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ABSTRACT

We discuss results from general-relativistic magnetohydrodynamical simulations of magne-
tised neutron star models (magnetars) including the effects of an elastic crust. The simulations
reveal three distinct regimes: (a) a weak-field limit for magnetic field strengths B < 5x 103 G
where purely crustal shear oscillations are recovered, (b) a strong-field limit B > 10°G
where the magnetic field dominates the dynamics and the resulting quasi-periodic oscillations
(QPOs) agree qualitatively with previous work, and (c) an intermediate regime, where purely
crustal modes are damped rapidly with increasing magnetic field strength. Due to the presence
of a solid crust a polar region exists where the standing-wave condition is significantly mod-
ified. As a result, strong QPOs are localised at a substantial angular distance from the pole.
The boundary conditions at the base of the crust lead to a reversal in the order of the various
families of QPOs. Pure crustal oscillations are strongly absorbed by the Alfvén continuum
even for relatively low values of the poloidal magnetic field strength. This excludes torsional,
axisymmetric shear modes of the crust as a viable interpretation of observed long-lived QPOs
in giant flares of soft-gamma repeaters, if magnetic fields in magnetars are dominated by an
axisymmetric dipolar component.
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1 INTRODUCTION

The observation of giant flares in Soft Gamma Repeaters (SGRs;
compact objects with very strong magnetic fields or magnetars
(Duncan & Thompson|1992)) may open a gateway towards the ex-
citing field of neutron star seismology. In the decaying X-ray tail
of two such events, SGR 1900+14 and SGR 1806-20, a number
of long-lasting, quasi-periodic oscillations (QPOs) have been ob-
served (see |Israel et al.| (2005) and |Watts & Strohmayer| (2007)
for recent reviews). Early models interpreted the observed QPO
frequencies as directly related to torsional shear oscillations of
the solid crust of a neutron star excited during a giant flare event
(see |Duncan| (1998)); |Strohmayer & Watts| (2005); [Piro| (2005);
Sotani et al.| (2007); |Samuelsson & Andersson| (2007), and ref-
erences therein). Due to the extremely strong magnetic fields
present in magnetars, however, a self-consistent model that in-
cludes global magnetohydrodynamic (MHD) oscillations interact-
ing with the shear oscillations of the crust is required (Levin
(20006), \Glampedakis & Andersson| (2006), [Levin| (2007), [Lee
(2007,12008)). Using a simplified model, Levin|(2007) showed that
shear oscillations can be absorbed by a MHD continuum of Alfvén
oscillations, while long-lived QPOs may still appear at the turning
points or edges of the continuum.

Sotani et al. (2008) and subsequently |Cerda-Duran et al.
(2009) (see also |Colaiuda et al.| (2009)), using a more realis-
tic, general-relativistic MHD model but still ignoring an extended
crust, found two families of QPOs related to turning points of the
frequency of torsional Alfvén waves near the magnetic pole and in-
side a region of closed magnetic field lines near the equator. Each
QPO family consists of two sub-families differing by their symme-
try behaviour with respect to the equatorial plane. This Alfvén QPO
model is very attractive, because it reproduces the near-integer-
ratios of the observed 30, 92 and 150 Hz frequencies in SGR 1806-
20. The results of the numerical simulations agree with a semi-
analytic model based on standing waves in the short-wavelength
limit (Cerda-Duran et al.|[2009).

The omission of an extended crust in the previous studies of
Sotani et al.|(2008), (Cerda-Duran et al.| (2009), and |Colaiuda et al.
(2009) can be considered as a limiting case of a very strong mag-
netic field. For intermediate magnetic field strengths, however, an
understanding of magnetar oscillations requires the inclusion of
crust-core coupling. In this Letter, we present the first such simula-
tions of coupled, magneto-elastic oscillations. We use a general-
relativistic framework, a dipolar magnetic field, and a tabulated
equation of state (EOS) for dense matter. The numerical simula-
tions are based on state-of-the-art Riemann solver methods for both
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the interior MHD fluid and the crust. Furthermore, we extend the
semi-analytic model of |Cerda-Duran et al,| (2009) by including a
description of crust-core coupling that provides a comparison aid-
ing the interpretation of our numerical results. A recent study by
van Hoven & Levin| (2010) also takes entanglement of magnetic
field lines into account, thereby generalising the toy model of|Levin
(2007). Some first results on coupled crust-core oscillations also
appeared in [Kokkotas et al.|(2010).

