vectors) of a non-magnetic model withM = 1 and
a random perturbation att = 16 (panel (a)), andt = 25.5 (panel
(b)), respectively.

[−0.25; 0.25] (a version of model grw-3 simulated on a smaller
grid of 200× 100 zones covering a domain of [−0.5; 0.5] ×
[−0.25; 0.25] does not show oscillation ofey

kin). For the same
reason the evolution does not depend on whether one imposes
reflecting or open boundary conditions (compare models HD2r-
0 in Tab. A.2 and grw-3 in Tab. A.1). Thus, to encounter a rapidly
growing instability in a fast shear flow, one has to simulate asuf-
ficiently large domain, or alternatively to use reflecting bound-
aries iny-direction. ForM = 1.8, open and closed models (i.e.,
models where open or reflecting boundaries are imposed) agree
in their growth rates if simulated on a sufficiently large domain.
However, when the extent of the computational domain is small
in the transverse direction (ly = 0.5), we observe a destabiliza-
tion of closed models: the growth rate of the closed model HD2r-
1-s exceeds that of the corresponding open model HD2o-1-s by
a factor of≈ 3.5. Furthermore, closed models exhibit a phase of
exponential and oscillatory growth ofey

kin(t) even whenM > 2,
whereas open models are stable.

In the KH saturated state the flow consists of a dominant vor-
tex for shear flows of moderate Mach numbers. At large Mach
numbers and when the growth of the instability is mediated
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20 40 60 80 100
t

−12

−10

 −8

 −6
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 −2
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g 
e k

iny 
  

HD2o−1

HD2o−1−s

Fig. 3. Volume averaged kinetic energy densityey
kin of models

HD2o-1 (solid line;ly = 2) and HD2o-1-s (dashed line;ly = 0.5)
as a function of time illustrating the influence of the size ofthe
vertical extent of the computational domainly.

mainly by shock waves, the flow is characterized by a rather thin
and clearly delimited transition layer oriented along the initial
discontinuity (aty = 0). This layer is surrounded by two regions
of anti-parallel flows.

The shocks created at the supersonic shear layer are initially
oblique, but eventually become planar shocks parallel to the y-
direction. This process happens earlier close toy = 0. The verti-
cal extent of the planar shock structures varies from a fraction of
the vertical domain size to almost the whole computational box.
When the propagation of the shocks is restricted iny-direction,
the fluid tries to avoid these by sliding along the vertical direc-
tion. Thus, the planar shocks very efficiently convertx- into y-
kinetic energy.

4.3. Intermediate and weak fields

Sufficiently strong magnetic fields (Alfvén numberA ≤ 2; see
Eq. 1) stabilize the flow according to linear stability analysis.
We indeed observe this stabilization in simulations of bothsub-
sonic and supersonic strongly magnetized shear flows. In the
following, we thus focus on the more interesting case of inter-
mediate and weak initial fields, which according to Frank et al.
(1996) can give rise todisruptiveanddissipativedynamics, re-
spectively. The models we describe in this section were com-
puted using a grid withlx × ly = 2 × 2 and reflecting boundary
conditions iny-direction. We simulated shear flows withU0 = 1,
and varied the Mach number of the flow by setting the pressure
either toP0 = 0.6 or P0 = 0.0375 corresponding to Mach num-
bers ofM = 1 andM = 4, respectively. The adiabatic index of
the gas wasΓ = 4/3.

4.3.1. Intermediate fields

ForA = 2.5, we find, in agreement with Frank et al. (1996), non-
linear stabilization. The magnetic field is amplified duringthe
linear phase, and the magnetic tension becomes eventually suffi-
ciently strong to prevent further bending of the field lines.Thus,
the formation of a KH vortex is suppressed. Instead, the veloc-
ity and the magnetic fields remain essentially aligned with each

other and the shear layer developing only smally-components.
After the end of linear growth a broad shear layer develops inside
which the magnetic field has a sheet-like structure.

If the magnetic field strength is reduced further (A = 5), we
observe a linear growth of the KH instability, and the formation
of a KH vortex. The overturning vortex continues to amplify the
field until it becomes eventually so strong that it resists further
bending, i.e. the instability saturates in the non-linear phase. The
magnetic energy, which grows exponentially during the linear
phase, reaches a maximum, and then gradually declines back to
almost its initial value.

It is important to note that although we are evolving the equa-
tions of ideal (i.e., non-resistive) MHD numerical resistivity is
present and acts similar as a physical resistivity. Hence, recon-
nection of field lines and dissipation of magnetic energy into
internal energy occurs. Though being a purely numerical effect,
this dissipation mimics a physical process: in ideal MHD (orfor
exceedingly large magnetic Reynolds numberRem), energy is
transferred to ever smaller length scales by a turbulent cascade.
When the cascade reaches the scale set by the grid resolution, the
physics is no longer appropriately represented by the discretized
magnetic field. Instead, the unresolved (sub-grid) magnetic en-
ergy is assigned to the internal energy. Hence, numerical resis-
tivity (like numerical viscosity) acts as an unspecific sub-grid
model for unresolved dynamics.

As a result of numerical resistivity, our models show the dy-
namics discussed by Jones et al. (1997): the emergence of coher-
ent flow and field structures, and their subsequent disruption in
intense reconnection events whereby kinetic energy is efficiently
converted into internal energy. As a consequence, the kinetic en-
ergy decreases more strongly than in the non-magnetic case,and
the flow barely resembles a KH vortex at the end of the simula-
tion. Instead, we find a broad transition layer that is embedded
into two anti-parallel flows and that contains thin magneticflux
sheets. The flow is rather laminar than turbulent, with elongated
streaks of gas and field stretching across the computationaldo-
main.

4.3.2. Weak fields

Overview: Models with a weak initial magnetic field show
disruptiveor dissipativedynamics (Jones et al. 1997). In both
regimes, a KH vortex develops. The magnetic field forms thin
flux sheets while it is wound up by the vortex. If two flux sheets
of opposite polarity come to lie close to each other, they suffer
the resistivetearing-mode instabilitywhich leads to the recon-
nection of field lines of different orientation and the conversion
of magnetic into thermal energy. Since the magnetic energy was
previously amplified at the cost of the kinetic energy, the tear-
ing modes act essentially as a catalyst facilitating the dissipation
of kinetic into internal energy. This behavior characterizes the
dissipation regime, while in the disruption regime anothereffect
comes into play: the magnetic field eventually becomes suffi-
ciently strong to disrupt the vortex leaving behind a broad transi-
tion layer where turbulent flow and magnetic fields decay slowly.
The dynamics of the flow and the magnetic field are highly cou-
pled since the field is dominated by flux sheets where the veloc-
ity and the magnetic field are strongly aligned, reminiscentof the
Alfvén effect in MHD turbulence (Iroshnikov 1964; Kraichnan
1965). Accordingly, we also find near equipartition betweenthe
transverse magnetic and kinetic energy densities (see the disrup-
tion models below).

The evolution of the simulated weak-field models (summa-
rized in Tab. A.3) consists of three distinct phases:
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Fig. 4. Volume averaged transverse kinetic (solid) and magnetic
(dashed) energy densitiesey

kin and ey
mag versus time for mod-

els with an initial Mach numberM = 1, and Alfvén numbers
A = 125 (green, diamond) andA = 5000 (black, asterisk), re-
spectively. Both models were computed using a grid of 20482

zones. The blue vertical lines indicate the end of the KH phase,
tKH , and of the kinematic phase, respectively.

– Linear KH growth phase:initial perturbations of both veloc-
ity and magnetic field grow exponentially until a KH vortex
forms.

– Kinematic field amplification phase:magnetic field is wound
up by the secularly evolving KH vortex.

– Dissipation/disruption phase:KH vortex looses its energy
due to magnetic stresses and resistive effects.

We discuss these three phases and the transitions between them
in more detail in the following. The phases can be distinguished
best on the basis of the evolution of the transverse kinetic
and magnetic energy densitiesey

kin and ey
mag, respectively (see

Eq. (10) and Eq. (11); Fig. 4). For this purpose, we consider a
pair of prototype models, with initial Mach numberM = 1, and
Alfvén numbersA = 125 andA = 5000, respectively, computed
on a grid of 20482 zones.

KH growth phase: Early on during the evolution the seed per-
turbations imposed on the initial shearing profile are amplified
exponentially, but the magnetic field remains too weak to affect
the evolution. When the exponential growth of the KH instabil-
ity terminates, the total magnetic energy has grown by abouta
factor 1.4 in all models, the contribution of the transverse field
componentby amounting to about 10%. Due to the persisting
weakness of the magnetic field the growth rate of the instability
and the flow structure after the end of the KH growth phase are
the same as those without any field.

When the KH instability saturates with the formation of a
KH vortex (see Fig. 6 for a model withA = 125), the growth of
the transverse kinetic energy ceases, too (Fig. 4). Density, pres-
sure, sound speed, and magnetic field strength possess a mini-
mum at the center of the vortex, and the magnetic field is wound
up into a long thin sheet surrounding the vortex. These findings
hold for the models withA = 125 andA = 5000, respectively.
Fig. 5 shows that the growth rate of the instability (the slope of
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Fig. 5. Growth of the volume-averaged turbulent (transverse)
magnetic energy densityey

mag (see Eq. (11)) with time for two
different models simulated at five different grid resolutions. At
time zero the ratio ofey

kin and the volume-averaged total mag-
netic energy density is maximal, i.e. this moment corresponds
to tKH . The solid and dashed lines refer to a model with initial
Alfvén numbersA = 5000 and 125, respectively. Note that thef
values of the former model are scaled by the factor (5000/125)2.
Orange, red, green, blue, and black lines refer to simulations
with 2562, 5122, 10242, 20482, and 40962 zones, respectively.
The insert shows a magnified view of the late evolution.

Fig. 6. Snapshot of a model with initial Mach numberM = 1
and Alfvén numberA = 125 computed on a grid of 20482 zones
shortly after the end of the KH growth phase. The hue gives the
sound speed,cs, and the brightness of the colors the Alfvén ve-
locity, cA , respectively. Magnetic field lines and flow velocity
vectors are shown, too. The latter are color-coded according to
the size of thex-component ofv, reddish and bluish colors cor-
responding to matter flowing to the left and right, respectively.

the curves) is independent of the grid resolution and the initial
field strength fort − tKH < 0.

Kinematic amplification phase: After saturation of the es-
sentially hydrodynamic KH instability,ey

kin(t) exhibits small os-
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cillations about a constant value. The initial shearing interface,
wound up several times by the overturning vortex, has become
a thin fluid layer separating flow regions of opposite velocities
Fig. 6). The magnetic sheet is being stretched by the overturn-
ing vortex giving rise to an exponential amplification of the
field (instead of a linear one by winding), as the growth rate
due to stretching depends on the field strength itself. In spite of
the growing magnetic field the flow structure as well as the ki-
netic and internal energies of the fluid show only minor changes
throughout the entire kinematic amplification phase.

To understand the amplification of the magnetic field in de-
tail we consider the sources and sinks of magnetic energy. From
the scalar product of∂tb (given by the induction equation) and
the magnetic field,b · ∂tb, one can derive the equation for the
evolution of the total energy density of the magnetic field,emag,
which has the form of an advection equation with source terms,

∂temag+ ∇
(

emagv
)

= smag. (12)

The source term,

smag= −emag∇ · v + bxby
(

∂yv
x − ∂xv

y
)

, (13)

consists of a compression term proportional to the divergence of
the velocity field, and a shear term proportional to the curl of the
velocity field. The sum of both terms (i.e., the source term) is
negative, when the magnetic field does work on the fluid.

The evolution ofemag is exemplified in Fig. 7 for a model
with A = 125. As the fluid is nearly incompressible in our mod-
els, the first term on the r.h.s. of Eq. (13) is small, and field am-
plification (blueish areas) occurs predominantly by stretching.
As there is no back-reaction onto the flow, the volume-averaged
transverse magnetic energy density grows exponentially with
time. Stretching mainly happens in the thin flux sheet passing
through the origin of the grid, and to a lesser extent in the flux
sheets located closer to the center of the vortex. There evena
small reduction ofemag can be observed (see Fig. 7). The volume
integral of the source term over the entire computational domain
is positive, i.e., the magnetic energy of the models is increasing.

