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ABSTRACT

Several inflationary models predict the possibility that the primordial perturbations of
the density field may contain a degree of non-Gaussianity which would influence the subse-
quent evolution of cosmic structures at large scales. In order to study their impact, we use a
set of three cosmological DM-only simulations starting from initial conditions with different
levels of non-Gaussianity:fNL= 0,±100. More specifically, we focus on the distribution of
galaxy clusters at different redshifts and, using suitablescaling relations, we determine their
X-ray and SZ signals. Our analysis allows us to estimate the differences in the logN-logSand
logN-logY due to the different initial conditions and to predict the cluster counts at different
redshifts expected for future surveys (eROSITAandSPT). We also use a second set of sim-
ulations assuming a different cosmological scenario to estimate how the dependence onfNL
is degenerate with respect to other parameters. Our resultsindicate that the effects introduced
by a realistic amount of primordial non-Gaussianity are small when compared to the ones
connected with current uncertainties in cosmological parameters, particularly withσ8. How-
ever, if future surveys will be associated with optical follow-up campaigns to determine the
cluster redshift, an analysis of the samples atz> 1 can provide significant constraints onfNL .
In particular we predict that theSPTcluster survey will be able to detect∼ 1000 clusters at
z> 1 for the Gaussian case, with a difference of 15–20 per cent associated tofNL= ±100.

Key words: cosmology: theory – (cosmology:) large-scale structure ofUniverse – galax-
ies: clusters: general – X-rays: galaxies: clusters – methods:N-body simulations – methods:
statistical.

1 INTRODUCTION

The universally accepted scenario for the formation of cosmic
structures in the universe is based on the mechanism of gravita-
tional instability, which assumes that the density fluctuations gen-
erated at some early epoch grow by accreting mass from the sur-
rounding regions through gravitational processes. The origin of
these cosmological seeds is generally related to the final phases
of the inflationary expansion for which a large variety of theoreti-
cal models exist in the literature (see, e.g., Kinney 2008; Langlois
2008; Baumann & Peiris 2008; Baumann 2009, for recent reviews).
These models originate perturbations having different statistical

properties, usually investigated in terms of probability distribu-
tion function (PDF) and correlation functions/power polyspectra.
In particular, the most standard slow-rolling models, where a single
field is responsible for the inflationary accelerated expansion, pro-
duce fluctuations having almost uncorrelated phases. For this rea-
son in cosmological studies it is usual to assume that the primordial
perturbations are Gaussianly distributed, which leads to the further
simplification that their complete description is possibleusing the
power spectrum only. However, even the simplest inflationary mod-
els allow for small departures from Gaussianity, which can become
more significant in non-standard models, like the scenariosbased
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on the curvaton, the inhomogeneous reheating and the Dirac-Born-
Infeld inflation (see Bartolo et al. 2004, and references therein). As
a consequence, the observational determination of the amount of
non-Gaussianity present in the primordial fluctuations is now con-
sidered not only a general probe for the inflationary concept, but
also a powerful discriminatory test between its various theoretical
models.

Given the infinite variety of possible non-Gaussian models,
it is necessary to introduce a simple way to quantify the level of
primordial non-Gaussianity. In the recent years it has become stan-
dard practice to adopt the dimensionless non-linearity parameter
fNL (see Salopek & Bond 1990; Gangui et al. 1994; Verde et al.
2000; Komatsu & Spergel 2001), measuring the importance of the
quadratic term in a sort of Taylor expansion of the Bardeen’sgauge-
invariant potentialΦ, namely

Φ = ΦL + fNL(Φ2
L −〈Φ2

L〉) ; (1)

hereΦL represents a Gaussian random field. In particular, in this
paper we follow the so-called large-scale structure (LSS) conven-
tion, whereΦ, that on scales smaller than the Hubble radius corre-
sponds to the usual Newtonian peculiar potential (but with changed
sign), is linearly extrapolated to the present epoch.

For many years, the study of the statistical properties of the
cosmic microwave background (CMB) has been considered the
most efficient way to measurefNL . In fact its temperature fluctu-
ations are directly related to the density perturbations ina regime
in which the non-linearities originated by the subsequent process
of gravitational instability are not modifying their primordial char-
acteristics, including the PDF. Different statistical estimators have
been applied to the most recent data, keeping improving constraints
on fNL . So far the more stringent results come from the analyses
of the 5-yearsWMAP dataset: assuming a local shape for non-
Gaussianity (as we will do in this paper), Komatsu et al. (2009)
found that fNLvaries between -12 and 145, while Smith et al.
(2009) found−5 < fNL < 1041(see also the positive detection of
non-Gaussian features reported by Yadav & Wandelt 2008).

More recently it became clear that the LSS represent an al-
ternative tool, potentially as valid as the CMB to constrainfNL . In
fact, deviations from an initial Gaussianity induce a different tim-
ing for the whole process of structure formation, providingan in-
teresting framework to look for specific non-Gaussian imprints. In
general, as already evident from the results of the first generation of
non-GaussianN-body simulations in the early ’90s (Messina et al.
1990; Moscardini et al. 1991; Weinberg & Cole 1992), if the pri-
mordial density field is positively (negatively) skewed, the for-
mation is favored (disfavoured) and structures of a given mass
form at earlier (later) epochs. However, there is an important
difficulty in using LSS for constrainingfNL : the late non-linear
evolution introduces additional non-Gaussian features that need
to be disentangled from the primordial ones. For this reasonit
has been necessary to have resort to suitable high-resolution N-
body simulations to follow the growth of the LSS also in the
full non-linear regime, and to calibrate the expected signatures as
a function of the primordial non-Gaussianity. This has beenex-
tensively done in the recent years by different groups (see,e.g.,
Kang et al. 2007; Grossi et al. 2007; Dalal et al. 2008; Viel etal.
2009; Desjacques et al. 2009; Pillepich et al. 2008; Grossi et al.
2009). The results allowed to assess the power of LSS as inde-