We use units where ¢ = G = 1 with ¢ and G being the speed
of light and the gravitational constant, respectively. Latin (Greek)
indices run from 1 to 3 (0 to 3).

2 THEORETICAL FRAMEWORK

The present study of torsional oscillations of magnetars is based on
a numerical integration of the general relativistic MHD equations.
As|Cerda-Duran et al.| (2009), who considered purely Alfvén oscil-
lations of the fluid core, we simplify the problem by assuming (i)
a zero temperature EOS, (ii) axisymmetry, (iii) a purely poloidal
magnetic field configuration, (iv) the Cowling approximation, and
(v) a spherically symmetric background. Because of assumptions
(ii) and (iii) polar oscillations decouple from axial ones in the linear
regime. Therefore, we only evolve the ¢-component of the evolu-
tion variables. We assume a conformally flat metricE]

ds? = —a’dt?* + q54 (dr2 +7r2d6* + r?sin 92dg02) , (1)
where « is the lapse function and ¢ the conformal factor, and con-
sider a stress-energy tensor T#" of the form

T = T Thi + T4
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where p is the rest-mass density, h the specific enthalpy, P the
isotropic fluid pressure, u* the 4-velocity of the fluid, b the mag-
netic field measured by a co-moving observer (with b* := b*b,,),
Y the shear tensor, and us the shear modulus, respectively. The
latter is obtained according to|Sotani et al.| (2007).

The conservation of energy and momentum V, 7" = 0, and
the induction equation lead to the following system of evolution
equations

1 07U n ov—gF"\ 0
V=9 ot ox? o

where g and ~ are the determinants of the 4-metric and 3-metric,
respectively. The two-component state and flux vectors are given
by
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where B? are the magnetic field components as measured by an Eu-
lerian observer (Antén et al./[2006), and W = au! is the Lorentz

L This provides a very good approximation as our neutron star models are
almost perfectly spherically symmetric except for very small deviations due
to the presence of an axisymmetric magnetic field.

factor. The shear tensor ¥ = 1 / 2g'¢ “‘ji contains the spatial
derivatives (denoted by a comma) of the fluid displacement £¥ due
to the oscillations, which are related to the fluid 4-velocity accord-
ingto £%, = av® = u¥/ u®, where v¥ is the p-component of the
fluid 3-velocity. Hence, the evolution of the spatial derivatives ¥,
and £7, is given by

(%) = (@), =0

We also need to provide boundary conditions. At the surface
the radial derivative of the displacement has to vanish (%, = 0),
as we assume a continuous traction and vanishing surface currents.
At the crust-core interface we demand the continuity of the par-
allel electric field, which implies a continuous displacement £¥.
Together with the continuity of the traction the latter leads to a re-
lation between the radial derivatives of the displacement in the core
and in the crust: {56 = (14 8) €50 With 6 = ps/(b-0").

To construct equilibrium models we can choose between dif-
ferent barotropic equations of state for the core that have to be
matched to an EOS of the crust. Here we consider the EOS com-
bination APR + DH (Akmal et al.| (1998)), [Douchin & Haensel
(2001)), and a particular magnetar model with a mass of 1.4 Mg
and a radius Rstar = 12.26 km. In contrast to|Sotani et al.| (2007)
the equilibrium models are computed using the LORENE library
(www.lorene.obspm. fr).