Because field amplification is mediated by a well resolved,
rather smooth flow, the growth rate of the turbulent magnetic
energy densityey

mag is independent of the grid resolution dur-
ing the kinematic amplification phase (0≤ t − tKH <∼ 5; see
Fig. 5). Models withM = 0.5, but otherwise identical initial con-
ditions and grid resolution, show a slower growth of the field
(see Tab. A.3). Asey

kin (monitoring the turnover velocity of the
vortex) shows small variations with time during the kinematic
amplification phase (see Fig. 4), the growth rate varies slightly,
too (note the variation of the slope in Fig. 5 for 2<∼ t − tKH <∼ 4).

The evolution of the turbulent magnetic energy density after
the end of the kinematic amplification phase depends strongly
on the grid resolution and the initial field strength (Fig. 5).
Comparing the results for the models withA = 125 andA =
5000 we conclude that the growth of the turbulent magnetic en-
ergy density is less for models with a stronger initial field than
for those with a weaker initial field at the same grid resolution.

For the model withA = 125 the magnetic field eventually
reaches locally (within a factor of a few) equipartition strength,
i.e., magnetic stresses start to change the flow. In the modelwith
the lower initial Alfvén velocity (i.e., larger Alfvén number), the
magnetic field remains, in spite of a larger amplification, too
weak to cause such an effect.

−1 −0.50 0 0.50 1
x
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−0.50
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0.50
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smag
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Fig. 7. Snapshot of the source term of the total magnetic energy
density (Eq. 13) for the model shown in Fig. 6 taken during the
kinematic amplification phase. Reddish (blueish) colors show
regions where the total magnetic energy density increases (de-
creases).

To quantify the amount of amplification of the magnetic field
occurring during the kinematic amplification phase we introduce
the fieldamplification factor

fkin = Mxy(t = tkin)/Mxy(t = tKH) ≡ Mkin
xy /M

KH
xy (14)

defined as the ratio of the off-diagonal volume-integrated
Maxwell stress componentMxy at the end of the kinematic am-
plification phase and at the end of the KH growth phase.

When plotting fkin as a function of grid resolution and ini-
tial Alfvén number we find that our models populate the lower
right region (shaded in gray) in both diagrams (Fig. 8). Bothfor
a given grid resolution and initial Alfvén number,fkin converges
towards a maximum value with increasing initial Alfvén num-
ber (Fig. 8, left panel), and increasing grid resolution (Fig. 8,
right panel). This convergence is also obvious from the graph
of fkin(mX) for A = const. (Fig. 8, left panel); note that for large
values ofA even our finest the grid spacing was not yet sufficient
to show the flattening offkin(mX).

The panels further show that the weaker (larger) the initial
field (the value ofA), the higher is the amplification factorfkin
achievable during the kinematic amplification phase. The upper
border of the gray shaded regions is approximately given by the
power lawsm7/8

x andA3/4, respectively.
To explain these results and to quantify the effects of the grid

resolution, we define a characteristic length scale of variations of
the magnetic field

lb =
|b|
|∇ × b|

, (15)

where the denominator is proportional to the current density.
Initially infinite (the initial magnetic field is curl free),lb de-
creases during the KH growth and the kinematic amplification
phases.

Due to flux conservation, the amplification of the field occur-
ring mainly in flux sheets goes along with a decrease of the width
of the sheets orthogonal to the magnetic field, which is roughly
given bylb. In simulations, the decrease oflb can properly be fol-
lowed only as long aslb >∼ ∆g, where∆g is the finite grid spacing.
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Fig. 8. Amplification of the magnetic field during the kinematic amplification phase: the amplification factor,fkin (see Eq. 14), is
shown for the models with an initial Mach numberM = 1 as a function of the number of grid zones,mx (left panel), and of the
initial Alfvén number,A (right panel). In the left panel, models withA = 25, 50, 125, 250, 500, 1250, and 5000 correspond to black
circles, dark blue asterisks, light blue plus signs, green diamonds, yellow triangles, orange squares, and red× signs, respectively.
In the right panel, models with a grid size ofmx = 256, 512, 1024, 2048, and 4096 zones are displayed by black asterisks, dark
blue+ signs, light blue diamonds, green triangles, and orange squares, respectively. The upper border of the gray shaded regions is
approximately given by the power lawsm7/8

x andA3/4, respectively.

When this limit is reached the exponential amplification of the
field strength and field energy ceases. Further growth only re-
gards the magnetic energy, which can increase at most linearly
with time due to the increasing length of the sheet (at a constant
width!). This point in the evolution marks the end of the phase
of kinematic amplification.

Consequently, there exists an upper limit for the amplifi-
cation of the magnetic field strength attainable by flux-sheet
stretching that depends on the grid resolution. However, this
limit set by the ratio of the grid spacing and the initial thickness
of the flux sheet can only be reached, if the field strength remains
dynamically negligible (i.e. below equipartition strength) during
the kinematic amplification phase. This applies to models with
weak initial magnetic fields (A >∼ 1000), which are located near
the upper border of the gray shaded region in the left panel of
Fig. 8.

If the magnetic field reaches – within a factor of order unity
– local equipartition strength during the kinematic amplification
phase, the flow dynamics and as a consequence the termination
of that phase show distinct features. This is the case for mod-
els with strong initial magnetic fields (A <∼ 500) and sufficiently
fine resolution, which are located near the upper border of the
gray shaded region in the right panel of Fig. 8. For these mod-
els fkin ∝ A3/4, i.e., the amplification is larger for weaker initial
fields. One factor contributing to this trend is the back-reaction
of the field onto the flow. When locally the Alfvén number ap-
proaches the order of unity (see, e.g., the lower panel of Fig. 9),
magnetic stresses start to decelerate the fluid in the flux sheets,
and as the flux sheets partially thread the KH vortex its rotational
velocity decreases, too. Consequently, the amplification factor
will be smaller in this case than for an initially less strongly
magnetized model. Finally, note that for models with weak ini-
tial magnetic fields (A >∼ 1000) we do not observe effects due to
back-reaction, as this requires larger field amplification factors
than reached in our simulations due to insufficient grid resolu-
tion (see discussion above).

A second important issue for understanding our results is the
effect of numerical resistivity. Although we integrate the equa-
tions ofidealMHD, the numerical scheme employed in our code
mimics to some degree the effects ofphysicalresistivity due to
its inherentnumericalresistivity. Thus, the numerical scheme
smooths sharp features in the magnetic field and causes violent
resistive instabilities of, e.g., tearing-mode type. The latter effect
is most pronounced at length scales close to the grid spacing∆g.

When the typical length scales of the magnetic field – given
approximately bylb – are comparable to the grid spacing∆g,
we expect numerical resistivity to be important. For the model
with M = 1, A = 125, andmx = 2048 zoneslb ≈ ∆g inside
the flux sheet near the end of the kinematic amplification phase
(Fig. 9, upper panel). The magnetic field is dominated by a com-
plex pattern of sheets partially arranged in pairs or even triplets
with anti-parallel fields. An example is the triple sheet structure
passing roughly diagonally through the origin from down left to
top right (Fig. 9, upper panel). This triplet consisting of acentral
sheet withbx > 0 and two parallel ”wing” sheets withbx < 0 is
the result of the advection of magnetic flux towards the central
sheet by the flow.

As the advection continues the strength of the magnetic field
in the side sheets increases, while their width decreases leading
to intense currents. Eventuallylb ≤ ∆g, and resistive instabilities
(tearing modes) start to grow, which curl up the two wing sheets
and eventually disrupt them leaving behind only the centralsheet
(Fig. 9, upper panel). This process affects the entire triple sheet
structure (Fig. 9, lower panel).

Shortly afterwards, the central sheet of the former triplet,
still intact, is disrupted. From the interior of the vortex further
sheets of magnetic flux are expelled creating new strong currents
that again suffer strong resistive instabilities. This cycle of pro-
cesses repeats every time strong currents build up by approach-
ing flux sheets. As a consequence, the large coherent flux sheet
structures are disrupted, and reconnection of magnetic field lines
leads to numerous small-scale field structures including closed
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field loops, similarly to those reported in previous simulations
(e.g., Keppens et al. 1999).

The amplification of the magnetic field terminates due to the
development of these resistive instabilities, because (i)they con-
vert magnetic energy into thermal energy, and because (ii) the
resulting small-scale field and flow is less efficient in amplifying
the magnetic field than a more coherent flow.

The mechanism just described is responsible for the termina-
tion of the kinematic amplification phase in well resolved mod-
els. All models withA = 50,mx > 256 andA = 125,mx > 1024
undergo this evolution. For even finer grids the results are essen-
tially converged in terms of the amplification factorfkin (Fig. 8).
Finding convergence for a flow whose behavior depends strongly
on numerical resistivity is a remarkable result that deserves some
explanation. Naturally, one would expect that with finer grid res-
olution (i.e., decreasing numerical resistivity) tearingmodes are
better suppressed, thus enabling the field to grow stronger.

However, this reasoning does only apply, if the main effect
of numerical resistivity is the disruption of isolated flux sheets.
In such a situation, the magnetic field in the flux sheet will be
amplified until tearing modes grow faster than the field strength
increases. As soon as the stretching of the flux sheet leads toa
combination of a sufficiently strong field and a sufficiently thin
sheet (both conditions as well as an increasing resistivityimply
higher growth rates of resistive instabilities; see e.g., Biskamp
(2000)) tearing modes would start to disrupt the sheet. The
amount of stretching necessary to reach this state depends on
the resistivity, i.e., in our case on the grid resolution: finer grids
require stronger fields and thinner sheets for disruption. Hence,
the maximum field strength achievable at disruption should grow
with increasing grid resolution, but the situation in our models
described above is crucially different. Instead of operating on
an isolated current sheet in a static background, the resistive in-
stabilities terminating the growth of the magnetic energy act in
our models on a multitude of flux sheets approaching each other
closely due to a dynamic background flow. Their growth rates
can become faster than the kinematic amplification of the field
once thedistance, Ds, between two sheets rather than the width
of the sheets,lb, becomes sufficiently small, i.e,Ds <∼ ∆g, but
lb > ∆g. Contrary to the sheet widthlb, the distanceDs is not
related to the magnetic energy stored in the sheets, but it isde-
termined mainly by the flow field. Hence, there exists a relation
between the velocity field and the instance of growth termina-
tion. The velocity field, in turn, depends mainly on the hydrody-
namics of the KH vortex, and only weakly on the grid resolution,
i.e., the moment when the flux sheets break up is independent of
resolution. The latter also holds for the energy contained in the
sheets. Converged results for the amplification factor can there-
fore be obtained despite the presence of a grid spacing dependent
numerical resistivity.

As we saw above, the tearing modes of our models are trig-
gered first after the formation of multiple sheet structures. At
this point the central flux sheet of the triplet passing through the
origin is still well resolved by several zones (lb ≈ a few × ∆g),
but the distanceDs between the side sheets and the central sheet
approaches∆g as the former are advected towards the latter one.

Some of our model sequences show no convergence behav-
ior (Fig. 8, left panel), as the grid resolution necessary for that
increases with the initial Alfvén number. For very weak initial
fields (A ≥ 250) even our finest grid with 40962 zones does not
yield a resolution-independent amplification factor. However, as
the advection of the flux sheets does not depend on resolution
and only weakly on the strength of the initial field (except for
the sheets feedback is very limited in the kinematic amplifica-

tion phase), the formation of unstable multiple sheets is possible
even on coarse grids. Nevertheless, we do not observe strongre-
sistive instabilities during this phase for these models.

We showed above that the growth rate of resistive instabil-
ities during the kinematic amplification phase depends, apart
from the resistivity, on the width of the flux sheet and the field
strength, and that this phase ends when the tearing modes grow
faster than the field is kinematically amplified by the velocity
field. To match this condition, sufficiently strong fields are re-
quired during close encounters of flux sheets. This fact explains
why we do not find resistive instabilities in models with too weak
initial fields or too coarse resolution. In these cases the limita-
tion of the maximum field strength of a flux sheet imposed by
its minimum (resolvable) width leads to a reduced growth rate
of resistive instabilities even whenDs ≈ ∆g, i.e., the distance be-
tween two flux sheets is reduced to the grid spacing. Thus, these
instabilities cannot terminate the kinematic field amplification
process the same way as they do it in the case of stronger initial
fields or finer grids.