1 We multiplied by a factor of 1.3 the original results to convert them to the
fNL LSS-convention adopted here.

pendent probe forfNL , in particular they showed that the most
evident non-Gaussian signatures are present in the mass func-
tion and clustering (bias and bispectrum) of dark matter mass
haloes (see also the analytical predictions made by Matarrese et al.
2000; LoVerde et al. 2008; Afshordi & Tolley 2008; Carbone etal.
2008; McDonald 2008; Maggiore & Riotto 2009; Lam & Sheth
2009; Valageas 2009; Verde & Matarrese 2009). The first attempts
of an application to real data gave very encouraging constraints:
Slosar et al. (2008), combining the bias measurements for two sam-
ples of luminous red galaxies and quasars, foundfNL = 37+42

−57,
while Afshordi & Tolley (2008), studying the integrated Sachs-
Wolfe effect (ISW) in the NVSS survey, derivedfNL = 272±127;
error bars are at 2-σ level. Notice that in both cases we report the
values as revised by Grossi et al. (2009) to include a correction
mimicking the ellipsoidal collapse.

Being at the top of the hierarchy of structure formation, galaxy
clusters are in principle ideal probes for constrainingfNL . Indeed,
the statistics of fare events, either galaxy clusters or deep voids
(Viel et al. 2009) are very sensitive to primordial non-Gaussianity.
However, until now the use of clusters as non-Gaussian probes has
been hampered by two practical problems: first, the observational
estimate of their mass is affected by large uncertainties, whatever
are the method and the observational band adopted; second, it is
difficult to build up samples that span a large range of redshift and
are also statistically complete. The first problem can be in some
way overcome by using the scaling relations (expected from theo-
retical arguments and confirmed by observations) existing between
mass and different observables (see below). The second problem
will be solved in the next years, thanks to the efforts of a setof
(in progress or planned) surveys, which promise to provide large
samples of galaxy clusters covering a volume comparable to the
horizon size: see, e.g., DES, PanSTARRS, BOSS, LSST, ADEPT,
EUCLID.

In this paper we will focus on estimating the signals pro-
duced by galaxy clusters in the X-ray band and through the
Sunyaev-Zel’dovich (SZ, Sunyaev & Zel’dovich 1972, 1980) ef-
fect in different non-Gaussian scenarios. We will take advantage
of the fact that, in both cases, the corresponding observables, i.e.
the X-ray luminosity and the Comptony-parameter, are related
to the mass by well calibrated scaling relations. This will allow
us to introduce selection criteria mimicking the characteristics of
specific surveys. In particular we will consider the properties of
the wide surveys planned witheROSITA(Predehl et al. 2007) and
SPT(Carlstrom et al. 2009), as examples of future X-ray and SZ
projects, respectively. The main goal of this work is to figure out
what are the observational evidences of the presence of somelevel
of primordial non-Gaussianity, discussing the possibility of con-
straining fNL with these future datasets. Notice that the same sam-
ples have been considered for a similar work in Sefusatti et al.
(2006); Oguri (2009); Fedeli et al. (2009). In this paper we ad-
dress this problem using numerical rather than analytical tools. The
advantage is twofold. First of all,N-body simulations permit to
fully account for non-linear evolution which, instead, is usually
accounted for by analytical models in an approximate way only.
Second, numerical experiments allow us to extract realistic mock
cluster catalogs that can be easily used for modeling the observa-
tional selection, which is more difficult to account for in a Fisher
matrix-like approach.

The plan of this work is as follows. In Section 2 we present
the numerical simulations of non-Gaussian models on which the
following analysis is based; we also describe the method applied
to construct the light cones. Section 3 introduces our modelfor the
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X-ray emission from galaxy clusters and reports the corresponding
results in terms of number counts, paying attention to the expected
results for theeROSITAwide survey. Section 4 is devoted to the
model for the SZ signal and to the corresponding results, given in
terms of source counts and statistical properties of the maps; the
specific case of theSPTwide survey is treated. Section 5 discusses
the possibility of using the differential redshift distribution to con-
strain the primordialfNL . Finally, in Section 6 we draw our conclu-
sions.

2 MODELS AND METHOD

2.1 The simulation sets

In order to study the possibility of detecting the signatures of pri-
mordial non-Gaussianity in the LSS of the Universe we must take
into account the complete process of structure formation. For this
we make use of the outputs of two different sets of DM-only simu-
lations, focusing on the distribution of the DM haloes associated to
the galaxy clusters, as identified in the different snapshots.

The first simulation set (presented in Grossi et al. 2009) con-
sists of three DM-only simulations performed with different lev-
els of primordial non-Gaussianity, that, expressed in terms of the
dimensionless non-linearity parameterfNL , are fNL=0, ±100; the
case fNL=0 corresponds to the standard Gaussian case. The ini-
tial conditions were set by assuming a flatΛCDM model dom-
inated by a cosmological constant with parameters chosen tobe
consistent with theWMAP three-year results (Spergel et al. 2007,
WMAP-3hereafter): namely, the density contributions of cosmo-
logical constant and matter correspond toΩΛ=0.76 andΩm=0.24,
respectively, while the normalization of the power spectrum of den-
sity fluctuations is fixed asσ8=0.8, beingσ8 the r.m.s. matter fluc-
tuation into a sphere of radius 8h−1 Mpc. The three simulations
started from the same random generation of initial conditions with
the only difference consisting in the different value offNL . All the
runs, carried out with theN-body codeGADGET-2 (Springel et al.
2001; Springel 2005), followed the evolution of 9603 DM particles
inside a cubic volume of 1200h−1 Mpc per side, with each parti-
cle having a mass ofm= 1.4×1011h−1M⊙; hereh represents the
Hubble parameter defined ash ≡ H0/(100 km s−1 Mpc−1)=0.7.
The gravitational force has been computed using a Plummer equiv-
alent softening lengthε = 25h−1 kpc.