Our simulation code is an extended version of the GRMHD
code presented in |Cerda-Duran et al.| (2009). It includes the shear
terms as they appear in (2), and the evolution of the displacements
(7). The proper working of the MHD part of the code was demon-
strated in |(Cerda-Duran et al.| (2008)). To test the extended code we
compared its results obtained for two limiting cases, zero magnetic
field and zero shear modulus, with those of previous studies. The
purely crustal shear oscillations presented in|Sotani et al.[(2007)) are
recovered with an agreement of 1%, and the Alfvén continuum is
obtained naturally as in |Cerda-Duran et al.| (2009). Further details
on the derivation of the model equations, the numerical methods,
and the code tests will be discussed in|Gabler et al.|(2010).

with k€ {r,0}. @)

3 RESULTS

To study the behaviour of coupled crust-core oscillations we per-
turb the equilibrium stellar model by imposing a velocity pertur-
bation and then follow the time evolution of the system () - (7).
Unless stated otherwise, we use a grid of 150x100 zones in our
simulations covering a domain [0, Rstar] X [0, 7]. The angular grid
is equidistant, while the radial grid is equidistant only in the crust,
where 40 per cent of the zones are located, and coarsens towards
the centre of the star. Symmetries are exploited whenever a pertur-
bation is of purely odd or even parity with respect to the equatorial
plane. We use the term damping in the following to refer to resonant
absorption of crustal shear oscillations by the Alfvén continuum of
the core (unless we explicitly refer to numerical damping caused
by finite-differencing).

Damping of crustal shear modes

We investigated perturbations of different radial extent encompass-
ing only the crust, only the core, or the whole star. Since all three
types of perturbations give qualitatively similar results, we focus on
whole star perturbations in the following, as this is the most generic
case.
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Figure 1. Time evolution of overlap integrals with the eigenmodes of the crust. Left panel: Damping of [ = 2, 3, and 9 initial perturbations due to resonant
absorption of the fundamental (n = 0) crustal shear mode for a magnetised model with 5 x 1013 G (dots). In the corresponding unmagnetised models (solid
lines) only numerical damping occurs which increases with the angular order [ of the mode. Middle panel: Overlap integrals for the [ = 2 mode, where
resonant absorption of the crustal modes becomes stronger with increasing magnetic field strength. Right panel: same as middle panel, but for [ = 9.

l 2 3 9 10

7[s] for B=0
7[s]for B=5x 103G

5.500
0.072

5.070
0.080

0.260
0.094

0.170
0.100

Table 1. Damping timescales 7 due to resonant absorption of crustal shear
modes by the Alfvén continuum for various initial perturbation modes I.

We first consider initial perturbations that have a single [-
dependence of the corresponding torsional, spherical vector har-
monics. To investigate the damping of a single crustal mode we
compute overlap integrals of the evolved variables with mode
eigenfunctions (the latter are found by solving the linear eigen-
value problem for the crustal modes, see [Messios et al.| (2001));
Sotani et al.| (2007); [Schumaker & Thorne| (1983)). Because the
eigenmodes of the crust form a complete orthonormal set we can
expand any perturbation in terms of the corresponding eigenfunc-
tions. The expansion factors, which provide a measure of how
strong each crustal mode contributes to the perturbation, are ob-
tained via the overlap integrals with the eigenfunctions. For more
details on this method see (Gabler et al.| (2009). In the left panel
of Fig.|I| we show the maximum (absolute) amplitudes of the over-
lap integrals for different initial perturbations and for simulations
both without magnetic field (solid lines) and with a polar magnetic
field of 5 x 10'3G (dots) . In the field-free case the lines represent
the numerical damping of crustal modes due to finite-differencing.
When a magnetic field is present, the damping (now due to resonant
absorption) increases with the magnetic field strength.

For all modes, the timescale of resonant absorption is much
shorter than that of numerical damping, and the amplitude de-
creases on a similar timescale (see Tab.|I[). After ~ 500 ms, the
overlap integrals do no longer sample the crust oscillations, but
instead the magneto-elastic oscillations which then dominate the
evolution (see below).

The middle and right panels of Fig.[T] show the overlap inte-
grals for | = 2 and [ = 9 modes of the crust as a function of time
for different magnetic field strengths, respectively. For [ = 2 and
B = 5 x 10" G we find almost complete damping of the crustal
mode after ~ 0.5s. For a stronger magnetic field (B = 5 x 10** G)
the crustal mode becomes already damped after less than one oscil-
lation, and only the dominant magneto-elastic oscillations remain.
Similar statements hold for the evolution of the [ = 9 perturbation.
However, in that case it takes a few oscillations before the crustal
mode is damped, even for B = 5 x 10* G.