The field strength required for resistive instabilities to ter-
minate the kinematic amplification phase depends on the flow
field: faster shear flows require stronger fields. Empirically,
we find that the maximum field strength at termination corre-
sponds roughly to an Alfvén number of order unity, i.e., to field
strengths similar to those required for dynamic feedback.

To summarize, we find that there exist two different mecha-
nisms to terminate the kinematic amplification phase.

– Passive termination:the magnetic field strength reaches a
maximum when the decreasing thickness of the flux sheets
approaches the grid spacing, i.e., whenlb ≈ ∆g.

– Resisto-dynamic termination:the magnetic field reaches
equipartition strength with the flow field when a combination
of dynamic and resistive processes terminate further field
growth. Lorentz forces reduce the rotational velocity of the
KH vortex, while resistive instabilities develop as flux sheets
merge.

Whereas passive termination is a numerical artifact due to finite
grid resolution, resisto-dynamic termination can be expected to
occur in nature. The latter process leads to Alfvén velocities that
are locally comparable with the shear velocity, and it is rather
independent of the initial field strength. The volume average of
the magnetic energy, on the other hand, increases with increas-
ing initial field strength, because the volume filling factorof the
magnetic field increases with the initial field strength.

Total amplification: The total amplification of the magnetic
field is given by its growth during both the KH and the kinematic
amplification phases.

According to our results the field amplification factorfkin
(Eq. 14) scales with the initial Alfvén number,A, approximately
asA3/4 (see Fig. 8). Consequently, themaximum Maxwell stress
obtainable at the end of the kinematic amplification phasescales
with the initial magnetic fieldb0 ∝ A−1 approximately as

Mmax
xy ∝ b5/4

0 , (16)

sinceMmax = fkin MKH
xy (see Eq. 14), andMKH

xy ∝ b2
0 (i.e., the

growth of the Maxwell stress during the KH growth phase is
practically independent of the field). Note that this maximum
value is only reached for a sufficiently fine grid resolution. If
the model is under-resolved,Mmax

xy is reduced by a factor ap-

proximately∝ m7/8
x , i.e., the maximum obtainable magnetic
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Fig. 9.Snapshots of the structure of the model with an initial Mach numberM = 1 and an Alfvén numberA = 125 taken close to the
termination of the kinematic amplification phase (panel (a)), and shortly afterwards (panel (b)). The top half of each panel shows
the logarithm of the characteristic length scale of the magnetic field, |b|/|∇ × b| in units of the zone size; reddish colors indicate
regions where magnetic structures are larger than one computational zone, and blueish colors where they are smaller. The bottom
half of each panel shows the logarithm of the ratio of the Alfvén velocity and the modulus of the fluid velocity, blueish and reddish
colors denoting strongly and weakly magnetized regions, respectively.

field strength depends on the strength of the initial magnetic
field. Furthermore, as weak initial fields imply weak termina-
tion fields, which modify the dynamics of the flow only weakly,
there exists a hydrodynamic limit of the magnetic KH instability.

The total amplification factors for the magnetic energy,f e,
and the magnetic field strength,f b, are listed for various models
in Tab. A.3 and displayed in Fig. 10. The trends described above
also hold here. The amplification factors increase with finergrid
resolution and eventually converge, the resolution required for
convergence being higher for weaker fields. The converged am-
plification factors are larger for weaker magnetic fields, scaling
as f e ∝ b−2/3

0 and f b ∝ b−1
0 , respectively. Note that the latter

scaling implies a maximum field strength that is independentof
the initial field strength, consistent with the fact that there exists
a hydrodynamic limit of the magnetic KH instability for weak
fields (see above).

For models differing by their initial hydrodynamic state (i.e,
initial Mach numberM, and initial shear layer widtha; see sec-
tion 4) both amplification factors scale very similarly withthe
initial field strength (Fig. 10). In models with a smaller initial
Mach number but the same initial shear layer width (M = 0.5,
a = 0.05; filled green circles), and with the same initial Mach
number but an initially wider shear layer (M = 1, a = 0.15;
red diamonds) the KH instability grows slower than in stan-
dard model (M = 1, a = 0.05) discussed above. It also satu-
rates at smaller transverse kinetic energies (≈ 3.3 × 10−3 and
≈ 4.2× 10−3, respectively, instead of≈ 9.5× 10−3), which im-
plies a slower kinematic amplification of the field. Hence,f b is
smaller, but its scaling∝ b−1

0 is similar to that of the reference
models. Independent of the properties of the initial shear flow,
we find f e ∝ b−2/3

0 , the proportionality constant depending, how-

ever, in a complex way on the initial state. For fixed shear layer
width, slower shear flows lead to less efficient field amplifica-
tion. The amplification factor of the magnetic energyf e, on the
other hand, is practically independent of the shear layer width,
while f b decreases for narrower initial shear layers. However,
since the volume where amplification takes place is larger than
that given by the initial shear layer width, overall the total mag-
netic energy grows as in the case of a narrower transition layer.

To summarize, the maximum magnetic field achieved is
mainly a function of the overturning velocity of the KH vortex,
corresponding to the transverse kinetic energy, while the mag-
netic energy at the termination of the growth depends on the ini-
tial Mach number, on the width of the shear profile and on the
initial magnetic field.

Saturation, dissipation and disruption: After termination
of the amplification of the magnetic field, the shear flow enters
the saturation phase. We will discuss in the following mainly
models encountering a resisto-dynamic termination ratherthan
a passive one, but also briefly mention the behavior of models
suffering a passive termination of the field growth.

As a typical example, we illustrate the evolution of the partial
energies of the model withM = 1 andA = 125 in Fig. 11. After
the end of the kinematic amplification phases both the kinetic
energy∝ v2

x (shear component) and∝ v2
y (transverse component)

decrease, while the internal energy increases. The magnetic en-
ergy remains roughly at the level it has reached at the end of the
kinematic amplification phase. In the final state, the transverse
kinetic energy is less than the total magnetic energy, and equal
to the transverse magnetic energy.
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Fig. 10.The total amplification factors for the magnetic energy
f e (top panel) and the magnetic field strength,f b (bottom panel)
as a function of the initial magnetic field,b0, for models with dif-
ferent initial shear flows: empty black diamonds, filled green cir-
cles, and filled red diamonds correspond to models withM = 1
anda = 0.05,M = 0.5 anda = 0.05, andM = 1 anda = 0.15, re-
spectively. The spread in vertical direction reflects different grid
resolutions. To indicate the scaling of the amplification factors
with the initial field strength, the figure also gives power laws
∝ b−2/3

0 (top panel), and∝ b−1
0 (bottom panel).

To understand these results, we compare the model struc-
ture at the beginning of the saturation phase with that near the
end of the simulation. According to Fig. 12 the model exhibits
clear signs of disruptive dynamics (see Jones et al. 1997). The
KH vortex is still visible as a coherent pattern att = 34.4, i.e.,
shortly after the end of the kinematic amplification phase (panel
(a)). At t = 81.5 the vortex is disrupted, the flow field is domi-
nated by a broad transition region separating oppositely directed
shear flows, and they-component of the velocity shows small-
scale structures (see patchy colors in upper part of Fig. 12,panel
b). The magnetic field is concentrated into a multitude of thin
flux sheets with a typical length scalelb ≈ ∆g. Due to magnetic
reconnection the sheets possess a complex topology. Several
closed field loops have formed that are stabilized by a combi-
nation magnetic loop tension and total pressure (P+ b2/2). The

1.80

1.85

1.90

e i
nt

0 20 40 60 80 100
t

−6

−5

−4

−3

−2

−1

lo
g 

e k
in

,m
ag

(a)

0.10

0.20

0.30

e i
nt

0 50 100 150 200
t

−10

−8

−6

−4

−2

lo
g 

e k
in

,m
ag

(b)

Fig. 11. Panel (a): Evolution of the model withM = 1 and
A = 125, computed on a grid of 20482 zones. The top panel
shows the internal energy density as a function of time. The bot-
tom panel shows the logarithms of the volume-averaged kinetic
energy densitiesex

kin (dark red line,× signs) andey
kin (orange

line, squares), and of the volume-averaged magnetic energyden-
sitiesex

mag (dark blue line, triangles) andey
mag (light blue line, di-

amonds), respectively. The two vertical lines indicate theend of
the KH growth (left) and kinematic amplification (right) phase,
respectively.
Panel (b): Same as panel (a), but for a supersonic model with
M = 4.4 andA = 5000. Because of the model’s completely
different dynamics, the lines indicating the end of the growth
phases are omitted.

flux sheet pattern is imprinted onto the flow field and the gas
pressure distribution. Although the gas pressure is reduced in-
side the sheets there is sufficient magnetic pressure to keep the
flux sheets in pressure equilibrium with their surroundings. That
explains why the distribution of the total pressure is rather fea-
tureless.

As visible in Fig. 9 (panel b) and Fig. 12 (panel a), the re-
sistive instabilities responsible for the termination of the kine-
matic amplification phase spread along the flux sheets leading
to a complex field topology and inhibiting further growth of the
field not only locally but in the entire volume.
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Fig. 12. Structure of the model withM = 1 and A = 125
computed on a grid of 20482 zones near the beginning of the
saturation phase att = 34.4 (upper panel), and att = 81.5
(lower panel), respectively. The top and bottom half of each
panel shows they-component of the velocity and the modulus
of the magnetic field, respectively. The flow field is illustrated
by the black arrows.

Locally, i.e. inside the flux sheets, the magnetic field is in
equipartition with the velocity field (globally it is still an order
of magnitude weaker). In resistive instabilities magneticenergy
is converted into internal one. Since the magnetic field has been
built up previously at the expense of the kinetic energy, theinsta-
bilities actually mediate the transformation of kinetic energy into
internal energy, hence acting akin to a hydrodynamic viscosity.
Eventually, a steady state (in a statistical sense) develops where
the magnetic energy, and thus the effective viscosity, becomes
time-independent, while kinetic energy is converted into inter-
nal one at a constant rate. After the disruption of the KH vortex,
the transverse velocity reflects the turbulence resulting from the
resistive instabilities, i.e.,ey

kin is a measure (like the magnetic
field strength) of the intensity of turbulence. Consequently, ey

kin
remains constant at saturation, and the disruption of the KHvor-
tex can be identified by the instance wheney

kin ≈ ey
mag.

The saturation level of the magnetic field, and thus the effec-
tive viscosity, is set by its level at the termination of the kine-

matic amplifictaion phase. This level decreases with decreasing
initial field strength, i.e. the weaker the initial field the slower is
the resistive disruption of the KH vortex. To quantify this effect,
we define a disruption time,tdis, as the time wheney

kin falls below
ey

mag, and a deceleration rateσdec ≡ ∂t logEx
kin = 1/tdec

2. Both
quantities are listed in Tab. A.4, andtdis andtdec are also shown
as a function of the initial Alfvén number in Fig. 13. For models
with very weak deceleration, the evolution of the kinetic energy
is dominated by large oscillations. Thus, the determination of the
value ofσdec is uncertain to some degree in these cases, and the
numerical values quoted in Tab. A.4 should be taken with care.

Depending on the initial field strength, the models require a
certain minimum resolution to obtain converged values fortdis
andtdec, respectively. If the resolution is too low, the disruption
of the vortex and the deceleration of the shear flow proceed too
slow due to an insufficient amount of field amplification. In the
following, we will focus on converged or nearly converged mod-
els.

The disruption and deceleration time scale with the initial
field strength roughly asb−0.7

0 . Comparing these times for mod-
els with different initial shear profiles, we find that the disruption
time depends sensitively on bothM and the initial shear layer
width a. The larger the amplification factor of the magnetic en-
ergy f e is for a given shear profile (see Fig. 10), the faster is
the disruption of the vortex. The deceleration time, on the other
hand, shows a weaker dependence onM anda. Even fora = 0.2,
which implies a much slower KH growth and a very low satura-
tion level ofey

kin ∼ 10−3, the deceleration time is very similar to
that of the models discussed above, although the magnetic field
strength is much smaller.

For weaker fields, whose growth ends due to passive instead
of resisto-dynamic termination (i.e., non-converged models), the
kinetic energy decreases much more slowly. Resistive instabili-
ties grow much slower in such models, because of the growth of
their field strength is restricted by numerical resolution.Hence,
the effective viscosity is much lower in these models than in well
resolved ones.