These simulations produced 14 outputs in the redshift range
0 6 z 6 4. For each snapshot we produced a catalogue of DM
haloes identified using afriends-of-friends(FOF) algorithm, adopt-
ing a linking length of 0.2 times the mean interparticle distance:
with this choice the size of the haloes roughly corresponds to their
virial mass,Mvir . Since in this work we are interested in the X-ray
and SZ signals produced by galaxy groups and clusters, we only
considered DM haloes havingMvir > 1013h−1M⊙. For each halo
we kept the information on the mass and the position of its center
inside the cosmological volume.

The second set of simulations is the one described in
Grossi et al. (2007). It consists on 7 runs covering a wider range
of non-Gaussianity:fNL=0, ±100, ±500, ±1000. The main dif-
ferences with respect to the first set are that the box size is only
500h−1 Mpc with 8003 particles and that the cosmological model
adopted is close to aWMAPfirst-year (Spergel et al. 2003,WMAP-
1 hereafter) cosmology, with the following cosmological parame-
ters:ΩΛ=0.7,Ωm=0.3,σ8=0.9. For this set we have 21 outputs in
the range 06 z 6 4 and a halo catalogue for each snapshot ob-
tained in the same way as described before and with the same mass

limit. Notice that in this paper this last set of simulationswill be
mainly used to test the impact of different cosmological param-
eters compared to non-Gaussianity: for this reason we will dis-
cuss only the results of the most extreme and the Gaussian model
( fNL= 0,±1000). This simulation set will also be used in order to
check the effect of the finite box size on our results.

2.2 Constructing the light-cones

As said in Section 1, in order to study the impact of primordial
non-Gaussianity on the LSS we adopt an observationally-oriented
approach. To this purpose we use the halo catalogues described in
Section 2.1 to produce mock light-cones by stacking severalsim-
ulation volumes. In particular we want to cover the redshiftrange
0 6 z6 4, which corresponds to a comoving distance of 5249h−1

Mpc (5019h−1 Mpc with the cosmology adopted for the second
set). This length requires to stack 5 (11 for the second set) times the
simulation box. However, in order to obtain a better redshift sam-
pling, we divide the simulation volume into slices along theline
of sight. The number of slices varies from cube to cube and their
comoving distance intervals are created in order to allow usto use
all of the 14 (21 for the second set) snapshots. More precisely, for
any given distance from the observer we compute the correspond-
ing time elapsed from the big bang and we choose the snapshot that
better approximates this value.

In order to avoid the repetition of the same structures along
the line of sight, for every stacked simulation volume we perform
a randomization of the halo spatial coordinates: for every cube we
randomly choose the axis to put along the line of sight, we assign
a 50 per cent probability to reflect each axis and, since our simu-
lations assume periodic boundary conditions, we proceed toa ran-
dom recentering of the coordinates. In order to preserve thewhole
information on the structures inside the simulations’ volume, the
slices belonging to the same cube undergo the same randomization
process. With this method, which is similar to the one adopted by
Roncarelli et al. (006a), we obtain 18 different slices belonging to
5 independently randomized cubes (31 and 11 for the second sim-
ulation set, respectively). This process is repeated with the same
initial random seed for all the simulations of the set. Each light-
cone produced in this way spans an angle of 13.1 deg (5.71 deg for
the second set) per side, determined by the length of the box at the
maximum redshift,z= 4.

By varying the initial random seeds we can obtain different
light-cone realizations that we can use to assess the statistical ro-
bustness of our results. For each non-Gaussian model, we created
20 (100) different light-cone realizations, thus coveringa total area
of 3432 deg2 (3260 deg2). However, it is important to note that
this area cannot be considered as completely independent, being
produced starting from the same finite volume of the simulation:
as a reference, atz≃ 4 the same simulation volume is completely
stacked in all realisations, while atz≃ 0.5 we are able to produce
about 15 independent volumes crossing the light-cones.

Using the whole set of light-cone realizations we compute the
mass functions, expressed in terms of number of objects per solid
angle, for 4 redshift bins. We show in Fig. 1 the results for the three
models of the first set (fNL=0,±100) and for thefNL=0,±1000
models of the second set.

Looking at the 06 z 6 0.5 bin, the three mass functions of
the first set are basically indistinguishable. The non-Gaussian de-
viations become more evident in the tail at higher masses andat
higher redshifts: in the second bin (0.5 6 z 6 1) the fNL= ±100
models introduce a±5 per cent difference in the high mass (Mvir &



4 M. Roncarelli et al.

Figure 1. The logN-logM for the two simulation sets in different redshift bins. In the upper panels the solid lines refer to the first simulation set (average of
20 light-cone realizations) for the three different levelsof non-Gaussianity:fNL=0,±100. The dot-dashed lines refer to the second simulation set(average of
100 light cones,WMAP-1cosmology) for models withfNL=0,±1000. In the lower panels we show, for the first set of simulations only, the difference∆N/N,
computed with respect to the Gaussian (fNL=0) simulation.