We also analysed a more general initial perturbation consist-
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Figure 2. Evolution of cwv® in the crust at @ = 7r/4 for initial data contain-
ing a large number of different perturbation modes. For vanishing magnetic
field, only crustal modes are excited. For B = 5 x 103 G the crustal os-
cillations are strongly damped, and for a ten times stronger magnetic field
(B = 5x10'* G) magneto-elastic oscillations dominate the evolution from
the start.

ing of a mixture of [ = 2 up to [ = 10 modes, which excites a
large number of crustal modes of different angular order ! and ra-
dial order n. Fig.2]shows the resulting evolution of the velocity in
the crust at @ = 7/4. For the unmagnetised model low frequency,
fundamental (n = 0) oscillations can easily be distinguished from
higher frequency overtones with n > 1. When increasing the mag-
netic field to 5 x 10" G the lower frequency modes are damped
on a timescale of ~ 250 ms, whereas the higher frequency over-
tones survive for a longer time. In the long run, a low frequency
(~ 0.3 Hz) magneto-elastic oscillation dominates. At the largest
magnetic field strength shown here, 5 x 10** G, there is no sign
of either low or high frequency crustal modes, the evolution being
completely dominated by magneto-elastic oscillations.

Long-term QPOs

Besides the damping of crustal modes, we observe long-lasting os-
cillations in the fluid core of the magnetar. These long-term QPOs
are identified by local maxima in Fourier space. Let us consider
an intermediate magnetic field strength of 4 x 10** G, where both
the magnetic field and the crust influence the dynamics. As in the
case without crust (Sotani et al.[2008}; |Cerda-Duran et al.|2009) we
find two different families of long-term QPOs, as demonstrated in
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Figure 3. Spatial distribution of Fourier amplitudes at several QPO frequencies. Three different types of QPOs are present: (i) upper QPOs in panels a, d, f, g,
i, and k; (ii) lower QPOs in panels b and e; (iii) edge QPOs in panels ¢, A, j, and I. The two black dashed lines mark the location of the crust, while the blue
lines represent magnetic field lines. The colour scale ranges from zero amplitude (white) to maximum amplitude (black).

Fig.[3]which shows the spatial distribution of Fourier amplitudes at
several QPO frequencies. The lower QPOs (Lfii)) are located in-
side the region of closed field lines, while the upper QPOs (Ufli))
concentrate along open magnetic field lines closer to the poles. We
computed QPOs of either odd (—) or even (4) parity w.r.t. the
equatorial plane, which allows for a better identification of QPOs
of similar frequency but opposite parity.

The lower QPOs (Fig.[3] panels b and e) appear to be similar to
those found for models without crust, except that they are limited to
the region of closed magnetic field lines inside the core. The upper
QPOs are influenced by the presence of the crust in several ways.
First, they are limited to the fluid region, and become vanishingly
small at the base of the crust (Fig.[3] panels g, d, f, g, i, and k), where
they are reflected. This behaviour is similar to that caused by the
boundary conditions in|Sotanti et al.|(2008)), and differs from that of
the pure fluid case considered in |Cerda-Duran et al.| (2009). In the
latter work the continuous traction boundary condition imposed at
the surface of the star resulted in a strong displacement there. Their
different behaviour at the base of the crust (w.r.t. the pure fluid case
in|Cerda-Duran et al.[(2009)) causes a rearrangement of the QPOs.
Here, the lowest frequency QPO (panel a) is symmetric w.r.t. the
equatorial plane (even parity), while it did not exist at all in|Cerda-
Duran et al.|(2009) and the lowest-frequency QPO has odd parity.

While QPOs are located close to the symmetry axis of the
field (polar axis) in models without crust (Sotani et al.[ 2008} |Cerda-

Duran et al.[2009), they are attached to field lines crossing the equa-
tor at around 4 km in our models including the crust. Apparently the
strong coupling introduced by the crust complicates the oscillatory
behaviour of the field lines, such that the interaction between neigh-
bouring polar field lines prevents the QPOs from being established.