4.4. Supersonic shear flows

We simulated supersonic shear flows with a Mach numberM =
4.4 using the same velocity profile as for the model withM = 1,
but a reduced gas pressure ofP = 0.0375. In the following, we
compare models with very large (A = 5000) and small (A =
25, 50) Alfvén numbers. For the simulations we used grids with
a resolution between 1282 and 20482 zones. As the main result
we find that the growth rate of the magnetic field is lower in
supersonic shear flows than in sonic and subsonic shear flows.

For A = 5000, none of the simulations shows an effect of
the magnetic field on the flow. For all grid resolutions the early
evolution of the magnetic model (shock formation and interac-
tion) is similar to that of the non-magnetic one. Untilt ∼ 70 the
transverse kinetic energy increases roughly exponentially before
leveling off (Fig. 11, panel b). The magnetic field iny-direction
is amplified at a similar rate as the kinetic energy untilt ≈ 100,
when the amplification rate increases strongly. This phase of ef-
ficient field growth, lasting untilt ≈ 130, corresponds to the
formation of large regions of subsonic flow where most of the
field amplification occurs. The magnetic field is concentrated in
thin sheets. While dominated by a multitude of shock waves dur-
ing early phases, the model shows a subsonic vortical flow in the

2 We also considered alternative definitions ofσdec that, however, do
not change the arguments in the discussion below.
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Fig. 13.Time scales for the disruption of the KH vortextdis (up-
per panel) and deceleration of the flow,tdec (lower panel) as a
function of the initial field strengthb0. The various models are
represented by different symbols: black diamonds, green dia-
monds, and red squares correspond to models withM = 1 and
a = 0.05, M = 0.5 anda = 0.05, andM = 1 anda = 0.15, re-
spectively. The vertical spread of identical symbols reflects dif-
ferent grid resolutions finer resolution yielding smaller values of
tdis andtdec, respectively . The lines∝ b−0.7

0 indicate the approx-
imate scaling of the time scales withb0.

final state, similarly to the models discussed in the previous sub-
section. The kinetic energy has decreased by a factor of fourdur-
ing the entire evolution. Most of this deceleration has occurred
during the early saturation phase of the KH instability whenthe
magnetic field is amplified most strongly.

Comparing the evolution of the magnetic energy for simu-
lations with different grid resolution, we find trends similar to
those of subsonic models with dynamically negligible fields.
Stronger magnetic fields are obtained for finer grids the expla-
nation for this behavior being the same as that for the resisto-
dynamic termination for subsonic shear flows: amplification
ceases when the width of a flux sheet becomes comparable to
the grid spacing.

In models withA = 25 andA = 50 the magnetic field
modifes the dynamics. In early stages, a number of weak shock

waves form. Interacting with magnetic flux sheets close to the
shearing interface, theses shocks are disrupted. Spreading away
from the interface in positive and negativey-direction, a wide
region of subsonic flow forms. Both its geometry and formation
differ from those of subsonic shear flows. In barely magnetized
models, a subsonic flow possessing a considerable transver-
sal extent results from the interaction of oblique shocks (see
Sect. 4.2), whereas in more strongly magnetized models the
magnetic field enforces a subsonic region elongated along the
x-direction. We find convergence with respect to the saturation
level of the magnetic energy, whose value is in general belowthe
value of subsonic models. At late times, we observe equipartition
between the transverse kinetic energy and the magnetic energy.
The deceleration times of the flow are fairly similar to thoseof
the non-magnetic models.

4.5. Anti-parallel initial fields

We have recomputed a number of models with anti-parallel ini-
tial fields, i.e., an initial fieldbx = bx

0 sign(y). Similar simulations
were performed previously by Keppens et al. (1999), whose re-
sults we confirm.

For strong initial fields, corresponding to an initial Alfv´en
numberA = 5, we observe in accordance with Keppens et al.
(1999) a destabilization of the shear layer with respect to the
non-magnetic case.

The qualitative dynamics of initially weakly magnetized
shear flows with is anti-parallel fields is similar to the caseof par-
allel initial fields, evolving through the three phases described in
Sect. 4.3. There are, however, quantitative differences concern-
ing, e.g., the saturation value of the magnetic energy or thede-
celeration rate. The KH growth phase is similar for both field
configurations, as is the growth rate of the magnetic field dur-
ing the kinematic amplification phase. The termination of the
latter phase depends, however, on the initial field orientation:
for the same initial Alfvén number, a model with anti-parallel
initial field experiences less amplification than one with paral-
lel magnetic fields. The modes of termination of the kinematic
amplification phase are the same as in the case of parallel fields
(passive or resisto-dynamic termination), but due to the presence
of oppositely directed flux sheets right from the beginning of
the evolution reconnection of field lines is enhanced. This leads
to earlier termination, i.e.,lower termination field strengths. As
a consequence, the magnetic deceleration of the KH vortex is
less efficient in case of initially anti-parallel field. The disrup-
tion times and deceleration timescales are a factor of∼ 2...3
larger than those measured for parallel-field models.

5. Three-dimensional models

In the following section, we study the evolution of KH instabil-
ities in three-dimensional shear flows. Obviously, the numerical
resolution we can afford in 3D is much worse than in our best
resolved 2D models. This prevented us from performing a study
as detailed as in the two-dimensional case. The 3D models we
have simulated are listed in Tab. A.5.

5.1. Subsonic shear flows, parallel magnetic field

5.1.1. Non-magnetic models

In 3D the KH vortex is unstable against (purely) hydrodynamic
instabilities Ryu et al. (2000): coherent vortex tubes nearthe
main KH vortex exert non-axial stresses on the vortex, and fluid
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elements are prone to the so-calledelliptic instability, an insta-
bility caused by time-dependent shear forces, which act on fluid
elements while they orbit the vortex on elliptic trajectories. The
result is isotropic decaying turbulence.

As in 2D, we seeded the KH instability with small pertur-
bations of they-component of the velocity varying sinusoidally
in x− direction(see Eq. 9). To break the translational symmetry
in z-direction, we added a small random perturbationvrndm to all
velocity components, where

vrndm = ξrndv
0
y with ξrnd ∈ [10−4, 1] . (17)

In the non-magnetized reference model a KH vortex tube
elongated inz-direction forms during the exponential growth of
the instability. The vortex tube is clearly visible in the (front part
of the) lower panel of Fig. 14, which shows the vorticity distribu-
tion at t = 10 (shortly after the termination of the growth of the
instability), and att = 50 (in the non-linear phase), respectively.

The temporal behavior of the volume-averaged kinetic en-
ergy densities defined in Eq. (10) reflects the evolution of the
flow (Fig. 14). Up tot ≈ 7, ex

kin is practically constant. Then
it starts to drop by about 20% within two time units when the
forming vortex tube extracts kinetic energy from the shear flow.
Afterwardsex

kin stays again approximately constant until the el-
liptic instability begins to destroy the vortex tube att ≈ 20.
The transverse kinetic energy densities,ey

kin andez
kin, show ex-

ponential growth before saturating at the same level. Note that
ez

kin saturates about 20 time units later thaney
kin (at t ≈ 30), be-

cause it starts growing from an initial value that is a factorof 104

smaller. In addition, its growth rate, which is similar to that of
the magnetic energy during the kinematic amplification phase of
2D models, decreases after the end of the KH phase (t ≈ 9)
when the elliptic instability developing along the vortex tube
takes over (t >∼ 12). The latter saturates when the vortex tube
is disrupted, andez

kin ≈ ey
kin. Subsequently, turbulence develops

(see vorticity pattern att = 50 in Fig. 14, lower panel), and the
shear flow is strongly decelerated as indicated by the decrease
of ex

kin (Fig. 14, upper part of upper panel). The deceleration is
considerably faster than in the case of weakly magnetized 2D
models.

5.1.2. Weak-field models

For weak-field models, the 3D KH vortex is subject to two differ-
ent instabilities competing for its disruption: the purelyhydrody-
namic one discussed in the previous subsection, and the resistive
ones analyzed in Sect. 4.3. Which of these instabilities is most
efficient depends the importance of 3D effects, which in turn is
determined by the initial amplitude of the random perturbations.
Independently of the purely hydrodynamic instabilities, if there
exists a (weak) magnetic field, it may also disrupt the vortex. In
the latter case, the post-disruption flow shows a larger degree of
organization than a non-magnetized one due to the prevalence of
flux tubes and flux sheets where the magnetic and flow field are
aligned.

For a model withA = 50 and a strong random perturbation,
i.e., comparable to the sinusoidal one (ξrnd ≈ 1; see Eq. (17)), the
flow field shows considerable variations inz-direction already
during the formation of the KH vortex tube (Fig. 15). During the
kinematic amplification phase, we observe a pattern of thin vor-
ticity tubes arising from magnetic flux tubes wound up around
the dominant 3D vortex tube (located near the edge of the com-
putational domainx-direction; see Fig. 16). The KH vortex tube
is disrupted until the end of the kinematic amplification phase.
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Fig. 14. Upper panel: Temporal evolution of the volume-
averaged kinetic energy densities defined in Eq. (10) for a 3D
non-magnetized model. The upper part showsex

kin, and the lower
one the logarithm ofex

kin (blue),ey
kin (green), andez

kin (red lines),
respectively.
Lower panel:Volume rendering of the modulus of the vortic-
ity, |∇ × v|, of the same simulation at two different times. The
computational box (red, green, and blue arrows point intox, y,
andz-direction, respectively) is divided into two halves: the front
half shows|∇× v| at t = 10 when the KH vortex tube is still fully
intact, and the back half att = 50 after the complete disruption
of the vortex tube by secondary instabilities.

At t ≈ 15 the volume-averaged transverse kinetic energy densi-
tiesey

kin andez
kin reach equipartition (see Fig. 15). Magnetic field

amplification ceases at that point. The subsequent deceleration
of the shear flow is mediated mainly by the hydrodynamic insta-
bilities active also in non-magnetized models (see previous sub-
section). Hence, deceleration occurs with similar efficiency, but
ceases when the transverse kinetic energy densities drop below
the magnetic ones att ∼ 50 and the magnetic field begins to sup-
press the hydrodynamic instabilities. The final state of themodel
consists of decaying volume filling turbulence. Since decelera-
tion is incomplete, the model retains a slower, smooth shearflow.
The velocity and the magnetic field are dominated by their re-
spectivex-components, leading to considerably anisotropic tur-
bulent fields.
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Fig. 15.Temporal evolution of various energy densities of a 3D
KH model having an initial Mach and Alfvén number ofM = 1
andA = 50, respectively. The amplitude of the imposed random
perturbation was comparable to that of the sinusoidal one, i.e.,
ξrnd = 1 (see Eq. (17)). The top panel shows the evolution of
ex

kin. The bottom panel illustrates the evolution of the volume-
averaged total magnetic energy density (black solid line),and of
the magnetic energy densities corresponding to the three field
components:ex

mag (blue solid line),ey
mag (green solid line), and

ez
mag (red solid line), respectively. The dash-triple-dotted lines

show the corresponding kinetic energy densitiesex
kin, ey

kin, and
ez

kin using the same color coding.

Fig. 16. Volume rendered magnetic field strength,|b| (blue-
green) and modulus of the vorticity,|∇ × v| (red-yellow) of a
3D KH model with initial Mach and Alfvén numbersM = 1 and
A = 50, respectively. The snapshot is taken during the kinematic
amplification phase (t = 9.21). The amplitude of the imposed
random perturbation was comparable to that of the sinusoidal
one, i.e.,ξrnd = 1 (see Eq. (17)). The computational domain is
given by the thin red box. The red, green, and blue arrows indi-
cate thex, y, andzcoordinate axes, respectively.

Decreasing the amplitude of the random perturbation to
ξrnd = 10−2 or evenξrnd = 10−4 (see Eq. (17)) while keeping
the initial magnetic field fixed, the shear flows evolves very dif-
ferently. For small random perturbations field amplification and
overall dynamics proceed similarly as in 2D models during the
KH growth and kinematic amplifictaion phases regarding the
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Fig. 17.Same as Fig. 15, but for a model with an initial Alfvén
numberA = 5000.

formation of a flux sheet. Indeed, thez-variation of all physi-
cal quantities is very small, The dynamics of weak-field models
is very similar to that of non-magnetized ones, too. During the
KH growth phase, a vortex tube forms, which is oriented inz-
direction.

As in 2D models the initial KH growth phase is followed
by a kinematic amplification phase. This phase terminates, as
in 2D, depending onA and the grid resolution either passively
or dynamically by the back-reaction onto the flow via Maxwell
stresses and resistive instabilities. The kinematic amplification
factor of the magnetic energy,f b, is the same as in 2D.