1014h−1M⊙) cluster counts, which increases to about 10 per cent
at z> 1. This is in agreement with the fact the modification of the
distribution of the primordial density fluctuations primarily affects
the formation of the biggest haloes at early epochs, as already dis-
cussed in Grossi et al. (2009).

When comparing the two simulation sets, it is clear that the
differences between the various non-Gaussian scenarios are very
small compared to the ones resulting from the change of the cos-
mological model. For example, even atz> 1 the fNL= 100 model
of the first set adds only about 10 per cent counts to the Gaussian
case (Mvir > 1014h−1M⊙), while theWMAP-1cosmology scenario
predicts more than three times as much objects. This fact highlights
that the uncertainties with cosmological parameters, particularly
with σ8, are critical when addressing the problem of detecting pri-
mordial non-Gaussianities in the LSS. More in the detail, analytical
models of the mass functions (e.g. Sheth & Tormen 2002) predict
that a difference of±0.01 in σ8 produces a change of about 10 per
cent in the total integrated counts (Mvir > 1014h−1M⊙), raising to
about 15 per cent atz> 1, where thefNL parameter is expected to
produce the most significant effects. This aspect will be considered
in the following analyses.

It is worth to note also that for masses higher than≈
1014.5h−1M⊙ the mass functions of the second simulation set
steepen and approach the first-simulation ones: this is an artificial
effect produced by the smaller box size of the second simulation
(500 instead of 1200h−1 Mpc). In fact this causes a loss of power

for perturbations at large scales, corresponding to a lowerabun-
dance of objects with high masses, and gives an indication ofthe
range of validity of our simulation sets.

3 MODELING X-RAY COUNTS

Since our simulations consider only DM particles, in order to com-
pare our results with present and future cluster surveys we need
to define a model to associate the baryonic component to each
DM halo. In particular we will focus here on modeling the X-ray
emission (and the SZ signal, described in Section 4), exploiting ob-
served and predicted scaling relations. As said in Section 2.1, our
method provides the virial massMvir of our clusters, while often
scaling relations are published using other mass definitions (like
M200, M500 and so on): therefore, in order to convertMvir to the re-
quired value, we assume that our DM haloes follow a NFW density
profile (Navarro et al. 1997) with a concentration parameterc given
by thec(M,z) relation proposed by Dolag et al. (2004). Notice that
here we explicitly neglect the presence of any diffuse emission from
the IGM associated to the warm-hot intergalactic medium (WHIM)
and concentrate only on signals coming from galaxy clustersand
groups. Even if the WHIM component is expected to contribute
significantly to the total LSS signal, its presence is not expected to
significantly affect the clusters count rate (see, e.g., Roncarelli et al.
006a).
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In order to associate an X-ray luminosity to a DM halo we
assume the phenomenological mass-luminosity relation found by
Stanek et al. (2006), namely

LX

h−2
70 1044ergs−1

= L15,0 E(z)s
(

M200

1015h−1M⊙

)p

, (2)

whereLX is the luminosity in the [0.1-2.4 keV] band andM200
is the mass of the cluster inside a radius enclosing 200 timesthe
critical densityρc(z) of the Universe at the redshift of the cluster.
The normalizationL15,0 corresponds to the luminosity of an object
with M200 = 1015h−1M⊙ at z = 0. The termE(z) represents the
redshift evolution of the Hubble parameter,

E(z) = Ωm(1+z)3 +ΩΛ (3)

while the value ofs is assumed to correspond to the self-similar
evolution case,s= 7/3. The best-fit parametersL15,0 andp depend
on the assumed cosmological model. Stanek et al. (2006) publish
their results assuming bothΩm=0.24 (lnL15,0 = 1.19, p= 1.46) and
Ωm=0.30 (lnL15,0 = 1.34, p = 1.59), therefore we can take those
values as a reference for our first and second simulation sets, re-
spectively. We also take into account a scatter in theLX−M relation
that we fix to 17 per cent, as measured by Reiprich & Böhringer
(2002).

In this work we will determine the observed clusters fluxes
in the [0.5-2 keV] and [0.5-5 keV] bands to compare our results
with the abundances derived fromROSATX-ray clusters survey
(Rosati et al. 2002) and to predict the expected counts for the forth-
comingeROSITAsurvey (Predehl et al. 2007), respectively. In or-
der to calculate the band corrections, we need to assume the ICM
temperature that determines the spectral distribution of the emitted
radiation. For this purpose we consider our haloes as isothermal
and we use theM200−T200 relation which Arnaud et al. (2005) ob-
tained from a sample of ten nearby clusters observed withXMM-
Newton, adding a self-similar redshift evolution. Notice that their
sample covers the temperature range 2–9 keV, so we are forcedto
extend this relation to smaller objects, where a steepeningof the
M200−T200 relation is expected. In fact, Arnaud et al. (2005) ob-
tain a slope higher of∼ 0.2 when restricting their sample only the
hottest (T > 3.5 keV) clusters. Even if neglecting this effect may
lead to an underestimate of the cluster temperatures for thesmall
objects, we checked that it does not have a strong impact on our
final results. For example, if we assume a further steepeningof 0.2
in colder (T < 2 keV) clusters, this leads to a change of about 1 per
cent in the faint-end of the logN-logS, and the relative differences
between the non-Gaussian scenarios remain unchanged.