Furthermore, we find a new family of QPOs (Fig.[3] panels
¢, h, j, and ) connected to the last open field line of the fluid
core, each member representing the lower-frequency edge of an
Alfvén continuum. Their identification as edge QPOs (EfLJr)) be-
comes more obvious in Fig.[d] where we show the amplitude of the
Fourier transform averaged along individual magnetic field lines,
in a frequency vs. magnetic field line plot, in comparison to the
continuum of frequencies obtained with the semi-analytic model
of |Cerda-Duran et al.| (2009) (solid lines — adapted here to extend
up to the base of the crust with reflecting boundary conditions).
For even parity modes (right panel) there are large amplitudes in
the averaged Fourier transform at around 5.5 km for 2.5, 5.0, and
7.5 Hz, respectively. Those positions coincide approximately with
lower-frequency edges of those parts of the continuum that do not
connect to the continuum of the closed field lines. QPOs at simi-
lar locations were also identified in simulations by (Colaiuda et al.
(2009) without a crust.

In FigE| one can also identify the families of lower QPOs (re-
stricted to the region of closed field lines in the fluid core) and upper
QPOs (which appear along open field lines, but away from the po-
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Figure 4. Distribution of the magnitude of the Fourier transform, averaged
along individual magnetic field lines, in a frequency vs. magnetic field line
plot (magnetic field lines are labeled by the equatorial radius where they
cross the equatorial plane). The numerical results agree well with the contin-
uum of frequencies obtained with a semi-analytic model (solid and dashed
lines). We indicate the approximate location of the expected QPOs along
the continuum by black dots. The left panel shows odd-parity and the right
panel even-parity QPOs. The colour scale ranges from zero (white-blue) to
maximum amplitude (orange-red).

lar axis). The region near the polar axis where apparently no stable
standing waves can be maintained is displayed with dashed lines.
Thus, the upper QPOs are not turning-point QPOs (as was the case
in the absence of a crust), but QPOs at the high-frequency edge of a
continuum. Notice that the fundamental even-parity QPO is located
much closer to the polar axis than any other QPO.

4 DISCUSSION

In this Letter we have presented the first numerical simulations of
axisymmetric, torsional Alfvén oscillations in magnetars including
an extended crust. In the limit of very strong magnetic fields the
results agree with previous studies of Alfvén oscillations in the
absence of a solid crust (Sotani et al.||2008; |Cerda-Duran et al.
2009 (Colatuda et al.|[2009), while for very weak magnetic fields
crustal shear oscillations are recovered. In the intermediate regime
5 x 10" G to 1 x 10'5 G, we find strong resonant absorption of
crustal shear modes by the Alfvén continuum of the core, while
the Alfvén oscillations are influenced by the shear modulus and be-
come magneto-elastic oscillations.

Long-term QPOs appear to be reflected at the base of the
crust leading to a QPO rearrangement with respect to the strong-
field limit. For such magnetic field strengths we thus conclude
that neither shear modes of the crust nor magneto-elastic QPOs
could easily explain the properties of observed QPOs, since the for-
mer will be strongly damped, while the latter will be mostly con-
tained within the fluid core. At lower magnetic field field strengths,
B < 5 x 10" G, shear oscillations of the crust may still exist.
But in this regime it is unclear which mechanism could cause the
giant flare of the SGR during which the QPOs are observed. We
also cannot rule out the case that the magnetic field of a magnetar
(B ~ 10'...10'° G) is confined to the crust, which may be re-
alised when the core is a type I superconductor. In this case crustal
shear modes would not be absorbed by the core. Moreover, it is un-
clear how the corresponding spectrum would look like, and whether
the frequencies of the shear oscillations are unchanged in such a
scenario or not.

Regarding magnetic fields penetrating the core of the neutron
star, our results favour magnetic field strengths in magnetars larger
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than ~ 10'® G, with dominant Alfvén QPOs extending to the sur-
face of the star, as in|Cerda-Duran et al.|(2009) and (Colaiuda et al.
(2009).

It will be interesting to extend our model by taking into ac-
count additional effects, such as the coupling of the interior dynam-
ics to a magnetosphere and the effect of field-line entanglement.
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