For an initial Alfvén numberA = 5000 we find passive
termination of the kinematic field amplification phase (Fig.17).
Since the magnetic field remains far too weak to affect the evo-
lution, the dynamics resembles that of a non-magnetized model.
Until t ≈ 30, 3D hydrodynamic instabilities disrupt the KH
vortex tube. Indicative for the development of these instabili-
ties is the rise ofez

kin until it reaches equipartition withey
kin at

t ≈ 28, growing at a rate comparable to the kinematic growth
rate of the magnetic field. The volume-averaged total magnetic
energy density, and bothex

mag andey
mag remain constant during

this phase, onlyez
mag increases exponentially. After termination

of the 3D instabilities all volume-averaged magnetic energy den-
sities are equal, growing slowly during the remaining evolution.
Turbulence spreads across the entire computational volumeand
decelerates the shear flow with the same efficiency as in the non-
magnetized model.

For stronger initial fields (or finer grid resolution) the resis-
tive instabilities terminating the kinematic amplification phase
are accompanied by a rapid growth of thez-component of the
velocity and the magnetic field. For models withA = 50 and
A = 25, this happens att ≈ 15. Despite this rapid growth, the
influence of 3D effects remains moderate. Att = 15 close to the
end of the strong rise ofez

mag andez
kin, the topology of the veloc-

ity field and magnetic field is still dominated by a large planar
structure resembling the flux sheet of 2D simulations.

This is a pronounced difference to the case of large random
perturbations (compare Fig. 18 and Fig. 16). Note, however,that
there is already some indication of the decay of the flux sheet
into flux tubes in the small random perturbation case, too. After
the dynamic-resistive termination of the kinematic amplification
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phase, thez-components of the magnetic field and the velocity
start growing again although at a smaller rate, while thex and
y-components of the velocity are decelerated by the magnetic
field. The decay of the flux sheet into tubes is almost complete
at t = 25 (right panel of Fig. 18) wheney

kin ≈ ez
kin andey

mag≈ ez
mag

holds. In the subsequent saturation phase, turbulence develops,
and the shear flow is decelerated at a rate similar to that of the
2D models.

Comparing the properties of the turbulence and the deceler-
ation rate of 3D models with different initial field strength, dif-
ferent grid resolution, and different initial perturbations, we find
that the intensity of the turbulent magnetic and velocity fields,
and consequently the deceleration of the shear flow, is deter-
mined by the interplay of (3D) hydrodynamic instabilities,and
(2D) magnetic stresses and instabilities:

Hydrodynamic disruption:If field amplification is too weak to
prevent the dominance of hydrodynamic over hydromagnetic
instabilities during the early evolution, the KH vortex tube is
disrupted and the shear flow is decelerated at a rate similar to
that of the non-magnetic case. The magnetic field is ampli-
fied or sustained in the turbulent velocity field provided by
the hydrodynamic instabilities. The evolution of this class of
models tends towards isotropic decaying turbulence.

Hydromagnetic disruption:If the magnetic field leads to the
disruption of the KH vortex tube before hydrodynamic in-
stabilities can set in, the deceleration of the shear flow is
driven by magnetic fields. In this case, the deceleration rate
is similar to that of 2D flows, but it may also be smaller de-
pending on the level of hydromagnetic turbulence, which is
determined among other factors by the strength of the ini-
tial random perturbations, the grid resolution, etc. The tur-
bulent final state of such models is dominated by a largerx-
component of the magnetic field, the transverse components
of both fields being considerably smaller.

The two classes of hydrodynamic and hydromagnetic disrup-
tion roughly correspond to the classes of models whereez

kin does
or does not exceedemag, respectively. Ifez

kin exceeds the volume-
averaged total magnetic energy density after reaching the satura-
tion phase, deceleration enters the more efficient hydrodynamic
regime. Otherwise, deceleration is caused by the magnetic field.
A given model can undergo a transition from one class to the
other one: for a weak initial field the early evolution may be
dominated by 3D hydrodynamic turbulence, leading to an effi-
cient deceleration of the shear flow and the magnetic field re-
maining at the same level; but when the kinetic energy of the
turbulent flow decreases below that of the magnetic field, thede-
celeration rate drops to the hydromagnetic value.

Hence, we can summarize the influence of physical and nu-
merical parameters on the turbulence and the deceleration as fol-
lows:

– Larger random perturbations favour 3D hydrodynamic insta-
bilities. Comparing forA = 50 a model withξrnd = 10−2

and ξrnd = 10−4, we find significantly stronger magnetic
fields and transverse velocities for the former model, indi-
cating more vigorous turbulence and a faster deceleration of
the shear flow.

– In 2D, weaker initial fields lead to slower deceleration, while
3D models exhibit a more complex dependence on the ini-
tial Alfvén number. As discussed above, hydrodynamic in-
stabilities of the KH vortex tube dominate in case of very
weak fields, leading to very rapid deceleration (Fig. 17).
If the magnetic field is sufficiently strong, i.e., as long as

emag > ez
kin holds, deceleration is initially similar to that in

2D for the same initial field strength, but drops strongly af-
terwards. Due to the deceleration, they andz-components of
the velocity field reach equipartition.

– The dependence on the grid resolution is complementary to
that on the initial Alfvén number. Finer grids allow for a
more efficient field amplification, and thus favor hydromag-
netic over hydrodynamic deceleration.

According to the 2D simulations, a maximum kinematic am-
plification is obtained for a sufficiently fine grid at a given initial
field strength, i.e., increasing the grid resolution does not en-
hance the influence of the magnetic field. Thus, we expect an
upper limit for the importance of magnetic vs. hydrodynamic
deceleration corresponding to the upper limit of the field am-
plification. Even for infinite grid resolution, kinematic amplifi-
cation of the magnetic field may not lead to a sufficiently fast
field growth to compete with 3D hydrodynamic instabilities,if
the initial field is too weak. Consequently, we anticipate only a
weak dependence on the magnetic field for large initial Alfv´en
numbers.

Due to the lack of adequate numerical resolution in 3D, we
do not give any scaling laws for, e.g.,Mmax

x,y andtdecas a function
of the initial Alfvén number or the grid resolution.

5.2. Supersonic shear flows

Three-dimensional supersonic shear flows show pronounced dif-
ferences with respect to 2D ones, the transverse kinetic energy
densities growing much faster in 3D (see Fig. 19 for the evolu-
tion of a non-magnetized model). Furthermore, unlike for sub-
sonic models, 3D hydrodynamic instabilities disrupt supersonic
shear flows, i.e., they are not secondary instabilities feeding off a
KH vortex tube. For the model shown in Fig. 19, we find thatez

kin
grows at a rate similar to the 2D one only untilt ≈ 20 when it
becomes comparable toey

kin. Subsequently, both energy densities
grow at the same rate, which is much faster than the correspond-
ing 2D one.

The 3D instability prevents the shock-mediated formation of
a KH vortex (Sect. 4.2). Instead of such a coherent large-scale
flow, a rather turbulent flow forms at the shearing interface ex-
panding iny-direction. Similarly to the 2D case, shocks develop
at some distance from the interface, but these dissolve whenen-
gulfed by the turbulent flow. Unlike their 2D counterparts, they
play no role in the development of the instability. During the
saturation phase, the kinetic energy decreases due to efficient
turbulent dissipation.

The interaction of shocks resulting from the usage of reflect-
ing boundaries is essential for the growth of the instability in
2D. When open boundaries allow shocks to leave the computa-
tional domain, our 2D models are stable. In three dimensions,
on the other hand, the instability does not depend on the pres-
ence of these shocks, i.e. the instability also grows when open
boundaries are imposed (iny-direction). Hence, we find a good
agreement between simulations of supersonic models computed
with either type of boundary condition.

A weak initial magnetic field is amplified at the same rate
as the kinetic energy when the instability develops. The expo-
nential amplification ceases when the volume-averaged trans-
verse kinetic energy densitiesey

kin andez
kin saturate (see Fig. 20).

Afterwards (30. t . 80), we find only a very gradual growth of
the magnetic energy. Typically, the volume-averaged transverse
kinetic energy density,eyz

kin ≡ ey
kin + ez

kin, is reduced with respect
to the non-magnetic case, but when adding the volume-averaged
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Fig. 18.Same as Fig. 16, but for a model where the amplitude of the imposed random perturbation was much smaller than that of
the sinusoidal one, i.e.,ξrnd << 1 (see Eq. (17)). The two snapshots are taken att = 15 (left) andt = 25 (right), respectively.
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Fig. 19.Same as the top panel of Fig. 14, but for a model with
M = 4 andb0 = 0.

transverse magnetic energy density,eyz
mag= ey

mag+ez
magn, the total

transverse energy densityeyz
kin + eyz

mag is at the same level as the
transverse kinetic energy of a non-magnetized model.

The deceleration rate of the shear flow depends, as in the sub-
sonic case, on the relative importance of hydrodynamic and hy-
dromagnetic turbulence. There is, however, a physical difference
to the subsonic case: the supersonic instability is dominated by
strong 3D hydrodynamic turbulence already early on in the evo-
lution, because it does not result from coherent 2D flows suchas
a KH vortex. Hence, there is no efficient kinematic amplification,
and the magnetic field can become important only if it is main-
tained or slowly amplified by the 3D turbulence responsible,at
the same time, for a decrease of the kinetic energy.

At an intermediate stage,t = 60 (left panel of Fig. 21), the
instability has not yet affected the entire computational volume
in y-direction. Both the velocity and the magnetic field of that
model exhibit a pronounced small-scale structure around the ini-
tial shearing layer. No preferred direction can be identified, and
eyz

kin > eyz
mag. This has changed att = 200 (right panel), when due

to efficient turbulent deceleration the total kinetic energy den-
sity has decreased by roughly an order of magnitude, similarly
to the transverse magnetic energyeyz

mag. The longitudinal mag-
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Fig. 20.Same as Fig. 15, but for a model withM = 4 andA = 50.

netic energy densityex
mag, in contrast, has remained at the same

level with ex
mag > eyz

mag. The dominance ofex
mag and hence ofbx

exerts an ordering influence on the turbulent magnetic and ve-
locity fields, enforcing an alignment of the flow with the field,
similarly to the Alfvén effect of hydromagnetic turbulence. As a
result, we find prominent coherent structures elongated in field
direction.

5.3. Anti-parallel magnetic field

We have simulated a few of the models discussed above also
using anti-parallel initial magnetic fields. With the totalflux
through surfacesx = const. vanishing, thex-component of the
magnetic field can decay to zero. This will particularly happen
for weak fields. Stronger fields decay less efficiently because of
resistive instabilities.

For a large initial random perturbation, the evolution is very
similar to models with parallel initial fields. The shear flowis
decelerated very efficiently, and kinetically dominated decaying
turbulence with a very weak degree of anisotropy develops. Once
the kinetic energy density approaches the magnetic one, thede-
celeration rate decreases. However, it does not tend to zeroas in
the parallel field case. Instead of leveling off at a constant value,
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Fig. 21.Structure of a model withM = 4 andA = 50 (the same model as shown in Fig. 20) att = 60 (left panel) andt = 200 (right
panel). The two panels show the same variables as the ones in Fig. 18, i.e., the volume-rendered magnetic field strength (foreground,
blue-green) and the modulus of the vorticity (background, red).

both the kinetic and magnetic energy densities continue to de-
crease at a similar rate.

Models with a small initial random perturbation show, de-
pending on the initial field strength, hydrodynamicor hydromag-
netic deceleration. The field strength required for hydromagnetic
to dominate over hydrodynamic deceleration is higher than for
parallel fields. In several models we find at late stages the same
evolution as described above: the kinetic and magnetic energy
densities decay at a similar rate.

6. Merger-motivated models

After having discussed basic properties of magnetized shear lay-
ers, we now address simulations mimicking the conditions of
shear layers arising in the merger of two magnetized neutron
stars. We assume that the merging neutron stars heat up so much
that any solid crust they may have developped during their pre-
merger evolution has melted, and the fluid approximation is valid
in the shear layer.