It is known that the ICM cools mainly viabremsstrahlung
emission which is the main physical process responsible of the X-
ray emission of galaxy clusters. Therefore we can model the emis-
sion of the gas assuming a free-free spectrum with a Gaunt fac-
tor g(E/kB)T200 = (E/kB)−0.3 (see, e.g., Borgani et al. 1999, for
more details). With this simplifying assumption we are neglecting
the presence of other known emission processes like line-emission
from metals, which can give a non-negligible contribution espe-
cially to low-temperature (T . 2 keV) clusters; however, for the
reasons explained above, neglecting this process has no significant
impact on our final results.

Once obtained the band correctionfband, we calculate the clus-
ter flux in a given band as

Sband=
LX fband

4πdL(z)2 , (4)

wheredL(z) is the luminosity distance of the cluster.

Figure 2. The number of haloes as a function of the flux limit in the [0.5-2
keV] band for the two simulation sets. The solid lines refer to the three mod-
els of the first set (average of 20 light-cone realizations) with fNL=0,±100.
The dot-dashed line refer to the second simulation set (average of 100 light-
cones,WMAP-1cosmology) for models withfNL=0,±1000. The diamonds
with errorbars correspond to the number counts derived by Rosati et al.
(2002) fromROSATX-ray clusters survey.

Fig. 2 shows the number counts as a function of the X-ray flux
limit in the [0.5-2 keV] band for the three models of the first set
and for thefNL=0,±1000 of the second simulation set. Our results
are compared with the counts obtained from theROSATsurvey, in
the same band. All of the first three models show a good agreement
with the data, having error bars much wider than the difference
associated to the change of thefNL parameter. On the contrary,
the counts obtained with theWMAP-1cosmology are significantly
higher (even when considering the standard Gaussian case):the
only way to fit the data with these cosmological parameters would
be to assume a strong negative evolution of the luminosity with red-
shift, e.g. adding an extra factor(1+z)β to equation 2, withβ≃−2,
which is absolutely unrealistic (see, e.g., Ettori et al. 2004). These
results show that the dependence of the cluster counts on different
cosmological parameters, and particularly onσ8, is much higher
with respect to the one on the value offNL : this highlights the dif-
ficulty of constraining the level of the primordial non-Gaussianity
with the current uncertainties in the cosmological parameters.

Fig. 3 shows the logN-logS in the [0.5-5 keV] band in dif-
ferent redshift intervals. Again, the number counts differences be-
tween the different non-Gaussian scenarios are about one order of
magnitude smaller than the corresponding differences obtained by
increasing the value ofσ8 from 0.8 to 0.9. Anyway, it is interesting
to note that in the redshift interval 0.5 < z< 1, the number counts
expected assuming theeROSITAdetection limit (3.3× 10−14 erg
s−1 cm−2) differ by about 10 per cent when assumingfNL= ±100
with respect to the Gaussian model. These relative differences grow
to about 20 per cent in the 1< z< 2 interval and increase for higher
fluxes: this result is in agreement with the expected evolutionary
scenario emerging from Fig. 1, with higher mass (and then more
luminous) haloes forming earlier in models with positivefNL .

Table 1 shows the number of galaxy clusters withM200 >
1014h−1M⊙ that are expected to be detected by theeROSITAwide
survey under our assumptions. For our predictions we assumean
effective area of 20000 deg2 and a detection limit of 3.3×10−14 erg
s−1 cm−2 in the [0.5-5 keV] band. For the Gaussian model we pre-
dict∼ 60000 detections, one per cent of them at redshift larger than
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Figure 3. As in Fig. 1, but for the logN-logS in the [0.5-5 keV] band. The dashed vertical line indicates theeROSITAflux-limit, corresponding to 3.3×1014

erg s−1 cm−2.

unity. The changes due to the presence of a moderate level of pri-
mordial non-Gaussianity (fNL=±100) are small, but always larger
than the expected poissonian error: considering the total counts, the
variation is about 4 per cent, while for the redshift bin 1< z< 2 the
abundances change by 15 per cent. However, once again, the de-
pendence onfNL is much smaller when compared to the one on the
power spectrum normalizationσ8: at z > 1, the differences in the
cluster counts associated to thefNL=±100 models are comparable
to an uncertainty of±0.01 in σ8 (see the discussion in Sect. 2.2).
For what concerns the total integrated counts, the number ofobjects
detectable by theeROSITAsurvey predicted by the Gaussian simu-
lation of the second set (σ8 = 0.9) grows by a factor of 2:∼120000
objects, with a similar redshift distribution. This confirms the ne-
cessity of having alternative derivations of the main cosmological
parameters to allow to exploit the power of cluster counts tocon-
strain the level of primordial non-Gaussianity (see also Fedeli et al.
2009).

4 THE THERMAL SZ EFFECT

Another important observable quantity to study galaxy clusters is
the thermal SZ (tSZ) effect, namely the inverse-Compton scattering
of the CMB photons caused by the electrons present in the hot intr-
acluster plasma (see, e.g., Birkinshaw 1999; Carlstrom et al. 2002,
for detailed reviews). This effect causes a distortion in the CMB
blackbody spectrum, whose intensity in a given direction can be
expressed in terms of the Comptony-parameter defined as

Table 1. The number of detected haloes (withM200 > 1014h−1M⊙) pre-
dicted for theeROSITAwide survey in different redshift bins. The quoted
errors are assumed to be poissonian.