6.1. Physics, initial and boundary conditions

6.1.1. Equation of state

We employed a simple parametrised equation of state to describe
the thermodynamic properties of neutron star matter (Keil et al.
1996). This hybird equation of state assumes that the total gas
pressure,P, is given by the sum of a barotropic part,Pb, and a
thermal part,Pth:

P = Pth + Pb ≡ (Γth − 1)εth + κρΓb , (18)

where the thermal energy density,εth, is given by the (total) en-
ergy density,ε, and the energy density of the polytropic compo-
nent,εb, according to

εth = ε − εb . (19)

The sound speed, required for the approximate Riemann solver
and for the determination of the time step, is given by

c2
s =
ΓbPb + ΓthPth

ρ
. (20)

We usedΓb = Γth = 1.333, appropriate for dense matter whose
pressure is dominated by relativistically degenerate electrons.

6.1.2. Initial conditions

With presently available computational resources it is notpos-
sible to perform global simulations of the close encounter or
merging of two magnetized neutron stars with a grid resolution
sufficiently high to resolve also the growth of KH instabilities in
shearing magnetized neutron star matter. Nevertheless onecan
study some aspects of this phenomenon by means of local simu-
lations covering only a small volume around the shear layer.

To this end we consider a quadratic (2D)/ cubic (3D) com-
putational domain in Cartesian coordinates assuming that thex-
axis is parallel to the direction of the shear flow, they-axis par-
allel to the line connecting the centers of the two neutron stars,
and thez-axis (in 3D) perpendicular to that line. As the edges of
our computational domain have a size of 200 m only, i.e., they
are much smaller than the radius of a neutron star, we consider
only homogeneous initial states, i.e, initial models with constant
density and pressure. Besides the shear flow inx-direction the
initial models are static, too. This approximation is justified as
the merging neutron stars move much faster inx-direction than
they approach each other iny-direction due to the action of grav-
ity. Accordingly, we use periodic boundary conditions inx and
z-direction, and reflecting ones iny-direction.

The shear velocityvx, corresponding to either a Mach num-
ber of M = 1 or M = 4, has the same tanh-profile as that used
in the simulations of the previous sections, and we also consider
both parallel and anti-parallel initial magnetic field configura-
tions. The shear velocity is supposed to mimic the orbital veloc-
ity of the two neutron stars. We trigger the instability by applying
similar perturbations as in the previous sections, i.e., a combina-
tion of a sinusoidal and a random velocity perturbation.

6.2. Two-dimensional models

A number of models (see Tab. A.6) computed in two dimensions
confirm the basic results discussed in the previous sections, i.e.,
the occurrence of three phases, namely KH growth, kinematic
amplification, and saturation. This also holds for the dependence
of the parameters characterizing these phases, e.g., the termina-
tion values of the field strength and magnetic energ, on the initial
data and the grid resolution.

We performed simulations with up to 20482 zones. The
width of the shear layer wasa = 10 m, and the initial velocity
vx

0 = 1.83 or 7.2× 109 cms/s, for models withM = 1 or M = 4,
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respectively. Due to the affordable grid resolution we employed
rather strong initial fields of the order ofbx

0 ∼ 1014 G, corre-

sponding to Alfvén numbersA ≈ 115
(

1014 G/bx
0

)

. The initial
field was either parallel or anti-parallel to the shear flow.

We start the discussion with models withM = 1. The KH in-
stability developed within less than 0.05 msec, establishing one
large KH vortex. Afterwards, the magnetic field is amplified
kinematically by the vortical flow. The physics of KH growth
termination is the same as that described in Sect. 4.3. Hence, we
also find a similar dependence for the field amplification factor
fkin on the initial field strength and the grid resolution.

– On finer grids one can resolve the increasingly thin struc-
tures of the magnetic field better. Consequently, one finds
more efficient amplification, until for a sufficiently fine grid
convergence of the amplification factor is achieved.

– Weaker initial fields are amplified by a larger amount, i.e.,
the maximum value of the field strength at the end of the
KH growth phase depends only weakly on the initial field
(assuming numerical convergence). The total magnetic en-
ergy increases with increasing initial field strength due to
the larger volume filling factor of magnetic flux tubes for
stronger initial fields.

After termination of the kinematic amplification phase, the
topology of the subsequent turbulent saturation phase is domi-
nated by a multitude of thin flux sheets. Due to deceleration by
magnetic stresses, the kinetic energy of the shear flow decreases
at a rate depending on the initial field strength. Lacking a driving
force, the turbulence decays gradually. At late stages it isdomi-
nated by the parallel component of the magnetic fieldbx, leading
to a strong alignment of the flux sheets inx-direction.

Models withbx
0 = 5,×1013G and 10× 1013 G reach slightly

fluctuating maximum field strengths around 3×1015G in the sat-
urated state. The volume filling factor of the magnetic field,i.e.,
the relative volume occupied by intense magnetic flux tubes,de-
creases with decreasing initial field strength leading to a weaker
mean magnetic field and consequently a slower deceleration of
the shear flow for weaker initial fields. We find mean fields
of ∼ 5 × 1014 G and∼ 2.5 × 1014 G for bx

0 = 1014 G and
bx

0 = 5 × 1013 G, respectively. The time scale for deceleration
of the shear flow is less than 1 millisecond. For a model with an
initial field of 2× 1014 G, the deceleration is sufficiently rapid to
cause a significant decay (by about an order of magnitude) of the
turbulent energy within 0.5 msec.

The evolution of the shear layer is affected by the choice of
the initial field configuration. Parallel initial fields have, simi-
larly to our observations above, a somewhat larger impact onthe
dynamics of the KH instability. In this case, the non-vanishing
magnetic flux threading surfacesx = const. is conserved due
to the boundary conditions, and gives rise to an effective driv-
ing force. Apart from lacking this additional driver, anti-parallel
magnetic fields are prone to stronger dissipation due to presence
of stronger currents at the boundaries between regions of oppo-
site magnetic polarity.

The evolution of models with a supersonic shear flow (M =
4) is similar to that of their dimensionless conterparts discussed
previously. With initial fields between 10 and 40× 1013 G, the
initial Alfvén numbers of the shear flow are between∼ 110 and
∼ 440, i.e., in the range covered in Sect. 4.4. The dynamics is
the same: pressure waves steepen into oblique shocks, and the
dissipation of kinetic into thermal energy in these shocks creates
a broad transition layer between the two regions of positiveand
negativevx. The shear flow is decelerated very efficiently even

for very weak fields. We find 3field amplification up to 5...10×
1015 G for the maximum field strength and 1...2× 1015 G for the

volume-averaged r.m.s. value of the field,
√

1/V
∫

dV b2, i.e.,
of the same order as in the caseM = 1 but systematically higher
by a factor∼ 2, with considerably higher values for parallel than
for anti-parallel initial fields.

Hence, the results and in particular their dependence on the
physical and numerical parameters of the models explored in
Sect. 4, are robust with respect to the described variationsof the
initial conditions. Consequently, we can expect them to apply to
merger systems without too strong modifications.

6.3. Three-dimensional models

One of the main questions to be addressed by 3D simulations is
whether the dynamics of these models is dominated by magnetic
flux tubes or by 3D hydrodynamic instabilities. As we have seen
in the previous sections, this has a distinct influence on, e.g., the
magnetic field strength achieved at saturation.

For the 3D simulations we used grids of up tomx×my×mz =

2563 zones. The initial field strength was between 5 and 40×
1013 G. We again applied different combinations of sinusoidal
and random velocity perturbations to the shear layer.

The models (see Tab. A.7) show the same overall dynamics
and the same evolutionary phases as the corresponding models
discussed in Sect. 4. We find the initial KH growth phase, the
kinematic amplification phases, followed by the development of
parasitic instabilities leading to a non-linear saturatedstate. The
flow during the first two phases is very similar to that in 2D, and
field amplification follows the same trends with initial fieldand
grid resolution as outlined above. The further evolution depends,
as discussed above, strongly on the relative amplitude of random
and sinusoidal perturbations.

When a small random perturbation is imposed, field ampli-
fication proceeds through the first two growth phases the field
strength being limited by its back reaction onto the flow. These
models suffer (if resolved well on a sufficiently fine grid) hydro-
magnetic instabilities of the flux sheet, leading to the break-up
of the KH vortex tube and the deceleration of the shear flow. For
a well-resolved model withbx

0 = 2× 1013 G the maximum mag-
netic field strength is≈ 9× 1015 G, while the r.m.s. maximum is
only≈ 9× 1014 G.

For models with large random perturbations and for mod-
els with very weak initial fields the disruption of the KH vortex
tube is predominantly due to hydrodynamic instabilities leading
to a very efficient deceleration of the shear flow. These instabili-
ties grow on a very short time scale, causing a strong growth of
the volume-averaged transverse kinetic energy densitiesey

kin and
ez

kin, as well as of all volume-averaged magnetic energy densities
(ex

mag, e
y
mag, andez

mag).
The amplification factors are similar for all components of

the field, leading to equipartition among them at peak magnetic
energy. The amplification rate is at first very large but decreases
strongly as the parasitic instabilities saturate. Eventually, the
magnetic energy reaches a maximum, and then starts to decrease
again. This maximum depends either on the grid resolution (for
the most weakly magnetized models), or on the dynamic back-
reaction of the field onto the flow. In the latter case, field am-
plification ceases once the volume-averaged transverse kinetic
energy densities (decaying from their maximum values at satu-
ration of the parasitic instabilities) decrease to roughlythe level
of the volume-averaged magnetic energy density.
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The magnetic field is amplified during all three growth
phases: at the KH growth rate during the KH growth phase, at
a (smaller) rate determined by the overturning velocity of the
KH vortex tube during the kinematic amplification phase, and
during the growth of the parasitic instabilities. Since themag-
netic field starts to decrease shortly after saturation of the para-
sitic instabilities feeding off the shear flow, the maximum field
strength is reached at that moment. The magnetic field energy
can reach at most equipartition with the (decaying) transverse
kinetic energy, which typically has a value of∼ 1043 erg. For a
model withbx

0 = 4× 1014 G the corresponding root mean square
saturation field is∼ 1.6×1015G. The weaker the initial field, the
smaller is the maximum magnetic energy, since the achievable
amplification factor is limited by the duration of the three field
amplification phases. The maximum field strength reached any-
where in the computational domain depends only weakly on the
initial field, and has a value between 6 and 10× 1015 G.

The decay of the turbulence (measured by the transverse ki-
netic and magnetic energy densities) as well as that of the shear
flow starts at a similar rate for all models, and the magnetic field
decreases much faster than it does in the corresponding 2D mod-
els. Shortly after (∼ 0.05 msec) the r.m.s. field strength as well
as the total field strength reach their peak values early during the
saturation phase, the kinetic energy densities decay very rapidly,
and much faster than the magnetic energy density. The decay
slows down shortly afterey

kin+ez
kin has decreased below the value

of emag. Afterwards, all transverse energy densities decay at a
similar rate. In the more strongly magnetized models this hap-
pens whenex

kin (which can undergo a phase of particularly fast
decay) is still larger thaney

kin + ez
kin, whereas it is usually the

other way round for weaker initial fields (a similar effect can be
observed for under-resolved models where insufficient grid reso-
lution limits the field amplification). During the further evolution
the relative sizes ofex

kin, ey
kin, andez

kin remain unchanged.

For weak initial fields, (bx
0 = 1, 5, and 10×1013G, the kinetic

energy density dominates the magnetic one by a factor≈ 2.7 in
the final state. Concerning the volume-averaged kinetic energy
densities we findex

kin ≈ ez
kin ≈ 2.4ey

kin. This relation also holds
for the volume-averaged magnetic energy densities, indicating
a relatively high degree of isotropy of the turbulence. The final
state forbx

0 = 5 × 1013 G is shown in the left panel of Fig. 22.
Obviously, neither the flow nor the magnetic field show any pre-
ferred direction. Instead, one recognizes a complex pattern of
tangled small-scale flux tubes.

For sufficiently strong initial fields (bx
0 = 20, and 40×

1013 G), the final state is more strongly magnetized. As the tur-
bulent energy decays more rapidly than thex-component of the
magnetic field,bx dominates the dynamics aftert ≈ 15 msec
leading to a slower deceleration of the shear flow and a more
pronounced alignment of flow features (flux and vorticity tubes)
in x-direction (see Fig. 22, right panel).