Number counts
fNL 0 < z< 0.5 0.5 < z< 1 1< z< 2 Total

-100 41590±204 15934±126 478± 22 58007±241
0 42318±206 16715±129 571± 24 59610±244

100 43443±208 18015±134 641± 25 62105±249

y≡
kB σT

mec2

Z

neTedl ; (5)

herekB is the Boltzmann constant,σT is the Thompson cross sec-
tion, me is the electron mass,c is the light speed, whilene and
Te represent the electron number density and temperature, respec-
tively. The distortion of the signal results in a difference∆T in
the measured temperature which depends on the observational fre-
quency. In the Rayleigh-Jeans (RJ) limit this is given by

∆T
TCMB

= −2y , (6)

whereTCMB=2.726 K is the CMB temperature (Mather et al. 1994),
thus producing a temperature decrement, which can be as highas
∆T ≈ 10−3 K for the central regions of the most massive clusters.
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Table 2. The number of detected haloes (withM200 > 1014h−1M⊙) pre-
dicted for theSPTwide survey in different redshift bins. The quoted errors
are assumed to be poissonian.

Number counts
fNL 0 < z< 0.5 0.5 < z< 1 1< z< 2 Total

-100 7796±88 5961± 75 960± 31 14456±120
0 7958±89 6041± 78 1124± 34 15137±123

100 8144±90 6357± 80 1268± 36 15784±126

Following an observationally oriented approach, the interest-
ing quantity to be evaluated for a given halo is the integrated Comp-
tony-parameterY, defined as

Y ≡
Z

Ω
ydΩ =

1

d2
A(z)

(

kBσT

mec2

)

Z

V
neTedV , (7)

whereΩ is the solid angle subtended by the cluster andV is its
physical volume. This adimensional quantity depends on thean-
gular diameter distancedA(z), and constitutes an equivalent to the
flux in the X-rays. Therefore it is useful to introduce the intrinsic
Comptony-parameter defined as

Yint ≡YdA(z)2 , (8)

which is roughly proportional to the mass and to the temperature of
the object. Using hydrodynamical simulations it has been possible
to calibrate scaling relations between the cluster mass andits SZ
observables (see, e.g., Diaferio et al. 2005; Shaw et al. 2008): here
we adopt theM−Yint relation, found by Nagai (2006), that can be
expressed in the form

Yint
200

Mpc2 = A14×10−6E(z)s
(

M200

1014h−1M⊙

)α
, (9)

where the pedex indicates that we are considering quantities com-
puted inside the volume enclosed byR200. By fitting the data com-
puted from their simulated clusters sample, Nagai (2006) obtained
A14 = 2.56 andα = 1.70 (we consider the results of their CSF sim-
ulation, which accounts for a variety of physical processesof the
baryonic component): we used this relation assuming, as we did for
the X-ray modeling, a self-similar redshift evolution, correspond-
ing for the tSZ effect tos= 2/3.

We show the results of our logN-logYint in Fig. 4. Most of the
conclusions derived from the analysis of the X-ray results apply
also for the tSZ effect: the uncertainties in the estimate ofσ8 make
it very challenging to discriminate between different non-Gaussian
models. However it is worth to notice that, since the tSZ effect is not
affected by redshift dimming as the X-ray flux, at higher redshifts
(z> 1) the number of detections is still significant. For example, as-
suming the flux limit expected for theSPTsurvey (i.e. 5 mJy at 150
GHz, corresponding toY ≃ 3.4× 10−12, see Majumdar & Mohr
2003), we predict the possibility of detecting∼ 0.3 high-z objects
per square degree: given the expected area of 4000 deg2, this leads
to more than one thousand objects, enough to potentially discrimi-
nate the∼ 20 per cent difference in the cluster counts predicted for
the fNL= ±100 models. Note that these deviations are comparable
to an uncertainty of about±0.02 in the primordial power spectrum
normalizationσ8. The expected number counts from theSPTsur-
vey in different redshift ranges are reported in Table 2.

4.1 Integrated properties of the tSZ signal

Apart from cluster counts, other global quantities like theaver-
age Comptony-parameter and the tSZ power spectrum can be af-
fected by the presence of a non-Gaussian signature in the primor-
dial power spectrum of perturbations. In order to study these ob-
servables, it is necessary to create and analyse mock maps ofthey-
parameter. Since galaxy clusters are extended sources, we need to
make further assumptions about the density and temperaturepro-
files of the haloes to model the distribution of the signal on the
sky. Since the tSZ signal receives a significant contribution also
from the external regions of galaxy clusters, the modelisation must
take into account the steepening of the slope of these profiles in
the regions around the virial radius (see, e.g., Vikhlinin et al. 2006;
Roncarelli et al. 006b). In this context, it is important to note that
a classicβ-model (Cavaliere & Fusco-Femiano 1978) would fail
simply because it does not converge for large distances fromthe
centre, even when assuming a decrease of the temperature with a
polytropic index, as adopted in Ameglio et al. (2006). Therefore,
we start from the suggestion of Ameglio et al. (2006) and slightly
modify their results by introducing a rolling-β polytropic profile for
the tSZ signal, namely

y(θ) = y0

[

1+

(

θ
θc

)2
]−3βeff(γ−1)/2

, (10)

whereθ is the angular separation from the cluster centre,θc is the
angular size of the core radius (assumed to berc = 0.1R200), γ =
1.18 is the polytropic index of the gas. The effective slopeβeff is
given by

βeff = −βext

(

x+βint/βext

x+1

)

, (11)

wherex≡ θ/θc andβext andβint are the external and internal slopes
for the density profile, respectively. In this way we can tunethese
two parameters in such a way that this expression converges to the
profile of Ameglio et al. (2006) (and to aβ-model) in the inner part,
while in the outer part it steepens to allow the value of the integrated
Yint to converge to a finite value (γβext > 1). We chooseβint = 2/3
andβext = 1.3, where the latter value is taken in agreement with
the analyses of Roncarelli et al. (006b) on the density profiles in the
outskirts of simulated galaxy clusters. With this choice ofparame-
ters, the external part of oury(θ) profile also agrees with the results
of Haugboelle et al. (2007). A visual comparison of these differ-
ent profiles for Comptony-parameter is shown in the left panel
of Fig. 5: while the three profiles converge to the same value at
the centre, the rolling-β polytropic profile is significantly lower al-
ready at∼ 3θc (∼ 0.3R200). When considering the distribution of
the signal (right panel), it is easy to deduce that only with the pro-
file adopted in this workYint converges to a finite value for high
values ofθ. It is worth to notice that even adopting this profile, the
total signal up toR200 is only the 93 per cent of the total signal:
this indicates that using any other shallower profile would lead to
non-negligible biases.