Similarly to the 2D models discussed above, a parallel initial
magnetic field has a stronger influence on the dynamics than an
anti-parallel one: the field strength reaches a higher maximum
value, and the influence of hydrodynamic instabilities is slightly
less. At late stages, such models may exhibit a phase of hydro-
magnetic deceleration, in contrast to the roughly constantvalue
of ex

kin in models with strong anti-parallel initial fields.
For of supersonic shear flows withM = 4, the evolu-

tion is similar to that of the dimensionless models discussed in
Sect. 5.2. We find a fast growth of 3D hydrodynamic instabilities
disrupting the shear flow before the shock-mediated mechanism
working in 2D can operate. Turbulence sets in quickly without

the intermediate development of a KH vortex, and the shear flow
is decelerated very efficiently. The maximum magnetic fields we
find are of the order of 1× 1016 G for the absolute maximum,
and 3× 1015 G for the r.m.s. field, respectively. These values are
rather insensitive to the initial field strength and geometry.

7. Summary and conclusions

Global simulations indicate that the contact layer between
two merging neutron stars is a site of very efficient field
amplification. The layer is prone to the Kelvin-Helmholtz
instability, and thus, exponential growth of any weak seed
field is possible, as observed by Price & Rosswog (2006) (see
also Giacomazzo et al. (2009); Anderson et al. (2008); Liu etal.
(2008)). The limitations of their simulations, mainly concern-
ing grid resolution, did not allow these authors to determine the
saturation level of the instability firmly and accurately. Thus,
the implications of magnetic fields for the merger dynamics re-
mains unclear. On the basis of energetic arguments, the instabil-
ity might lead to a field in equipartition with the kinetic or the
internal energy of the shear flow, corresponding to field strengths
of the order of 1016 G or 1018 G, respectively.

We reassessed these arguments by means of local high-
resolution simulations of magnetized shear layers in two and
three spatial dimensions. To this end we performed more than
220 simulations focusing on properties of the hydromagnetic KH
instability in general as well as on the contact surfaces of merg-
ing neutron stars. We refer to these two classes of simulations as
dimensionlessandmerger-motivatedmodels, respectively.

We employed a recently developed multi-dimensional
Eulerian finite-volume ideal MHD code based on high-order
spatial reconstruction techniques and Riemann solvers of the
MUSTA-type (Obergaulinger 2008; Obergaulinger et al. 2009).

We set up a KH-unstable shear flow in Cartesian coordi-
nates in a quadratic (2D) and cubic (3D) computational domain
imposing periodic boundary conditions in the direction of the
shear flow and reflecting or open ones in the transverse direc-
tions. Focussing on the effects of a magnetic field on the insta-
bility, we used a simplified equation of state (ideal gas EOS and
a hybrid barotropic/ideal gas EOS for the dimensionless and the
merger-motivated models, respectively) and neglected additional
physics, e.g., such as neutrino transport.

Under these simplifications, the shear flows are character-
ized by two parameters, the initial Mach numberM and the ini-
tial Alfvén numberA, measuring the magnitude of the jump in
shear velocity in units of the sound speed and the Alfvén veloc-
ity, respectively.

Analytic considerations and previous simulations of non-
magnetized shear flows show that the growth rate of the KH
instability as well as its saturation level (i.e., the kinetic en-
ergy of the circular KH vortex formed by the instability) in-
crease with increasingM for subsonic shear flows . A magnetic
field is known to reduce the growth rate and potentially, i.e., for
A < 2, even to suppress the instability (Chandrasekhar 1961;
Miura & Pritchett 1982; Keppens et al. 1999). However, less is
known about the saturation level and the dynamic back-reaction,
in particular for weak initial fields.

Frank et al. (1996); Jones et al. (1997); Jeong et al. (2000);
Ryu et al. (2000) studied the evolution of the hydromagneticKH
instability in two and three dimensions. In 2D, models undergo
a transition fromnon-linear stabilizationof the KH vortex to its
violent disruptionor more gradualdissipationwhen the initial
field strength is reduced, while in 3D purely hydrodynamicel-
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Fig. 22.3D structure of the final turbulent state of models withbx
0 = 5× 1013 G (left panel) andbx

0 = 20× 1013 G (right panel) att =
1 msec, respectively. The panels show the volume-rendered magnetic field strength (front half; blue-green-yellow-redcorresponding
to increasing values of|b|) and enstrophy (rear half; red-yellow corresponding to increasing values of (∇ × v)2). The red and blue
long arrows mark thex andz-direction, respectively.

liptic instabilities of the vortex tube may dominate over MHD
effects.

The study of these non-linear effects is hampered by high
requirements on the grid resolution that is necessary to follow
the development of increasingly thin magnetic flux sheets and
tubes. This limits the range of Alfvén numbers for which nu-
merical convergence can be achieved to rather modest values.
It also reduces the predictive power for merger systems, where
rather weak initial fields are expected. This limitation canbe
overcome only when using large grids in combination with a
highly accurate code. We evolved subsonic, transsonic, andsu-
personic shear flows withM ∈ [0.5; 1; 4], while using the maxi-
mum Alfvén numbers for which convergence is achievable. The
resulting broad range of Alfvén numbers covered by our sim-
ulations allows us to establish scaling laws governing the field
amplification as a function of the initial field strength.

The main results of our simulations are:

1. In 2D, we confirm the results of analytic work (in the lin-
ear regime) and previous simulations concerning the growth
rate and the saturation of the transverse kinetic energy den-
sities for strong initial fields due to Chandrasekhar (1961);
Miura & Pritchett (1982); Keppens et al. (1999). This agree-
ment supports the viability of our numerical approach for the
problem at hand.

2. For subsonic shear flows (M = 0.5, 1) we explored a wide
range of initial field strengths covering Alfvén numbers up
to A = 5000 in 2D.
(a) For intermediate and weak fields, we distinguish two

phases: the KH growth phase during which the field
grows at the KH growth rate, and after formation of a
KH vortex, a phase of kinematic field amplification by
the overturning vortex. The growth rate during the latter
phase depends on the velocity of the vortex. The field
is highly intermittent and concentrated in flux sheets,
which are stretched by the flow leading to an exponen-
tial growth of the field strength while the sheet width de-
creases.

(b) The termination of the kinematic amplification phase oc-
curs either numerically, when the flux sheets get too thin
to be resolved on a given computational grid, or dynam-
ically by back-reaction of the field onto the flow. The
most important mode of back-reaction is the growth of
secondary resistive instabilities feeding off the magnetic
energy of the flux sheets. These instabilities terminate the

kinematic field growth and initiate the non-linear satura-
tion phase during which the KH vortex is destroyed by
the ensuing MHD turbulence and the shear flow is grad-
ually decelerated. This scenario is equivalent to that of
thedisruptionmodels of Frank et al. (1996).

(c) We quantified the amount of field amplification during
the kinematic amplification phase by computing the ratio
of the volume-averaged Maxwell stress componentMxy

at the beginning and at the end of that phase. The am-
plification factor scales with the initial Alfvén number
as A3/4, corresponding to a scaling of the maximum
Maxwell stress with the initial field strength asb5/4

0 . If
the simulation is under-resolved, the amplification factor
is reduced by a factor∝ m7/8 (m being the number of
zones per dimension). The maximum local field strength
corresponds to alocal equipartition between the mag-
netic energy density of a flux sheet and the kinetic energy
density of the shear flow; it depends only weakly on the
initial field.

(d) The secondary resistive instabilities observed in our sim-
ulations are triggered by numerical resistivity instead of
a physical one. The numerical resistivity, which is a func-
tion of the grid resolution∆, is important only for small
thin structures having a spatial size of the order of∆
or less. In our simulations, it causes current sheets to
become unstable when their width approaches the grid
spacing∆. Although only simulations with arbitrarily
high resolution can sustain arbitrarily thin and intense
current sheets, we observe nevertheless convergence: the
field amplification becomes independent of the grid res-
olution, if ∆ is smaller than some threshold which de-
pends on the initial field strength. The reason for this
independence is the fact that the most unstable current
sheets do not consist of individual flux sheets but of pairs
or triples of coalescing flux sheets. Thus, decreasing the
distance between flux sheets does not lead to a stronger
field (which would be the case, if a single flux sheet is
compressed in transverse direction).

(e) The disruption of the vortex and the efficient dissipation
set theseresisto-dynamicmodels apart from the class of
dissipationmodels with even weaker initial fields where
the KH vortex remains intact, and only very slow dis-
sipation is provided by turbulence. In the simulations of
Frank et al. (1996), secondary instabilities do not modify
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the flow field qualitatively. Our simulations indicate that
this is, partially at least, a resolution effect. If a simula-
tion is under-resolved and the field growth is not limited
by dynamic back-reaction but by the resolvable width
of flux sheets, no disruption will occur, and the decel-
eration time of the shear flow is very long. Converged
simulations show, on the other hand, the disruption of
the KH vortex by secondary magnetic instabilities when
the magnetic field strength approaches a local maximum
close to equipartition with the kinetic energy density of
the shear flow. This happens in all converged models, but
for weak initial fields, the deceleration time can be very
long.

(f) Models with initially anti-parallel and parallel magnetic
fields, but otherwise identical, give qualitatively similar
results, the above discussed effects being somewhat less
pronounced in case of the former field configuration.

3. The contact layer of merging neutron stars resembles su-
personic shear flows. In principle, these are stable. We find,
however, that an exponentially growing instability may occur
when closed boundary conditions are imposed in the direc-
tion transverse to the shear flow. The instability is mediated
by shock waves traveling through the computationl domain.
The corresponding growth rates are much smaller than for
subsonic shear flows. The effects of a magnetic field on a
supersonic shear flow are qualitatively similar to those on
subsonic shear flows.

4. In 3D the disruption of the KH vortex tube can be induced by
a purely hydrodynamic secondary so-calledelliptic instabil-
ity as discussed, e.g., by Ryu et al. (2000). It leads to a very
rapid growth of the kinetic energy densities correspondingto
all components of the flow velocity once the KH vortex tube
forms, and decelerates the shear flow more efficiently than
the MHD mechanisms outlined above. Which of the two pos-
sible disruption mechanisms, elliptic or hydromagnetic, op-
erates depends on the initial field strengthb0 and the value of
volume-averaged kinetic energy densityez

kin. The magnetic
mechanism will dominate only ifemag > ez

kin, i.e., as long as
the magnetic energy density exceeds the transverse kinetic
energy inz-direction. Due to the very fast growth of the el-
liptic instability, this may be the case only for a short time, if
at all. A rather strong initial field and small perturbationsin
z-direction are required for a hydromagnetic disruption.

5. 2D and 3D simulations of shear flows with merger-motivated
initial conditions performed in a cubic computational do-
main of constant density and pressure having an edge size
of 200 m show the same overall dynamics as correspond-
ing dimensionless models. The initial Mach number of the
shear flow was chosen to beM = 1 and M = 4 corre-
sponding to a density of 1013 g cm−3, and shear velocities
of 1.83× 109 cm/s, and 7.2× 109 cm/s, respectively. The ini-
tial magnetic field strength was varied between 5× 1013 G
and 4× 1014 G.
(a) The instability grows rapidly: saturation occurs within
. 0.1 msec, and the disruption and deceleration times are
much less than 1 msec.

(b) The dynamics is the same as that of the dimensionless
models. Field amplification leads to a maximum field
strength. 1016 G, and a r.m.s. value of. 1.6× 1015 G.
These values are the same for 3D models suffering hy-
drodynamic and hydromagnetic disruption.

From our results, we may draw a few conclusions concern-
ing the growth and the influence of magnetic fields in neutron-

star mergers. The foremost implication is that the maximum field
strength, independent whether it refers to a single point ora spa-
tial average, is not amplified to equipartition with the thermal
energy density. We can, hence, exclude saturation fields of the
order of 1018 G in the contact layers of neutron star mergers.

Instead, local equipartition with the kinetic energy density is
reached with corresponding maximum fields∼ 1016 G, as spec-
ulated by Price & Rosswog (2006). Due to the high degree of
intermittency in the case of weak initial fields, the (r.m.s.) av-
erage of the field strength is smaller, i.e, its direct dynamic im-
pact (e.g., disruption of the KH vortex tube or decelerationof
the shear flow) on the flow is probably rather limited. This is
even more the case if the geometry of the system and the per-
turbations resulting from the merger dynamics enhance the im-
portance of purely hydrodynamic instabilities. More indirect ef-
fects can, however, not be excluded, e.g., whether magneticflux
tubes created at the shear layer are transported rapidly faraway
by large-scale flows. The short period of time during which the
magnetic field stays close to its maximum value and its fast de-
cay impose severe constraints on the impact that the amplified
fields may have on any hydromagnetic or electromagnetic jet-
launching mechanism in a merger of two neutron stars. We note
that magnetically driven relativistic outflows may need much
longer time scales (∼ a few msec) to tap the rotational energy
of either the black hole or the accretion disk resulting after the
merger.