Then we used this profile as a weight to distribute the total tSZ
signal of each halo into the pixels of our maps. Since the adopted
profile has non-zero contribution even at large scales, we set up the
integration limit to the 99 per cent of the total value: this means
integrating up to∼ 2.3r200. We follow the procedure described in
Roncarelli et al. (006a) to smooth the signal of the SPH particles
and obtain the tSZ map corresponding to each simulated light-cone
realization. At the end our analysis will be based on a total of 60
maps from the first simulation set and 700 from the second one.As
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Figure 4. As in Fig. 1, but for the logN-logY. The dashed vertical line indicates theSPTflux-limit, i.e. 5 mJy at 150 GHz, corresponding toY ∼ 3.4×10−12.

Figure 5. Left panel: comparison between the Comptony-parameter profiles for an isothermalβ–model (dashed line), the polytropicβ–model proposed by
Ameglio et al. (2006) (dot-dashed line) and the rolling-β polytropic profile (solid line) used in this work. Right panel: distribution of the signal as a function
of the distance from the centre for the same three profiles.

an example, in Fig. 6 we show the Comptony-parameter maps cor-
responding to the same light-cone realization, as obtainedfrom the
fNL= 0,±1000 simulations of the second set. With these extremely
large amounts of primordial non-Gaussianity, it is possible to rec-
ognize the expected behavior: an evidence of more (less) clustered
signal for positive (negative)fNL , compared to the Gaussian case.
Notice that the average value of they-parameter computed over all
the maps of the Gaussian simulation with theWMAP-1cosmol-
ogy is< y >= 9.71×10−7, while considering aWMAP-3cosmol-
ogy (first set of simulations) this value drops to< y >= 5.22×

10−7, in good agreement with the expected scaling,y ∝ Ωmσ3.5
8

(see, e.g., Komatsu & Seljak 2002; Diego & Majumdar 2004). The
last figure is also consistent with the results of Roncarelliet al.
(2007) who, analysing a high-resolution hydrodynamical simula-
tion (Borgani et al. 2004) based on the same cosmological model,
obtained a value of< y >= 1.19×10−6 with about half of the sig-
nal originated from the WHIM (not considered in this work). No-
tice that the mean values derived for the models with theWMAP-
3 cosmology but withfNL= 100 and fNL= −100 are< y >=
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Figure 6. Examples of maps for the tSZ signal (expressed in terms of theComptony-parameter) for three different levels of primordial non-Gaussianity,
fNL = −1000,0,1000 (left, center and right panels, respectively). These maps have been obtained from the second simulation set (WMAP-1cosmology): they
are 5.71◦ on a side with a pixel size of (20 arcsec)2. Notice that the three maps refer to the same light-cone realization.

5.37× 10−7 and< y >= 5.08× 10−7, respectively, thus compa-
rable within few percent to the Gaussian case.

4.2 Angular power spectrum

To characterize the statistical properties of the tSZ effect, it is im-
portant to study its power spectrum at different multipoles, in par-
ticular focusing on the angular scales at which the tSZ signal is
expected to dominate the primary CMB anisotropies (ℓ & 2000).
For the complete set of maps generated as described in the previ-
ous Section, we computed the tSZ power spectra, using a method
based on Fast Fourier Transforms, adopting the approximation of
flat sky (given the reduced extension of the maps) and assuming the
RJ frequency limit. Finally, the corresponding averages are shown
in Fig. 7 for the different models.

Again, when considering the first set of simulations, the dif-
ferences between models with various values offNL are very low
when compared to the variations related to a change of the cos-
mological scenario: about 10 per cent in both senses for thefNL=
±100 models, compared to a factor of about 3 when changingσ8
and Ωm. This is expected as, given the dependenceCℓ ∝ σ7

8, the
difference in theσ8 choice accounts alone for a factor 2.3, with
the remaining difference associated to theΩm parameter. For these
reasons, the perspective of constrainingfNL seems to be quite de-
manding without an independent derivation of the main cosmolog-
ical parameters.

The presence of a possible non-Gaussianity in post-
inflationary perturbations has been also claimed by Sadeh etal.
(2007) as a possible explanation of the anomalous values of the
tSZ power spectrum obtained by theBIMA experiment. In particu-
lar, Dawson et al. (2002) measured an high value of∆T = 16.6+5.3

−5.9
µK at ℓ = 5237 (see, however, the smaller estimate obtained by
Sharp et al. 2009, with theSZAexperiment). According to our re-
sults, explaining theBIMA results with primordial non-Gaussian
fluctuations alone (and keepingσ8 = 0.8) would lead to values of
fNL unrealistically high (fNL≫ 100). On the contrary, if slightly
higher values ofσ8 are considered, the tSZ power spectrum would
agree within 1σ with the result obtained by Dawson et al. (2002).
In this context, a positive value offNL within current upper lim-
its, could also contribute to boost the tSZ signal in order toexplain
these measurements.

Figure 7. The power spectrum of the tSZ signal in the RJ limit as a func-
tion of the multipoleℓ for the two simulation sets. The solid lines refer to the
first simulation set (average of the 20 light-cone realizations) for the three
different levels of primordial non-Gaussianity (fNL=0,±100), while the dot-
dashed lines refer to the second simulation set (average of 100 light-cones,
with WMAP-1cosmology) for fNL=0,±1000. The dotted line represents
the primary CMB signal calculated usingCMBFAST (Seljak & Zaldarriaga
1996) adopting theWMAP-3cosmology. The diamonds with errorbars (1σ)
represent the measurements of Dawson et al. (2002) with theBIMA experi-
ment.

5 DIFFERENTIAL REDSHIFT COUNTS

From the results presented above it is clear that a significant de-
tection of the signatures of a possible primordial non-Gaussianity
based on global properties of galaxy clusters (e.g. number counts,
mass functions, etc.) appears very difficult and well beyondthe pos-
sibility of current and planned surveys. The main reason is not only
the degeneracy of the results with other uncertain cosmological pa-
rameters (mostlyσ8), but also the fact that these observables are
dominated by low-redshift haloes (z. 0.5) where the LSS proper-
ties of the different non-Gaussian models show smaller differences.

For these reasons the most reasonable strategy to break the
degeneracy betweenfNL and the other parameters can be a study of
the evolution with redshift of the cluster counts. In Fig. 8 we show
for the different models under analysis the redshift distribution of
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the objects that will be detected by theeROSITAandSPTcluster
surveys (left and right panels) in the X-ray and tSZ, respectively.

Looking in more detail at theeROSITAresults, the cluster
abundances atz & 0.5, where the satellite is expected to detect
about 15,000 objects (see Tab. 1), show a relative difference of
about 10 per cent. Therefore, in principle, the possibilityof esti-
mating, thanks to a dedicated follow-up campaign, a high number
of redshifts for the objects detected byeROSITAat z> 0.5, would
allow to obtain their redshift distribution, increasing the chance of
constrainingfNL , once the value ofσ8 is derived using the abun-
dance of low-redshift objects.

A similar conclusion can be drawn by looking at the redshift
distribution of theSPTclusters (right panel). The possibility of de-
tecting very high-redshift (z> 1) clusters with an SZ survey is cer-
tainly promising, since in this redshift range the relativedifferences
grows to∼ 20 per cent. However, the possibility of obtaining a sig-
nificant amount of redshift estimates for these objects (which are
∼ 1000, see Section 4) is of course much lower, due to their lower
signal.

6 CONCLUSIONS

In this work we used a set of cosmologicalN-body simulations to
investigate the impact of primordial non-Gaussianity (parametrised
in terms of fNL) on the LSS. From their outputs we constructed
halo catalogues at different redshifts and, making use of suitable
scaling relations between masses and observables, we computed
their expected X-ray emission and SZ signal. In particular we in-
vestigated the possibility of constrainingfNL with future projects,
namelyeROSITAandSPTcluster surveys. Moreover we discussed
the degeneracy with other uncertain cosmological parameters, like
Ωm andσ8. Our main results can be summarised as follows.

(i) As predicted by analytical models (see, e.g., Matarreseet al.
2000; LoVerde et al. 2008), the main effects in cluster counts due
to the presence of some level of primordial non-Gaussianityare
for high masses and redshifts. In particular, for haloes with M200>
1014h−1M⊙ atz> 1, the differences with respect to the correspond-
ing Gaussian models are about 20 per cent.

(ii) When the power spectrum normalization suggested by
WMAP-3 is adopted, models with a moderate level of non-
Gaussianity (fNL=±100) well reproduce the observed cluster
counts derived fromROSATcluster survey. However, the depen-
dence onfNL is very weak, when compared to the one onσ8, which
must be independently estimated to fully exploit cluster counts as a
probe of primordial non-Gaussianity.

(iii) We predict the expected number and redshift distribution
of the galaxy clusters that will be detected in two future cluster
surveys:eROSITA(X-ray) andSPT(SZ). The effects due to a mod-
erate primordial non-Gaussianity are in general of few per cent,
reaching about 20 per cent only at highz. In general, the fact that it
is easier to detect high-z objects with SZ observations, because of
the absence of cosmological dimming, makesSPTa more promis-
ing probe for obtaining constraints onfNL . However, once again,
the results show a strong degeneracy betweenfNL and other cos-
mological parameters. Similar conclusions can be also drawn when
analysing the power spectrum of the tSZ signal produced by galaxy
clusters.

(iv) On the whole, the best strategy to detect the signaturesof
primordial non-Gaussianity in the LSS is to perform deep cluster
surveys, together with suitable optical follow-ups for thedetermi-
nation of their redshifts. With this kind of observational dataset, it

would be possible to constrainσ8 using low-redshift objects and
analyse thedN/dz in the range 0.5 . z. 1 to constrain the value
of fNL . If with this method future surveys will allow to reduce the
uncertainties onσ8 to about 0.01, this would make possible to de-
tect moderate non-Gaussianities of the order offNL= ±100 (see
also Sefusatti et al. 2006; Oguri 2009).

In conclusion, the results of this paper confirm the power of
statistical tests based on galaxy clusters as a probe for primor-
dial non-Gaussianity. In particular the detection of objects in the
high-mass tail at sufficiently large redshift, as possible in future SZ
wide surveys likeSPT, will be certainly useful to improve the con-
straints onfNL coming from alternative methods, like CMB, ISW
and galaxy biasing.
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