Though these results limit the prospect for magnetic effects
to play a dynamic role in neutron star mergers, their proper in-
clusion in current and forthcoming simulations may be neces-
sary, because magnetic fields influence the dissipation rates in
the shear layer, i.e., their neglect may lead to an underestimation
of the temperature in the shear layer, and hence in the accretion
disk. Given the resolution requirements imposed by weak ini-
tial fields, a more sophisticated treatment of the problem prob-
ably also has to abandon the assumption of ideal MHD and to
consider the formulation of a turbulence model for unresolved
magnetic field structures.

Acknowledgements.This research has been supported by the SpanishMinisterio
de Educación y Ciencia(grants AYA2007-67626-C03-01, CSD2007-00050),
and by the Collaborative Research Center onGravitational Wave Astronomy
of the Deutsche Forschungsgemeinschaft (DFG SFB/Transregio 7). MAA is a
Ramón y Cajal fellow of theMinisterio de Educación y Ciencia. Most of the
simulations were performed at the Rechenzentrum Garching (RZG) of the Max-
Planck-Society. We are also thankful for the computer resources, the technical
expertise, and the assistance provided by the Barcelona Supercomputing Center
- Centro Nacional de Supercomputación. Parts of this article have been writ-
ten during M.O.’s visit to the Departamento de Astronomı́a yAstrofı́sica of the
Universidad de Valencia. He wants to express his gratitude for the kind hospital-
ity experienced there.

Appendix A: Tables of models

We provide tables listing the parameters and important proper-
ties of the models computed:

Tab. A.1 lists the parameters of models which we computed to
compare the growth rates obtained numerically with theoret-
ical predictions, serving as code validation.

Tab. A.2 lists 2D hydrodynamic models of transonic and super-
sonic shear flows.

Tab. A.3 and Tab. A.4 list the amplification factors of the mag-
netic field and the disruption and deceleration rates of mod-
els with weak initial fields, respectively.

Tab. A.5 lists the initial data of 3D dimensionless models.
Tab. A.6 and Tab. A.7 list the initial conditions of 2D and 3D

merger-motivated models, respectively.
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Table A.1. Summary of models computed to compare numerical growth rates with theoretical predictions. The colums give the
model name, the size of the domain (lx, ly), the initial pressure,P0, the velocity shear,U0, the corresponding Mach numberM =
U0/cs, the initial magnetic fieldb0, the initial width of the shear flow,a, the corresponding wave number,kx, the growth rate,ΓMP,
obtained from Miura & Pritchett (1982), and an estimate of the numerical growth rate,Γnum.

name lx ly mx ×my P0 U0 M a b0 kx ΓMP Γnum

grw-1 1 2 50× 100 1 1.29 1 0.05 (0,0, 0) 2π 1.73 1.64
grw-2 1 2 100× 200 1 1.29 1 0.05 (0,0, 0) 2π 1.73 1.74
grw-3 1 2 200× 400 1 1.29 1 0.05 (0,0, 0) 2π 1.73 1.75
grw-4 1 2 400× 800 1 1.29 1 0.05 (0,0, 0) 2π 1.73 1.75
grw-5 1 2 200× 400 1 1.29 1 0.025 (0,0, 0) 2π 2.4 2.44
grw-6 1 2 200× 400 1 1.29 1 0.1 (0,0, 0) 2π 0.66 0.68
grw-7 1 2 200× 400 1 0.645 0.5 0.05 (0,0, 0) 2π 1.09 1.07
grw-8 1 2 200× 400 1 1.843 10/7 0.05 (0,0, 0) 2π 1.77 1.79
grw-9 1 2 200× 400 1 0.645 0.5 0.05 (0,0, 0) 4π 1.36 1.35
grw-10 1 2 200× 400 1 1.29 1 0.05 (0.129, 0, 0) 2π 1.69 1.70
grw-11 1 2 200× 400 1 1.29 1 0.05 (0.258, 0, 0) 2π 1.56 1.54

Table A.2. Summary of 2D hydrodynamic supersonic models. The table entries are the same data as Tab. A.1 with the following
exceptions: the columnb0 is skipped, and we do not list a theoretical value of the growth rate. Instead, we give our choice of
boundary conditions in the transverse direction in column “BC”. In the last column, we indicate models for which the instability
grows oscillatory by a confirmation mark,

√
. Note that model grw-3 of Tab. A.1 corresponds to model HD2r-0 with open boundaries.

name lx ly mx ×my P0 U0 M a kx BC Γnum oscillations
HD2o-1-l 1 4 200× 800 1 2.322 1.8 0.05 2π open 0.97
HD2o-1 1 2 200× 400 1 2.322 1.8 0.05 2π open 0.96
HD2o-1-i 1 1 200× 200 1 2.322 1.8 0.05 2π open 0.73
HD2o-1-s 1 0.5 200× 100 1 2.322 1.8 0.05 2π open 0.16

√

HD2o-2 1 2 200× 400 1 2.451 1.9 0.05 2π open 0.30
√

HD2o-3 1 2 200× 400 1 2.5155 1.95 0.05 2π open 0.26
√

HD2o-4 1 2 200× 400 1 2.58 2 0.05 2π open 0
HD2o-5 1 2 200× 400 1 5.16 4 0.05 2π open 0
HD2r-0 1 2 200× 400 1 1.29 1 0.05 2π reflecting 1.73
HD2r-1 1 2 200× 400 1 2.322 1.8 0.05 2π reflecting 0.96
HD2r-1-i 1 1 200× 200 1 2.322 1.8 0.05 2π reflecting 0.56
HD2r-1-s 1 0.5 200× 100 1 2.322 1.8 0.05 2π reflecting 0.56

√

HD2r-1-S 1 0.25 200× 50 1 2.322 1.8 0.05 2π reflecting 0.35
√

HD2r-4 1 2 200× 400 1 2.58 2 0.05 2π reflecting 0.46
√

HD2r-4-HR 1 2 400× 800 1 2.58 2 0.05 2π reflecting 0.44
√

HD2r-5 1 2 200× 400 1 5.16 4 0.05 2π reflecting 0.52
√

Table A.3. Parameters of the weak-field models: the columns give the initial Mach number,M, the shear-layer width,a, the initial
magnetic field strength,bx

0, the corresponding Alfvén number,A, and the amplification factorsf e (for the magnetic energy) andf b

(for the field strength), respectively. The models were simulated on grids ofm= 256, . . . , 4096 zones per dimension.

M a bx
0 A 256 512 1024 2048 4096

[

10−4
]

f e f b f e f b f e f b f e f b f e f b

0.5 0.05 200 25 20.2 29.4 22.9 30.6 25.9 29.3 27.7 28.3
0.5 0.05 100 50 24.4 40.4 33.5 57.2 39.8 66.2 43.5 64.3 46.3 63.3
0.5 0.05 50 100 27.0 50.0 41.0 75.6 55.3 102.2 66.8 123.7 73.3 125.3
0.5 0.05 20 250 35.0 51.0 44.4 95.0 70.4 146.4 105.3 213.0
1 0.10 200 50 25.2 36.5 33.6 50.2 46.0 46.5 45.0 49.2
1 0.10 40 250 18.2 37.6 49.3 83.8 74.5 132.2 113.9 201.3
1 0.15 200 50 17.2 29.3 27.8 39.7 30.7 40.0 35.9 46.4
1 0.15 100 100 19.6 34.8 35.0 56.3 54.9 76.0 61.2 81.5
1 0.15 40 250 21.3 46.6 40.2 69.5 65.3 106.3 103.9 152.4
1 0.20 200 50 5.8 14.2 8.0 28.0 12.8 26.0 22.5 36.3
1 0.20 40 250 6.4 35.7 11.8 41.3 18.1 62.2 33.0 106.6
1 0.05 400 25 16.8 23.8 19.6 25.9 22.0 26.6 23.3 25.4
1 0.05 200 50 19.4 45.7 27.5 46.2 32.0 48.6 36.1 51.5 39.4 53.6
1 0.05 80 125 20.2 35.6 33.4 70.2 50.1 96.6 61.6 117.3 67.3 118.9
1 0.05 40 250 20.9 50.8 37.0 88.0 59.9 127.7 83.6 178.5 104.1 210.9
1 0.05 20 500 21.2 55.1 39.4 103.1 63.0 153.1 101.1 236.4 145.6 330.8
1 0.05 8 1250 21.2 56.4 40.1 127.2 67.7 187.8 109.8 288.7 169.0 444.4
1 0.05 2 5000 21.2 55.2 40.3 136.4 68.6 218.5 112.4 314.7 182.9 515.2
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Table A.4. Same as Tab. A.3, but instead of the amplification factors we give the disruption time of the KH vortex,tdis, and the
absolute value of the deceleration rate,σdec;3 = |σdec/10−3|, for simulations withm = 256, . . . , 4096 zones per dimension. We
indicate simulations where no disruption is observed by a hyphen in the column fortdis, simulations where the determination of
σdec is very inaccurate by a∼ sign preceding the value ofσdec;3, and simulations where we found no measurable decelerationby a
hyphen in the column forσdec;3.

M a bx
0 A 256 512 1024 2048 4096

[

10−4
]

tdis σdec;3 tdis σdec;3 tdis σdec;3 tdis σdec;3 tdis σdec;3

0.5 0.05 200 25 7.6 19.0 7.6 23.0 7.6 18.6 7.6 22.4
0.5 0.05 100 50 14.4 10.7 13.7 11.7 12.7 14.3 12.6 11.6
0.5 0.05 50 100 80.1 4.1 45.4 5.9 23.4 7.4 22.9 10.7 22.6 10.3
0.5 0.05 20 250 – ∼ 0.4 – ∼ 0.9 – 3.5 77.4 4.1
1 0.15 200 50 4.5 19.0 4.3 16.9 4.0 16.9 4.1 24.1
1 0.15 100 100 23.0 6.8 15.0 13.4 6.5 17.1 6.7 18.1
1 0.15 40 250 – ∼ 0.17 – 2.7 58.5 4.4 21.9 6.1
1 0.05 400 25 3.8 23.9 3.8 22.6 3.8 45.0 3.8 41.1
1 0.05 200 50 12.4 16.8 9.9 14.1 6.1 27.8 6.0 23.0
1 0.05 80 125 75.6 4.8 25.3 8.7 18.5 11.6 12.0 15.2 12.0 12.9
1 0.05 40 250 – ∼ 0.9 – 1.8 62.5 4.1 39.8 5.6 39.8 5.6
1 0.05 20 500 – – – – – ∼ 0.8 – 2.4 99.5 3.1
1 0.05 8 1250 – – – – – – – ∼ 0.5 – ∼ 0.8
1 0.05 2 5000 – – – – – – – – – –

Table A.5. List of 3D models: the columns give the initial shear velocity, U0, Mach number,M, magnetic field strength,b0, and
Alfvén numberA. The models were simulated on grids of 1283 to 5123 zones using parallel (+ sign) and anti-parallel (± sign)
initial field configurations, respectively. Most of the models were simulated several times using different initial perturbations.

U0 M bx
0 A 128 256 512

10−4

1 1 0 ∞ +

1 1 400 25 +, ± +, ±
1 1 200 50 +, ± +, ± +

1 1 2 5000 +

1 4 0 ∞ + +

1 4 400 25 + +

1 4 200 50 + +

1 4 100 100 + +

1 4 20 500 + +

Table A.6.List of 2D merger-motivated models simulated on grids of 10242 and 20482 zones, respectively. Each simulated model is
indicated by a

√
sign. The initial shear profile had a maximum velocity ofvx

0 = 1.83× 109 cm/s (i.e., the Mach number of the shear
flow is M = 1), and a width ofa = 20 m. The first column lists the initial field strength, marking models with anti-parallel initial
fields by a± preceding the numerical value. Most models were simulated using different initial perturbations, and most models were
additionally simulated on coarser grids.

bx
0 [1013 G] M = 1 M = 4

10242 20482 10242

±5
√

10
√ √

±10
√ √ √

20
√ √

±20
√ √ √

40
√

±40
√
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